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Abstract 

Resilience of the UK transport infrastructure network can be expressed as the imbalance between the 

physical condition of the network and the transport demands the network experiences. Forecasting changes 

of resilience in the long term (e.g. the 2050s) requires a structured, multi-disciplinary approach. The EPSRC-

funded FUTURENET project developed a model architecture to formalize such an approach and this paper 

addresses one component - the assessment of the influence of physical processes on asset condition. This 

requires development of new, integrated physical-based models that respond to detailed inputs of forecast 

weather events (e.g. UKCP09). The results are plotted onto the infrastructure network for visualisation. 

Subsequent combination with user demand will then enable determination of network resilience at a range of 

spatial scales. The project has highlighted the need for better datasets, more sophisticated physical-based 

models and further analyses of complex feedbacks and interactions between physical processes and also 

with user behaviour. 
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1. Introduction 

The potential consequences of climate change on UK society and its transport infrastructure are subject to 

much debate (e.g. Chapman, 2007; Jaroszweski et al., 2010; Thornton et al., 2010; ICE, 2010; URS, 2010; 

CILT(UK), 2011, Cabinet Office, 2011;). In support of this debate the Engineering and Physical Sciences 

Research Council (EPSRC) provided funding for the establishment of the FUTURENET project as part of its 

portfolio of research-led projects within the Adaptation and Resilience to Climate Change (ARCC) programme 

(ARCC, 2012). FUTURENET was tasked to determine a model architecture for the quantification of UK 

transport infrastructure network resilience in the 2050s at a range of spatial scales. The project approached 

this problem from a user–perspective, expressing resilience as the imbalance between the physical condition 

of segments of the network and the transport demand these segments experience in the 2050s. The 

FUTURENET project comprised a multi-partner, multi-disciplinary team that addressed a range of integrated 

investigations, including user behaviour surveys (Ryley and Chapman, 2012), projections of future travel 

demand (Goulden and Dingwall, 2012; Berkhout et al., 2002), the influences of weather on travel behaviour 

(Bouch et al., 2011, 2012) and the assessment of physical processes on asset condition as addressed in this 

paper. 

  

It is widely recognised that climate change (Table 1) presents very serious risks and that warming trends are 

stronger than earlier forecasts suggested (IPCC, 2007; Rowlands et al., 2012). It is clear that appropriate 

adaptation strategies for infrastructure need to be developed as the benefits of pro-active intervention 

outweighs considerably the costs of remediation following failure (Stern, 2007, RSSB, 2004, 2005; Jenkins et 

al., 2009; Murphy et al., 2009; Jones et al., 2009; Glendinning et al., 2009). The UK has a strategic road 

transport network (motorways and trunk roads) covering more than 13,000km with some 400,000km of other 

public roads (Figure 1). The UK rail network spans some 15,000km (National Infrastructure Plan, 2011; 

Department for Environment, Food and Rural Affairs, 2011). Some two-thirds of the UK transport 

infrastructure network is supported by or adjacent to engineered slopes (e.g. embankments and cuttings; 

Perry et al., 2003; Perry et al., 2001; Wilks et al., 2012). Existing infrastructure has been constructed under a 

past climate and railway infrastructure in particular is affected by aged assets (120 years or more) and 

constructed to standards that are very different from present practice (O’Brien, 2007, Loveridge et al., 2010). 

Maintaining these assets is costly and, for example, Network Rail invested some £70million on preventative 
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works to stabilise at risk earthworks in 2007/8 (RAIB, 2008). It is therefore cost-effective to develop tools to 

enable asset managers to better prioritise where sections of the network require investments to maintain 

resilience.  

 

At present, most climate impact studies for the infrastructure sector are based on narrative development and 

empirical assessments (e.g. Koetse and Rietveld, 2009). Broad expert elicitation processes form very useful 

fora for capturing the detailed narratives that set out a comprehensive framework for addressing potential 

climate change impacts on key infrastructure assets in the UK (e.g. energy, transport, water; URS, 2010). In a 

conceptual framework for strategic decision-making these suites of narratives form very useful tools. However, 

it is now required to analyse changes in the condition of these assets in greater detail and to communicate 

more effectively the spatial and temporal distribution and forecasted severity of climate dependent hazards, 

such as flooding, landsliding, swell/shrink and railway buckling. FUTURENET therefore responds to the 

argument that physical process representation for the determination of the infrastructure asset condition in a 

dynamic environment requires a shift in focus towards  quantitative modelling (Dijkstra and Dixon, 2010). The 

FUTURENET project is among the first to respond to a need to put long-term forecasting of infrastructure 

network resilience in a quantitative framework, where physical-based process models are driven by high-

resolution weather data.  This paper describes the FUTURENET model architecture and presents the physical 

condition and capacity reduction approach. This is illustrated using example outputs from the model and leads 

to a discussion of how uncertainties could be reduced and model performance may be improved. 

 

2. The FUTURENET architecture 

The development of the FUTURENET model architecture was carried out with three sets of viewpoints in mind;  

- those of the policy maker, who needs to be able to make long term strategic choices, for example 

those associated with prioritisation of long-term investments in infrastructure planning 

- those of the infrastructure manager, who requires detailed assessments of local impacts on specific 

infrastructure for different weather events, and 

- those of the traveller, who is interested in an improved understanding of, for example, the time taken 

to travel a particular route on a specific day, and the assessment of delays associated with a reduced 

resilience due to adverse weather conditions. 
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Communication of FUTURENET outcomes thus requires different levels of detail (see Figure 2). At the site-

specific highest resolution, process modelling takes place that can be used to provide information on the 

heterogeneity in the process-response system to site managers, planners and maintenance groups. Changes 

in condition of the asset are influenced by individual processes or interactions between multiple physical 

processes. Aggregation of information will enable creation of outputs that are relevant to segments of the 

infrastructure corridor between nodes. Nodes are locations on the network where deviations from a particular 

route are possible. In the motorway environment this is dependent upon, for example, major junctions or 

breaks in the central reservation that emergency/maintenance services could potentially use to direct traffic 

onto another functioning carriageway. For rail, these nodes are locations where rolling stock can change 

tracks. It is argued that, if something occurs anywhere between the nodes, the whole segment is affected and 

thus the weakest component determines the functioning of the segment. Further aggregation of information 

can involve averaging multi-segment stretches into strategic units that can be determined on a regional, or 

even national basis (for example the M1 motorway unit through Leicestershire, or the rail and road corridor 

from London to Glasgow). The expression of changes in aggregated physical condition for these units, and 

combinations of road and rail routes, can provide important information to support strategic decision-making 

on a regional/national scale.  

 

Conceptual framework 

The FUTURENET model architecture is structured around a general framework that conceptualises the basic 

steps that are required to quantify the resilience of a portion of the infrastructure network that a user needs to 

engage with. This is discussed in some detail in Bouch et al. (2011, 2012) and is briefly addressed here for 

clarity using Figure 3 as a guide. A user intends to set out at a particular time on a journey along a particular 

route that comprises N segments (a section between two nodes, or an aggregation of more detailed 

information). This constitutes a travel scenario, for which all the variables are defined. The journey will take 

place some time in the future (e.g. 2050) and climate forecasts will need to be determined. Similarly, this user 

will travel in an environment where a certain population of other users will interact on the network (this is 

based on a snapshot of the future derived from futures-based user demand forecasts). The type of user under 

consideration will be subject to a series of thresholds that are user-specific.  These could be split into 

serviceability limit states (SLS; delays that are inconvenient but where the destination can be reached within 

acceptable timeframes) and ultimate limit states (ULS; delays that result in the user either arriving too late, or 
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not at all) and hence the journey has failed. These limit states could be imposed (e.g. through work-based 

performance needs) or perceived (e.g. one person’s slight delay is another person’s trigger to abort the 

journey). The final components to complete the travel scenario comprise information on all the relevant 

segments derived from the transport corridor databases and include inputs on the infrastructure assets 

(including drainage, engineered interventions, carriageway properties), ground conditions (including 

geotechnical parameters, land use, geology, vegetation) and topographical conditions (including regional 

relevance, morphometry, elevation). Finally, an optimum duration for progression through each of the 

segments can be calculated. Once these conditions are set, the scenario can be followed through and the 

‘journey’ can start by looking at the progression through each of the segments of the journey sequentially. The 

physical-based process models and the user behaviour models then interact to provide an expression of local 

resilience, which can be coupled with a degree to which flow through the segment is compromised. The 

physical-based models determine the capacity of the segment and the user behaviour models determine 

fluctuation in demand. This, in turn, enables evaluation of the difference between the optimum time projected 

at the onset of the journey and the time taken as returned by the calculated imbalance between capacity and 

demand. At the end of each segment there is an option for the user to test the progression of the journey by 

evaluating the difference between the optimum time required and the time returned by the model. This could 

result in progress to the next segment (if delay is below a critical threshold) or abandonment/change of the 

journey, at which point a new scenario with difference segments can be arranged and a next cycle of analysis 

commences.  

 

The FUTURENET project considers that resilience represents the ability to provide and maintain an 

acceptable level of (environmental, economic and social) service in the face of challenges to normal operation 

(see also Rogers et al., 2012). This resilience is driven by the imbalance between the physical condition, and 

hence capacity, and the demand for a particular unit (a location, a segment or an aggregation of segments) of 

the transport infrastructure network. Recovery from a loss of resilience can be the result of a fall in demand, or 

a reduction in intensity of the adverse consequences of weather events that affect the physical capacity. 

Further limit states can be defined, relevant to this imbalance. For the narrative of this project, two 

serviceability limit states (SLS1 and SLS2) and one ultimate limit state (ULS) are used as conceptual 

examples to designate the zones in which the network functions. Below SLS1 the network functions without 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 7 

any problems. Between SLS1 and SLS2 it is functioning at acceptable levels. Between SLS2 and ULS the 

network becomes increasingly stressed and it finally fails on or above ULS.  

 

It should be noted that, in this project, demand or trip assignment for each segment is not specifically 

modelled via a traditional transport model (although this could be incorporated in the architecture in future). 

Instead, diurnal demand fluctuations (at hourly intervals) reflect  forecasted demands in 2050 and these are 

linked to the modelled physical state for a segment of a route. An ultimate limit state failure could be the result 

of closure of a segment due to a comprehensive loss of physical infrastructure (demand in this case is 

irrelevant). However, a complete loss of functionality of the transport segment can also occur when there is a 

moderate reduction in physical capacity at a time when there is a (projected) high demand. The same 

reduction in physical capacity at low demand will have a much smaller effect on serviceability. It is recognised 

that much more complex interactions between physical capacity and projected demand can be evaluated and 

modelled, but these fall outside the current scope of this research.   

 

The concept of resilience can be illustrated in different ways. In Figure 4a the capacity and demand are shown 

as a downscaled 24-hour snapshot of a future year (e.g. the FUTURENET target year 2050) with capacity 

reductions determined by physical process models responding to hourly weather event inputs and transport 

demand based on hourly fluctuations informed by narratives of socio-economic futures. The asset is 

represented by the box, the height of which reflects its full potential. This potential can be compromised by a 

reduction in physical capacity or by fluctuations in demand. The former is represented by the downward 

propagation of the shaded area and the latter by upward propagation.  The white space in between provides 

an indication of resilience. Narrowing of the white space indicates loss of resilience and transgression of 

serviceability states. Overlapping grey and dark grey bars indicate total failure where the ultimate limit state is 

exceeded. This information has been used to determine the relationship between physical capacity supply 

and traffic demand, illustrated in Figure 4b. This allows representation of the 24-hour pathway of resilience for 

a particular segment as a series of hourly-vectors, illustrating the fluctuations of resilience and enabling delay 

assessments to be determined. 

 

Physical process identification 
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The infrastructure network is a complex system with an in-built spatial and temporal heterogeneity that makes 

it very difficult to capture process fluctuations that can impact on overall network performance. It comprises 

anything from the natural environment adjacent to the transport infrastructure asset (e.g. rivers and slopes), to 

the engineered assets (e.g. earthworks, drainage, road surfaces, railway track, signalling, gantries, bridges, 

and tunnels) that form an effective transport system. The physical assets are therefore multi-faceted in their 

own right, but are also placed in a corridor where the adjacent environment and impact potential is determined 

by the spatial relevance of individual physical processes, creating multiple boundaries ranging from the 

relatively confined swell-shrink behaviour of earthwork embankments to the broad, catchment-based 

assessments of the potential consequences of fluvial flooding (Figure 5). 

 

Multi-process model development and weather event sequences 

The hierarchy of models that determine the segment physical capacity shown in Figure 3 can be represented 

by a simplified cascade (Figure 6) that formally links; 

 probabilistic climate input components including weather event sequences, involving characterisations 

of hourly inputs of precipitation and temperature using duration, intensity and quantity;  

 physical process manifestations, constrained by topographical, ground and asset conditions, and 

responding to weather event sequences. This includes precipitation affecting pluvial, fluvial and 

internal hydrology that are characterised by volume or depth, pressure and flow of water; or 

temperature affecting air temperature and materials temperature and characterised by intensity, flux 

and freeze/thaw boundary transgressions. And;  

 probabilistic outcomes, both in terms of process events and user consequences (as determined by 

the process environment including skid resistance, vision, ride quality). These events are subject to 

serviceability and ultimate limit states providing a threshold constraint for resilience evaluation. 

 

Probabilistic climate inputs  

The UKCP09 Weather Generator provides probabilistic outputs that make it difficult to evaluate these process 

interactions. At present there is insufficient knowledge available to be able to determine the synergies of 

process interactions on a probabilistic basis. It was therefore decided to extract a number of weather event 

sequences (WESQs) from the ensemble outputs of the Weather Generator using the High Emissions scenario 

outputs from UKCP09 centred on the 2050s. This ensemble output comprises 100 runs of a 30-year period, 
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i.e. 3,000 sets of annual weather event sequences (Jones et al., 2009) which provides a set of weather years 

against which the model performance of the FUTURENET architecture could be developed. The WESQs form 

the main driver of a basic cascade that enables, through a series of logical steps, to determine the influence of 

physical processes on capacity (the infrastructure asset condition in a specific place and time along the 

network). Each weather event sequence is taken from the weather generator output and has a specific 

probability of occurrence that, in turn, affects the probability of the resultant outcome events. The detailed 

rationale underpinning this use of weather event sequences falls outside the remit of this paper.  

 

Physical process manifestations 

Physical process manifestations are constrained by a suite of conditioning parameters. The ‘infrastructure 

condition’ represents an additional layer of complexity and includes assessments of the relative position in the 

planning/operation and maintenance cycle of the physical asset. It could also incorporate algorithms to 

develop the infrastructure over time to cope with increased demand arising from economic/population growth 

in a fashion concomitant with the opportunities offered by scenarios such as those based on the Foresight 

Futures (see e.g. Curry et al., 2006). The ‘ground condition’ incorporates quantifiable parameters 

characterising landforms, hydrology and material properties. The ‘topographic condition’ provides a 

mechanism to identify the intensity of processes, such as the convergence of surface water flow, adjacent 

slope length and angle, relative position of the infrastructure asset in the landscape. Both antecedent and 

current conditions determine the magnitude of a physical process response at a particular site and combined 

effects of simultaneous occurrences of different physical processes can only be analysed consistently if the 

same sets of weather event sequences are used for all physical processes. 

 

 

Important factors to be considered when interpreting these physical process manifestations include: 

 Cascade failures – this occurs where exceeding a threshold of one particular process triggers a 

threshold of another process such as scour leading to a landslide resulting in road closure. 

 Regional interdependencies – where occurrences in one region determine the conditions in another, 

including fluvial flooding at key transport locations and other disperse effects of local hazards. 

 Synergies – where the effects of combined occurrences of processes are greater than the sum of 

these individually, including flooding combined with landsliding. 
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 Magnitude and frequencies, or system response versus system recovery. The timing of events needs 

to be considered in the context of the recovery of the system and if the frequency of occurrence of 

critical (weather) events is greater than recovery of the asset condition this may result in prolonged 

system instability (Dijkstra and Dixon, 2010). 

 

Process outcomes and user consequences 

The physical process outcomes are linked to the consequences for the user. The methodology initially 

assumes a single user (traveller), and follow-on work is required to cover the situation of multiple users. A 

user may be considered a ‘unit’ such as a car or truck or a train. Thus interactions between multiple users are 

dependent upon behaviour analyses, capacity constraints and demand forecasts (e.g. Hooper and Chapman, 

2012) 

 

 

3. Physical condition and capacity reduction 

The physical-based modelling process has been tested in an area centred on Garstang, Lancashire in North 

west England, located on the FUTURENET London-Glasgow corridor. For the purpose of this test, the 

transport infrastructure corridor is represented by points plotted at equal 50m distances along the route 

(Figure 7). This provides the current maximum resolution where a sequence of points between two nodes 

(where diversion from a route is possible) constitutes a segment and where multiple segments form a journey. 

In the raster GIS approach used, access to the model and the data is through these point locations. This 

point-based information is then extended to a 75m-diameter buffer zone, which is populated with data and 

provides the maximum resolution for running the physical-based process models constructed on the basis of a 

one-dimensional tank model. 

The main transport infrastructure comprises the M6 motorway, the busiest section of road in this area, and the 

West Coast Main Line rail route, which is the busiest mixed rail route in Europe. The main segment nodes on 

the M6 are at junction 32 (North Preston), junction 33 (Lancaster University), and junction 34 (Lancaster), and 

for rail these are at the stations at Preston and Lancaster (Figure 7). The location was selected because of the 

proximity of railway and motorway infrastructure so both could be analysed in similar settings. Land use is 

predominantly agriculture with small, scattered villages and dwellings. Additional considerations included 
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contrasting topography, geology and assets at each site, and a history of physical process impacts on the 

resilience of infrastructure segments in this region (see Wilks et al., 2012). 

The transport corridor is crossed by a number of rivers from east to west, and these include the River Wyre, 

Calder and Brock and incorporate a large catchment of other tributaries, which drain towards the west from 

the Pennines into the Irish Sea. Ground condition includes a mixture of bedrock comprising Millstone Grit 

Group rocks and Sherwood Sandstone Group rocks overlain by superficial surface deposits of alluvium and 

tills. Engineered slopes along the network are generally constructed in, or using these local superficial and 

bedrock materials and are thus quite heterogeneous. The climate in the study area is temperate and 

experiences mean temperatures of approximately 6°C and mean annual precipitation rates of 850mm. 

Spatial characteristics can be determined through identification of single points and areas, or by aggregating a 

number of points, where mean values can be calculated to determine a larger area representing a particular 

resilience. However, larger buffer zones are required for calculating effects on the process models when 

catchment characteristics are important, particularly when considering fluvial flooding and other regional 

hydrogeological influences. The GIS environment used provides ample flexibility to incorporate large buffer 

zones if the physical-based models require this. 

A road user travelling in 2050 would need a network resilience assessment based on a snapshot of the time 

period during which the user is planning to travel. However, an infrastructure asset manager who is planning 

to forecast resilience in 2050 would likely need to run the model over a longer period of time in order to spot 

the times and conditions when network resilience dips below limit state thresholds for a particular weather 

event sequence and a specific location. This is illustrated in Figure 8. A weather event sequence (02/29) 

representative of the 2050 high emissions scenario has been lifted from the ensemble forecast from UKCP09 to form the 

main input into a simple tank model (in Figure 8 only precipitation is shown, but temperature is also used) for this location - 

an embankment slope, characterised by a fine-grained, till-derived engineered material covered by low vegetation 

including grass and brush. The results provide outputs to a suite of other physical-based process models, such 

as surface deformation associated with slope instability or shrink/swell and carriageway water film thickness. 

The hydrological responses of the slope are indicated by fluctuations in the soil storage volume and the position of the 

groundwater table. The outcomes of each physical process are then translated into an associated capacity 

reduction factor (crf) normalised between values of 1 (no effect) and 0 (complete loss of asset function). 

These crf-values can be used individually, or combined, to provide an indication of the changes in physical 
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asset condition. In Figure 8, the physical condition of the slope is illustrated by three capacity reduction factors; 

overland flow, slope deformation and shrink/swell. In addition, a weighted combined capacity reduction factor is shown 

that provides an insight into the overall reduction of physical condition of the asset at this location. Individual location 

outcomes can be combined to enable the generation of a temporal snapshot of the transport infrastructure 

asset condition for a larger area as shown in Figure 9. This can be used to illustrate how the network performs 

at the highest resolution and when these are aggregated into segments for three process examples; overland 

flow, drainage and shrink/swell potential. The impact of these physical processes can result in a low intensity 

as illustrated in the overland flow diagram. Aggregation of the point information into segment performance 

results in a reduced condition, but still at, or around serviceability limits. However, when one point in a 

segment performs really poorly, as is the case for the drainage example, the whole segment will be affected. 

This ultimately also affects how all individual capacity reductions are aggregated (these indicators do not 

reflect current asset condition and are shown only for illustrative purposes).    

 

4. Reducing uncertainties and improving model performance 

It is now possible to represent combinations of ‘capacity’ and ‘demand’ for any particular time by a point cloud 

of coordinates (v1, v2) obtained from multiple model runs. This concept is illustrated in Figure 10 where point 

clouds can be represented by ellipses that can be skewed in any direction and provide an insight into the 

degree of uncertainty associated with both variables (capacity, demand). The ellipses are illustrating 

snapshots at 20-year intervals, and the dimensions of these ellipses aim to represent characteristic 

fluctuations in physical capacity and demand. The height is determined by demand fluctuations, the width by 

uncertainties of physical capacity of the network.  It is possible to hindcast using historical conditions (asset 

and user) to better understand the physical-based model performance, and also to forecast to 2050, based on 

current process understanding. Based on present forecasting capabilities, the capacity-demand ellipse for 

2050a will inevitably be very large (representing great uncertainty in the forecasts). However, as time 

progresses, this capability will continue to improve and, combined with pro-active network resilience 

management, will likely result in a much better defined near-future forecast (as illustrated by the 2020 ellipse 

with a narrow physical capacity shape). In turn this should lead to a much improved long-term forecast, 2050b. 

There is a need to continue to strive towards achieving a workable hierarchy of distributed conceptual models 

of acceptable complexities that are underpinned by a plausible physical basis and that return a reasonable 

correspondence with reality. As time progresses and the capability improves to model the physical processes 
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in the natural and engineered landscape, new models can be inserted into the hierarchy resulting in better 

performance and narrowing down of the uncertainties. However, this process requires significant investment 

to improve data availability and quality and to fine-tune physical-based process models using monitoring data 

from a wide range of sites. In turn, this will enable cost-effective, targeted and pro-active interventions by 

asset managers to deliver a resilient network.   

 

5. Concluding remarks 

This paper describes the physical-based process model architecture of the FUTURENET approach to 

infrastructure network resilience modelling in the 2050s. It provides an outline of the requirements to achieve 

a quantifiable approach to address changes in the physical condition (capacity) of components of the network 

at a range of scales (from sub-metre accuracy of individual processes to a network wide resilience index). 

Although the remit of the FUTURENET project specifically involved the analysis of conditions in 2050, the 

architecture that has been developed provides a generic modelling concept where any past or future weather 

event sequences can be used to drive physical-based process models. Thus, the concept can be used to 

analyse past performance using historical weather event sequences as inputs enabling development, fine-

tuning, calibration and ‘validation’ of the underling physical-based process models. The framework can also 

be used to investigate the consequences of short-term weather forecasts on asset condition, enabling 

establishment of more robust early warning systems. In addition, it can be used to evaluate the possible 

consequences of network resilience into the future using the 2050 UPCP09 downscaled weather forecasts, 

combined with forecasted user changes.  

 

The present understanding of both physical process performance and future demand scenarios is still 

incomplete and carries large uncertainties. There is a need to continue developing the physical-based models 

that drive the transport infrastructure condition assessments. This requires: 

- more detailed and better accessible datasets. Most datasets are currently affected by incomplete and 

missing data, limiting their usefulness for corridor-wide physical process modelling. It has become 

apparent that data across several agencies has become fragmented over time and has highlighted a 

need for a transparent approach to asset data management and data accessibility to enable more 

detailed analysis of transport infrastructure asset conditions. 
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- further investigation of climate forecasts (e.g. Kay & Jones, 2012) looking at higher resolution, spatial 

coherence, and downscaling extremes 

- improvements in modelling capability, including modelling platforms capable of managing large 

volumes of data generated by sophisticated, high-resolution physical-based models (e.g. Clarke et al., 

2006; Smethurst et al., 2006, 2012; Davies et al., 2008; Rouainia et al., 2009; Booth et al., 2013). 

- development of detailed deterministic, physical-based models capable of dealing with dynamic 

equilibria and threshold exceedence  

- further analyses of complex feedbacks and interactions between physical processes and user 

behaviour 

 

The FUTURENET project approach to modelling physical processes impacting on the condition of 

infrastructural elements does not claim to have generated a complete suite of physical-based models to 

enable such an analysis at this stage. It should be recognised that this is an evolutionary process to produce a 

system that can be used reliably to provide process-response models at resolutions capable of forecasting 

infrastructure asset condition changes that will significantly influence management practices and the 

performance of the asset.   

 

Acknowledgements 

The authors are grateful to the Highways Agency and Network Rail for the use of their data, and to the 

EPSRC-funded (EP/G060770/1) FUTURENET team for their continuing support. Tom Dijkstra and David 

Gunn publish with the permission of the Executive Director of BGS (NERC). 

 

 

References  

ARCC (2012). Adaptation and Resilience to Climate Change. www.ukcip-arcc.org.uk. 

 

Berkhout F, Hertin J and Jordan A (2002) Socio-economic futures in climate change impact assessment: 

using scenarios as ‘learning machines’. Global Environmental Change 12, 83–95 

 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 15 

Booth AJ, El-Hamalawi, A and Dixon N (2013) Modelling suctions in a cutting with a bimodal soil water 

characteristic curve and hydraulic conductivity function.  In Proceedings GeoCongress 2013 (Meehan L, 

Pradel D., Pando MA and Labuz JF (eds)). Stability and performance of slopes and embankments.ASCE 

Geotechnical Special Publication 231. 

 

Bouch C, Jaroszweski D, Baker C, et al. (2011) Future resilient transport networks (FUTURENET): an 

overview of the FUTURENET project with particular reference to railway aspects. In Proceedings Ninth World 

Congress on Railway Research, Lille, France, 22-26 May 2011, 12p 

 

Bouch C, Ryley T, Baker C, Avery K, Chapman L, Dijkstra T, Dingwall R, Dixon N, Goulden M, Gunn D, 

Hooper L, Jaroszweski D, Lawley R, Paulley N, Quinn A, Reeves S, Sivell P, Wade S, Wilks J, and Zanni A 

(2012) Future Resilient Transport Networks (FUTURENET): Assessing Transport Network Security in the 

Face of Climate Change. InTransportation Research Board 91st Annual Meeting (No. 12-0279), 11p. 

 

Cabinet Office (2011) Keeping the Country Running: Natural Hazards and Infrastructure. Civil Contingencies 

Secretariat, Cabinet Office, Whitehall London, 96p. 

 

Chapman L (2007) Transport and climate change: a review. Journal of transport geography, 15(5), 354-367. 

 

Christierson BV, Vidal JP and Wade SD (2012) Using UKCP09 probabilistic climate information for UK water 

resource planning. Journal of Hydrology, 424, 48-67. 

 

CILT(UK) (2011) Vision 2035 – a report on the future of logistics and transport in the UK. The Chartered 

Institute of Logistics and Transport, UK. 21p. 

 

Clarke GRT, Hughes DAB, Barbour SL and Sivakumar V (2006) The Implications of Predicted Climate 

Changes on the Stability of Highway Geotechnical Infrastructure: A Case Study of Field Monitoring of Pore 

Water Response. EIC Climate Change Technology, 2006 IEEE, 1-10. 

 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 16 

Curry A, Hodgson T, Kelner R and Wilson A (2006) Intelligent Infrastructure Futures. The Scenarios – 

Towards 2055. UK Department of Trade and Industry publication 8155, 84p. 

 

Davies O, Rouainia M, Glendinning S and Birkinshaw SJ (2008) Predicting seasonal shrink swell cycles within 

a clay cutting. Proceedings of Advances in Transportation Geotechnics, 481-486. 

 

DEFRA (2011). Climate Resilient Infrastructure: Preparing for a Changing Climate. 76p.  

 

Dijkstra TA and Dixon N (2010) Climate change and slope stability: Challenges and approaches. Quarterly 

Journal of Engineering Geology and Hydrogeology, 43(4), 371-385 

 

Glendinning S, Hall J and Manning L (2009) Asset management strategies for infrastructure embankments. 

Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 162(2), 111-120.  

 

Goulden M and Dingwall R (2012) Managing the future: models controls and the management of uncertainty. 

In: Ryley T and Chapman L (eds.)Transport and Climate Change (Transport and Sustainability, Volume 2), 

Emerald Group Publishing Limited, 9-38. 

 

Hooper E and Chapman L (2012) The impacts of climate change on national road and rail networks. In 

Transport and Climate Change (Transport and Sustainability, Volume 2) (Ryley T and Chapman L (eds)). 

Emerald Group Publishing Limited, 105-136 

 

ICE (2010) State of the Nation – Infrastructure 2010. Institution of Civil Engineers, UK, 24p. 

 

IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: The Physical Science 

Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change (Solomon S et al.(eds)) Cambridge Univ. Press, Cambridge, UK, available at http://ipcc-

wg1.ucar.edu/wg1/wg1-report.html 

 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 17 

Jaroszweski D, Chapman L, and Petts J (2010) Assessing the potential impact of climate change on 

transportation: The need for an interdisciplinary approach. Journal of Transport Geography, 18(2), 331-335 

 

 

Jenkins GJ, Perry MC and Prior MJO (2009) The climate of the United Kingdom and recent trends. Met Office 

Hadley Centre, Exeter. 25p. 

 

Jones PD, Kilsby CG, Harpham C, Glenis V and Burton A (2009) UK Climate Projections science report: 

Projections of future daily climate for the UK from the Weather Generator. University of Newcastle, UK. 48p. 

 

Kay AL and Jones RG (2012) Comparison of the use of alternative UKCP09 products for modelling the 

impacts of climate change on flood frequency. Climatic change, 114(2), 211-230. 

 

Koetse MJ and  Rietveld P (2009) The impact of climate change and weather on transport: An overview of 

empirical findings. Transportation Research Part D 14, 205–221 

 

Loveridge FA, Spink TW, O'Brien AS, Briggs KM and Butcher D (2010) The impact of climate and climate 

change on infrastructure slopes, with particular reference to southern England. Quarterly Journal of 

Engineering Geology and Hydrogeology, 43(4), 461-472. 

 

Murphy JM, Sexton D, Jenkins G, et al. (2009) UKCP09 Climate change projections science report. July 2
nd

 

2009, MetOffice. Hadley Centre, Exeter, UK. 192p. 

 

National Infrastructure Plan (2011). The Stationary Office, HM Treasury, London, UK, 178p. 

 

O'Brien AS (2007) Rehabilitation of Urban Railway Embankments - Investigation, Analysis and Stabilisation. 

In Proceedings XIV European Conference on Soil Mechanics and Geotechnical Engineering. Madrid.  

Perry J, Pedley M and Reid M (2001) Infrastructure Embankments - Condition Appraisal and Remedial 

Treatment. CIRIA C550. 233p. 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 18 

Perry J, Pedley M and Reid M (2003) Infrastructure Embankments– Condition Appraisal and Remedial 

Treatment. CIRIA C592. 31p. 

Quinn AD and Baker CJ (2010) Spatial and temporal correlations of wind speeds. Proceedings of the ICE-

Structures and Buildings, 163(2), 65-72. 

Roca M and Whitehouse R (2012) Scour risk assessment at river crossings. In Proceedings ICSE6 Paris - 

August 27-31, 2012. HRPP528,10p. 

 

Rogers CD, Bouch CJ, Williams S, Barber AR, Baker CJ, Bryson JR, et al. (2012) Resistance and resilience–

paradigms for critical local infrastructure. Proceedings of the ICE-Municipal Engineer, 165(2), 73-83. 

 

Rouainia M, Davies O, O'Brien T and Glendinning S (2009) Numerical modelling of climate effects on slope 

stability. Proceedings of the ICE-Engineering Sustainability, 162(2), 81-89. 

 

Rowlands DJ, Frame DJ, Ackerley D, Aina T, Booth BB et al. (2012) Broad range of 2050 warming from an 

observationally constrained large climate model ensemble. Nature geoscience, 5(4), 256-260. 

 

RSSB (2004). Railway Safety Implications of Weather, Climate and Climate Change: Final Report. 

AEAT/RAIR/76148/R03/005, 141p. 

 

RSSB (2005). Safe Management of Railways Structures (Phase 2). Objective 2-Vegetation and its Effect on 

Slope Stability. Rail Safety Standards Board. 52p. 

 

Ryley T and Chapman L (eds.) (2012) Transport and Climate Change (Transport and Sustainability, Volume 

2), Emerald Group Publishing Limited, 396p. 

 

Smethurst JA, Clarke D and Powrie W (2006) Seasonal changes in pore water pressure in a grass-covered 

cut slope in London Clay. Geotechnique,56(8), 523-538. 

 



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 19 

Smethurst JA, Clarke D and Powrie W (2012) Factors controlling the seasonal variation in soil water content 

and pore water pressures within a lightly vegetated clay slope. Géotechnique, 62(5), 429-446. 

 

Stern NH (2007) The Economics of Climate Change: The Stern Review. Cambridge University Press, 

Cambridge. 692p. 

 

Take WA and Bolton MD (2004). Identification of seasonal slope behaviour mechanisms from centrifuge case 

studies, 992-1004. 

 

Thornton H, McCarthy R, Liggins F, Wilson M, Mathison C, Palin E and Sanderson M (2010) The Impact of 

Climate Change on the GB Rail Network: Phase 2 Findings. Met Office Hadley Centre on behalf of Network 

Rail. 74p. 

 

URS (2010) Adapting Energy, Transport and Water Infrastructure to the Long-term Impacts of Climate 

Change. Report Ref. No RMP/5456, URS Corporation Ltd, 194p.  

 

Wilks JH, Dijkstra TA and Dixon N (2012) Forecasting transport infrastructure slope failures in a changing 

climate. In Proceedings of the 11th International and 2nd North American Symposium on Landslides and 

Engineered Slopes (Eberhardt E, Froese C, Turner AK and Leroueil S (eds)), Landslides and Engineered 

Slopes: Protecting Society through Improved Understanding. Banff, Canada, 3–8 June 2012. CRC 

Press/Balkema, Leiden, The Netherlands.  

 

 

  



Dijkstra et al. Forecasting infrastructure resilience to climate change - manuscript 

 

page 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary data of forecasted change in temperature and precipitation compared to the 1961-1990 baseline for the 

30-year static output centred on the 2050s based on the medium emission scenario (from Jenkins et al., 2009).  

 

  

2050s  

(2040 – 2069) 

description projected change of 

baseline values 

1961-1990 

precipitation mean winter -10% to +30% 

mean summer -20% to no change 

temperature mean winter +1.0
o
C to +3.0

o
C 

mean summer +1.0
o
C to +3.0

o
C 

warmest day, 

summer 

+0.0
o
C to +4.0

o
C 
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Figure 1. The Major UK transport infrastructure network (road, rail, airports) and the FUTURENET corridor. 

Contains Ordnance Survey data © Crown Copyright and database rights 2013. 
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Figure 2. The communication framework for the FUTURENET architecture. Model performance needs to satisfy the 

greatest possible detail. Through aggregation of information different levels of communication can be derived that will be 

better suited to different user groups. 
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Figure 3. An outline of the process model for the FUTURENET project. The physical process models are used to drive an 

understanding of segment capacity (the physical condition of the asset), but also provide inputs into the behaviour of the 

users and thus indirectly also influence demand. ULS is the ultimate limit state of the segment.  
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a)             b)    

Figure 4a. The concept of resilience represented by ‘white space’ within an ‘asset capacity-time’ box representing a small 

transport infrastructure unit. Reduction of physical capacity is indicated by the dimensions of the light-grey shaded bars 

dropping down from the top of the box. Traffic (demand) over this 24-hour period is indicated by the dark-grey bars rising 

up from the base of the box.  Figure 4b. Capacity-demand diagram enabling analysis of hourly vectors against pre-

determined limit states. Both diagrams are based on the same fluctuations of supply and demand. The letters A to E are 

used to facilitate comparison. 
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Figure 5. Conceptual diagram illustrating the complexities of infrastructure asset placement in the landscape.  

  

1 – a road positioned along base of slope can be affected by excess runoff/erosion determined largely by upslope 

length and landuse; 2 – a road positioned on high ground/top of slope is likely to be exposed to high winds (e.g. Quinn 

& Baker 2010); 3 – cuttings and 4 – embankments are engineered structures with variable conditions dependent upon 

age and position in the landscape and geological materials in or on which these are constructed affecting, for example 

swell-shrink processes (Loveridge et al., 2010; O’Brien, 2007; Take and Bolton, 2004); 5 – position of infrastructure 

assets in a floodplain environment requires assessment of flood risk that needs analysis of whole catchment dynamics 

(e.g. Christierson et al., 2012); 6 – slope stability assessment is still an area where local conditions determining time 

and place of failure are only possible to model in exceptional circumstances, although capabilities to fine-tune 

modelling of the propensity of failure are progressing; and 7 – scour of support structures in dynamic landscapes such 

as river corridors requires further research and most importantly, better asset condition information (Roca and 

Whitehouse, 2012). 
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Figure 6. The physical process model cascade represents the links between probabilistic weather event sequence inputs 

and the process/user consequence outcomes. Within the process manifestation box a complex hierarchy of different 

physical processes can be run either individually or in various combinations.  
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a) b) 

Figure 7. a) Location of the study section between Preston and Lancaster in NW England. b) Map detail of the 

infrastructure corridor with information based on 50m spacing and 75m buffer zones. Contains Ordnance Survey data © 

Crown Copyright and database rights 2013, NEXTMap Britain elevation data from Intermap Technologies.  
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Figure 8 . An example of the model performance for one location and one asset type along the transport corridor near 

Garstang.  
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Figure 9.The impact of individual physical processes models on the condition of the infrastructure assets at 

the highest resolution for the FUTURENET study section shown in Figure 7. Contains Ordnance Survey data © 

Crown Copyright and database rights 2013, NEXTMap Britain elevation data from Intermap Technologies.  
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Figure 10. Historical development of the transport network has been driven by rises in network demand (a 

function of futures and user behaviour) and physical capacity (a function of weather event sequences and 

physical processes).  

 


