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Abstract  

Experimental studies have shown that deposition of reactive nitrogen is an important driver 

of plant community change, however, most of these experiments are of short duration with 

unrealistic treatments, and conducted in regions with elevated ambient deposition. Studies of 

spatial gradients of pollution can complement experimental data and indicate whether the 

potential impacts demonstrated by experiments are actually occurring in the ‘real world’. 

However targeted surveys exist for only a very few habitats and are not readily comparable.  

In a coordinated campaign, we determined the species richness and plant community 

composition of five widespread, semi-natural habitats across Great Britain in sites stratified 

along gradients of climate and pollution, and related these ecological parameters to major 

drivers of biodiversity, including climate, pollution deposition, and local edaphic factors.  In 

every habitat we found reduced species richness and changed species composition associated 

with higher nitrogen deposition, with remarkable consistency in relative species loss across 

ecosystem types.  Whereas the diversity of mosses, lichens, forbs, and graminoids declines 

with N deposition in different habitats, the cover of graminoids generally increases.   

Considered alongside previous experimental studies and survey work, our results provide a 

compelling argument that nitrogen deposition is a widespread and pervasive threat to 

terrestrial ecosystems.  
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Introduction 

 

Atmospheric pollution is a major threat to ecosystem structure and function (Bobbink et al. 

2010; Phoenix et al, 2012), and is recognized as one of the top three threats to global 

biodiversity (Sala et al., 2000). A large number of field experiments, and some regional-scale 

gradient studies, have shown that atmospheric nitrogen (N) and sulphur (S) deposition can shift 

plant species composition and reduce biodiversity in sensitive terrestrial ecosystems (Dise et 

al. 2011). Since at least the eighteenth century and throughout most of the 20th century, 

atmospheric N (mainly as ammonia [NH3], and nitrogen oxides [NOx]), and S pollution 

(primarily as sulphur dioxide [SO2]), has increased as a by-product of fossil fuel burning and 

intensifying agriculture in industrialised countries; and emissions of these pollutants are 

strongly increasing in many developing regions of the world, particularly Asia (Galloway et 

al., 2004; Stern, 2005; Erisman et al., 2011). 

 

Since 1970, sulphur emissions have declined dramatically in the developed world following 

moves to alternative fuels such as natural gas, combined with flue-gas desulphurisation by 

industry and power stations (Smith et al., 2001): leading to large reductions in S deposition 

(e.g. in the UK, a 90% reduction was measured between 1970 and 2010 (RoTAP, 2012)). 

Current atmospheric concentrations of sulphur dioxide probably no longer pose a threat to 

sensitive plant species in many developed countries, although legacy effects from sulphur 

pollution may remain for some time to come (Guirriera et al 2011).  

 

On a global scale there has been a six-fold increase in N deposition since 1860, with a further 

doubling predicted by 2050 (Galloway et al, 2004). Although there has been a modest decline 

in N deposition in Europe over recent years, this is of a much smaller magnitude than that seen 



for S (Erisman et al., 2011). For example, NOx emissions in the UK fell by 50% between 1986 

and 2007 whilst deposition fell by only 22%, largely due to changes in chemical reactions in 

the atmosphere leading to a more rapid conversion of NO2 to nitric acid and particulate nitrogen 

(Fowler et al., 2007). Furthermore, atmospheric concentrations of reduced N as NH3
+ have 

remained essentially unchanged in the UK (RoTAP, 2012).  

 

Numerous field experiments have demonstrated the potential of N to reduce biodiversity, 

change plant communities, and increase leaching to freshwaters through N saturation (Caporn 

et al., 1995, Clark and Tilman, 2008, Cunha et al., 2004, Dise et al., 2011, Emmett et al., 

1998, Phoenix et al. 2012). However, even the longest-established experiments have only 

been running around 20 years, a fraction of the time to which ecosystems have been exposed 

to pollution. Other limitations of many existing experimental studies are unrealistically-high 

and infrequent treatments and high ambient deposition in experimental sites (Cunha et al., 

2004; Dise et al., 2011; Phoenix et al. 2012).  

 

Whilst experiments are important in determining the causality of change, to demonstrate that 

experimentally-observed impacts are actually occurring in the landscape, they need to be 

supported by spatial and temporal surveys. “Space-for-time” surveys assume responses 

identified over spatial gradients reflect the changes that have occurred over time in response to 

these  variables (Fukami and Wardle, 2005). The principal of space-for-time substitution has 

been examined by testing results against time-series derived from palaeoecological and 

historical series and demonstrated to show a high degree of correlation  (Blois et al., 2013; 

Buyantuyez et al., 2012). Similarity is maximised when temporal and spatial variations are 

similar, site history and management is similar (e.g. Blois et al., 2013) and environmental 

variables can be separated (Fukami and Wardle, 2005). In ecological studies, spatial and 



temporal gradient studies have shown relationships between nitrogen pollution and reduced 

diversity for acid grassland (Stevens et al., 2010, 2011), sand dune vegetation (Jones et al., 

2004), and calcareous grassland (van Den Berg, 2011).  However, since the studies used 

different field and analytical methods, were conducted over different time periods, and did not 

consider the same suite of alternate drivers, they are not readily comparable. Re-analysis of 

untargeted national surveys has also revealed relationships between N deposition and species 

richness for heathland, acid grassland and mesotrophic grassland (Maskell et al., 2010).  

However, since these surveys were not focused on air pollution impacts and survey locations 

covered broad habitat classifications, relationships with N deposition were extremely weak 

against a large background of variability (r2 = 0.01-0.17). 

 

With increasing global change, there is an urgent need to understand the drivers of 

biodiversity loss such as air pollution, climate change, biotic exchange, and elevated carbon 

dioxide (Sala et al., 2000). In this paper we report on a unique coordinated study to determine 

the diversity and vegetation composition of five common semi-natural community types 

across gradients of climate and air pollution which are representative of those that occur over 

much of the industrialised world.  For each survey, we evaluated all major drivers of 

vegetation diversity that are measurable at a regional scale.  Our aims are to 1) elucidate the 

main drivers of change in species richness and composition, 2) test whether any changes 

observed are proportionally consistent across habitats, and 3) evaluate the most likely 

mechanisms behind any changes. We hypothesise that: H1 N deposition is correlated with 

lower species richness and changed plant community composition with species changes 

reflecting those found in experimental studies. H2 N deposition explains more of the variance 

in the plant data than alternate possible drivers such as climatic gradients. H3 There are 

significant differences in the sensitivity of different community types with communities most 



dominated by bryophytes and most reliant on atmospheric deposition of nutrients most 

sensitive.  

 

Materials and Methods 

 

In the summer of 2009 vegetation surveys were carried out across Great Britain in five 

habitats:  acid grassland, bog, upland heath, lowland heath, and sand dune.  The acid 

grassland sites were a subset of sites used by Stevens et al. (2004); this subset and the sites 

from the other habitats were selected to control for potentially co-varying gradients of rainfall 

and temperature, balancing high and low pollutant deposition locations in the generally 

cooler and wetter northwest and the drier and warmer southeast of the UK. The habitats 

surveyed have all been identified as being potentially sensitive to air pollution, particularly 

nitrogen deposition in previous research (Dise et al. 2011).  

 

For each habitat a specific Eunis community (European Nature Information System, 

European Environment agency, 2011) was selected and sites typifying this community chosen 

following discussion with conservation organisations and land owners. Acid grasslands were 

Eunis E1.7 with Agrostis capillaris, Festuca ovina, and Gallium saxatile in predominantly 

upland-acidic grasslands. The bog habitat was represented by Eunis D1; with a combination 

of Calluna vulgaris, Eriophorum vaginatum and Sphagnum capillifolium. The bogs selected 

were ombrotrophic in nature, with a combination of lowland raised bogs and a smaller 

number of upland blanket bogs. Both upland heaths and lowland heaths were covered by 

Eunis F4.2, although considerable differences exist between the habitats and they were 

analysed separately. Upland heaths were dominated by Calluna vulgaris on acidic, shallow 

organic soils. Lowland heaths varied from Calluna-dominated communities on base-poor, 



acidic soils through to floristically-rich Erica vagans and Ulex europaeus heaths on base-rich 

brown earth soils (Elkington et al., 2001; Price, 2003). Sand dunes were Eunis B1.4, fixed-

dune grasslands dominated by grasses, dicotyledonous herbs and numerous bryophyte 

species. 

For each habitat, 22 to 29 locations were surveyed (135 locations in total, Figure 1). At each 

site five 2 × 2 m quadrats were located using random numbers within areas representative of 

the vegetation community studied, and the cover of all plant species including bryophytes and 

lichens was estimated. Liverworts were excluded to improve consistency between surveyors. 

In heathlands stratified random sampling was used to capture vegetation in different stages of 

the Calluna growth cycle. Canopy height was recorded at four locations within each quadrat, 

and two soil cores (top 15 cm, 4 cm diameter) were collected at each site. Soil was 

refrigerated upon collection and a bulked sample was then analysed for pH, loss on ignition 

(LOI) and N %. For pH analysis 25 ml deionised water was added to 10 g field-moist soil. 

The suspension was stirred, stood for 30 minutes and an electrode inserted for 30 seconds 

before reading pH. For LOI, air dried soil was passed through a 2 mm sieve, 10 g was then 

weighed and combusted at 375 oC for 16 hours. LOI was used as a proxy for the organic 

content of the soil, which responds to climatic conditions, particularly in lowland heaths and 

sand dunes, and can strongly influence species composition. For N %, soil was analysed on a 

LECO TRUESPEC carbon and Nitrogen Analyzer. 

 

The pollutant deposition data used were the 5 km2 Concentration Based Estimated Deposition 

(CBED) values for 2004-2006 from the UK Centre for Ecology and Hydrology. Variables for 

total nitrogen deposition (further divided into wet and dry, and reduced and oxidised forms), 

total sulphur deposition (split further into wet and dr 



y forms) and non-marine base cation deposition (calcium + magnesium) were included in the 

analysis. Multiple metrics for N deposition are used as deposition patterns are not identical 

due to differences in sources between reduced and oxidised N and evidence shows that 

species respond differently to different forms of N (e.g. Sheppard et al., 2008; Dise et al., 

2011). However, the total N load and total acid deposition are also important as drivers of 

long-term N accumulation and acidification. To consider possible legacy effects of pollution, 

modelled sulphur deposition from a period when sulphur emissions were considerably greater 

than current (1986-1988) was also included in the analysis. Climate data were based upon 

UKCP09 5 km2 gridded data sets from the UK Met Office. Total annual precipitation and 

growing degree days (sum of degree days above 5oC) were selected as the most appropriate 

representations of climatic controls on plant communities, the latter as a stronger control on 

phenology and plant growth than average temperature alone (Tooke and Battey, 2010). Both 

precipitation and growing degree data were averaged over the period 1997-2006.  

 

In addition to broad-scale abiotic gradients vegetation may also be affected by a range of 

local management practices. We attempted to account for this variability in site selection and 

by including field-assessed indices in data analyses. For acid grasslands and sand dunes we 

included indices for grazing intensity (absent to intense) and for bogs we included a 

‘hydrological index’ based on evidence for site drainage. For all habitats we attempted to 

identify sites with consistent habitat management, in the case of heathlands we positioned 

quadrats to span the Calluna growth cycle.  

 

Table 1 provides selected summary information for each habitat.  

 

Statistical analysis 



 

For each site the following metrics were calculated: total species richness (total number of 

species recorded across the five quadrats), species richness by functional group (moss, lichen, 

forb, graminoid), and the mean cover of each species and functional group.   

 

Stepwise multiple linear regression was used to model relationships between total species 

richness, functional group species richness and graminoid cover (identified as an important 

factor in reduction of grassland forb diversity- Stevens et al., 2006) with respect to the 21 

potential driver variables (Table 2). We employed a combination of forward and backward 

selection: variables were included if they explained significant variation in addition to those 

already in the model, and excluded if the unexplained variation in a model was not significantly 

reduced by their removal.  Analysis within habitats used absolute species richness but to enable 

comparison of data between habitats, relative species richness was calculated as the percentage 

of the maximum number of species found within each habitat. To correct for multiple 

comparisons, P-values within each habitat were adjusted using sequential Bonferroni 

corrections in R 2.15 (R Core Team, 2012). 

 

For each habitat, correlations between plant community composition and environmental 

variables were analysed by ordination using CANOCO for Windows version 4.53 (ter Braak 

and Smilauer, 2004). A Detrended Correspondence Analysis (DCA; Hill and Gauch, 1980) was 

first performed to identify the overall community structure.  DCA was also used to determine 

the length of compositional gradients, and in all cases the gradients were short (less than 3 

standard deviations).  Consequently, we were able to use Redundancy Analysis (RDA, Leps 

and Smilauer, 2003) to examine significant linear relationships between the cover of individual 

species and environmental variables. The same environmental variables were used for the 



RDAs as for the regressions (Table 2).  All data were log-transformed and rare species down-

weighted.   We used forward selection to identify a minimal suite of significant potential driver 

variables, first selecting the variable that explained the most variance in community 

composition (average % cover of each species at each site), then using that as a co-variable to 

identify the variable that then explained the greatest additional variance. The selection process 

continued until no further variables explained significant additional variance; a P-value cut-off 

of P<0.05 was used. Variance partitioning was then carried out using selected variables 

successively with other selected variables as co-variables.  Significance was determined by 

Monte Carlo permutation tests (999 permutations). 

 

 As many of the variables considered were correlated, the selection of some variables over 

others in both the regression and redundancy analyses should be interpreted with caution: some 

selected variables may represent a suite of related variables or a broader environmental 

gradient. For instance, since all N deposition variables are highly correlated, selection of N 

deposition in a specific form over another should be interpreted with caution.  Similarly, 

relationships with current levels of a driver such as deposition chemistry may reflect the 

importance of current, past, or cumulative pollutant inputs.   

 

Results 

Regression Analyses 

Across all habitats combined, 39% of the variability in relative species richness could be 

explained by a model combining N deposition (dry oxidised) and growing degree days; most 

of this was due to dry oxidised N (r2=0.37).  Within the five habitats, between 39% and 64% 

of the variability in total species richness could be explained by some combination of the 

predictor variables (Table 3).  Given the many unmeasured environmental variables that 



would be expected to impact biodiversity (e.g. historical site management) these are high 

proportions of total variance. Regression coefficients for acid grassland, bog, lowland heath, 

and sand dune were all similar, ranging from 0.56 (bog) to 0.64 (lowland heath), upland heath 

was lower at 0.39.   

 

In acid grassland, total species richness showed the strongest relation to N deposition (dry 

oxidised N; r2 = 0.61) of all five habitats with no other variable significant in the regression 

model. The species richness of upland heath was also only related to N deposition in the final 

regression model (reduced N, r2=0.39, P=0.002).  For the other three habitats, species 

richness was most strongly related to other variables: dry S deposition (r2=0.56, P<0.01) for 

bog (dry oxidised N deposition was also correlated, but less strongly than dry S, r2=0.52), 

growing degree days for lowland heath (followed by altitude, and wet oxidised N deposition), 

and pH for sand dune (followed by wet oxidised N deposition).  The importance of 

temperature and altitude for lowland heath was primarily driven by two sites: when these are 

removed, total acid deposition becomes the most important correlate with species richness (r2 

= 0.20).   

 

The difference in relative plant species richness along the N deposition gradient was large, 

with 30-75% lower species richness in the least diverse sites within each habitat, compared 

with the most diverse (Figure 2A). This curvilinear pattern was broadly similar for acid 

grasslands, lowland heaths, sand dunes and upland heaths with a consistent rate of % plant 

species lost with increasing N deposition. In the bog habitat, a shallower, more linear gradient 

in species loss was observed.  Figure 2B-F shows relationships between total plant species 

richness of the habitats and the four most significant correlates: N deposition, S deposition 



(contemporary), growing degree days, and pH, as well as for total acid deposition, ‘peak’ S 

deposition (1986-1988) and mean annual precipitation.   

 

Across all communities, nitrogen deposition was the most common explanatory variable for 

changes in species richness or graminoid cover. Out of 22 separate regression analyses on 

functional groups, some form of N deposition was the strongest correlate to species richness 

or cover in 11 cases, growing degree days in three cases, pH in two cases, acid [S+N] 

deposition in one case, and S deposition in one case. In four cases none of the potential 

correlates was significantly related to species richness (Table 3).   Mean annual precipitation, 

extreme temperature range, grazing, hydrologic index, soil N % and [Ca2++Mg2+] deposition 

were not significant in any model when other drivers were included. 

  

In all cases where N deposition is selected in a model, the relationship with species richness 

is negative. The species richness of acid grassland shows consistently strong negative 

relationships to N deposition (oxidised N) across all functional groups measured, particularly 

for forbs and mosses.  N deposition (reduced N) is also the dominant correlate for upland 

heath lichen and graminoid richness.  N, S, and total acid deposition appear equally important 

in bogs.  In addition to N deposition, growing degree days (negative relationship) and soil pH 

(generally positive relationship) are dominant correlates to species richness in lowland heath 

and sand dune.   

 

Across habitats and within functional groups, N deposition is consistently the dominant 

correlate to species richness of lichens, although significant regression models could only be 

developed for bogs and upland heath (in the other three habitats there were either no 

significant relationships explaining lichen species richness, or lichens were limited to only a 



small number of sites).  N deposition (reduced N) is also the strongest correlate to graminoid 

cover in four of five habitats.   

 

In contrast to species richness, in all cases the relationship of nitrogen deposition with 

graminoid cover is positive:  acid grassland, bog, upland heath and lowland heath sites 

receiving higher levels of N deposition (particularly NH4
+) have consistently higher cover of 

graminoids, although graminoid species richness is either lower or unchanged. Forb species 

richness appears to be negatively related to acidity across habitats: oxidised N deposition 

(acid grassland), acid deposition (bog) and pH (sand dune) are the strongest correlates; in 

sand dunes the differences in pH reflect the differences between calcified and decalcified 

(more acidic) sites. Forb abundance in both lowland and upland heath was limited and not 

statistically analysed.  N deposition, growing degree days, and S deposition are variously the 

most significant correlates with moss and graminoid species richness except in bogs, where 

none of the independent predictor variables are significant.  The secondary significance of 

loss on ignition (after oxidised N deposition) for moss diversity in sand dune habitats may 

reflect gradients in soil type and climate, with more organic-rich soils at wetter sites 

supporting greater diversity.   

 

Species composition 

A form of nitrogen deposition was identified as a significant correlate to species composition 

in all habitats but sand dunes (Table 3, Figure 3). N deposition was the most important 

correlate for acid grassland and upland heath species composition and the second most 

important correlate in bogs (after hydrological index) and lowland heath (after growing 

degree days).  Sand dune species composition was most significantly correlated to local site 

(pH) and climate factors (precipitation, growing degree days), with peak sulphur deposition 



following these in importance (Figure 3E). Dry nitrogen deposition explained only 

marginally less of the remaining variance than peak S deposition, however (5.1% versus 

5.3%). 

 

In addition to N and S deposition, growing degree days was a significant correlate to species 

richness in all but bog habitats.  A hydrology factor played a role for the wettest (bog – 

hydrological index) and driest (sand dune - precipitation) habitats, and pH was important for 

lowland heath and sand dune species abundance, perhaps reflecting underlying substrate 

differences.   Moisture and pH may both be reflected in the significance of LOI for lowland 

heath habitats.   

 

Many of the species showing a negative relationship between abundance and N deposition 

were forbs, mosses, and lichens.  Forb species negatively correlated with nitrogen deposition 

include Euphrasia officinalis, Plantago lanceolata, Lotus corniculatus (3a. acid grassland – 

see Stevens et al., (2006) for more details of acid grassland responses), Narthecium 

ossifragum and Drosera intermedia (bog). Lichens and mosses negatively associated with 

nitrogen deposition including the lichen genus Cladonia, particularly C. portentosa (bog, 

upland heath and lowland heath), the moss Pleurozium schreberi (upland heaths) and the 

moss Hylocomium splendens (acid grassland, upland heath, lowland heath and sand dunes).  

 

Some mosses and lichens also appeared positively associated with nitrogen, such as 

Brachythecium rutabulum and Cladonia fimbriata (upland heath and lowland heath), and 

Campylopus introflexus (lowland heath). Graminoid species that increased in cover in relation 

to N deposition included the grass Deschampsia flexuosa in heathlands and the sedge 

Eriophorum vaginatum in bogs.  



Discussion 

By conducting simultaneous targeted surveys, we have found that many sensitive terrestrial 

ecosystems have a consistent rate of % plant species loss with increasing N deposition, 

signifying that relative plant species loss in relation to diffuse pollution may be an emergent 

property of sensitive ecosystems.  The proportional change in plant species richness along the 

N deposition gradient is very similar for acid grassland, upland heath, lowland heath, and sand 

dune.  Species richness declines by about 40% of maximum species richness from the lowest 

to the highest N deposition sites in acid grassland and heathland, and by about 20% in sand 

dune habitats over about half of the N deposition gradient (Figure 2A).  Bogs show a more 

gradual change of about 20% over the same gradient of N as acid grassland and heathland.   

There is strong agreement between the results of regression analyses on univariate data (total 

plant richness, functional group richness, graminoid cover) and the redundancy analyses of 

community composition.  Both sets of results suggest that, of the climate, local site, and 

pollution drivers investigated (Table 1), the compositions of acid grassland and upland heath 

communities are most strongly related to nitrogen deposition.  Species composition of bog 

habitats is most strongly related to acid deposition levels and hydrology, and that of lowland 

heath is related most strongly to growing season temperature, nitrogen deposition, and local 

site factors (reflected in altitude and soil pH).  The species composition of sand dune habitats 

is most strongly related to soil pH, followed by climate and pollutant deposition.  However, 

because the range in N and S deposition over which the sand dune habitats were sampled is 

half that of the other habitats (Figure 2A), the potential for detecting a signal of pollutant 

deposition is not as high.  

Of the five habitats, the impact of N deposition is clearest for acid grassland and upland heath.  

In acid grassland, the species richness of each functional group investigated declines with N 



deposition, and N deposition is the only significant correlate to species richness for any 

functional group. Concurrently, the cover of graminoids, particularly Deschampsia flexuosa, 

increases with N deposition. In their analysis of a 68-site dataset of UK acid grassland, Stevens 

et al (2004, 2006) also showed strong negative relationships between N deposition and species 

richness after accounting for other drivers, as did Duprè et al (2010) in their meta-analysis of 

over 1000 acid grassland survey plots in Europe sampled at various intervals over 60 years. 

Both studies also reported secondary negative relationships between species richness, soil pH, 

and climate, and an increase in graminoids with N deposition, all consistent with our findings.  

Taken together, these studies show that the nutrient enrichment from chronically elevated N 

deposition enhances the growth of graminoids and suppresses the growth of lower plants and 

forbs adapted to more nutrient-poor conditions, and that this effect is stronger in grassland on 

more acid soils and in warmer, drier climates.   

The species richness of upland heath shows a similar decline with increasing N deposition as 

acid grassland (Figure 2A, B), with N deposition the only significant correlate.  The 

relationship is less strong (r2 of 0.39) than for acid grassland (r2=0.61),  Indeed, upland heath 

is the only habitat in which more than 50% of the variability in species richness remains 

unexplained by our predictor variables (Table 3).  This suggests that an unmeasured factor or 

factors plays a strong role in vegetation diversity.  Of the five habitats, upland heath is the most 

heavily managed (primarily by fire or cutting, as grouse moors), and it is likely that species 

richness and composition in this habitat are also strongly related to the frequency and intensity 

of management. Long-term N addition experiments in upland heath show a clear impact on 

lower plants such as bryophytes and lichens, probably due to shading from the increased growth 

of Calluna vulgaris (Carroll et al., 1999; Pilkington et al., 2007).  Our results reflect this, and 

provide convincing evidence that nitrogen is a significant driver of change in this habitat, 

potentially modifying the effects of management.  



In bogs, the lower proportional fall in species richness with increasing N deposition (Fig. 2A) 

may reflect the importance of hydrology which was found to be a stronger driver of change in 

species composition than N. Therefore, species in waterlogged hollows and lawns may be less 

sensitive to pollutant deposition, since in these microsites hydrology plays a strong role in plant 

community responses, and colonization by graminoid or shrub species that could take 

advantage of enhanced nutrient levels is reduced due to a high water table (Blodau, 2002; 

Limpens et al., 2003). Supporting this, the relative importance of dry deposition or total acid 

deposition for explaining species richness in bogs (Table 3) suggests a stronger role of direct 

pollutant impacts on vegetation than in other habitats.     

In drier hummocks, however, a fertilizing effect of N deposition may emerge as hydrological 

constraints on vegetation response are lifted and faster growing shrubs profit over Sphagnum. 

In an N-addition experiment on a Canadian ombrotrophic bog Bubier et al. (2007) found that 

ericoid cover increased at the expense of Sphagnum, and in a UK N-addition experiment, 

Sheppard et al. (2011) found high concentrations of NH3 had a catastrophic effect on Calluna 

vulgaris and bryophytes including Sphagnum capillifolium, whereas the sedge Eriophorum 

vaginatum increased in cover. Some indication that this may be occurring at a landscape scale 

was found in our study, with a strong positive relationship between cover of the sedge 

Eriophorum vaginatum and N deposition, though we found no relationship with declining 

Sphagnum cover. 

In lowland heaths, our analyses suggest that the diversity and composition of vegetation is most 

strongly driven by growing season temperature, with nitrogen deposition a secondary driver.  

In all habitats, the relationship between species richness and growing degree days appears 

negative (Figure 2): that is, species richness is higher in regions with shorter growing seasons.  

The strong relationship for lowland heath, however, may in part reflect the site distribution, 

with most sites at the warmer end of the scale and on more sandy soils, and fewer (but species-



rich) sites in cooler, less-polluted locations on the more organic soils of the northern lowland 

heaths (Figure 2). This is also reflected by species composition, with many species 

characteristic of wetter habitats ordinated toward lower growing degree days (Figure 4D). 

Nevertheless, nitrogen deposition is still a significant correlate to species richness and 

composition in lowland heath (Table 3). This is supported by experimental studies that have 

found reductions in lichen diversity at low levels of N addition, growth stimulation of Calluna 

vulgaris (Power et al., 2006; Southon et al., 2012) and conversion of heaths to grassland in 

European N-addition experiments (Heil and Diemont, 1983; Aerts et al., 1990).  In our study 

graminoid cover was similarly correlated with increasing N deposition. 

Sand dunes are by far the most species-rich of the five habitats, reaching nearly 80 species per 

site (totaled across five 2 × 2 m quadrats), almost double that of the next richest habitats.  As 

with the other habitats there is a strong negative correlation between species richness and 

nitrogen deposition, but soil pH also plays a major role. This may reflect the relatively short 

pollution gradient sampled for sand dunes (5 - 17 kg N ha-1 yr-1), or the potential for 

decalcification in response to increased rainfall, the extent of podzolisation, and the formation 

of a thicker layer of more-acidic organic matter in cooler and wetter areas (Sevink, 1991). 

Nonetheless, the clear negative relationship of nitrogen with species richness matches that from 

other surveys (Jones et al. 2004; Remke et al. 2009).  

Whilst contemporary change may be more strongly driven by N deposition, historic sulphur 

(S) pollution may also have a legacy effect through base cation depletion and lowered pH 

(Evans et al., in press). Vegetation in some areas of the UK was strongly affected by S 

deposition in the 1970s and 1980s and in these cases, where populations of plants were severely 

reduced (e.g. Lee, 1998), a legacy impact of S is likely to influence contemporary species 

richness with current day or cumulative N hindering recovery. Current S concentrations are 

low compared to the critical level of 20 μg m-3  (e.g. Over the range 1.5-11.2 μg m-3 for the bog 



habitat), whilst N current deposition to many of the sites is above critical loads (e.g. N 

deposition range 5.9 to 30.9; Critical load range 5 to 10 depending on water table). These 

patterns are similar across the habitats and it is suggested that, when considering current 

pollutant concentrations and deposition, that N is the driver of the changes observed.  

 

However, sulphur may accumulate in soils over the long term (Moore et al., 2005). This could 

mean that recovery from S pollution is delayed in areas where acidifying effect of sulphur 

persists in the soil (Daniels et al., 2008). Soil pH in the acid grassland, bog, lowland heath and 

upland heath habitats was strongly correlated with either N or S deposition, suggesting that 

some extent of acidification by pollutant deposition had occurred. In the bog habitat, forb 

diversity shows a step decline below around pH 3.8 and in the acid grassland a ‘step-down’ in 

species richness was also apparent, in this case below around pH 4.5. This, and the relationship 

in the bog habitat, could reflect a change in soil acid buffering from base cations to aluminium 

which occurs around pH 4.5 and which would be more likely in habitats on base-poor soils 

exposed to long-term acid deposition, such as many in our surveys (Bowman et al., 2008). 

Therefore it seems that whilst the acidifying potential of contemporary pollution may be limited 

in comparison to historic levels, plant habitats where pH rests on a buffering threshold may be 

vulnerable to marginal changes in acidity induced by pollutant deposition over the longer-term 

(Bowman et al., 2008) and consequential increases in toxicity from aluminium (Stevens et al., 

2009). 

 

The reductions in species diversity, shifts in species composition, and consistent response in 

sensitive species and functional groups across five habitats provide strong evidence that 

atmospheric nitrogen deposition affects large areas of semi-natural terrestrial habitats.  A 

markedly similar proportional reduction in species richness with increasing N deposition is 



observed across environments, and pollutant deposition is identified as a more significant 

driver of diversity than climate in four habitats. Declines in the species richness of mosses, 

lichens, forbs, and graminoids with N and/or S deposition, combined with an increase in 

graminoid cover with increasing NH4
+, highlight both the acidifying and eutrophying impacts 

of these air pollutants. Since it is likely that impacts have developed over many years, the 

relationships observed reflect a combination of current, cumulative and legacy effects of 

pollution – both of N and S. We find that lower plants and forbs are particularly sensitive, and 

habitats dominated by grasses or shrubs may be vulnerable to a shift towards a monoculture.   

Our study highlights the need for (1) effective management to identify threats and mitigate 

damage to vulnerable habitats, (2) targeted policy for further abatement of nitrogen pollution, 

particularly in reduced form, and (3) long-term experimental research to evaluate the 

interactive responses of plant communities to pollutants, management, and future climate 

change.  
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Figure 1. Site survey locations over a map of the UK and a background image of 2004-

2006 average N deposition (CBED). 

 

  



 

 Figure 2. A) Relationship between N deposition and the % of maximum number of species 

in each habitat. Figures 2B)-2H) Relationships between total species richness of the habitats 

and the four most significant correlates: N deposition, S deposition, growing degree days 

(cumulative degrees from days above 5 oC), and pH, as well as for total acid deposition, 

historical S deposition (1986-1988) and mean annual precipitation.   



 

Figure 3. Redundancy Analysis ordination plots showing the variables explaining the 

greatest amounts of variance in community composition in the surveys. a) acid grassland, b) 

bog, c) upland heath, d) lowland heath, e) sand dune. Species with a minimum of 20% of 

their distribution explained by the driver variables are shown on the plots.  

 



Table 1. Summary of the habitats surveyed and key environmental variables. 

Habitat 
Eunis 

code 

Number of 

survey locations 

N deposition 

range  

(kg N ha-1 yr-1) 

Contemporary S 

deposition range 

 (kg S ha-1 yr-1) 

Precipitation 

range (mm) 

Growing degree 

days range 

(cumulative 

degrees C) 

pH 

Loss on 

Ignition  

(LOI) % 

Acid 

grassland 
E1.7 22 7.8 - 30.3 3.4 - 13.1 928 - 2639 737 - 2174 4.1 - 6.7 9 - 34 

Bog D1 29 5.9 - 30.9 2.9 - 11.6 727 - 2827 763 - 2034 3.7 - 4.8 86 - 98 

Upland 

heath 
F4.2 25 7.4 - 32.4 3.1 - 14.7 836 - 2562 747 - 2055 4.0 - 5.0 14 - 95 

Lowland 

heath 
F4.2 27 5.9 - 29.4 3.2 - 7.2 629 - 1313 806 - 2314 3.5 - 5.4 2 - 47 

Sand 

dune 
B1.4 24 5.4 - 16.8 2.8 - 5.9 583 - 1502 1323 - 2274 4.7 - 7.9 2 - 9 

 

  



Table 2. Potential driver variables used in the statistical analysis. Climate and deposition 

data are annual averages: climate for the years 1997-2006 and current deposition for the 

years 2004-2006.  Local site data were collected or measured during the site visit in 2009. 

Variables shown in italics are combinations or subsets of other variables. 

Climate Unit 

Growing degree days  cumulative degrees from days above 5 °C 

Mean annual precipitation  mm y-1 

Pollutant Deposition  

Total acid deposition (S+N)  kg ha-1yr-1 

Total sulphur deposition: non-marine sources kg S ha-1yr-1 

Historical total sulphur deposition: 1986-1988 kg S ha-1yr-1 

Wet sulphur deposition  kg S ha-1yr-1 

Dry sulphur deposition  kg S ha-1yr-1 

Total inorganic nitrogen deposition  kg N ha-1yr-1 

Oxidised nitrogen deposition  kg N ha-1yr-1 

Reduced nitrogen deposition  kg N ha-1yr-1 

Wet oxidised nitrogen deposition  kg N ha-1yr-1 

Dry oxidised  nitrogen deposition  kg N ha-1yr-1 

Wet reduced nitrogen deposition  kg N ha-1yr-1 

Dry reduced nitrogen deposition  kg N ha-1yr-1 

Calcium + magnesium deposition : non-marine sources kg [Ca+Mg] ha-1yr-1) 

Local Site  

Altitude  (m asl) 

Hydrological index (bogs only) Subjective scale: 1 (very dry, heath like) - 5 

(water logged, floating bog). 

pH( top 15 cm ) [no unit] 

Loss on ignition ( top 15 cm ) % 

Soil nitrogen (top 15 cm) % 

Grazing intensity (grasslands and sand dunes only) Subjective scale: 1 (absent) to 3 (intense) 

 



Table 3.  Stepwise regression models on species richness (total, and by functional group) and graminoid cover for five terrestrial habitats 

across Great Britain, using the predictor variables in Table 2. The most significant variable in the model is shown first, followed by the 

next significant, etc.  Arrows indicate the direction of the relationship.  R2 and P values are for the full model. Cases where any form of N 

deposition is selected are shown in bold.  Also shown are the results of redundancy analyses on species composition, and the proportion 

of variability in species average % cover explained by each independent variable. 

Response variable Acid grassland Bog Upland heath Lowland heath Sand dune 

Species richness (%) All habitats: Dry-oxidised N deposition (↓) + Growing degree days (↓) (R2=0.39, P=0.001) 

Species richness 

(Actual) 

 

Dry-oxidised N deposition 

(↓) 

R2=0.61, P=0.004 

Dry-S deposition (↓) 

R2=0.56, P=0.02 

Reduced N deposition (↓) 

R2=0.39, P=0.006 

Growing degree days (↓) 

Altitude (↓) 

Wet-oxidised N deposition 

(↓) 

R2=0.64, P<0.003 

pH (↑) 

Wet-oxidised N deposition (↓) 

R2=0.57, P<0.01 

Moss species richness (Actual) 

 

Dry-oxidised N deposition 

(↓) 

Reduced N deposition (↓) 

R2=0.45, P=0.004 

no combination of variables 

explain significant variation 

in the data 

S deposition (↓) 

R2=0.25, P=0.02 

Growing degree days (↓) 

pH (↓) 

R2=0.42, P=0.005 

oxidised N deposition (↓) 

LOI (↑) 

R2=0.67, P<0.005 

Lichen species richness 

(Actual) 

- Dry-oxidised N deposition 

(↓) 

R2=0.37, P<0.02 

Reduced N deposition (↓) 

R2=0.26, P<0.02 

no combination of variables 

explain significant variation 

in the data 

no combination of variables 

explain significant variation in 

the data 



35 
 

Forb species richness (Actual) Dry-oxidised N deposition 

(↓) 

R2=0.65, P=0.004 

Total acid deposition (↓) 

R2=0.39, P=0.006 

- - pH (↑) 

Wet-oxidised N deposition (↓) 

Wet-S deposition (↓) 

R2=0.53, P<0.005 

Graminoid species richness 

(Actual) 

Dry-oxidised N deposition 

(↓) 

R2=0.28, P=0.004 

no combination of variables 

explain significant variation 

in the data 

Dry-reduced N deposition 

(↓) 

Altitude (↓) 

R2=0.46, P<0.004 

Growing degree days (↓) 

R2=0.46, P<0.003 

Growing degree days (↓) 

R2=0.46, P<0.005 

Graminoid cover Wet-reduced  N deposition 

(↑) 

LOI (↑) 

R2=0.38, P=0.001 

Wet-reduced N deposition 

(↑) 

Growing degree days (↑) 

R2=0.68, P<0.001 

Dry-reduced N deposition 

(↑) 

R2=0.24, P=0.014 

Dry-reduced N deposition 

(↑) 

R2=0.35, P=0.001 

pH (↓) 

soil C/N (↓) 

R2=0.48, P<0.001 

 Statistically significant drivers of change in species composition and variance partitioning by driver 

Species composition 

 

N deposition 12.8%, 

P=0.001 

Growing degree days 9.1%, 

P=0.005 

 

Hydrological index 

8.3%, P=0.001 

Dry-reduced N deposition 

7%, P=0.004 

Historical S deposition 

5.9%, P=0.011 

Reduced N deposition 

15.8%, P=0.001 

Growing degree days 

7.9%, P=0.006 

Loss on ignition 

7.4%, P=0.01 

Growing degree days 

13.3%, P=0.001 

Dry-oxidised N deposition 

8.2%, P=0.005 

Soil pH 

6.5%, P=0.001 

pH 

14.6%, P=0.001 

Precipitation 

10.6%, P=0.001 

Growing degree days 

5.6%, P=0.013 

Historical S deposition  

5.3%, P=0.035 
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Table 4 for online appendix. Species showing a strong response to Nitrogen (N) with 

good distribution across dataset. 

 

Habitat 

 

Specific species showing a strong 

response to Nitrogen (N) with good 

distribution across dataset (direction ↑↓) 

Relationship equation 

between mean % cover (y) 

and N deposition (x) 

Comment 

Acid 

grassland 

Euphrasia officianlis (↓) 

 

y = -0.0296x + 0.8399  

 Hylocomium splendens (↓) y = 0.0061x2 - 0.3975x + 

6.699 

 

 Lotus corniculatus (↓) 

 

y = -1.034ln(x) + 3.5753 Many sites with little or no cover; sites with 

cover > 2% exist only where N < 25 kg 

 Carex panicea (↑) y = 0.0724x - 0.8844  

 Hypnum cupressiforme (agg.) (↑) 

 

y = 0.0104x2 - 0.2508x + 

1.8153 

% cover increases markedly above 30 kg 

N 

 Nardus stricta (↑) y = 0.298x - 2.3768  

Bog Cladonia portentosa (↓) y = -0.49x + 15.46 Cladonia spp. in general decline with N 

 Eriophorum vaginatum (↑) y = 1.47x + 6.06  

 Sphagnum fimbriatum (↑) 

 

y = 0.0028x2 - 0.0782x + 

0.491 

Generally only found at most polluted 

sites where N > 24 kg  

Lowland 

heathland  

Cladonia portentosa (↓) 

 

y = -3.601ln(x) + 11.077 Frequency presence in quadrats declines 

above 16 kg N 

 Hylocomium splendens (↓) 

 

y = -8.901ln(x) + 26.711 Frequency presence in quadrats declines 

above 16 kg N; at wetter sites only 

 Brachythecium rutabulum (↑) 

 

- Frequency presence in quadrats 

increases above 18 kg N 

 Campylopus introflexus (↑) - Little cover below 22 kg N 

 Cladonia fimbriata (↑) 

 

y = 0.1139ln(x) - 0.231 Increase in cover and frequency at mid-N 

levels: 20-25 kg N 

Sand 

dunes 

Ammophila arenaria (↓) y = -3.63ln(x) + 11.19  

 Hylocomium splendens (↓) y = -12.08ln(x) + 32.99 Frequency presence in quadrats declines 

above 11 kg N 

Upland 

heathland  

Cladonia portentosa (↓) 

 

-  

 Hylocomium splendens (↓) 

 

y = -15.6ln(x) + 51.697 Frequency presence in quadrats declines 

above 17 kg N; at wetter sites only 

 Brachythecium rutabulum (↑) 

 

- Frequency presence in quadrats 

increases above 20 kg N 

 Cladonia  fimbriata (↑) -  

 Deschampsia flexuosa (↑) y = 0.04x2 - 0.75x + 6.52  
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