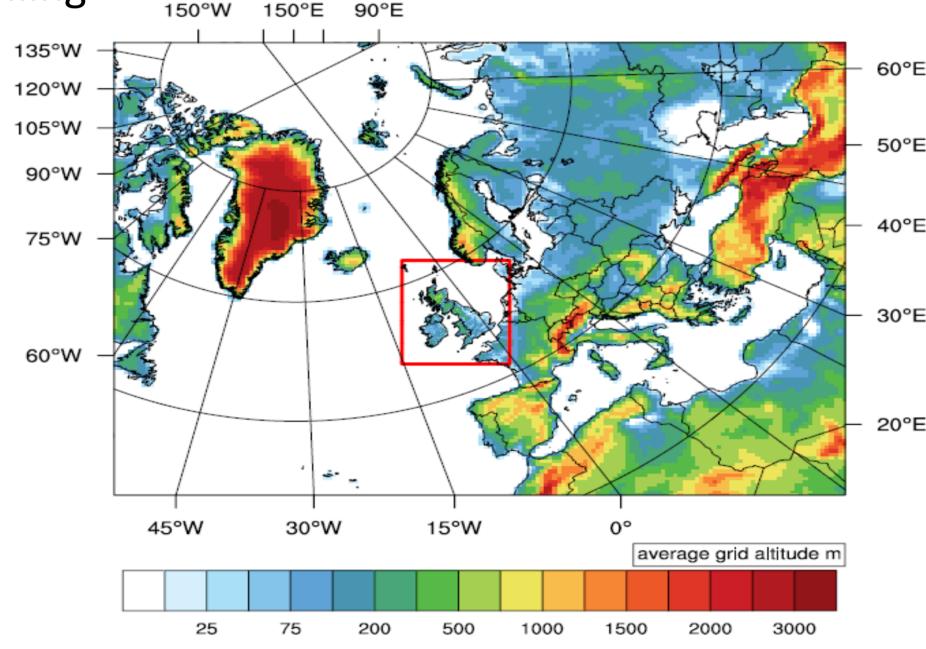


Effusive Eruption Modelling project: Assessing UK impacts of trace species and sulphur deposition

Massimo Vieno[,] <u>Christine Braban</u>, Jane Hall, Sue Loughlin, Bill Bealey, Evgenia Ilyinskaya, John Kentisbeer, Elin Roberts, Ed Rowe Claire Witham

See also NH2.1/AS3.19, 15:30–15:45 EGU2015-14100 UK hazard assessment for a Laki-type volcanic eruption: modelling results for sulphur dioxide and sulphate aerosol, Claire Witham


Background to modelling

- the potential UK impacts of a future eruption were assessed by characterising the source of a Laki-type eruption scenario and subsequently modelling the eruption with two CTM models over the European domain
- EMEP4UK (CEH) and NAME (Met Office) models were run with 10 years meteorology and a repeating 5 week eruption scenario (resulting in 80 eruption scenarios under the 2003-2012 meteorology
- Witham et al. (EGU2015-14100) present the results from the flight level and surface level modelling results for SO_2 and SO_4^{2-} concentrations
- This poster presents EMEP4UK model results for:
 - 1) Proxies for surface concentrations of halogen acid and H₂S
 - 2) EMEP4UK model surface sulphur concentrations and deposition used to assess ecosystem impacts

Emission source

- Each daily emission has a different vertical profile composed of five layers
- different masses of SO₂ are emitted into each layer.
- Over the whole eruption $^{24}\%$ SO₂ is emitted into the stratosphere, $^{7}6\%$ the troposphere.
- eighty, non-overlapping, 6-week eruption periods in 2003-2012 were defined.

EMEP4UK modelling

The model horizontal resolution scales down from 50 km x 50 km in the main EMEP 'Greater European' domain (which includes Iceland) to 5 km x 5 km for the domain covering the British Isles

- Model run with the EmChem09 chemical mechanism 72 species & 137 reactions.
- Anthropogenic emissions of NO_x, NH₃, SO₂, primary PM_{2.5}, primary PM_{coarse}, CO, & NMVOC
- UK emissions from the National Atmospheric Emission Inventory (NAEI, http://naei.defra.gov.uk) at 1 km² resolution, aggregated to 5 km x 5 km
- For the outer domain emission estimates use the EMEP 50 km x 50 km resolution provided by CEIP (http://www.ceip.at/), including emissions for Etna.
- The volcanic emissions are injected in the appropriate level at (horizontal resolution 50 km²) emissions above the model vertical domain are injected in the highest level.
- The land-based gridded emissions are distributed vertically according to a default distribution based upon the SNAP codes (Simpson et al., 2012).
- Hourly temporal resolution was used to derive air quality and other detailed information

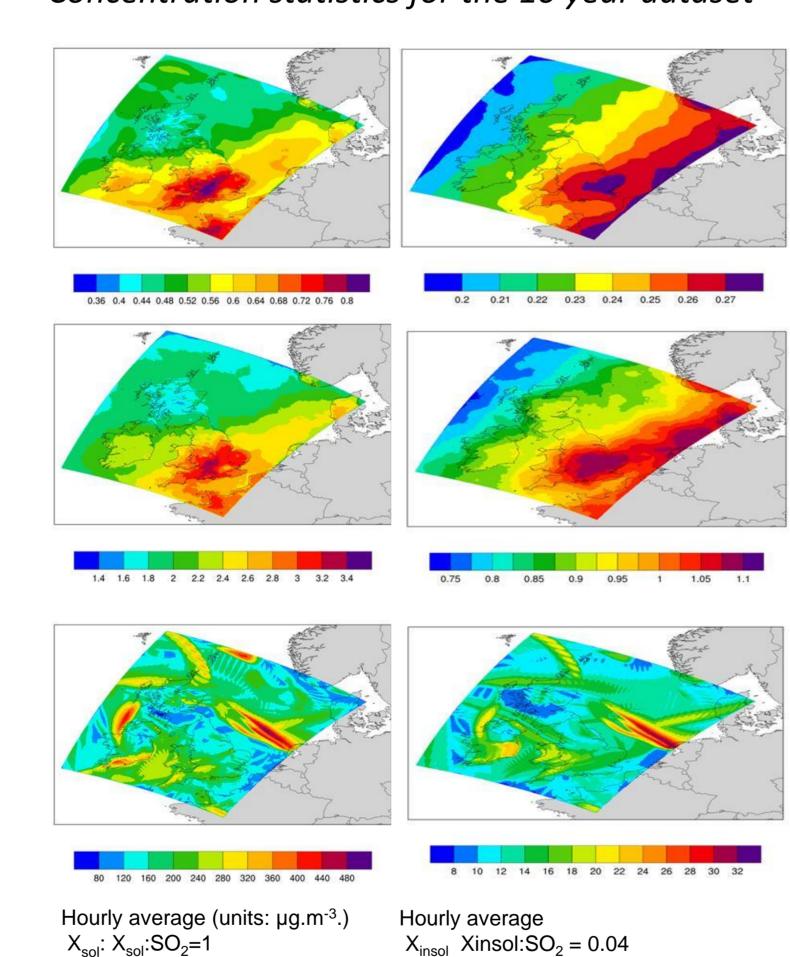
 \triangleright HCl and HF were modelled as a soluble tracer, X_{sol} using HNO₃ solubility, dry & wet deposition

Two non-reactive tracer concentrations, $X_{insol,low}$ & $X_{insol,high}$ were put into the model runs. With $X_{insol,low}$ assessed as a proxy for H_2S

Trace species

- HF and HCl are emitted in variable amounts from volcanic eruptions, perturbing both the atmospheric composition and adding to effects from sulphur species. H₂S is also emitted.
- Within a single eruption sequence the volatile ratios, HCl:SO₂ and HF:SO₂ are likely to be highly variable. However to initialise the model runs an estimate was made using literature appropriate for an Icelandic Laki-type eruption were assessed (11 studies, subset of a wider literature survey).
- There are very few Icelandic H_2S studies. The range of ratios covers 0.01 2.86, with the only Icelandic measurement from Surtsey, Iceland with alkali-basalt reporting a $H_2S:SO_2$ ratio of 0.04, Halmer et al. (2002).
- $X_{sol}:SO_2$ was set to 1:1 $X_{insol,low}:SO_2 = 0.04$ $X_{insol,high} = 0.3$
- It is emphasised that ratios selected were conservative to allow for a reasonable worst case scenario type assessment.

mmary statistics of literature values

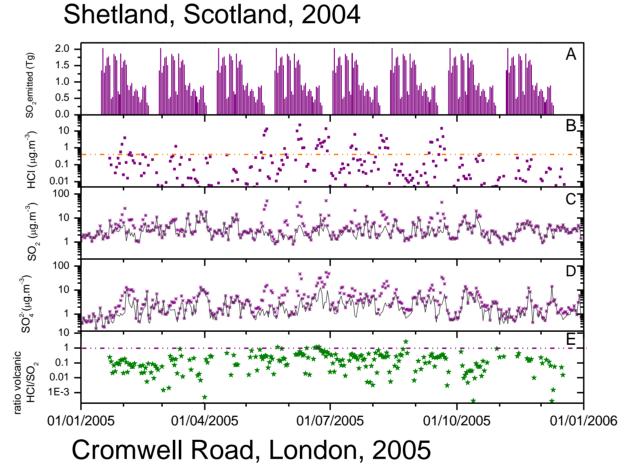

	HCI.30 ₂	HF.30 ₂	Π_2 3.3 Ω_2
Range	0.03-1.69	0.03-0.34	
arithmetic mean	0.47	0.09	
geometric mean	0.31	0.05	
Selected value	1	0.3	0.04

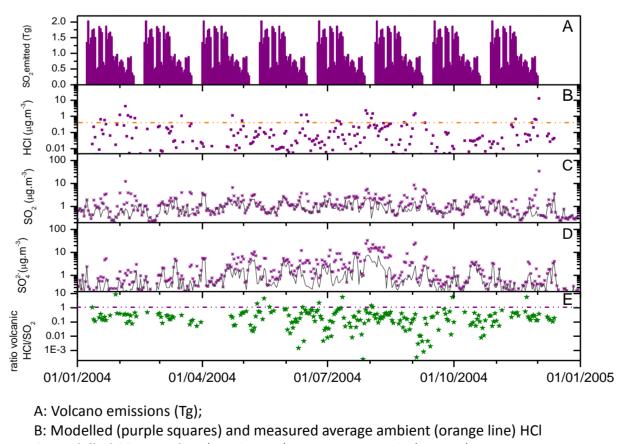
ir quality metrics used for halogen acids and HBr in the UK

	Averaging period	Level		
HF	1 hour	0.2ppm/ 0.16mg/m ³ (1)		
HCl	1 hour	0.5ppm/0.75mg/m³ (1)		
HBr	1 hour	0.2ppm/ 0.7mg/m ³ (1)		
H ₂ S	24 hour	150μg/m³ (2)		
(1) http://www.ivhhn.org/index.php?option=com_content&view=article&id=83				
(2) ; (2) http://archive.defra.gov.uk/environment/quality/air/airquality/publications/halogens/fullreport.pdf				

Results

Concentration statistics for the 10 year dataset


Mean (upper panel);


maximum (lower panel

95th percentile (middle panel)

Example site specific analysis

- For 30 sites where Defra long term monthly average HCl, SO₂
 & PM composition are measured
 (http://pollutantdeposition.defra.gov.uk/networks)
- the daily average data from the model run was extracted.
 2 examples are shown below

A: Volcano emissions (Tg);
B: Modelled (purple squares) and measured average ambient (orange line) HCl
C: Modelled SO₂: Baseline (continuous), eruption scenario (crosses)
D: Modelled SO₄: Baseline (continuous), eruption scenario (crosses)
E: Ratio of HCl to SO₂: eruption scenario emission ratio (purple line); eruption scenario-baseline (green crosses).

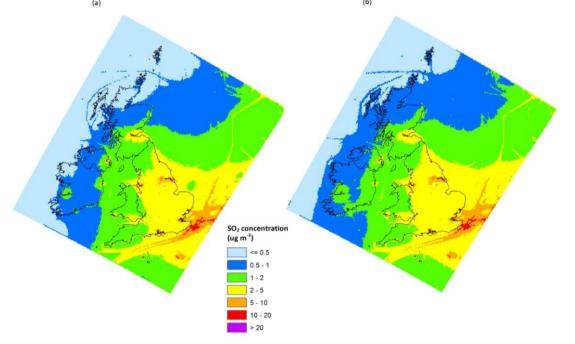
Summary

Mean (upper panel);

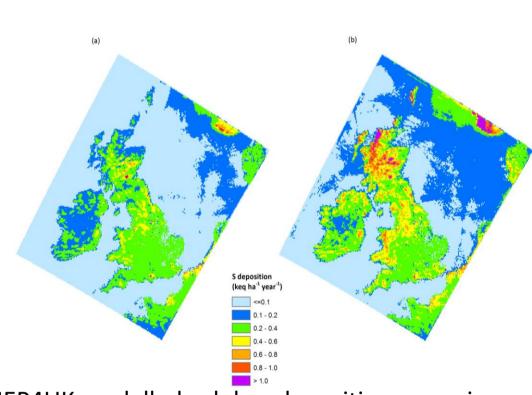
maximum (lower panel)

95th percentile (middle panel)

- HCl and HF emissions of the same magnitude as SO_2 , modelled as a soluble species, result in average concentrations at the UK surface mostly <1 μ g m⁻³ with a 95th percentile <5 μ g m⁻³.
- Average modelled HCl concentrations are similar to normal UK coastal HCl concentrations
 Even with conservatively high emission ratios the hourly human health limits for HF and HCl
- are not exceeded in any of the simulations

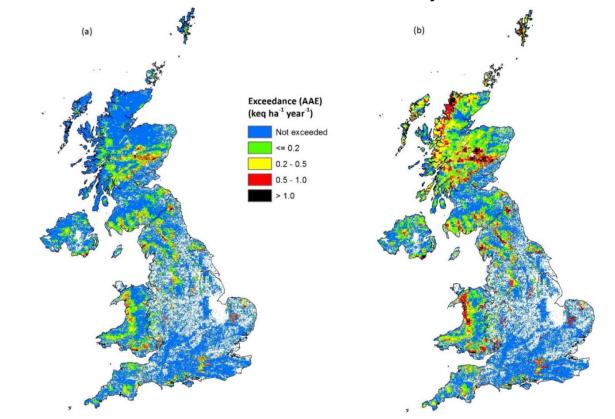

H₂S modelled as an insoluble species emitted in the ratio range of 0.04 - 0.3 μg m⁻³ does not exceed the relevant human health 24-hour limit of 150 μg m⁻³

Ecosystem impacts

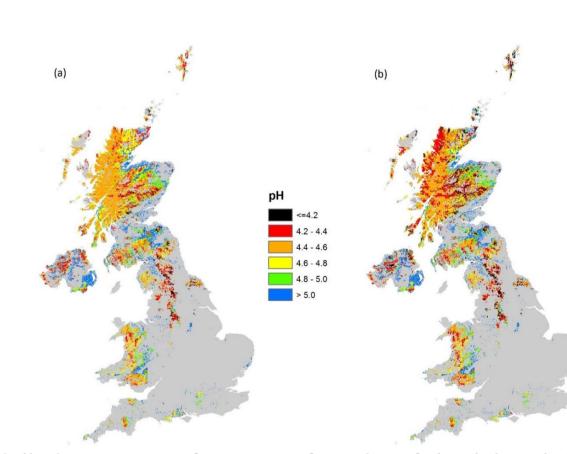

- SO_2 , nitrogen oxides ($NO_x = NO + NO_2$) and ammonia (NH_3) can contribute to acidification and adversely affect natural and semi-natural habitats.
- sensitivity of habitats to acidification is assessed using "critical loads" a quantitative estimate of the exposure to one or more pollutants below which significant harmful effects on specified elements of the environment do not occur according to present knowledge" (Nilsson & Grennfelt, 1988)
- The amount of acid deposition that exceeds the critical load is called the "critical load exceedance" and indicates an ecosystem is at risk from potential harmful effects in the long term but is **not** a quantitative estimate of "damage" to the environment.
- A "critical level" is the gaseous concentration of a pollutant (e.g., SO₂) above which damage has been observed. The excess pollutant concentration above the critical level is referred as the "critical level exceedance"

Results

SO₂ concentrations and S deposition



EMEP4UK modelled SO2 concentrations for (a) baseline scenario; (b) average Laki-type scenario



EMEP4UK modelled sulphur deposition assuming moorland vegetation everywhere for (a) baseline scenario; (b) average Laki-type scenario

Critical load exceedance and dynamic modelling

Acidity critical loads exceedance (as Average Accumulated Exceedance keq ha⁻¹ year⁻¹) for all habitats combined for (a) baseline; (b) average Laki-type scenario.

Modelled pH in 2005 for areas of UK dwarf shrub heath for (a) the baseline scenario; (b) the average Laki-type scenario.

Summary

Concentrations and critical levels exceedance

- The annual mean SO_2 concentrations are 2.02 µg m⁻³ (range 0.26- 38.2 µg m⁻³) for the baseline, and 2.23 µg m⁻³ (range 0.35- 38.5 µg m⁻³) for the average Laki-type scenario.
- Exceedance of critical levels does not increase significantly.

Sulphur deposition and critical loads exceedance

- Annual S deposition increases ~50%, similar to peak industrial S pollution in the 1970s.
- Sensitive ecosystem area exceeding their critical load doubles for that year: 22%-51%.
- Scotland has the greatest proportional increase in exceedance, with areas of dwarf shrub heath at most risk.

Dynamic modelling

- Average soil pH drops only slightly but returns to near normal within 5 years. However, even a small drop in pH can result in damage when pH is already low, particularly to downstream freshwater natural systems and aquaculture. Impacts are likely be localised.
- Effects of concentrated, short-term peaks of S-deposition were not fully evaluated.

The results show that although an Icelandic plume will reach the UK and affect the atmospheric composition, in the scenario done trace species HCl and HF X_{sol} (modelled as HNO₃) do not exceed air quality levels.

The emission scenarios considered do not capture the entire range of variability in the numerous aspects of such a Laki-type eruption and in particular only one set of ratios has been simulated so the values given should be taken as guidance only