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SYNOPSIS. 23 

In rainbow trout the magnitude of the cortisol response to stress shows both consistency 24 

over time and a moderate to high degree of heritability, and high responding (HR) and 25 

low responding (LR) lines of rainbow trout have been generated by individual selection 26 

for consistently high or low post-stress cortisol values. Using 2nd and 3rd generation fish, 27 

we tested the hypothesis that differential stress responsiveness is associated with 28 

behavioral alterations in the HR-LR trout model. LR fish showed a tendency to become 29 

socially dominant, a rapid recovery of food intake after transfer to a novel environment, 30 

and a reduced locomotor response in a territorial intrusion test. Furthermore, stress 31 

induced elevation of brain stem and optic tectum concentrations of the monoamine 32 

neurotransmitters serotonin, dopamine, and norepinephrine and their metabolites suggests 33 

that both synthesis and metabolism of these transmitters were elevated after stress to a 34 

larger degree in HR than in LR trout. A divergent pattern was seen in the hypothalamus, 35 

where LR fish displayed elevated levels of 5-hydroxyindoleacetic acid (a serotonin 36 

metabolite) and 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite). Thus, 37 

selection for a single trait, cortisol responsiveness, in rainbow trout is associated with 38 

concurrent changes in both behavior and central signaling systems. The apparent parallel 39 

to genetically determined stress coping styles in mammals, and the existence of similar 40 

trait associations in unselected populations of rainbow trout, suggests an evolutionarily 41 

conserved correlation between multiple traits. Continuing studies on the HR and LR trout 42 

lines are aimed at providing the physiological and genetic basis for new marker-assisted 43 

selection strategies in the rapidly developing finfish aquaculture industry, as well as 44 

increased knowledge of the function and evolution of central neuroendocrine signaling 45 

systems. 46 

47 
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INTRODUCTION 48 

The rainbow trout Oncorhynchus mykiss (Walbaum, 1792) is native to the Pacific coast 49 

of North America and Russia, but has been widely cultivated and introduced as a food 50 

and game fish in temperate regions around the world. Wide occurrence, availability and 51 

ease of culture have made the rainbow trout one of the most intensively studied fish 52 

species in biological research - this species has been used in fields ranging from 53 

evolutionary ecology to behavior, physiology, genetics, toxicology and cancer research 54 

(see Thorgaard et al., 2002). Rainbow trout also attracts interest as a model species for 55 

the commercially important family salmonidae, with focus on nutrition, reproduction, and 56 

stress physiology.  57 

 Intensive aquaculture of rainbow trout and other salmonids is a relatively new 58 

innovation, compared to the cultivation of most other animals. The process of 59 

domestication has only just begun in salmonids, and considerable effort is devoted to 60 

selecting for and defining the heritability of economically important traits in these fish, 61 

such as growth rate, age at maturity, fillet composition, and disease resistance (see e.g. 62 

Gall and Huang 1988a,b; Gjerde, 1993; Gjøen and Bentsen, 1997; Gjedrem, 2000; 63 

Midtlyng et al., 2002). Natural populations of salmonids are characteristic in displaying 64 

an immense variability in genetic composition, life history, and a range of phenotypic 65 

traits (Ryman, 1983; Taylor, 1991; Hershberger, 1992; Carlsson et al., 1999; Waples et 66 

al., 2001; Hansen et al., 2002), which makes these fish make excellent raw material for 67 

genetic studies and selection experiments. 68 

Fish under intensive culture conditions are exposed to a regime of acute and 69 

chronic stressors, which have adverse effects on growth, reproduction, 70 
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immunocompetence, and flesh quality, among other things (Barton et al., 1987; Maule et 71 

al., 1989; Barton and Iwama, 1991; Lowe et al., 1993; Pickering, 1993; Balm, 1997; 72 

Pankhurst and Van der Kraak, 1997; Sigholt et al., 1997; Schreck et al., 2001). As in 73 

other vertebrates, the blood concentration of corticosteroid hormones is a major index of 74 

stress in fish, and elevated levels of these hormones arise from activation of the 75 

hypothalamus-pituitary-interrenal (HPI) axis (Wendelaar-Bonga, 1997). The main 76 

corticosteroid in teleost fish is cortisol (Kime, 1987), and this steroid is a causal factor in 77 

many of the deleterious effects of stress (Barton et al., 1987; Barton and Iwama, 1991; 78 

Harris and Bird, 2000; Pankhurst and Van der Kraak, 2000; Schreck et al., 2001; Consten 79 

et al., 2002; Bernier et al., 2004). In rainbow trout the magnitude of the cortisol response 80 

to stress is an individual characteristic which is stable over time, with a moderate to high 81 

degree of heritability (Pottinger et al., 1992, 1994; Fevolden et al., 1999). Thus, post-82 

stress cortisol levels provide a trait of functional and economical significance upon which 83 

selection pressure can be directed, and lines of high- (HR) and low-responsive (LR) trout 84 

have been established at the Windermere laboratory of the UK Centre for Ecology and 85 

Hydrology (Pottinger and Carrick, 1999, 2001a).  86 

In association with the physiological response, stress may lead to drastic changes 87 

in behavior, which has been classified and interpreted in various ways (see e.g. Koolhaas 88 

et al., 1999; Wingfield, 2003). A distinction is often made between proactive (active 89 

coping, or ‘fight or flight’) and reactive (passive coping, or ‘conservation-withdrawal’) 90 

responses (Engel and Schmale, 1972; Henry and Stephens, 1977; Benus et al., 1991; 91 

Henry, 1993; Koolhaas et al., 1999). In both mammals and fish, a transition from 92 

behavioral activation to an inhibiting effect is often seen with increasing duration or 93 
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severity of the challenge (Haller et al., 1998; Øverli et al., 2004a). Seminal studies in 94 

mammals indicated that the threshold at which the shift from an active to a passive 95 

behavioral response occurs is subject to great individual variation (Engel and Schmale, 96 

1972; Henry and Stephens, 1977).  97 

More recently, it has been established that individual differences in the 98 

physiological stress response are associated with differences in behavior. For instance, a 99 

pro-active stress coping style is behaviorally characterized by a high level of active 100 

avoidance, aggression, and other behavioral patterns indicating an active attempt to 101 

counteract the stressful stimulus (e.g. defensive burying in rodents) (Bohus et al., 1987; 102 

Benus et al., 1989, 1991a; Sluyter et al., 1996). Reactive (passive) coping, on the other 103 

hand, involves immobility and low levels of aggression. Physiologically, the pro-active 104 

strategy is associated with low hypothalamus-pituitary-adrenal axis (HPA axis, the 105 

mammalian equivalent of the teleost HPI axis) responsiveness, but high sympathetic 106 

reactivity, while the opposite is true for reactive coping (de Boer et al., 1990; Korte et al., 107 

1992; Fokkema et al., 1995). A genetic basis for the expression of behavioral and 108 

physiological components of individual coping styles has repeatedly been demonstrated 109 

(e.g. Driscoll et al., 1998; Ellenbroek and Cools, 2002; de Boer et al., 2003; Veenema et 110 

al., 2003). Limited information, however, is available on whether different behavioral-111 

physiological stress coping styles are present in teleost fish (but see Francis, 1990; Van 112 

Raaij et al., 1996; Budaev et al., 1999).  113 

 In fish, like in other vertebrates, behavioral and physiological stress responses are 114 

to a large degree linked by common control mechanisms in the brain, and the monoamine 115 

neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and 116 
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norepinephrine (NE) play a vital role in this co-ordination (Winberg and Nilsson, 1993; 117 

Winberg et al., 1997, 2001; Øverli et al., 1998, 1999; Höglund et al., 2001, 2002a,b; 118 

Lepage et al., 2002, 2003; Clements et al., 2003; Larson et al., 2003; Perreault et al., 119 

2003). Genetically determined variation in behavior and stress responsiveness has been 120 

associated with differences in brain monoaminergic function in both fish and mammals 121 

(e.g. Benus et al., 1991b; Popova et al., 1991a,b; Nikulina et al., 1992; Rots et al., 122 

1996a,b,c; de Kloet et al., 1996; Sallinen et al., 1999; Lepage et al., 2000; Giorgi et al., 123 

2003). In this paper we review the effects of selection for post stress cortisol production 124 

in rainbow trout, with particular reference to a series of studies investigating the 125 

association between altered plasma cortisol dynamics, behavior, and brain monoamine 126 

neurotransmitters. In other words, we examine the hypothesis that behavioral and 127 

physiological traits are linked in such a way that altering one trait, post-stress plasma 128 

cortisol concentrations, incurs differences in other putative components of individual 129 

stress coping styles. It should be noted that several additional physiological differences 130 

between HR and LR lines, such as metabolic changes and interrenal sensitivity to 131 

adenocorticotrophic hormone (ACTH) also has been reported, but for details of this 132 

experimental work we refer to the original papers (Pottinger and Carrick, 2001b, 133 

Trenzado et al., 2003).  134 

 135 

 136 

MATERIAL AND METHODS 137 

Generation of HR and LR trout lines 138 
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The selection procedure and the effect of the breeding program on the cortisol response 139 

has been thoroughly described elsewhere (Pottinger and Carrick, 1999, 2001a), and will 140 

only be briefly reviewed here. The parental generation of the HR and LR trout lines was 141 

established in 1996 by repeated stress testing (3h confinement in 50 L water in groups of 142 

6-7 individuals once monthly) of passive integrated transponder (PIT) tagged 2-year-old 143 

rainbow trout. Following confinement, blood samples (0.5 ml) and PIT-tag readings were 144 

obtained from anaesthetized (2-phenoxyethanol, 1:2000) fish, and plasma was later 145 

analyzed for cortisol content by a previously validated radioimmunoassay (RIA) 146 

procedure (Pickering et al., 1987). The mean post-stress plasma cortisol content across 147 

five episodes of confinement was then calculated for each fish, and individuals were 148 

ranked accordingly. Between testing fish had been kept in groups of 25 in 1500 L holding 149 

tanks, and the four most high-responding (HR) and the four most low-responding (LR) 150 

fish in each tank were removed from their home tank, segregated by sex, and kept 151 

separate in 4 tanks based on group and sex until maturation.  152 

 Confinement stress testing of the 1st generation offspring (F1), consisting of 15 153 

HR and 14 LR families each resulting from a unique male-female crossing, were carried 154 

out on five different occasions between September 1997 and September 1998, and on five 155 

occasions in 1999. A highly significant regression of mid-parent cortisol response on 156 

progeny response was seen (estimated r2 [h2] value = 0.41) and the six LR families with 157 

the lowest mean cortisol response and the six HR families with the highest mean cortisol 158 

response were identified and used for further work (Pottinger and Carrick, 1999). An 159 

unselected (US) population resulting from random breeding of fish not designated as HR 160 

or LR in the parental group (6 families) was tested on one occasion, and showed a 161 
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cortisol response intermediate to the mean of these most divergent HR and LR groups. 162 

Adult female F1 generation HR and LR fish were later used in a study investigating the 163 

effect of selection for stress responsiveness on behavior and brain monoamine 164 

neurotransmitters (Øverli et al., 2001, 2002a). 165 

 The 2nd generation of offspring consisted of 11 HR, 11 LR and 3 US families. 166 

The regression of midparent [(male + female)/2] cortisol response on progeny cortisol 167 

response provided an estimated h2 of 0.6 in this generation, while male and female 168 

parent–progeny regressions provided estimates for h2 of 0.73 and 0.44, respectively 169 

(Pottinger and Carrick, 2001a). 170 

 171 

Behavioral experiments 172 

Locomotor activity, feed intake, and brain monoaminergic activity in HR and LR trout: 173 

These experiments are described in detail in Øverli et al. (2001, 2002a). Recovery of feed 174 

intake after transfer to a new and potentially stressful environment was used as an index 175 

of adaptiveness. Only adult female F1 fish were available for these studies. Locomotor 176 

activity when in isolation and in response to a territorial intruder was also analyzed, along 177 

with basal and stress-induced brain 5-HT, DA and NE activity. During April 2000 adult 178 

F1 female HR (n=18) and LR (n=18) rainbow trout weighing 987.5  39.5 g (mean  SE) 179 

were transferred individually from communal holding tanks to rearing in isolation in 180 

white 250 L polypropylene observation tanks. From day 1 after transfer to rearing in 181 

isolation, fish were fed daily by hand (1.5% of body weight), and fish were observed for 182 

3 min after distribution of food to register food intake. Behavioral observations and blood 183 

sampling (see below) were carried out between 10.00 and 14.00. 184 
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 After being held for 6 days in isolation, locomotor activity was quantified by 185 

observing time spent moving during 20 min for each fish, starting 1 h after feeding. 186 

Locomotor activity was quantified again the next day, this time for 20 min immediately 187 

following the introduction of an intruder fish in the observation tank. Intruder fish were 188 

smaller (< 50% body weight of the resident fish) group reared rainbow trout from a 189 

hatchery population, and previously unfamiliar to the test fish. 190 

 On the day after the intruder test, 50% of the fish from each line (HR, LR) were 191 

randomly selected for individual stress testing in 50 L confinement tanks. After 1h in the 192 

confinement tanks, fish were netted, anaesthetized in 0.5 ml/L 2-phenoxyethanol, and a 193 

blood sample was obtained from the caudal sinus into a heparinized syringe. The 194 

remaining 50% of the fish were sampled directly from observation tanks to serve as 195 

undisturbed controls. Immediately following blood sampling fish were killed by 196 

decapitation and dissected, and the presence or absence of food in the stomach and / or 197 

intestines was registered. Brains were removed and dissected into telencephalon 198 

(excluding the olfactory bulbs), hypothalamus (excluding the pituitary), optic tectum, and 199 

brain stem (excluding the cerebellum). Brain samples were immediately wrapped in 200 

aluminum foil and snap frozen in liquid nitrogen, where after concentrations of 201 

monoamines and monoamine metabolites in brain samples were analyzed by HPLC with 202 

electrochemical detection (Øverli et al., 1999). Plasma cortisol levels were determined 203 

using the RIA procedure described by Pickering et al. (1987). 204 

 Tests for social dominance in HR and LR trout: Tests to investigate the relative 205 

tendency toward dominant or subordinate social status of the HR and LR lines were 206 

carried out in September and October 2000 using juvenile F2 progeny (Pottinger and 207 
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Carrick, 2001a). Mixed-sex juvenile fish were used in these tests since they are generally 208 

more territorial than adults, and there is no effect of sex on the ability to gain dominance 209 

at this life stage (Ø. Øverli and S. Winberg, unpublished results). Dyadic contests were 210 

performed following broadly the protocol of Øverli et al. (1999). In all, 47 size matched 211 

pairs consisting of 1 HR and 1 LR individual were transferred from holding tanks to 212 

rearing in glass observation aquaria (63 L volume) covered with black plastic on three 213 

sides. In each aquarium two fish were kept separate by a removable opaque plastic 214 

barrier.  215 

 Fish were offered food (five crumbs, Trouw Fry 18) twice each day after being 216 

transferred to the aquaria. Previous experiments have shown that holding juvenile 217 

salmonid fish in isolation for approximately one week with sufficient access to food is 218 

highly effective in inducing territoriality and motivation to express aggressive behavior 219 

(Winberg et al., 1991; Winberg and Lepage, 1998; Øverli et al., 1999). Barriers 220 

separating HR/LR pairs were removed after 5 days of acclimation, resulting in escalated 221 

contests for social dominance within each pair. Behavioral observations started at 3 h 222 

after the onset of interaction, by which time the conflict was resolved and the identity of 223 

the dominant and subordinate individuals within each pair was clear. At this time 224 

dominant fish were characterized by holding a midwater position, displaying extensive 225 

movement around the tank, nipping and/or chasing the subordinate, and intercepting 226 

food. Subordinate fish were typically located on the base of the aquarium, usually 227 

immediately adjacent to the aquarium wall, exhibited little swimming activity, and 228 

directed no aggressive acts toward the dominant individual. After 5 h of social interaction 229 
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fish were killed and, a blood sample was obtained, and blood plasma was analyzed for 230 

cortisol content using a RIA with ethyl acetate extraction (Pottinger and Carrick, 2001a). 231 

 232 

RESULTS AND DISCUSSION 233 

Cortisol responsiveness in HR and LR rainbow trout 234 

Post-stress blood plasma cortisol levels of HR and LR trout for every occasion on which 235 

they were tested, from the establishment of the parental generation (F0) up to present 236 

(F3), is shown in Figure 1. There is considerable variation in the magnitude of the cortisol 237 

response over time, and between generations, but a difference between the lines 238 

(HR>LR) is always evident. The exception to this is the final sample for the F0 fish in 239 

which reproductive status may have confounded the normal previously observed 240 

divergence. Some of the variation in overall magnitude of the stress response can no 241 

doubt be accounted for by seasonal changes in water temperature (Sumpter et al., 1985; 242 

Barton and Schreck, 1987; Pickering and Pottinger, 1987) and in reproductive status of 243 

the fish (Pottinger et al., 1995; Pottinger and Carrick, 2000). However, it must be borne 244 

in mind that these tests were carried out for a variety of purposes and did not employ 245 

exactly the same protocol on each occasion. Therefore, while it is appropriate to conclude 246 

that divergence in stress responsiveness has been sustained across three generations, it is 247 

not possible to directly compare successive time points and evaluate temporal trends. 248 

 Notwithstanding this caveat, the type of test that were employed for the first 249 

occasion on which each generation was assessed were similar and the results of these 250 

tests may be directly compared. The magnitude of the difference in cortisol 251 

responsiveness between lines has remained similar over 3 successive generations for 252 
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juvenile fish subjected to their first stress test (age 6-7 months, tested in September 1997, 253 

September 2000 and October 2003). The post-stress plasma cortisol levels in HR 254 

juveniles represents 135%, 224%, and 220% that of the LR fish for the F1-F3 generations 255 

respectively. The similarity in the magnitude of divergence of these generations might 256 

indicate that there are physiological constraints on the range of plasma cortisol 257 

responsiveness to stress in trout. Such constraints may be imposed upon low-responders 258 

by the need to retain a functional cortisol response and upon high-responders by problems 259 

associated with hypercortisolism. 260 

 Finally, it should be noted that strain differences in plasma cortisol levels was 261 

never observed in unstressed fish. Thus, it seems likely that the effect of the selection 262 

program on post-stress levels of cortisol represents divergent responses to stressors, 263 

rather than differences in basal HPI-axis activity, which in turn could affect  264 

responsiveness.  265 

 266 

Behavioral effects of selection for stress responsiveness 267 

Pottinger and Carrick (2001a) reported a tendency of LR fish to establish social 268 

dominance over HR fish when held in pairs (Figure 2), and Øverli et al. (2001) observed 269 

that only LR fish had regained feed intake within one week after transfer to a new 270 

environment (Figure 3). Interestingly, an association between rapidly regaining feed 271 

intake after environmental change and the ability to win fights for social dominance was 272 

also observed in an unselected population of rainbow trout, using juvenile fish of both 273 

sexes (Øverli et al., 2004b). These observations indicate that the HR and LR lines are 274 

based on multi-trait phenotypes that display a significant amount of variation also in 275 
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unselected populations, but it has not yet been studied whether the divergence in behavior 276 

has increased with successive generations. 277 

 Locomotor activity in isolated HR and LR female rainbow trout, when held alone 278 

and when challenged with a conspecific intruder, is depicted in Figure 4. HR rainbow 279 

trout displayed higher locomotor activity than LR trout in the presence of an intruder, but 280 

there was no significant difference between the two groups in the isolated condition. 281 

However, both HR and LR rainbow trout increased their activity level when the intruder 282 

was present. Thus, it appears that some behavioral differences between HR and LR lines 283 

occur only under an acute challenge, which may indicate that they depend on control 284 

mechanisms activated in synchronization with the physiological stress response.  285 

 286 

Brain monoaminergic activity in HR and LR trout 287 

Concentrations of the three monoamine neurotransmitters 5-HT, DA, and NE and their 288 

respective metabolites 5-hydroxyindoleactetic acid (5-HIAA), 3,4-dihydroxyphenylacetic 289 

acid (DOPAC), and 3-methoxy-4-hydroxyphenylglycol (MHPG), and corresponding 290 

metabolite/monoamine ratios in four different brain regions of stressed and control HR 291 

and LR trout are shown in Table I. Since monoamine neurotransmitters are not exposed 292 

to monoamine oxidase (MAO) while stored in vesicles, increased concentrations of their 293 

deaminated metabolites are thought to indicate increased release and turnover of the 294 

neurotransmitter (Fillenz, 1993).  295 

 In particular, metabolite/monoamine ratios are frequently used as an index of 296 

neural activity. However, attention should be paid to the fact that altered metabolite / 297 

monoamine ratios may be caused by changes in the concentrations of monoamine 298 
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neurotransmitters as well as metabolites, or by combinations of such changes. Thus, 299 

differential patterns of activation may be assumed depending on whether concentrations 300 

or ratios are studied. For instance, brain stem 5-HIAA concentrations were significantly 301 

affected by confinement stress only in HR fish (Table I). Therefore, it could be concluded 302 

that the brain 5-HT system was activated by confinement stress to a larger extent in HR 303 

than in LR fish. On the other hand, brain stem 5-HIAA/5-HT ratios were higher in LR 304 

than HR fish both in the control condition and after stress. This apparent contradiction is 305 

probably caused by the fact that HR fish, but not LR fish, responded to stress by an 306 

increase in 5-HT concentrations in the brain stem. Apart from that, three possible 307 

explanations can be given to the observation that 5-HIAA/5-HT ratios were elevated in 308 

LR fish relative to HR fish: 1. The proportion of 5-HT that was actually released, and 309 

thereby exposed to the action of MAO after re-uptake from the intercellular space, was 310 

greater in LR fish. 2. MAO enzyme activity was decreased in HR fish. 3. Re-uptake of 5-311 

HT was more effective in LR fish. 312 

 Nonetheless, one of the most evident findings of this study was that HR trout 313 

reacted to stress by an increase in the tissue concentrations of serotonin (brain stem), 314 

dopamine (brain stem), and norepinephrine (optic tectum, telencephalon), whereas low-315 

responsive fish did not (Table I). Brain stem and optic tectum concentrations of 316 

monoamine metabolites were also elevated after stress in HR, but not in LR fish. A 317 

divergent pattern was seen in the hypothalamus, were LR fish displayed elevated levels 318 

of 5-HIAA and MHPG. Both populations had elevated telencephalic concentrations of 319 

these metabolites after stress. Some differences were also seen in fish sampled directly 320 

from rearing in isolation, suggesting that the rearing environment was not entirely 321 
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optimal, and the experimental fish may have experienced a mild stress even in the 322 

undisturbed condition. This notion is also in line with the lack of aggressive behavior and 323 

low level of feed intake in these fish (Øverli et al., 2002a). Alternatively, differential 324 

stress responsiveness in HR and LR fish is associated with permanent differences in brain 325 

monaminergic systems that are expressed even in unstressed individuals.  326 

  327 

Correlated physiological and behavioral stress responses in HR and LR trout lines 328 

The creation of HR and LR lines of rainbow trout confirm that the magnitude of the 329 

cortisol response to a standardized stressor is an individual, heritable characteristic in this 330 

species (Pottinger et al., 1992, 1994; Fevolden et al., 1999). Furthermore, it appears that 331 

the magnitude of stress-induced elevation of blood cortisol is part of a complex trait 332 

incorporating several correlated physiological and behavioral responses (Pottinger and 333 

Carrick 2001a,b; Øverli et al., 2001, 2002; Trenzado et al., 2003). Taken together, these 334 

observations suggest that the HR and LR rainbow trout may represent selection for 335 

different physiological/behavioral stress-coping styles, as defined by Koolhaas et al. 336 

(1999). These authors stated: “A coping style can be defined as a coherent set of 337 

behavioral and physiological stress responses which is consistent over time and which is 338 

characteristic to a certain group of individuals.”  339 

 As noted previously, the plasma cortisol response is an individual trait which is 340 

consistent over time in rainbow trout (Pottinger et al., 1992; Pottinger and Carrick, 1999). 341 

The degree to which behavioral traits are consistent in individual HR and LR fish has not 342 

been determined, but comparisons of behavior between the two lines have revealed 343 

several striking differences (c.f. figure 2-4). Behavioral and physiological stress responses 344 
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are to a large degree controlled by common neuroendocrine signaling systems. Thus, if 345 

the cortisol response is a consistent individual trait, it seems likely permanent differences 346 

exist with respect to the behavioral components of different stress coping styles.  347 

 Most likely, some degree of trait associations exist in all animals with respect to a 348 

fundamental response such as stress coping, but the evolutionary success of different 349 

profiles may vary between species. It is not clear whether the behavioral and endocrine 350 

traits of LR and HR rainbow correspond exactly to the proactive (active) and reactive 351 

(passive) coping styles described in mammals. The proactive stress coping style in 352 

rodents involves low glucocorticoid production (de Boer et al., 1990; Korte et al., 1992; 353 

Fokkema et al., 1995), while in HR trout high cortisol responsiveness was associated with 354 

increased swimming activity during an intruder test (figure 4). The impression of the 355 

observers was that the HR trout showed anxiety-like erratic behavior, rather than targeted 356 

attempts to actively cope with the experimental situation. If that is the case, the 357 

behavioral strategy of the LR fish (to remain passive and ignore the presence of an 358 

intruder in a low-quality territory) may be more equivalent to the active coping style that 359 

is normally associated with low HPA axis responsiveness in rats (Koolhaas et al., 1999). 360 

Furthermore, the observation that LR trout tend to win encounters for social dominance 361 

(figure 2) is in accordance with an active coping style (see e.g. Verbeek et al., 1996; 362 

Klomberg et al., 2002; Zhukov and Vinogradova, 2002).  363 

 Several rodent models consisting of two contrasting lines/strains that respond 364 

differently to stressful environments have also been developed through bidirectional 365 

selection. Examples are the Roman high (RHA) and low (RLA) avoidance rats (Driscoll 366 

et al., 1998; Steimer and Driscoll, 2003), the Wistar high (HAB) and low (LAB) anxiety-367 
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related behavior lines (Liebsch et al., 1998; Yilmazer-Hanke et al., 2004), the Maudsley 368 

reactive and nonreactive strains (Blizard and Adams, 2002), the short (SAL) and long 369 

attack latency (LAL) house mice (Veenema et al., 2003), apomorphine susceptible and 370 

unsusceptible rats (Ellenbroek and Cools, 2002), and several others (e.g. Klomberg et al., 371 

2002; Viggiano et al., 2002, 2003; Brush, 2003; Ramos et al., 2003).  372 

 Like the HR and LR rainbow trout, these models were created by selective mating 373 

of animals with the highest and lowest scores for a given behavioral or physiological trait 374 

over several generations. In general, it is assumed that maximizing differences in this way 375 

produces one line with more genes that affect the selected trait positively, and one line 376 

carrying more genes with negative effects on the same trait (Ramos and Mormède, 1998; 377 

Crabbe, 1999). Ideally, correlated responses should be consistent across several replicate 378 

lines to indicate the presence of genetic correlations (Henderson, 1997). Thus, in the case 379 

of the HR and LR trout lines, founder effects, unique mutations and random genetic drift 380 

can not be ruled out as contributing factors in the simultaneous divergence of multiple 381 

traits. However, the apparent parallel to genetically determined stress coping styles in 382 

mammals, and the existence of similar trait associations in unselected populations (Øverli 383 

et al., 2004b), suggest an evolutionarily conserved correlation between multiple traits. 384 

 385 

Neuroendocrine mechanisms integrating physiological and behavioral stress responses  386 

The mechanisms integrating the behavioral and physiological characteristics of HR and 387 

LR trout lines remain largely unknown. The behavioral differences between HR and LR 388 

trout are consistent with some reported effects of corticosteroid hormones in 389 

poikilotherms (decreased appetite: Gregory and Wood, 1999; increased locomotor 390 
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activity: Cash and Holberton, 1999; Øverli et al., 2002b). In fish, like in mammals, these 391 

steroids typically have time-, context-, and dose-dependent effects (Øverli et al., 2002b; 392 

Bernier et al., 2004). Thus, altered competitive ability in a stressful situation such as a 393 

fight for social dominance (Pottinger and Carrick, 2001a) may also be directly caused by 394 

differences in circulating hormone levels.  395 

 The behavioral and physiological characteristics of HR and LR rainbow trout may 396 

also be functionally linked through a number of factors which influence both endocrine 397 

and behavioral responses. For instance, it seems likely that corticotrophin releasing 398 

hormone (CRH) is involved in the increase in locomotor activity observed in HR trout. In 399 

juvenile chinook salmon (Oncorhynchus tshawytscha), intracerebroventricular injections 400 

of CRH induced hyperactivity, an effect that was shown to depend on concurrent (i.e. 401 

CRH induced) 5-HT activation (Clements et al., 2003).  402 

 Interestingly, CRH administration also increases DA concentrations in dorsal 403 

medial hypothalamus of newts (Taricha granulosa) (Lowry et al., 2001), and one of the 404 

main neurochemical differences between HR and LR rainbow trout was that HR fish 405 

responded to stress by increased DA concentrations and turnover in several brain areas, 406 

while LR fish did not (Table I). Genetically determined differences in DA systems has 407 

been reported in several other models (Rots et al., 1996a,b,c; Lecca et al., 2004). 408 

However, increased DA synthesis and release may also be an effect of acute elevations in 409 

glucocorticoid concentrations (Dunn et al., 1978; Piazza et al., 1996a,b; Barrot et al., 410 

2000, 2001). Effects of glucocorticoids on dopaminergic activity are also strongly context 411 

(Piazza et al., 1996b) and regionally dependent (Lucas et al., 1998; Barrot et al., 2000, 412 

2001). Thus, at present it is not known whether differences in DA systems between HR 413 
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and LR trout are a cause or a consequence of hormone dynamics, but there is an 414 

interesting parallel to mammalian models which suggest the presence of evolutionary 415 

conserved trait correlations. Notably, a similar negative relationship between DA 416 

reactivity, stressor or novelty-induced locomotor activity, and social competitive ability 417 

has also been demonstrated in cynomolgus monkeys (Macaca fascicularis) (Morgan et 418 

al., 2000). Individually housed monkeys with high levels of locomotion in an open-field 419 

test after a low dose of cocaine (which increases CNS dopamine) were more likely to 420 

become subordinate in subsequent group housing (Morgan et al., 2000).  421 

 Like with DA, corticosteroids may affect brain 5-HT signaling directly and 422 

through interaction with other neurotransmitter systems (Chaouloff, 2000). Inheritable 423 

properties of the 5-HT system have also been associated with HPA-axis activity, 424 

personality and mood alterations in human and other animals. Examples are differences 425 

in MAO and polymorphisms in the 5-HT transporter gene or promoter region (Lesch et 426 

al., 1996; Shih et al., 1999; Fernandez et al., 2003).  427 

 The interaction between different signaling systems involved in the stress 428 

response is, in fact, so complex that on occasions it appears futile to disentangle causes 429 

and consequences. Most research on neuroendocrine control of behavioral and 430 

physiological stress responses has been carried out on mammals. However, the 431 

complexity of the interaction between a single neurotransmitter, 5-HT, and stress is well 432 

illustrated by a series of studies with salmonid fish: Stress affects 5-HT metabolism and 433 

most likely also functional release (Winberg and Nilsson, 1993; Øverli et al., 1998, 1999, 434 

2001; Lepage et al., 2002) and 5-HT in turn affects behavior (Winberg et al., 1993, 2001) 435 

and cortisol release (Winberg et al., 1997; Höglund et al., 2002b; Lepage et al., 436 
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2002,2003). Cortisol also affects behavior (Øverli et al., 2002), while both stressful and 437 

rewarding behavior influence 5-HT as well as stress hormones (Winberg and Lepage 438 

1997; Øverli et al., 1999, 2004a). Finally, there is preliminary evidence that circulating 439 

cortisol act on brain 5-HT neurons and can modify neurotransmission also in fish (Øverli 440 

et al., 2003).  441 

 Thus, it is not surprising that selection for stress responsiveness is also associated 442 

with alterations in brain 5-HT activity (Øverli et al., 2001, Table I). However, at present 443 

it is not known to what degree the physiological and behavioral profiles of HR and LR 444 

trout are a result of innate differences in central signaling systems, of glucocorticoid 445 

influence on brain function, or a combination of these factors.  Finally, it should be kept 446 

in mind that the differences in stress induced cortisol concentrations between HR and LR 447 

fish might arise from differences in interrenal function, rather than in central HPI-axis 448 

control (Pottinger and Carrick 2001b). Similarly, seasonal variations in stress-induced 449 

plasma corticosteroid levels was correlated to alterations in adrenocortical cell 450 

steroidogenic function in lizards (Sceloporus undulatus) (Carsia and John-Alder, 2003). 451 

Thus, the possibility should be considered that differences in neurochemistry and 452 

behavior between HR and LR trout are a result of variation in interrenal influence on 453 

brain functions, rather than the opposite. However, differences between unstressed HR 454 

and LR lines also have been observed, and in these cases interrenal function are unlikely 455 

to be directly responsible. 456 

 457 

Further experiments with HR and LR trout lines 458 
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In summary, experiments carried out on the HR and LR trout lines demonstrate a tight 459 

coupling of physiological and behavioral stress responses. The neuroendocrine control 460 

mechanisms behind this connection appear to be evolutionarily conserved, and are well 461 

illustrated by genetically selected strains of animals that display simultaneous differences 462 

in physiology and behavior. In many ways, selection models are superior to targeted gene 463 

knock-outs, since an entire suite of neuroendocrine mechanisms are selected for, instead 464 

of altering just one specific gene product. The systems that produce behavioral and 465 

neuroendocrine stress responses work in an integrated fashion, and selection models keep 466 

that integration intact.  467 

 Continuing studies on the 3rd generation HR and LR trout lines are providing 468 

evidence that the range of behavioral traits in which there are pronounced differences 469 

between the two lines far exceeds what has so far been published. For instance, a recent 470 

study has demonstrated that the extinction of a conditioned response occurs more rapidly 471 

among fish from the HR line than fish from the LR line, suggesting that the two lines 472 

differ in cognitive function as well as in behavioral characteristics (Moreira et al., 2004). 473 

It is, however, not known whether this result depends on differences in memory 474 

formation, consolidation, or retrieval. This latter point is of particular interest, since some 475 

studies suggest dual effects of glucocorticoids on specific memory phases (Roozendaal, 476 

2002). Furthermore, the results of Moreira et al. (2004) suggest that densities and 477 

composition of N-methyl-D-aspartate (NMDA) are also likely to differ between the lines, 478 

in view of the important role of these receptors in excitatory neurotransmission, synaptic 479 

plasticity, and cognition in other vertebrates.  480 
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 One neurotransmitter system that is also likely to play a central role in shaping 481 

behavioral profiles, but that has not been studied in the HR/LR trout model, is CRH. It is, 482 

for instance, not known whether basal or stress-induced CRH activity differs between the 483 

lines, although their behavioral and physiological profile strongly suggests such a 484 

difference. As suggested by Clements et al. (2003), it would also be interesting to 485 

compare the responses of these two lines to CRH treatment.  486 

 In a different venue of research, recently developed genomic tools, such as 487 

microarray technology, are being utilized in an EU program (STRESSGENES) to 488 

identify candidate genes associated with resistance to stress. Knowledge of the genes 489 

responsible for trait variability will further point out the pathways responsible for the 490 

phenotypical differences between HR and LR lines. This should provide the 491 

physiological and genetic basis for new marker-assisted selection strategies in the rapidly 492 

developing finfish aquaculture industry, as well as increased knowledge of the function 493 

and evolution of central neuroendocrine signaling systems. 494 
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Figure legends 875 

Figure 1: Post-stress blood plasma cortisol levels (mean ± SE) of LR and HR rainbow 876 

trout (mixed sex samples)  for all test occasions from the establishment of the parental 877 

generation (F0) up to present (F3). 878 

Figure 2: The number of LR and HR rainbow trout identified as either dominant or 879 

subordinate during paired contests. HR subordinates>LR subordinates, p < 0.001, χ2 test 880 

(data from Pottinger and Carrick, 2001a. 881 

Figure 3. The number of LR and HR rainbow trout  regaining feed intake within 1 week 882 

of transfer to a new environment. LR feeding>HR feeding, p = 0.003, χ2 test (data from 883 

Øverli et al., 2002a). 884 

Figure 4. Locomotor activity in HR and LR rainbow trout quantified as time spent 885 

moving during a 20 min observation period, with or without the presence of a conspecific 886 

intruder. Asterisks indicate an effect of the intruder, asterisks in brackets [*] indicates a 887 

difference between HR and LR fish, * = p<0.01, ** = p<0.001, *** = p<0.0001, Kruskal–888 

Wallis analysis of variance followed by groupwise comparisons by the Mann–Whitney 889 

U-test (data from Øverli et al., 2002a). 890 

Table I. Tissue concentrations of monoamines and monoamine metabolites (ng/g), and 891 

corresponding metabolite/monoamine ratios (mean ± SE) in different brain regions of LR 892 

and HR rainbow trout when reared in isolation (controls) or following 1 h confinement 893 

stress. Ratios are in italics. Values that are significantly higher in one selection line (LR 894 

vs HR) or in stressed than control fish are in bold font. Asterisks indicate an effect of 895 

stress, asterisks in brackets [*] indicates a difference between HR and LR fish, * = 896 

p<0.01, ** = p<0.001, *** = p<0.0001, analysis of variance followed Tukey HSD post-897 

hoc test (data from Øverli et al., 2001). 898 

899 
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 900 

Table I.901 

LR control HR control LR stressed HR stressed

Telencephalon

DOPAC 17.1±4.2 15.0±3.9 23.6±5.9 22.4±2.8

DA 218.3±30.7 188.8±39.2 268.6±57.5 229.9±14.5

DOPAC/DA 0.074±0.009 0.076±0.005 0.086±0.008 0.095±0.008

MHPG 13.5±1.0 11.6±0.6 19.8±1.2 21.0±1.2

NE 1264±78 1282±50 1347±93 1674±76

MHPG/NE 0.010±0.001 0.009±0.001 0.015±0.001 0.012±0.001

5-HIAA 752.8±39.3 595.1±31.6 914.7±51.3 838.6±48.0

5-HT 1516±75 1490±34 1528±64 1588±77

5-HIAA/5-HT 0.50±0.02 0.40±0.02 0.60±0.03 0.53±0.03

Hypothalamus

DOPAC 3.62±0.41 4.80±0.89 4.87±0.66 4.93±0.86

DA 754.8±15.6 734.8±37.8 696.2±23.6 758.6±36.2

DOPAC/DA 0.0049±0.0006 0.0065±0.0012 0.0072±0.0011 0.0065±0.0012

MHPG 8.08±0.84 7.27±0.88 11.3±0.89 10.2±0.58

NE 403.5±29.7 379.2±23.7 418.9±31.4 418.4±34.3

MHPG/NE 0.020±0.002 0.020±0.003 0.028±0.003 0.025±0.002

5-HIAA 362.6±19.3 283.0±21.6 420.0±18.9 345.2±14.5

5-HT 1883±243 2080±306 1923±263 2058±303

5-HIAA/5-HT 0.21±0.03 0.16±0.03 0.23±0.03 0.20±0.03

Optic tectum

DOPAC 6.00±0.25 6.90±0.49 6.31±0.25 8.46±0.41

DA 61.0±3.6 59.3±3.2 75.2±8.5 73.7±5.8

DOPAC/DA 0.099±0.003 0.117±0.007 0.090±0.007 0.117±0.004

MHPG 6.13±0.38 6.21±0.67 7.43±0.26 8.54±0.31

NE 189.9±11.7 205.2±5.9 200.4±7.5 262.8±15.6

MHPG/NE 0.032±0.001 0.030±0.003 0.037±0.001 0.033±0.002

5-HIAA 114.7±7.4 121.8±11.8 145.1±8.0 154.1±9.8

5-HT 496.2±19.9 534.7±44.1 557.1±39.8 588.8±49.3

5-HIAA/5-HT 0.23±0.01 0.23±0.01 0.26±0.01 0.27±0.01

Brain stem

DOPAC 4.03 ± 0.13 4.51±0.19 4.26±0.17 5.40±0.21

DA 140.3±6.4 139.3±5.3 127.0±5.2 149.9±5.7

DOPAC/DA 0.029±0.002 0.033±0.002 0.034±0.002 0.036±0.001

MHPG 5.74±0.7 5.8±0.4 7.51±0.5 7.95±0.48

NE 248.6±15.1 240.7±7.8 234.6±8 253.6±10.6

MHPG/NE 0.023±0.003 0.024±0.002 0.034±0.003 0.031±0.001

5-HIAA 125.6±6.3 103.6±4.9 144.2±6.9 140.6±5.7

5-HT 595.8±31.1 610.6±31.6 532.8±24.3 646.1±28.8

5-HIAA/5-HT 0.21±0.006 0.17±0.005 0.27±0.016 0.21±0.005
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