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In state based testing it is common to include verdicts within test cases, the result of the test

case being the verdict reached by the test run. In addition, approaches that reason about test

effectiveness or produce tests that are guaranteed to find certain classes of faults are often based

on either a fault domain or a set of test hypotheses. This paper considers how the presence of

a fault domain or test hypotheses affects our notion of a test verdict. The analysis reveals the

need for new verdicts that provide more information than the current verdicts and for verdict

functions that return a verdict based on a set of test runs rather than a single test run. The
concepts are illustrated in the contexts of testing from a non-deterministic finite state machine

and the testing of a datatype specified using an algebraic specification language but are potentially

relevant whenever fault domains or test hypotheses are used.

Categories and Subject Descriptors: D2.4 [Software Engineering]: Software/Program Verifica-
tion; D2.5 [Software Engineering]: Testing and Debugging

1. INTRODUCTION

In state based testing a test case, in the form of an adaptive process, can be aug-
mented by verdicts (see, for example, [Pickin et al. 2007]). A verdict is associated
with each possible behaviour of a system under test (SUT) in response to the test
case and traditionally there have been three possible values for this verdict: pass,
fail, and inconclusive. The verdict fail indicates that the observed behaviour is
a failure and is not allowed by the specification. The verdict pass is used when
the observed behaviour is consistent with the specification and the test objective
has been achieved. The verdict inconclusive represents the situation in which no
failures have been observed but the test objective has not been achieved. For ex-
ample, if a test case aims to establish a connection over an unreliable medium and
then test some associated operation op and it does not establish a connection then
this does not indicate a failure but also does not test op. Verdicts are used within
the standardised ETSI test description language TTCN-3 and the UML 2.0 Test
Profile (see, for example [ETSI ES 201 873-1 V3.1.1 2005; Zander et al. 2005]).

In testing we aim to draw conclusions regarding the system under test (SUT)
on the basis of observed behaviour and verdicts are one way of describing these
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2 · Robert M. Hierons

conclusions. If we observe one or more failures then we can conclude that the SUT
is faulty but even where this is not the case we may be able to deduce properties of
the SUT (see, for example, [Gaudel 1995; Moore 1956]). One approach to deducing
properties of the SUT based on observations is to use a fault domain. Given a
specification M a fault domain Φ is a set of models such that it is believed that the
SUT is functionally equivalent to an unknown element of Φ. For example, when
testing from a finite state machine M with n states the fault domain might be the
set of finite state machines that have the same input and output alphabets as M
and at most m states for some predefined m ≥ n. Fault domains can be used to
reason about test effectiveness and drive test data generation: we aim to produce
test cases that distinguish between M and the elements of Φ that do not conform
to M (see, for example, [Chow 1978; Hennie 1964; Hierons and Ural 2006; Inan
and Ural 1999; Luo et al. 1994; Luo et al. 1994; Petrenko et al. 1994; Petrenko
et al. 1996; Rezaki and Ural 1995; Ural et al. 1997; Yevtushenko et al. 1991]). The
concept of a fault domain is similar to the notion of using assumptions about the
SUT, called test hypotheses, which came from the area of testing from an algebraic
specification (see, for example, [Bouge et al. 1986; Gaudel 1995]). Given a set of
test hypotheses there is a corresponding fault domain: the set of models that satisfy
the test hypotheses. Similarly, the use of a fault domain Φ can be represented by
a test hypothesis: that the SUT is functionally equivalent to a model from Φ. In
this paper we use the term fault domain both for an explicit fault domain and for
an implicit fault domain defined by a set of test hypotheses and all results and
discussions regarding fault domains are also relevant to test hypotheses.

Fault domains and verdicts have been separately studied in state based testing.
This paper considers the situation in which there is a fault domain and verdicts
are being used. The analysis in Section 3 suggests that there is a need for both
new verdicts and verdict functions. New verdicts are required since the presence of
a fault domain makes it possible to make stronger statements regarding the SUT
on the basis of test runs. For example, it is sometimes possible to deduce that the
SUT must conform to the specification. Interesting, we show that sometimes it is
also possible to deduce that the SUT must be faulty even if we have not observed
any failures. This occurs if the set of observations made in testing is inconsistent
with all of the elements of the fault domain that conform to the specification. A
verdict function returns a verdict given a set O of observations, in contrast to
current verdicts that are included within individual test cases and so correspond to
individual observations. We show that verdict functions allow us to return verdicts
based on a set O of observations that cannot be returned on the basis of any single
element of O. For example, it may be possible to deduce that the SUT is faulty on
the basis of O but not from any single observation in O. The main contributions of
this paper are thus bringing together fault domains and verdicts, providing new test
verdicts, the concept of verdict functions, and an analysis of some of the desirable
properties of these functions. We also consider the notion of refining a verdict
function for a given fault domain and how properties of verdict functions change
as a fault domain is refined.

In this paper we illustrate our ideas in two contexts. The first is testing from
an algebraic specification of a datatype in the presence of test hypotheses. The
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Verdict Functions in Testing with a Fault Domain or Test Hypotheses · 3

second, and main, context is testing a deterministic SUT against a (possibly non-
deterministic) finite state machine (FSM). In this situation the usual fault domain
is the set Φm

M
of deterministic finite state machines (DFSMs) that have at most m

states for some predefined m. A test suite is a finite set of test cases, where each
test case is either an input sequence or an adaptive process. When a test case is
applied to the SUT we observe an input/output sequence called a trace. Then test
suite X is a checking experiment if for all π ∈ Φm

M
, if π does not conform to M

then π produces a failure on at least one test case from X . There has been much
interest in the automated generation of a checking experiment from an FSM (see,
for example, [Chow 1978; Hennie 1964; Inan and Ural 1999; Luo et al. 1994; Luo
et al. 1994; Petrenko et al. 1994; Petrenko et al. 1996; Petrenko and Yevtushenko
2005; Rezaki and Ural 1995; Ural et al. 1997; Yevtushenko et al. 1991]). While the
work is illustrated by examples from two areas, it is potentially applicable to any
area in which fault domains or test hypotheses are used.

The material contained in this paper relates to work on generating checking
experiments and on testing in the presence of test hypotheses. However, these pre-
vious lines of research have focussed on the problem of generating a test suite that is
guaranteed to determine the correctness of any SUT for the given specification and
fault domain or test hypotheses. While this is undoubtedly useful, the intention is
that verdict functions state what one can conclude about the current SUT on the
basis of the observations that have been made in testing. It is possible that the test
suite applied is not guaranteed to determine correctness, and so is not a checking
experiment, but that the observations allow us to determine whether the current
SUT is correct. For example, for any test suite we can deduce that the SUT is
faulty if we observe one or more failures. Verdict functions are also more general
than the verdicts currently used in languages such as TTCN-3 and the UML 2.0
Test Profile since they consider a set of observations and not just a single trace.
Interestingly, a logic has recently been defined for deciding whether a set of obser-
vations allows one to deduce that the SUT is correct when testing from an FSM
M using the standard fault domain Φm

M
[Rodŕıguez et al. 2006]. This work can be

seen as providing the basis for a partial verdict function.

The paper is structured as follows. Section 2 defines the basic concepts and
notation used in this paper. Section 3 then uses examples from the areas of testing
from an FSM and testing from an algebraic specification in order to show that
verdict functions, which take a set of observations, can provide benefits that are not
possible using verdicts associated with individual observations. It also defines new
verdicts for use when testing in the presence of a fault domain. We define verdict
functions in Section 4 and establish some desirable properties of these functions.
Section 5 then explores the notion of refining a verdict function and Section 6
considers what it means to refine a fault domain or set of test hypotheses. Section
7 describes possible verdict functions for finite state machines and finally Section 8
draws conclusions.
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4 · Robert M. Hierons

2. PRELIMINARIES

2.1 Basic notation

In general, the application of a test case leads to an observation. If we are applying
an input sequence then the observation is usually a trace but this need not always be
the case. For example, a test case might involve creating several objects, applying
sequences of operations to these, and then checking that the resultant outputs
satisfy some property.

Throughout this paper, O will denote the set of possible observations and given
a specification S, M(S) will denote the set of observations allowed by S. Given
a specification S and SUT N we will write N ≤ S to mean that N conforms to
S and assume that this requires that M(N) ⊆ M(S). We will normally use the
symbol S to denote a specification, the exception being the use of the symbol M
when specifically considering testing from an FSM.

In this paper sequences are represented by listing their elements preceded by the
symbol 〈, followed by the symbol 〉, and separated by commas. For example, 〈0, 1〉
denotes the sequence that contains two values, 0 followed by 1. Where a variable
represents a sequence its name will have a bar above it, an example being x̄.

2.2 Nondeterministic finite state machines

A (completely specified) finite state machine (FSM) M is defined by a tuple (S, s0,
X, Y, h) in which S is a finite set of states, s0 ∈ S is the initial state, X is the finite
input alphabet, Y is the finite output alphabet, and h is the transition relation
of type S × X ↔ S × Y . In this paper we will only consider completely specified
FSMs. Given s ∈ S and x ∈ X, (s′, y) ∈ h(s, x) should be interpreted as meaning
that if M receives input x when in state s then it can move to state s′ and output y
and this defines a transition (s, s′, x/y). Consider, for example, the FSM M0 shown
in Figure 1. Here we have that h(s1, b) = {(s0, 0), (s3, 1)} and so (s1, s0, b/0) and
(s1, s3, b/1) are transitions of M0.

We will use two projections of h, h1 and h2, which represent the state transitions
and outputs respectively. Thus, h1(s, x) = {s′ ∈ S | ∃y ∈ Y.(s′, y) ∈ h(s, x)}
and h2(s, x) = {y ∈ Y | ∃s′ ∈ S.(s′, y) ∈ h(s, x)}. In M0 we therefore have that
h1(s1, b) = {s0, s3} and h2(s1, b) = {0, 1}. The relations h, h1 and h2 can be
extended to input sequences in the usual way giving relations of type S × X∗ ↔
S × Y ∗, S × X∗ ↔ S and S × X∗ ↔ Y ∗ respectively. For example, in M0 we have
that h(s0, 〈a, b〉) = {(s0, 〈0, 0〉), (s3, 〈0, 1〉)}.

A state s of M is deterministically reachable (d-reachable) if there exists an input
sequence x̄ such that s is the only state reached from s0 by x̄: h1(s0, x̄) = {s}. For
example, in M0 the state s1 is d-reachable since h1(s0, a) = {s1}. For states s1

and s2, an input x̄ distinguishes s1 and s2 if there is no common response to x̄:
h2(s1, x̄) ∩ h2(s1, x̄) = ∅. For example, in M0 we have that 〈a〉 distinguishes states
s0 and s1 since h2(s0, a) = {0} and h2(s1, a) = {1}. The (completely specified)
FSM M is a deterministic finite state machine (DFSM) if for all s ∈ S and x ∈ X
we have that |h(s, x)| = 1.

When testing from an FSM we apply a sequence of inputs and observe the cor-
responding sequence of inputs and outputs. If x̄ = 〈x1, . . . , xk〉 is an input se-
quence and ȳ = 〈y1, . . . , yk〉 is an output sequence then 〈x1/y1, . . . , xk/yk〉 is an
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Fig. 1. The FSM M0

input/output sequence or trace and this can be denoted x̄/ȳ. Thus, when testing
from an FSM observations are just traces. In order to simplify the exposition,
when discussing testing from an FSM a test case will simply be an input sequence.
However, the concepts and results extend to more general test cases when testing
from an FSM since our observations are still traces.

Given an FSM M , a sequence of consecutive transitions 〈(s1, s2, x1/y1), . . . , (sk,
sk+1, xk/yk)〉 defines a trace 〈x1/y1, . . . , xk/yk〉 from state s1 and the set of such
traces for state s1 is denoted LM (s1). For a state s, the set LM (s) is a regular
language and L(M) denotes LM (s0): the set of traces that can be observed from
the initial state of M . The language L(M) defines the semantics of M and so two
FSMs M1 and M2 are said to be equivalent if L(M1) = L(M2). FSM M is minimal
if no FSM with fewer states that M is equivalent to M .

There are two standard notions of what it means for one FSM N to conform
to another FSM M . One definition says that N conforms to M if N and M are
equivalent and this is appropriate when M defines the set of behaviours that should
be implemented. More often, however, nondeterminism in the specification denotes
alternative behaviours and where this is the case we say that N conforms to M if
every behaviour of N is also a behaviour of M and this is the notion of conformance
used in this paper. More formally, N conforms to M , written N ≤ M , if N and
M have the same input alphabets and L(N) ⊆ L(M). Similarly, given state s of
FSM M and state t of FSM N , where M and N have the same input alphabets,
we write t ≤ s if LN (t) ⊆ LM (s).

If we test the SUT against FSM M by applying an input sequence x̄ and observe
output sequence ȳ then there has been a failure if x̄/ȳ 6∈ L(M). Recall that Φm

M

is the set of FSMs with the same input and output alphabets as M and no more
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6 · Robert M. Hierons

than m states and M(M) is the set of observations allowed by M . Since for an
FSM M , L(M) is the set of possible observations, we have that M(M) = L(M).
If M ′ ∈ Φm

M
then the trace x̄/ȳ kills M ′ if x̄/ȳ 6∈ L(M ′); this observed behaviour

shows that the SUT cannot be equivalent to M ′.

2.3 Algebraic Specifications

Algebraic specification languages use axioms in order to specify required properties.
An algebraic specification thus consists of a set of sorts, a list of operations, and a
set of axioms. Examples of algebraic specification languages include OBJ [Goguen
and Tardo 1979; Goguen and Malcolm 2000] and the common algebraic specification
language (CASL) [Bidoit and Mosses 2003; Mosses 2004]. An algebraic specification
of a variant on the datatype of sets of natural numbers, sett, might have operations:

—empty to create a new empty sett;

—isempty to decide whether a sett is empty;

—in to decide whether an element is in a sett;

—add to add an element to a sett;

—delete to remove an element from a sett;

—retrieve to return some element of a sett.

We might define the sett type in the following way, in which Nat denotes an
imported type for the natural numbers.

spec Sett =

Nat

then

sort sett

preds

isempty: sett;

in: Nat * sett;

ops

empty: sett

add : Nat * sett -> sett;

delete : Nat * sett -> sett;

retrieve : sett -> Nat;

vars

n, n’: Nat; s: sett

axioms

isempty(empty);

¬ isempty(add(n,s));

¬ in(n,empty);

¬ empty(s) ⇒ in(retrieve(s),s);

in(n,add(n’,s)) ⇔ n = n’ ∨ in(n,s);

in(n,delete(n’,s)) ⇔ n 6= n’ ∧ in(n,s);

end

The first two axioms say that a sett is empty if and only if it is empty while
the third axiom says that no element is in empty. The fourth axiom says that
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the element retrieved from a non-empty sett is in that sett. The remaining two
axioms say that the elements in add(n’,s) are n’ and the elements in s while the
elements in delete(n’,s) are those that are in s and are not n’.

When testing against sett we will check that the axioms hold by instantiat-
ing the elements in them. For example, we could instantiate the last axiom with
n being 1, n’ being 2 and s being empty, in which case we would check that
in(1,delete(2,empty)) is the same as in(1,empty). Similarly, we could instan-
tiate the fourth axiom with s being add(1,empty). Note that in this case, in
testing we will observe the value returned by retrieve as well as the outcome
of in(retrieve(add(1,empty)),add(1,empty)) and so an observation will be a
boolean that represents whether the axiom held for that instance and also some
values returned during this process.

There are two main types of test hypotheses in the literature on testing: uni-
formity hypotheses and regularity hypotheses (see, for example, [Gaudel 1995]).
Uniformity hypotheses state that certain values can be treated as equivalent for
the purpose of testing. For example, in sett if we are generating tests from the
third axiom then we might say that all of the values for n are equivalent and so it
is sufficient to produce one test case from this axiom, for example in(1,empty). A
regularity hypothesis states that if all tests using structures with at most a given
size or complexity pass then all tests will pass. For sett we might choose an in-
teger m and say that it is sufficient to test with all elements of sett that can be
constructed by adding at most m elements to empty.

While the two main classes of test hypotheses discussed in the literature are
the uniformity and regularity hypotheses, it is possible to use other types of test
hypotheses. For example, we might believe that the implementation of sett is
deterministic and that the element returned by retrieve is always the element of
the sett that was most recently added. Later we will see that this test hypothesis
can lead to some interesting situations in testing.

3. THE NEED FOR NEW VERDICTS

Let us suppose that we are testing deterministic SUT N against FSM M using test
suite X , we have observed the set T of traces and this contains no failures. Without
the use of a fault domain all we can conclude is that the SUT conforms to M on
these test cases. Previous work has shown how the existence of a fault domain Φ
can sometimes allow us to conclude that the SUT is correct on the basis of a set of
observed traces (see, for example, [Hennie 1964]). We can make this conclusion if T
kills all of the elements of Φ that do not conform to M : ∀π ∈ Φ.π 6≤ M ⇒ T 6⊆ L(π).
It seems natural to use a verdict to represent this situation but this is not the
intended use of the standard verdict pass. We thus introduce a new verdict correct
to denote the situation in which the behaviours observed in testing show that if the
SUT is equivalent to a member of Φ then it must be correct. More generally, correct
denotes the situation in which we can conclude that the SUT must be correct on
the basis of the set O of observations made in testing and the fault domain or set
of test hypotheses used.

Relatively little attention has been paid to the case in which all of the elements
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8 · Robert M. Hierons

of Φ that conform to M have been killed1: ∀π ∈ Φ.π ≤ M ⇒ T 6⊆ L(π). Here
we can conclude that if the SUT really is functionally equivalent to an (unknown)
element of Φ then the SUT must be faulty. This suggests that it may be possible
to conclude that the SUT is faulty even though we have not observed any failures.

Consider the FSM M0 shown in Figure 1 and let us suppose that we are using the
fault domain Φ4

M0
in which the SUT N0 must be deterministic and have no more

states than M0. Here we may observe that all of the states are deterministically
reachable and pairwise distinguishable (using input sequence 〈a, a〉) and thus for an
SUT to conform to M0 it must contain separate states t0, . . . , t3 such that ti ≤ si

(for all 0 ≤ i ≤ 3). Now let us suppose that we test an SUT N0 using test case
〈b, b, b〉 and we observe the trace 〈b/1, b/0, b/1〉. This trace is contained in L(M0)
and thus N0 conforms to M0 on the test case 〈b, b, b〉. However, the traces 〈b/1〉
and 〈b/1, b/0〉 reach the same state s2 of M0 and the corresponding states of N0

are distinguished by the input of b since we observe b/0 after the trace 〈b/1〉 and
we observe b/1 after the trace 〈b/1, b/0〉. Thus, if N0 conforms to M0 then it must
have at least two states that conform to s2 and so must have at least five states in
total. However, our fault domain contains FSMs with no more than 4 states. We
can thus conclude that if we observe the trace 〈b/1, b/0, b/1〉 from the initial state
of an SUT N0 from Φ4

M0
then this SUT must be faulty even though we have not

observed a failure.
A similar situation can occur when testing against sett using the test hypothesis

that the element retrieved from a sett s is always the element of s that was most
recently added. We might use the test case in(retrieve(add(1,add(2,empty))),
add(1,add(2,empty))) and get 2 returned by retrieve(add(1,add(2,empty))).
This result is consistent with the specification but no implementation that conforms
to sett and satisfies the test hypothesis can produce this observation. We use
incorrect to represent the situation in which we can conclude that the SUT must
be faulty on the basis of the set O of observations made in testing and the fault
domain used.

Again consider M0 and assume that we are using the fault domain Φ4
M0

. Let us
suppose that we observe the trace 〈b/1, b/0, b/0, b/0, b/0, b/0, b/1〉. The states of the
SUT reached by the prefixes of lengths one to six must be different since from this
trace we can conclude that these states respond differently to 〈b, b, b, b, b〉. Thus, if
we observe this trace then the SUT cannot behave like an element of the fault do-
main: we cannot determine whether the SUT is correct or faulty but we can deduce
that the assumption that the SUT behaves like an element of Φ4

M0
was incorrect.

This situation is not covered by the standard verdicts or by our new verdicts correct
and incorrect and so we need an additional verdict that we call inconsistent: this
represents the situation in which no SUT that satisfies the set of test hypotheses
or is in the fault domain allows the set O of observations made in testing. Using
sett and the test hypothesis described earlier, we get verdict inconsistent if we test
with in(retrieve(add(1,add(2,empty))),add(1,add(2,empty))) twice and dif-
ferent values are produced by the two uses of retrieve(add(1,add(2,empty))).
As usual we require a verdict for situations in which none of these verdicts apply

1In [Hierons 1998] it has, however, been observed that where there is a fault domain it is possible
to distinguish states of an FSM that cannot be distinguished without the fault domain.
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Fig. 2. The DFSM N0

and use uncertain.
We have seen that there are situations in which the result of testing cannot be

captured by the three standard verdicts. Now suppose that the SUT is intended to
conform to M0 but actually behaves like the DFSM N0 shown in Figure 2. Let us
also suppose that we separately apply input sequences 〈b, b, b〉 and 〈a, b, b〉 from the
initial state of N0 and so we observe the traces 〈b/1, b/1, b/1〉 and 〈a/0, b/1, b/0〉.
Each trace is contained in L(M0) and is contained in the languages of both correct
and incorrect elements of the fault domain Φ4

M0
. So, if we assign a verdict to either

trace on its own then we obtain the verdict uncertain. However, we know that if
the SUT conforms to M0 then the traces 〈b/1, b/1〉 and 〈a/0, b/1〉 must both reach
states of the SUT that conform to s3. However, the SUT responds differently to
b after these two traces and so a conforming SUT that contains these traces must
have at least two states that conform to s3. Such an SUT must have at least five
states in total and so we can conclude that the SUT cannot be an element of Φ4

M0

that conforms to M0.
In this example we obtain verdict uncertain if we consider the observations sep-

arately but we can obtain the verdict incorrect if we consider the observations
together. As a result of this we propose the use of verdict functions that take a set
of observations and return a verdict. The benefit is that, as shown above, verdict
functions can allow us to obtain more information than can be gained through the
usual practice of associating verdicts with outcomes of a single test case.

4. VERDICT FUNCTIONS

Let us suppose that we have tested the SUT N against specification S with fault
domain Φ and we have made the set O of observations in testing. The intention is
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that the verdict tells us what we may conclude, regarding whether N conforms to
S, on the basis of O and Φ. A verdict function V is thus a function from sets of
observations to verdicts, where for each set of observations O the verdict V(O) is
one of the following:

—the value correct — this is intended to represent the situation in which we can
conclude that N conforms to S.

—the value incorrect — this is intended to represent the situation in which we can
conclude that N does not conform to S.

—the value uncertain — this is intended to represent the situation in which we
cannot conclude that N conforms to S, we cannot conclude that N does not
conform to S, but N might be equivalent to an element of Φ.

—the value inconsistent — this is intended to represent the situation in which no
element of Φ can produce the set O of observations and so the assumption that
N ∈ Φ cannot hold.

A verdict function is always with respect to a fault domain. In most cases the
fault domain is clear but if not, for a verdict function V for fault domain Φ we say
that V is a verdict function with respect to Φ.

The verdicts represent our ability to kill elements of Φ on the basis of O. The
verdicts are thus related: for example, we obtain verdict inconsistent if we can
kill all elements of Φ while we obtain verdict correct if we can kill all elements of
Φ that do not conform to the specification but we cannot kill some elements of Φ
that conform to S. There is then a natural partial ordering on verdicts: one verdict
is ‘above’ another if the first corresponds to killing more elements of Φ than the
second.

Definition 4.1 The partial order � on verdicts is defined by the transitive reflexive
closure of the following:

(1) uncertain � correct

(2) uncertain � incorrect

(3) correct � inconsistent

(4) incorrect � inconsistent

The set of verdicts, with the partial order �, forms a lattice since for any
pair of verdicts it is possible to find a unique least upper bound and a unique
greatest lower bound. Given verdicts v1 and v2 we will let v1 ∨ v2 denote the
least upper bound of v1 and v2. For example, correct ∨ uncertain = correct,
correct ∨ inconsistent = inconsistent, and correct ∨ incorrect = inconsistent.
Essentially, if we have verdicts v1 and v2 and these correspond to knowing that the
SUT is not equivalent to any element in Φ1 ⊆ Φ and Φ2 ⊆ Φ respectively then
v1 ∨ v2 is the verdict that corresponds to knowing that the SUT is not equivalent
to any element in Φ1 ∪ Φ2.

Traditionally, testing has returned a verdict fail if and only if a failure has been
observed and this corresponds to the following verdict function.
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Definition 4.2 The basic verdict function V∅ is defined by:

V∅(O) =

{

incorrect if O 6⊆ M(S)
uncertain otherwise

This is equivalent to not having a fault domain or using the minimal test hy-
pothesis [Gaudel 1995]. In the work on test hypotheses there are two extremes:
the minimal hypothesis in which we make no assumptions beyond the input and
output sets and the hypothesis in which we assume that the SUT is correct. The
latter corresponds to the following verdict function.

Definition 4.3 The maximal verdict function VT is defined by: for all O we have
that VT (O) = correct.

However, this does not fully correspond to our understanding of testing since
it allows us to declare an SUT as being correct even if we have observed failures.
Thus, we want our verdict functions to satisfy the following condition.

Definition 4.4 The function V is a valid verdict function if whenever O 6⊆ M(S)
we have that V(O) returns either incorrect or inconsistent.

This leads to an alternative maximal verdict function.

Definition 4.5 The maximal valid verdict function Vv

T
is defined by: for all O we

have that

Vv

T (O) =

{

inconsistent if O 6⊆ M(S)
correct otherwise

We will use the following notation. Given a set O of observations and fault
domain Φ we let C(O,Φ) denote the set {π ∈ Φ|O ⊆ M(π)} of elements of Φ that
are consistent with O. Given specification S we let conf(S) denote the set of SUT
that conform to S and let conf(S) denote the set of SUT that do not conform to
S.

We can see the process of determining a verdict as involving eliminating elements
of the fault domain: the verdict returned depends on properties of the models that
are not killed. We should only eliminate a model π from Φ if O demonstrates
that the SUT cannot be equivalent to π. This observation leads to the following
additional desirable property that says that the verdict function should not be
able to return verdicts that do not follow from the fault domain and the set of
observations made.

Definition 4.6 The function V is a sound verdict function with respect to Φ if
the following hold:

(1) C(O,Φ) ∩ conf(S) 6= ∅ ⇒ V(O) � correct

(2) C(O,Φ) ∩ conf(S) 6= ∅ ⇒ V(O) � incorrect
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The first of these says that if there exist elements of the fault domain Φ that
are consistent with O and that conform to the specification then the verdict should
either be correct or uncertain. The second says that if there exist elements of
the fault domain Φ that are consistent with O and that do not conform to the
specification then the verdict should either be incorrect or uncertain.

If we have sets O1 and O2 of observations and O1 ⊆ O2 then we should be able
to deduce at least as much about the SUT from O2 as from O1. This observation
is captured by the notion of a verdict function being monotonic.

Definition 4.7 Verdict function V is monotonic if for all sets O1 and O2 of obser-
vations such that O1 ⊆ O2 we have that V(O1) � V(O2).

It is crucial that a verdict function is sound — the verdict function should not
suggest that elements of the fault domain can be eliminated if they cannot. Further,
we expect verdict functions to be monotonic and valid. The following is the ideal
case.

Definition 4.8 The function V is a precise verdict function if the value returned
satisfies the following properties.

(1) V(O) = correct ⇔ ∅ 6= C(O,Φ) ⊆ conf(S).

(2) V(O) = incorrect ⇔ ∅ 6= C(O,Φ) ⊆ conf(S).

(3) V(O) = uncertain ⇔ C(O,Φ) ∩ conf(S) 6= ∅ ∧ C(O,Φ) ∩ conf(S) 6= ∅.

(4) V(O) = inconsistent ⇔ C(O,Φ) = ∅.

Proposition 4.9 If V is a precise verdict function then V is valid, sound, and
monotonic.

We can combine verdict functions.

Definition 4.10 If V1 and V2 are verdict functions then the verdict function V1]V2

is defined by, given set O of observations we have that (V1 ] V2)(O) is the least
upper bound V1(O) ∨ V2(O) of V1(O) and V2(O).

Here, we have two verdict functions V1(O) and V2(O) that return information
about what we can deduce regarding the SUT given a set of observations. The
verdict function V1]V2 combines this information. We now explore some properties
of V1 ] V2.

Proposition 4.11 If V1 and V2 are sound verdict functions then the verdict func-
tion V1 ] V2 is sound.

Proof. First, assume that C(O,Φ)∩conf(S) 6= ∅. Since V1 and V2 are sound we
must have that V1(O) � correct and V2(O) � correct. Thus, (V1]V2)(O) � correct
as required.

Now, assume that C(O,Φ) ∩ conf(S) 6= ∅. Since V1 and V2 are sound we must
have that V1(O) � incorrect and V2(O) � incorrect. Thus, (V1 ] V2)(O) �
incorrect as required.
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Proposition 4.12 If V1 and V2 are monotonic verdict functions then the verdict
function V1 ] V2 is monotonic.

Proof. We require to prove that whenever we have sets O1 and O2 of obser-
vations and O1 ⊆ O2 then (V1 ] V2)(O1) = V1(O1) ∨ V2(O1) � (V1 ] V2)(O2) =
V1(O2) ∨ V2(O2). Since V1 and V2 are monotonic, V1(O1) � V1(O2) and V2(O1) �
V2(O2) and so every upper bound on both V1(O2) and V2(O2) is also an upper
bound on both V1(O1) and V2(O1). The result thus follows.

Note that if one of V1 and V2 is monotonic but the other is not then the verdict
function V1 ] V2 need not be monotonic. To see this assume that the specification
is some FSM and let V1 be the basic verdict function V∅. If V2 is a verdict function
that returns inconsistent for every set of observations except for one specific set
O′ that contains only one trace (that is an element of L(M)), which is mapped to
uncertain, then V1 ] V2 = V2 and clearly is not monotonic.

Proposition 4.13 If at least one of the verdict functions V1 and V2 is valid then
V1 ] V2 is valid.

Proof. Without loss of generality, assume that V1 is valid. Then whenever
O 6⊆ M(S) we have that incorrect � V1(O). But, given v = V2(O) we know that
v∨ inconsistent = inconsistent and incorrect � v∨ incorrect. Thus, if O 6⊆ M(S)
then we have that (V1 ] V2)(O) is either incorrect or inconsistent as required.

Proposition 4.14 If at least one of the verdict functions V1 and V2 is precise and
the other is sound then V1 ] V2 is precise.

Proof. Without loss of generality, assume that V1 is precise and V2 is sound.
It is now sufficient to consider the four cases.

(1) The value of V1(O) is correct and so ∅ 6= C(O,Φ) ⊆ conf(S). Since V2 is sound,
we have that V2(O) � correct and so (V1 ] V2)(O) is correct as required.

(2) The value of V1(O) is incorrect and so ∅ 6= C(O,Φ) ⊆ conf(S). Since V2 is
sound, we have that V2(O) � incorrect and so (V1 ] V2)(O) is incorrect as
required.

(3) The value of V1(O) is uncertain. Thus, C(O,Φ)∩ conf(S) 6= ∅ and C(O,Φ)∩
conf(S) 6= ∅. Since V2 is sound, we have that V2(O) = uncertain and so
(V1 ] V2)(O) = uncertain as required.

(4) The value of V1(O) is inconsistent and so V1(O) ∨ V2(O) is inconsistent as
required.

The result thus follows.

5. REFINING VERDICT FUNCTIONS

The literature on test hypotheses discusses the idea of refining a test hypothesis
[Bouge et al. 1986] and this corresponds to reducing the size of a fault domain. In
this section we assume that the fault domain Φ is fixed and instead we want to
increase our ability to determine that an SUT is faulty or correct on the basis of a
set of observations.
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Definition 5.1 Verdict function V2 is a refinement of verdict function V1, written
V2 w V1, if for all O we have that V1(O) � V2(O).

This says that the verdict function V2 is at least as effective as V1 in terms of
eliminating elements of Φ. Thus, as long as our verdict functions are sound this
means that V2 is at least as good as V1 for determining properties of the SUT.

The following are clear.

Proposition 5.2 Given sound verdict functions V1 and V2 we have that:

(1 ) V1 w V∅.

(2 ) if V2 is precise then V2 w V1.

(3 ) If V2 w V1 then for every set O we have that V2(O) = (V1 ] V2)(O).

Some important properties are preserved by refining verdict functions.

Proposition 5.3 If V2 w V1 and V1 is valid then V2 is valid.

Proof. Assume that O 6⊆ M(S) and so, since V1 is a valid verdict function we
have that V1(O) is either incorrect or inconsistent. Since V2 w V1 we have that
V1(O) � V2(O) and so V2(O) is either incorrect or inconsistent as required.

Proposition 5.4 If V2 w V1, V1 is precise and V2 is sound then V2 is precise.

Proof. For a set O there are four cases to consider.

(1) The value of V1(O) is correct. Thus, ∅ 6= C(O,Φ) ⊆ conf(S). Since V2 is
sound, we have that V2(O) � correct and so, since V1(O) � V2(O), V2(O) is
correct as required.

(2) The value of V1(O) is incorrect. Thus, ∅ 6= C(O,Φ) ⊆ conf(S). Since V2 is
sound, we have that V2(O) � incorrect and so, since V1(O) � V2(O), V2(O) is
incorrect as required.

(3) The value of V1(O) is uncertain. Thus, C(O,Φ)∩ conf(S) 6= ∅ and C(O,Φ)∩
conf(S) 6= ∅. Since V2 is sound, we have that V2(O) is uncertain as required.

(4) The value of V1(O) is inconsistent. Since V1(O) � V2(O), V2(O) is inconsistent
as required.

The result thus follows.

Proposition 5.5 Given verdict functions V1 and V2 we have that V1 ] V2 w V1

and V1 ] V2 w V2.

Note that if V2 w V1 and V1 is sound then it is not necessarily the case that V2

is sound. To see this consider any sound verdict function V1 and a verdict function
V2 that maps all sets of observations to inconsistent. Clearly V2 w V1 but V2 is
not sound. Naturally, it is also possible to refine a monotonic verdict function to
get a verdict function that is not monotonic.
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6. REFINING FAULT DOMAINS

The work on test hypotheses has considered the notion of refining the hypothesis
being used [Bernot et al. 91] and we investigate a similar notion here. A fault
domain Φ2 is a refinement of fault domain Φ1 if Φ2 ⊆ Φ1. Refining a fault domain
is equivalent to making stronger statements, or assumptions, about the SUT. For
example, for an FSM M the fault domain Φm2

M
refines Φm1

M
if m2 ≤ m1.

It is natural to ask whether we can reuse a verdict function for Φ1 with Φ2.

Proposition 6.1 If fault domain Φ2 is a refinement of Φ1 and V is a sound verdict
function with respect to Φ1 then V is a sound verdict function with respect to Φ2.

Proof. There are two cases to consider.

(1) ∅ 6= C(O,Φ2) ∩ conf(S). Since Φ2 ⊆ Φ1, ∅ 6= C(O,Φ1) ∩ conf(S) and so
V(O) � correct as required.

(2) ∅ 6= C(O,Φ2) ∩ conf(S). Since Φ2 ⊆ Φ1, ∅ 6= C(O,Φ1) ∩ conf(S) and so
V(O) � incorrect as required.

The result thus follows.

So, we can reuse a sound verdict function for Φ1 with Φ2. However, the following
shows that if V is precise for Φ1 it need not be precise for Φ2.

Proposition 6.2 There exists fault domains Φ1 and Φ2 with Φ2 ⊆ Φ1 and a verdict
function V that is precise for Φ1 but is not precise for Φ2

Proof. To see this, consider the FSM M0, fault domains Φ1 = Φ5
M0

, Φ2 = Φ4
M0

and a precise verdict function V for Φ1. Now consider the set of traces T =
{〈b/0, b/1, b/0〉}. It is straightforward to show that V(T ) should be uncertain since
there are conforming and faulty elements of Φ5

M0
that allow this trace. However,

we have seen that for fault domain Φ4
M0

the verdict should be incorrect and so V
is not precise for Φ4

M0
as required.

7. VERDICTS IN TESTING FROM AN FSM

In Section 3 we saw an example of an FSM M0 and fault domain Φ4
M0

where we had
a trace 〈b/1, b/0, b/1〉 that is allowed by the specification M0 but by no conforming
implementation from Φ4

M0
. In this section we explore verdict functions for testing

from an FSM M with fault domain Φm

M
.

Given FSM M ′ and a finite set T of finite traces, we can decide whether T ⊆
L(M ′). Thus, since the fault domain Φ is finite, we can determine which elements
of Φ are killed by a given set T of traces and so determine the verdict that should
be returned. As a result, a precise computable verdict function can be defined.
However, the size of the fault domain will usually make computing the verdict in
this way infeasible.

Our fault domain limits the number of states of any implementation and insists
that the SUT is deterministic. Let us suppose that mP (T ) denotes the minimum
number of states that a DFSM N that conforms to M can have if T ⊆ L(N) and
that mF (T ) denotes the minimum number of states that a DFSM N ′ that does not
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conform to M can have if T ⊆ L(N ′). Thus, if we know that the SUT behaves like
an element of Φm

M
we get the following situations.

(1) If we have that the mP (T ) > m and mF (T ) ≤ m then on the basis of T
and Φm

M
we can conclude that the SUT must be faulty and return the verdict

incorrect.

(2) If we have the mP (T ) ≤ m and mF (T ) > m then on the basis of T and Φm

M

we can conclude that the SUT must be correct and return the verdict correct.

(3) If we have the mP (T ) ≤ m and mF (T ) ≤ m then the SUT could be correct or
faulty and so we return the verdict uncertain.

(4) If we have the mP (T ) > m and mF (T ) > m then the SUT does not behave like
an element of the fault domain Φm

M
and so we return the verdict inconsistent.

We can reduce the problem of defining a verdict function to that of computing
the values of mP and mF .

Definition 7.1 Let us suppose that lbP is a function that takes the FSM M and a
set T of traces and returns the minimum number of states a DFSM M ′ must have
in order to both conform to M and have that T ⊆ L(M ′). Further, let us suppose
that lbF is a function that takes the FSM M and a set T of traces and returns the
minimum number of states a DFSM M ′ must have in order to both fail to conform
to M and have that T ⊆ L(M ′). Then the verdict function V lbP

lbF
is defined by:

V lbP

lbF
(T ) =















incorrect if lbF (M, T ) ≤ m ∧ lbP (M, T ) > m
correct if lbF (M, T ) > m ∧ lbP (M, T ) ≤ m
uncertain if lbF (M, T ) ≤ m ∧ lbP (M, T ) ≤ m
inconsistent otherwise

Proposition 7.2 The verdict function V lbP

lbF
is precise.

Proof. From Definitions 4.8 and 7.1, V lbP

lbF
is precise.

Thus, if we can define functions lbP and lpF then we can use the corresponding
verdict function. Unfortunately, the problem of defining lbP (M, T ) is NP-hard.

Proposition 7.3 The problem of computing lbP (M, T ) is NP-hard.

Proof. Consider the special case in which M is the chaos machine MC that has
one state s0 and for every input x ∈ X and output y ∈ Y there is a transition from
s0 to s0 with input x and output y. Thus, every DFSM with input alphabet X and
output alphabet Y conforms to M . If we can compute lbP (MC , T ) in polynomial
time then we can also find the number of states of a smallest DFSM M ′ such that
T ⊆ L(M ′) in polynomial time. However, this problem is known to be NP-hard
[Gold 1978] and so the result follows.

While a verdict function could be based on lbF and lbP , it seems likely that this
approach will not scale. This suggests that we should look for additional verdict
functions that can be computed efficiently. We might base an alternative verdict
function on functions lb′

F
and lb′

P
that approximate lbF and lbP respectively. Let
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us suppose that for some approximation lb′
P

we have at least one case (M, T ) in
which lb′

P
(M, T ) > lbP (M, T ). Using this might lead to us incorrectly eliminating

elements of Φ and in doing so incorrectly suggest that an SUT is faulty; such a
verdict function is not sound and so must be rejected. Thus, any approximation for
lbP should be an under approximation: the value returned is always a lower bound
on the number of states of a conforming SUT but it might not be the greatest lower
bound. Similarly, any approximation to lbF could be an under approximation
but should not be an approximation that is above lbF since it must not eliminate
elements of Φ that are consistent with T .

Proposition 7.4 Let us suppose that functions lb′
F

and lb′
P

have the property that
for all M , T we have that lbP (M, T ) ≥ lb′

P
(M, T ) and lbF (M, T ) ≥ lb′

F
(M, T ).

Then the verdict function V
lb

′

P

lb′
F

is sound and we have that V lbP

lbF
w V

lb
′

P

lb′
F

.

Proof. This follows from Definitions 4.6 and 5.1.

There is thus the challenge to produce good approximation functions lb′
F

and
lb′

P
. Note that approaches to state counting can be seen as producing a function

lb′
F

that takes a test suite and returns a lower bound that holds for all possible
implementations that conform to the specification on that test suite (see for example
[Yevtushenko and Petrenko 1990; Petrenko et al. 1996; Petrenko and Yevtushenko
2005]). Adaptive state counting extends this by using the observed traces and so
is based on one possible approximation lb′

F
[Hierons 2004]. However, there appears

to be no work on producing an approximation lb′
P

.

8. CONCLUSIONS

This paper has explored the concept of test verdicts when there is a fault domain or
test hypotheses and has identified the need for new test verdicts in this situation.
In addition, we have shown that it is possible to deduce properties of the system
under test on the basis of a set O of observed behaviours in situations in which it is
not possible to deduce such properties from a single element of O. This has led us
to propose the use of verdict functions that take a set of observations and return a
verdict.

This paper has identified some important properties that verdict functions should
have and some desirable properties of verdict functions. For example, it is vital that
a verdict function is sound: it cannot return a verdict that is not a consequence of
the set of observed behaviours. Further, we expect verdict functions to be mono-
tonic and ideally they are precise: whenever we can deduce a properties of the
system under test that corresponds to a verdict then this verdict is returned. We
have also defined what it means to refine a verdict function or a fault domain and
have shown how verdict functions can be combined.

Verdict functions have been explored in the context of testing from a non-
deterministic finite state machine. It transpires that it is possible to define a
computable precise verdict function for the standard fault domain, which places
an upper bound on the number of states of the system under test. Unfortunately,
however, the problem of computing this verdict function is NP-hard and thus there
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remains the problem of finding good approximations that can be computed effi-
ciently.
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