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zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat)

vorgelegt von
Cornelia Undine Hille

aus Homburg
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Abstract:

The functional renormalization group (fRG) has a long history in the qualitative explo-
ration of correlated electron systems in condensed matter. In this work, the fRG method
is improved by the implementation of an efficient parametrization of the two-particle ver-
tex and of the multiloop extension, circumventing the standard hierarchy truncation in
fRG and recovering the parquet approximation. With these developments, the response
functions remain finite at all studied temperatures indicating that, in agreement with the
Mermin-Wagner theorem, there is no spontaneous symmetry breaking at finite tempera-
tures. Furthermore, a detailed analysis of the self-energy and susceptibilities in the 2D
Hubbard model is performed showing that it is now possible to obtain quantitatively re-
liable results. However, for the exact comparison between fRG and parquet in the case of
a Truncated Unity momentum parametrization of the vertex, a new flow equation for the
self-energy has to be introduced. Therefore, this work focuses on the self-energy which
describes the effect of the interaction on the single-particle propagation. It is analysed on a
diagrammatic level, how the conventional flow equation generates approximations when a
finite number of form-factors in the Truncated Unity momentum parametrization is used.
The new flow scheme, inspired by the exact Schwinger-Dyson relation, resolves this issue
leading to excellent agreement between post-processing and flowing fRG results as well as
between the fRG and the self-consistent parquet approach. Also, the comparison of the
fRG results to numerically exact determinant Quantum Monte Carlo data shows a very
good agreement up to moderate interaction strengths. Furthermore, it is shown that the
Schwinger-Dyson inspired flow scheme is able to open a pseudogap in the 2D Hubbard
model at half-filling, in contrast to the conventional flow. This property is analysed using
diagrammatic arguments. In addition, long-range antiferromagnetic fluctuations are found
to be responsible for this prominent feature observed in high-Tc superconductors.

The improvements on fRG presented in this work represent the basis for future qual-
itative investigations and quantitative calculations on the 2D Hubbard model as well as
other interesting model systems.
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Zusammenfassung:

Die funktionale Renormierungsgruppe (fRG) wird in der kondensierten Materie schon
seit langem für qualitative Untersuchungen korrelierter Elektronensysteme angewandt. In
dieser Arbeit wird diese Methode durch die Implementierung einer effizienten Parame-
trisierung der Zwei-Teilchen-Wechselwirkung und der multiloop Erweiterung, welche die
übliche Hierarchietrunkierung in fRG umgeht und die Parquet Näherung erfüllt, verbes-
sert. Diese Weiterentwicklung führt zu endlichen Suszeptibilitäten für alle untersuchten
Temperaturen, sodass, im Einklang mit dem Mermin-Wagner Theorem, keine spontane
Symmetriebrechung bei endlichen Temperaturen auftritt. Außerdem wird eine detaillier-
te Analyse der Selbstenergie und Suszeptibilitäten im 2D Hubbard Modell durchgeführt.
Diese zeigt, dass zuverlässige quantitative Ergebnisse berechnet werden können. Aller-
dings muss für den exakten Vergleich zwischen fRG und Parquet eine neue Selbstenergie-
Flussgleichung eingeführt werden, falls die Impulsabhängigkeit der effektiven Wechselwir-
kung durch Truncated Unity parametrisiert wurde. Um dies zu erklären, konzentriert sich
diese Arbeit auf die Selbstenergie, welche Wechselwirkungseffekte auf dem Einteilchenpro-
pagator beschreibt. Durch diagrammatische Argumente wird gezeigt, wie die herkömmliche
Flussgleichung bei endlicher Anzahl von Formfaktoren in der Truncated Unity Impulspara-
metrisierung genäherte Diagramme erzeugt. Die exakte Schwinger-Dyson Gleichung dient
als Vorbild für die neue Flussgleichung, welche dieses Problem behebt und zu einer sehr gu-
ten Übereinstimmung zwischen den direkten und nachträglich berechneten Ergebnissen des
fRG Flusses als auch zwischen der fRG und der selbstkonsistenten Parquet Methode führt.
Der Vergleich zwischen fRG Ergebnissen und der numerisch exakten determinant Quan-
tum Monte Carlo Methode zeigt ferner eine sehr gute Übereinstimmung bis zu mittleren
Wechselwirkungsstärken. Des Weiteren wird gezeigt, dass der Schwinger-Dyson inspirier-
te Fluss eine impulsabhängige Spektrallücke (Pseudogap) im halbgefüllten 2D Hubbard
Modell hervorrufen kann, während diese in der herkömmlichen Flussgleichung nicht beob-
achtet wird. Die diagrammatische Analyse des flussabhängigen Auftretens zeigt außerdem,
dass auch in fRG der Grund für diese bedeutende in Hochtemperatur-Supraleitern auftre-
tende Eigenschaft in langreichweitigen antiferromagnetischen Fluktuationen liegt.

Die hier eingeführten Fortschritte der fRG legen den Grundstein für weiterführende
qualitative Analysen und quantitative Rechnungen im 2D Hubbard Model als auch in
weiteren allgemeineren Systemen.
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1. Introduction

Interacting Fermi systems are a wide and intriguing field within condensed matter physics.
It comprises the physics of electrons in a solid which, in addition to an external poten-
tial created by the ions, feel a repulsive Coulomb interaction among each other. In these
complex many-body systems, unconventional phenomena arise. Among the most fasci-
nating is the high Tc-superconductivity discovered in 1986 [6]. In cuprates, a hole doping
dependent superconducting dome arises with transition temperatures up to Tc = 164K.
At half-filling antiferromagnetic order prevails and in between a pseudogap phase can be
found. The latter indicates a system in which a gap only occurs on a part of the Fermi
surface. Other systems for which it is crucial to understand electronic correlations are e.g.
twisted bilayer graphene, pnictides, iron arsenides, heavy fermions and other transition
metal oxides.

Already without the inter-electron interaction, condensed matter systems represent
quantum many-body problems. In traditional ab-initio theory, numerical solutions are
obtained using methods like density functional theory [63]. However, these band-structure
calculations are not sufficient if inter-electron interactions induce strong electronic corre-
lations. In this case, a solution of the full ab-initio many-body problem would become an
overwhelming numerical task. Fortunately, the physical properties of a system are mainly
defined by the electrons near the Fermi energy. Therefore, the problem can be downfolded
to a few-orbital or few-bands system describing accurately the physics near the Fermi
surface while averaging the effect of the degrees of freedom far away. In order to describe
high-Tc superconductors, the 2D Hubbard model [50] is often examined. Also this work
focuses on this model, which describes rather well the arising physics although for realistic
and quantitative calculations more complex models are proposed [33]. In the simplest
form of the 2D Hubbard model, electrons carrying either the spin up or down can occupy
discrete points of a 2D lattice. Their kinetic freedom is characterized by the amplitude of
the hopping process between lattice sites with the material dependence mainly encoded
in the relative strength between the next-nearest neighbor and the nearest neighbor hop-
ping [20]. Electrons on the same lattice site interact locally and in extended versions of
the 2D Hubbard model longer range interactions are added. In order to determine the
interaction values from the band-structure calculations, the constrained random phase
approximation (cRPA) [5] is commonly used. This weak coupling method sums up all
contributions from the particle-hole excitation channel. For high energy excitations, this
approximation is certainly appropriate. However, a constrained variant of the functional
renormalization group (cfRG) showed that for downfolding bands near the Fermi surface,
the interplay between the channels is very important [45]. In condensed matter physics,
the functional renormalization group (fRG) is a weak coupling method which is unbiased
regarding the included excitation channels. It can be intuitively visualized using diagrams
and by artificial suppression of the channel feedback the random phase approximation
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can be recovered. More information about this method is provided in the following and
particularly in Chapter 2. While in this work the fRG is only applied to the 2D Hubbard
model, it should be kept in mind that this method can also be adapted to obtain the
effective interaction parameters for the low energy model itself.

In order to solve the latter, several many-body methods were proposed. It can be at-
tempted to obtain exact solutions by a brute-force exact diagonalization (ED) [13], which
however is only possible for small system sizes. The density-matrix renormalization group
(DMRG) using matrix-product states (MPS) [133, 105] which truncates the exponentially-
large Hilbert space is particularly strong in the treatment for one-dimensional systems
while the application to 2D systems is more difficult and less accurate [108]. Also quantum
Monte Carlo (QMC) methods [143], like the determinant quantum Monte Carlo (dQMC)
[11, 99] in the here included benchmark, yield exact solutions but are only applicable in
a restricted parameter range as they suffer from the so-called sign-problem. When the
sign approaches zero, it becomes increasingly difficult to reach statistically satisfying re-
sults. These problems cannot be solved in general and therefore it is essential to consider
approximate methods. Being correct in specific limits, their validity can be, in the best
case, extended to a larger parameter range. These approaches can be roughly divided into
strong-coupling and weak-coupling methods. In order to investigate strong correlations,
the dynamical mean-field theory (DMFT) is probably one of the most popular tools [83,
22, 23]. While it is exact in the limit of infinite dimensions, it takes into account the local
excitations when applied to a final dimensional system. In order to extend the method
to non-local excitations, its cluster extensions like the dynamical cluster approximation
(DCA) [37], cellular dynamical mean-field theory (CDMFT) [65, 62] and variational cluster
approach (VCA) [88] were introduced. Also diagrammatic extension like the dynamical
vertex approximation (DΓA) [114, 36] and the functional renormalization group exten-
sion DMF2RG [112] allow one to include a part of the non-local excitation on top of
the single-site DMFT solution. On the weak-coupling side, the before mentioned random
phase approximation is an improvement over straightforward perturbation theory. For
the particle-hole channel, all contributions up to infinite order can be summed up. Yet,
when electronic correlations are present, this single-channel picture is no longer sufficient.
In these cases, channel coupling is provided by the fluctuation exchange approximation
(FLEX) [10], the two-particle self-consistent approach (TPSC) [123], self-consistent par-
quet approach (PA) [8] and last but not least the fRG [82].

In this work, the fRG is pushed to new limits in terms of accuracy and applicability.
In this process, it benefits from various conceptual and technical developments from many
different sides which are presented in the following.

The fRG belongs to the renormalization group (RG) methods, which have found ap-
plication in many fields of theoretical physics. Their ubiquity ranges from the study of
divergences in quantum field theories [128], critical phenomena [134, 127] and quantum
impurity problems [4, 135] to current attempts to elucidate deep learning algorithms by
physics [80]. The common aspect of these questions is to relate the quantities describing
the physics of a system at a specific scale to those at another scale through differential
equations. These quantities are often coupling constants although no stringent restriction
exists. Their evolution with the scale is referred to as “flow” in the following. In fRG,
the flowing quantities are functions of variables. More specifically, for most condensed
matter problems, they represent interaction vertices or response functions. Although in
practice only interactions of at most two particles are considered, the describing equations
are coupled to others within an infinite hierarchy of coupled differential equations. By
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the truncation of this hierarchy, the fRG becomes a weak-coupling method. Differently
to perturbation theory, it is however not restricted to a certain order in the interaction
similar to the random phase approximation. In contrast to the latter, it takes into account
all excitation channels on equal footing and, most importantly for correlated electron sys-
tems, the inter-channel coupling. It is shown in this work that the multiloop extension of
fRG is capable of summing up all contributions from the parquet approximation. While
this is in principle also possible with the self-consistent PA, the fRG has the advantage
that unphysical infrared divergences can be avoided by an appropriate choice of the flow
regulator. Furthermore, while the PA yields reliable physical information only when full
convergence is reached, the division into relevant, marginal and irrelevant couplings [82]
in fRG allows to obtain qualitative results even if quantitative convergence cannot be
obtained for conceptual or numerical reasons.

The applicability, accuracy and versatility of fRG has been already studied in zero-
dimensional [54, 61] and one-dimensional systems [2, 3]. However, it is particularly in-
teresting to apply the fRG to the 2D-Hubbard model because of its ability to cope with
inter-channel coupling. This can lead to novel insights in the physics of high-Tc supercon-
ductors [139, 41, 31]. Therefore, besides its physical importance, it can also serve as a test
case for new methods or implementations. While no exact solution of this model is known
for all parameters, results from many methods exists. Last but not least, the fRG is not
limited neither to this certain geometry nor to the single-band case. Several applications
to the honeycomb lattice, describing single- or bilayer graphene, were performed [44, 59,
87]. Also the Heisenberg model on the anisotropic triangular lattice was treated [90]. The
case of the multiband Hubbard model was considered for a study of the constrained fRG
[46]. Unfortunately, with increasing complexity of the systems the computational require-
ments grow rapidly. On the one hand, reasonable simplifications are often applied in order
to tackle new and challenging problems. On the other hand, technical considerations in
the direction of high performance computing can push the applicability to more sensitive
or complex systems [91, 76]. Although the differential equations in fRG are strongly cou-
pled, high-performance calculations could be carried out using hybrid parallelization [76].
Nevertheless computational optimization can only tap its full potential if improvements
on the theoretical and methodological side are equally imposed.

It is therefore crucial to improve and optimize the method itself while studying common
systems, like the single-band 2D-Hubbard model in the case of this work. Above all in
higher dimensional systems, the bad scaling of the flowing functions with the frequency
and momentum parametrization demands for strong simplifications or particularly efficient
treatment of these dependencies. In the following, some common approaches for the latter
are presented. In the momentum sector, several approaches were pursued among which
the N -patch technique [142, 141, 30, 116] and the Truncated Unity fRG (TUfRG) [76],
inspired strongly by the advantages of a channel decomposition [53] and singular-mode
fRG [125]. Using the latter, the two of the three independent momentum dependencies
are expanded on form factors, allowing for a very fine remaining momentum resolution
while keeping the numeric effort controllable. Much information regarding the principal
ordering tendencies could already be obtained with a good treatment of the momenta
while neglecting frequency and the self-energy describing single-particle properties [141,
140, 31, 41, 82].

Only later, the frequency dependence was added adopting different approaches to deal
with the discrete Matsubara frequency grid. First, a scheme rather similar to the N -patch
technique was used [117]. Also a comparison of this straightforward discretization with
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respect to (w.r.t.) a parametrization with Lorentz functions was performed [52]. Finally,
the high-frequency asymptotics are used in Refs. [122, 89], taking advantage of detailed
studies of the frequency dependence of the vertex [129, 75].

Neglecting the self-energy feedback, the numerical effort could be reduced in many
early works. Nevertheless, there are two main reasons why to include it. On the one
hand, the self-energy allows to access spectral properties. In the framework of the 2D-
Hubbard model, it is particularly interesting as the rather particular pseudogap phase
can be investigated through the excitation spectrum. The fRG method allows to study
this effect from the weak-coupling perspective [43, 47, 58, 92]. On the other hand, the
Fermi surface shift induced by the self-energy is relevant in the RG sense. While in some
cases the feedback of the self-energy even corrected the nature of the leading instability
[122], it is certainly important for quantitative predictions. The next important step in
the method development is the introduction of the multiloop extension for fRG [67, 69].
With this approach, the approximation introduced through the truncation of the hierarchy
of flow equations can be lifted up to the so-called parquet one. Instead of working with
higher order vertices, additional equations to the flow of the self-energy and two-particle
vertices are introduced. Due to the division into contributions from consecutive loop orders
which decrease in weight in the weak-coupling regime, the loop order itself is the natural
parameter to study the convergence. Furthermore, the computational effort only grows
linearly in loop order. The theory predicts, that the fRG flow with multiloop extension
leads to the same results as the self-consistent PA [68].

The implementation developed and used throughout this work incorporates momentum
and frequency dependent vertices and self-energy. This full treatment was previously only
applied in Ref. [117] and [122]. More specifically, the TUfRG for the momentum treatment
was combined with the high-frequency asymptotics similar to Ref. [122]. In contrast to
the latter, the form-factor truncation here is adaptable. In addition, the flow of the
susceptibilities and fermion-boson vertices is explicitly implemented such that it can be
compared to the results from the post-processing procedure. Most importantly, this work
presents the first and up to date only implementation of the multiloop extension up to
arbitrary loop and self-energy iteration order. Furthermore, with its possibility to choose
between the conventional and a newly-created flow equation of the self-energy, spectral
properties can be examined even better.

The first goal of this work is to prove that the theoretically predicted equivalence be-
tween PA and fRG holds if the multiloop extension is taken into account. A particular
focus lies on the self-energy flow. It will be explained, how its conventional formulation
collides with the parametrization of the vertex. This will be resolved through the intro-
duction of an alternative flow equation of the self-energy. This could only be achieved on
the basis of an extensive study of the fRG implementation itself. Therefore, this work first
focuses on how the numerical accuracy of the fRG can be improved. This includes on the
one hand the parametrization of the vertex and on the other hand the implementation of
the multiloop extension. Due to an unbiased implementation, it is possible to study the
effect of different approximations and the corrections due to the multiloop extension. An
fRG internal comparison between results coming from different loop truncations already
shows a reduction of the pseudo-critical temperature Tpc hinting to an eventual satisfac-
tion of the Mermin-Wagner theorem stated in Ref. [81]. It turns out that the multiloop
fRG results do not satisfy the exact many-body relations employed also in the PA if the
conventional self-energy flow is used. A detailed analytical analysis is given in order to
explain this difference and show how the momentum parametrization for the vertex effects
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the evaluation of the self-energy flow. Only with the new flow equation for the self-energy,
the many-body relations for the self-energy are satisfied. However, it improves not only
quantitative numerical results but can also alter qualitative predictions as the subsequent
study of the pseudogap opening in the half-filled 2D-Hubbard model shows. While this
feature is one of the key properties of interest in this model, there are contradicting ob-
servations within the fRG community [139, 47, 58, 92, 119]. Also the present study finds
qualitative difference between the different flow schemes. The objective in this part of the
work was to confirm the stability of this feature with temperature, vertex parametrization
and multiloop extension and to find an explanation for the flow scheme dependence. A
detailed analysis of the involved momentum truncation shows that the exact scheme of
parametrization and implementation of self-energy flow equations is important. This not
only explains the apparently inconsistent results but also urges to use the new self-energy
flow equation whenever a good description of spectral properties in TUfRG is needed.

This work lays the foundation for many applications. The improved accuracy allows
one to search for d-wave pairing instabilities in high-Tc superconductors and in particular
with the new self-energy flow scheme, the spectral properties can be studied. Its unbiased
implementation allows to calculate all susceptibilities and vertices needed for comparison
and the transparent structure of the equations makes it possible to study the feedback
effect of the individual channels. Exploiting this modularity, the origin and effect of
interesting features can be studied, in contrast to many exact methods. An application to
other parameters, lattice geometries, more general bare interactions and more complicated
systems can be easily realized.

The work is structured as follows: In Chapter 2, the theoretical background for the
application of the fRG method is presented. This includes an introduction to the objects
under consideration in Section 2.1, the explicit one loop (1`) and multiloop flow equations
in Section 2.2 and a discussion of the different flow schemes in Section 2.3. Many compu-
tational aspects like a study of the exact form of the flow regulators, the exact definition
of the vertex parametrization and the evaluation of the fermionic excitations are collected
in Section 2.4. A detailed discussion on the flow equation of the self-energy is given in
Chapter 3. First in Section 3.1, it is argued why the self-energy result of the conventional
flow equation does not satisfying the Schwinger-Dyson equation in TUfRG and then in
Section 3.2, the improved flow equation for the self-energy is introduced. With the pre-
sented theoretical and technical know-how at hand, this improved multiloop fRG scheme
is then applied to the 2D-Hubbard model in Chapter 4. After the definition of the system
in Section 4.1, first an internal consistency check is performed in Section 4.2, studying
explicitly the convergence w.r.t. the vertex parameters, higher loop orders and the self-
energy iteration. The comparison of different approximations highlight the importance
of the frequency dependence and the self-energy. Next, an external benchmark compares
fRG to the self-consistent PA and dQMC in Section 4.3. The excellent agreement at small
and reasonable consistency at larger interaction strengths indicates that the presented
fRG implementation is suited for quantitative examinations. For same model, the focus is
redirected to the potential opening of a (pseudo-)gap in Chapter 5. After an introduction
on the observation of this feature with different methods Section 5.1, the results obtained
in this fRG scheme are presented in Section 5.2, showing that the introduction of the new
self-energy flow equation also has qualitative impact. In particular, it allows for the open-
ing of a pseudogap in contrast to the conventional one. Finally a conclusion and outlook
is given in Chapter 6.

This work is based on three publications: In the first [110], I share co-authorship with
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A. Tagliavini. From this publication with the title “Multiloop functional renormalization
group for the two-dimensional Hubbard model: Loop convergence of the response func-
tions” published in SciPost Physics, 6, 009 (2019), I report here the 1`-flow equations in
Section 2.2.1, the graphical representation of the 1`-flow scheme in Fig. 2.3, Section 2.4.3
describing the calculation of the fermionic excitations, Section 4.2.1 studying the conver-
gence with ameliorating vertex parametrization, Section 4.2.2 about the effect of different
approximations, Section 4.2.3 and its discussion. The second publication [38] with the title
“Quantitative functional renormalization-group description of the two-dimensional Hub-
bard model” currently available under the ArXiv -identifier 2002.02733 was submitted to
Physical Review Research. It provided the material for part of the discussion in Section 3.1,
the new self-energy flow scheme presented in Section 3.2, Figs. 4.6, 4.7, 4.9 and 4.10, their
discussion, the introduction of the benchmark methods in Section 4.3.1 and benchmark
itself in Section 4.3. The last publication [39] with the title ”Pseudogap opening in the
two-dimensional Hubbard model: a functional renormalization group analysis”, currently
available under the ArXiv -identifier 2003.01447 and equally submitted to Physical Review
Research is the source for Figs. 3.2 and 3.3, Chapter 5 (except for Fig. 5.2, the right panel
in Fig. 5.8, Fig. 5.9 and the right panel in Fig. 5.12) and Appendix B. Formulas, text, plots
and pictures were adapted for different notations or for space distribution. My personal
contributions to the publications are detailed in Appendix C.
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2. The functional renormalization
group

In this chapter, the fRG equations are presented and discussed. Their derivation is not
reported here as it can be found in several works [96, 64, 7, 82]. Being a weak-coupling
method the fRG is commonly used in the study of instabilities. It consists of an infi-
nite hierarchy of coupled differential equations derived from the Wetterich equation [132].
Starting from a system to which the solution is known, the N -particle vertices (see Sec-
tion 2.1) describing the system of interest are obtained. The evolution between these
systems is described with a scale parameter Λ (see Section 2.3). The change of the func-
tions representing the N -particle vertices is calculated through the flow equations (see
Section 2.2). The functions depend on various variables including e.g. the momentum k,
frequencies ν and and other quantum numbers like spin σ and orbitals o. If possible, they
are in this work collected using a single fermionic (bosonic) dependence k (q). An efficient
description and implementation of these functions (see Section 2.4) is needed in order to
solve the differential equations with reasonable computational effort.

2.1 N-particle vertices

This work deals with a subgroup of N -particle vertices which are represented through the
flowing functions. The particles here might be either fermions or bosons. In particular, in
the purely fermionic sector, the one-particle vertex, or self-energy Σ(k) and the two-particle
vertex V (k1, k2, k3) are considered. From the bosonic vertices, only the susceptibilities
χη(q) are studied where η = M/D/SC indicates the magnetic, density and superconducting
channel, respectively. Finally, the fermion-boson vertices γ3,η(q, k) from the mixed section
are used here. These objects are shortly introduced in the following.

The self-energy Σ(k) describes the correction of the free one-particle propagation G0(k)
due to inter-particle interaction and relates the latter to the full one-particle propagator
G(k) by

Σσ1 σ2(k) = G−1
0,σ1 σ2

(k)−G−1
σ1 σ2

(k) . (2.1)

Using SU(2) symmetry, we separate the spin-dependence and write the self-energy in the
spinless form

Σ(k) = δσ1,σ2Σσ1 σ2(k) . (2.2)

The two-particle vertex V (k1, k2, k3, k4) describes the effective interaction between two
electrons. For momentum and frequency conserving systems, the forth dependency k4 =

7



Figure 2.1: Classification of diagrams according to the parquet decomposition. The
squares represent two-particle vertices, the black lines Green’s functions and the gray
dotted lines indicates the reducibility of the diagram. The right diagram is an example of
a not two-particle reducible vertex.

k1 + k3 − k2 is fixed. In SU(2), the spin-dependence can be eliminated through

V (k1, k2, k3, k4)σ1,σ2,σ3,σ4 =− δσ1,σ4δσ2,σ3V (k1, k4, k3)

+ δσ1,σ2δσ3,σ4V (k1, k2, k3) . (2.3)

A crucial part for the numerical treatment of any method dealing directly with the two-
particle vertex is the parquet decomposition [55]

V (k1, k2, k3) = V2PIR(k1, k2, k3) + Φph(k2 − k1, k1, k4)

+ Φph(k3 − k2, k1, k2) + Φpp(k1 + k3, k1, k2) (2.4)

and a subsequent efficient parameterization of the frequency and momentum dependency.
For the two-particle irreducible (2PIR) part of the vertex, the parquet approximation
V2PIR(k1, k2, k3) ≈ U is applied.

In the parquet decomposition, a diagram is considered two-particle reducible in a
certain channel if cutting two single-particle propagators yields two separate parts. The
association to the channel depends on which propagators are cut and is illustrated in
Fig. 2.1. The power of fRG is that it can sum up the particle-hole (ph), crossed particle-
hole (ph) and particle-particle (pp) diagrams in an unbiased way. Diagrams which are not
two-particle reducible, like the diagram on the right of Fig. 2.1, are not included in this
description leading to a deviation of O(U4) from the exact solution.

For the parametrization, we choose a combination of the TUfRG approach for the
momentum dependence [76] and high-frequency asymptotics [129] for the frequency de-
pendence. For a detailed description thereof, see Section 2.4.2.

The susceptibilities χη(q) describe the response of a system to external perturbation.
If a system undergoes a transition to an order state, the corresponding response function
diverges. For a more straightforward interpretation of a divergence, the response functions
are reported directly in the physical channels η = M/D/SC. For a translation between
diagrammatic and physical channels, see appendix A.

In Matsubara frequency space, the susceptibilities in the physical channels are defined
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via Fourier transform w.r.t. imaginary time τ ,

χη(q, iωl) =

∫ β

0
dτeiωlτχη(q, τ) , (2.5)

where η = M/D/SC indicates the magnetic, density and superconducting (s- and d-wave)
channel, respectively.

In the half-filled Hubbard model the dominant susceptibility is the antiferromagnetic
(AF) one, defined by χAF = χM(q = (π, π), iω = 0) through the magnetic (or spin)
susceptibility

χM(q, τ) = 〈Tτ ŝz(q, τ)ŝz(q, 0)〉 − 〈ŝz(q, τ)〉〈ŝz(q, 0)〉 , (2.6)

where the spin operator in z-direction is ŝz(q, τ) = (n̂↑(q, τ)− n̂↓(q, τ)) /2 and the spin-

resolved density operator n̂↑(q, τ) =
∑

k ĉ
†
↑(k + q, τ) ĉ↑(k, τ). The sum over momenta

includes the normalization factor 1/VBZ.

The density (or charge) response function is defined by

χD(q, τ) =
1

4
(〈Tτ n̂(q, τ)n̂(q, 0)〉 − 〈n̂(q, τ)〉〈n̂(q, 0)〉) , (2.7)

with n̂(q, τ) = n̂↑(q, τ) + n̂↓(q, τ). In the results the charge compressibility κ = 4χD(q =
(0, 0), iω = 0) and the charge density wave susceptibility χCDW = χD(q = (π, π), iω = 0)
are shown.

For the n = s, d pairing susceptibility

χSC,n(q, τ) =
1

2

〈
Tτ

(
∆̂n(q, τ)∆̂†n(q, 0)

)〉
, (2.8)

both the local s-wave ∆̂s(q, τ) =
∑

k ĉ
†
↑(q−k, τ)ĉ†↓(k, τ) and the nearest-neighbor d-wave

pairing ∆̂d(q, τ) =
∑

k (cos(kx)− cos(ky)) ĉ
†
↑(q−k, τ)ĉ†↓(k, τ) are considered. Of particular

interest are the q = (0, 0) and iωl = 0 components, referred to as χSC,s and χSC,d.

The fermion-boson vertex γ3,η(q, k) connects the fermionic and bosonic sector. It is
defined analogously to the susceptibilities with the difference that the left one of the density
(or pairing) operators are replaced by

[
ĉ†↑(k + q, τ1) ĉ↑(k, τ2) ± ĉ†↓(k + q, τ1) ĉ↓(k, τ2)

]
(or[

ĉ†↑(q− k, τ1)ĉ†↓(k, τ2)
]

/
[

(cos(kx)− cos(ky)) ĉ
†
↑(q− k, τ1)ĉ†↓(k, τ2)

]
).

The susceptibilities and fermion-boson vertices in this work are calculated in two dif-
ferent ways which are briefly introduced in this work and discussed in more detail in
Ref. [109]. On the one hand, one can calculate them directly during the flow. In Sec-
tions 2.2.1 and 2.2.2, the (multiloop) flow equations are reported. On the other hand,
they can be calculated subsequently using the two-particle vertex and self-energy from the
end of the flow using Eq. (2.38).

2.2 Truncation of the hierarchy of flow equations and be-
yond

In the infinite hierarchy of flow equations derived from the Wetterich equation [132],
each one describes the flow of a certain N -particle vertex. The right hand side (r.h.s.)
always depends on the vertices up to the same order and the next higher order vertex.
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This makes it impossible to solve all equations at once. Using weak-coupling and power-
counting arguments [82], the hierarchy can be truncated in order to obtain a finite set
of coupled differential equations. The most common approximation is the one-loop (1`)
fRG specified in Section 2.2.1. The multiloop extension presented in Section 2.2.2 allows
to go beyond and includes also the quite popular Katanin substitution and two-loop (2`)
approach, which are treated within this section.

2.2.1 1`-fRG

The self-energy and the two-particle vertex are described by the first two differential
equations in the infinite hierarchy of the fRG. They depend on each other and on higher
order vertices. One can argue that the higher order vertices contribute only at higher
interaction order O[(U)3]. Furthermore, they have a more complex parameter dependence.
For a qualitative study at weak to intermediate coupling, they are usually neglected leading
to the numerically more feasible 1` truncation [82]. The flow equations in the 1` scheme
for the self-energy and two-particle vertex are presented in the following. Throughout this
work, a dot on top of a one- or two-particle vertex represents its Λ-derivative.

The self-energy flow reads

Σ̇Λ(k) =
∑
p

(
V Λ
σ σ,σ σ(k, k, p) + V Λ

σ σ,σ σ(k, k, p)
)
SΛ(p) (2.9)

where the convention that the summation over Matsubara frequencies includes a implicit
factor T and the integration over momenta is normalized over the first Brillouin zone. The
single-scale propagator

SΛ = ∂ΛG
Λ|Σ=const (2.10)

is defined through the scale derivative of the Green’s function at constant self-energy. By
SU(2) symmetry, the equal spin vertex can be transformed to an up-down spin vertex
giving

Σ̇Λ(k) =
∑
p

(
2V Λ(k, k, p)− V Λ(p, k, k)

)
SΛ(p) . (2.11)

The self-energy flow does not depend on vertices of order higher than the two-particle
vertex and the 1`-truncation enters only through the approximation of the two-particle
vertex.

The vertex flow

V̇ Λ(k1, k2, k3) = T Λ
ph(k2 − k1, k1, k4) + T Λ

ph
(k3 − k2, k1, k2) + T Λ

pp(k1 + k3, k1, k2) (2.12)
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consists of three parts

T Λ
ph(k2 − k1, k1, k4) =

∫
dp
[
2V Λ(k1, k2, k2 − k1 + p) V Λ(p, k2 − k1 + p, k3)−

V Λ(k1, p, k2 − k1 + p) V Λ(p, k2 − k1 + p, k3)−

V Λ(k1, k2, k2 − k1 + p) V Λ(p, k4, k3)
]
×[

SΛ(p)GΛ(k2 − k1 + p) + (S ↔ G)
]
, (2.13a)

T Λ
ph

(k3 − k2, k1, k2) =−
∫
dp V Λ(k1, p, k3 − k2 + p)V Λ(p, k2, k3)×[

SΛ(p)GΛ(k3 − k2 + p) + (S ↔ G)
]
, (2.13b)

T Λ
pp(k1 + k3, k1, k2) =−

∫
dp V Λ(k1, k1 + k3 − p, k3)V Λ(k1 + k3 − p, k2, p)×[

SΛ(p)GΛ(k1 + k3 − p) + (S ↔ G)
]
, (2.13c)

where

SΛ(k) = −GΛ(k)∂Λ

(
GΛ

0 (k)−1
)
GΛ(k) = ∂ΛG

Λ(k)|ΣΛ(k)=const. (2.14)

is the single-scale propagator. Each of T Λ
r contributes to one specific channel r of the

parquet decomposition in Eq. (2.4) such that Eq. (2.12) can be written as three coupled
differential equations each one describing one Φr-flow via Φ̇Λ

r = T Λ
r . In the TUfRG (see

also Section 2.4.2), the fermionic momentum dependence of the channels is expanded on
form factors

Φr(q, k, k
′) =

∑
nn′

fn(k)f∗n′(k
′)
[
Φr(q, iνm, iνm′)

]
nn′

, (2.15)

where the generalized fermionic momentum k = {k, iνm} is separated in its momentum
and frequency part and the bold symbols represent matrices in the form-factor space. The
flow equations for the TU-projected channels read

Φ̇
Λ
ph(q, iνm, iνm′) =

∑
iνm′′

Π̇
Λ
S,ph(q, iνm′′)

[
2VΛ

ph(q, iνm, iνm′′)V
Λ
ph(q, iνm′′ , iνm′)

−VΛ
ph

(q, iνm, iνm′′)V
Λ
ph(q, iνm′′ , iνm′)

−VΛ
ph(q, iνm, iνm′′)V

Λ
ph

(q, iνm′′ , iνm′)
]

(2.16a)

Φ̇
Λ
ph(q, iνm, iνm′) = −

∑
iνm′′

VΛ
ph

(q, iνm, iνm′′)Π̇
Λ
S,ph(q, iνm′′)V

Λ
ph

(q, iνm′′ , iνm′) (2.16b)

Φ̇
Λ
pp(q, iνm, iνm′) = −

∑
iνm′′

VΛ
pp(q, iνm, iνm′′)Π̇

Λ
S,pp(q, iνm′′)V

Λ
pp(q, iνm′′ , iνm′) , (2.16c)

where the fermionic bubbles (see also Section 2.4.3) with single-scale propagator (subscript
S for the bubble) are defined as[

Π̇
Λ
S,ph(q, iνm)

]
nn′

=

∫
dpf∗n(p)fn′(p)

(
GΛ(k)SΛ(q + k) + (S ↔ G)

)
, (2.17a)[

Π̇
Λ
S,pp(q, iνm)

]
nn′

=

∫
dpf∗n(p)fn′(p)

(
GΛ(k)SΛ(q − k) + (S ↔ G)

)
. (2.17b)
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Coupling the fermionic degrees of freedom to an external bosonic field, an infinite
hierarchy of flow equations can be obtained also for the response functions [82, 97, 31].
The susceptibility and the fermion-boson vertex are the first two objects in this hierarchy.
For completeness, we report the corresponding TUfRG-flow equations

γ̇Λ
3,η(q, iνm) = −

∑
iνm′

γΛ
3,η(q, iνm′)Π̇

Λ
S,η(q, iνm′)V

Λ
η (q, iνm′ , iνm) (2.18a)

χ̇Λ
η (q) =

1

2

∑
iνm

γΛ
3,η(q, iνm)Π̇

Λ
S,η(q, iνm)γΛ

3,η(q, iνm) , (2.18b)

where η = {D,M, SC} denote the physical channels. The vertices in these channels are re-
covered from the diagrammatic channels via Eq. (2.58) and the fermionic bubbles through

Π̇Λ
S,D/M =− Π̇Λ

S,ph (2.19a)

Π̇Λ
S,SC =Π̇Λ

S,pp . (2.19b)

In the following, the 1`-flow equations in Eqs. (2.11), (2.16) and (2.18) constitute the
first contribution to the multiloop flow equations. They are marked with a 1`-superscript.

2.2.2 Multiloop fRG

A multiloop extension of fRG (mfRG) was recently introduced by Kugler and van Delft
[67, 66] in order to sum up all parquet-like diagrams in addition to those included already
in the 1`-truncation. Later, it was shown explicitly that the derivation of the parquet
relations leads directly to the mfRG equations [68]. The connection between fRG and the
Schwinger-Dyson equations for the self-energy and the N -particle vertices was also studied
by Veschgini and Salmhofer [118]. Their Schwinger-Dyson renormalization group is exact
up to terms of order O[(U)3] unlike the accuracy up to O[(U)4] in mfRG. Further, mfRG
is formulated in such a way that the computational effort only grows linearly in loop order.
The numerical proof that the multiloop extension converges to a flow scheme independent
solution [110] and correctly reproduces PA [12, 38] is one of the scopes of the presented
work.

The first step towards the full mfRG-approach is the substitution of the single-scale
propagator by the derivative of the Green’s function w.r.t. the scale Λ [56]

SΛ = ∂ΛG
Λ|ΣΛ=const. → dΛG

Λ = SΛ +GΛΣ̇GΛ . (2.20)

In the following, the single-scale propagator with this Katanin substitution is denoted SΛ
K

and the fermionic bubble using the full derivative Π̇ = dΛΠ without subscript S.
The 2`-extension [57, 15] provides the first explicit correction terms for the two-particle

vertex flow. It leads to a reduction of the pseudo-critical scales [15] and its addition to the
Katanin substitution is already correct up to O[(U)3]. The 2` contribution corresponds
to the combination of the so-called left (L) and right (R) multiloop vertex corrections

Φ̇Λ,2`
r = Φ̇Λ,2`,L

r + Φ̇Λ,2`,R
r (2.21)

and enter the r.h.s. of the flow equations as

Φ̇Λ
r = Φ̇Λ,1`

r + Φ̇Λ,2`
r , (2.22)
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where Φ̇1`
r corresponds to Eq. (2.16). As the 2` fRG can be considered as a special case

of mfRG, the left and right multiloop vertex corrections are directly introduced in the
general form

Φ̇
Λ,`,L
ph (q, iνm, iνm′) =

∑
iνm′′

(
2İΛ,`−1
ph (q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)V

Λ
ph(q, iνm′′ , iνm′)

− İΛ,`−1

ph
(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)V

Λ
ph(q, iνm′′ , iνm′)

− İΛ,`−1
ph (q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)V

Λ
ph

(q, iνm′′ , iνm′)
)
, (2.23a)

Φ̇
Λ,`,L

ph (q, iνm, iνm′) =−
∑
iνm′′

İΛ,`−1

ph
(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)V

Λ
ph

(q, iνm′′ , iνm′) , (2.23b)

Φ̇
Λ,`,L
pp (q, iνm, iνm′) =−

∑
iνm′′

İΛ,`−1
pp (q, iνm, iνm′′)Π

Λ
pp(q, iνm′′)V

Λ
pp(q, iνm′′ , iνm′) (2.23c)

and

Φ̇
Λ,`,R
ph (q, iνm, iνm′) =

∑
iνm′′

(
2VΛ

ph(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)İ

Λ,`−1
ph (q, iνm′′ , iνm′)

−VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)İ

Λ,`−1
ph (q, iνm′′ , iνm′)

−VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)İ

Λ,`−1

ph
(q, iνm′′ , iνm′)

)
, (2.24a)

Φ̇
Λ,`,R

ph (q, iνm, iνm′) =−
∑
iνm′′

VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)İ

Λ,`−1

ph
(q, iνm′′ , iνm′) , (2.24b)

Φ̇
Λ,`,R
pp (q, iνm, iνm′) =−

∑
iνm′′

VΛ
pp(q, iνm, iνm′′)Π

Λ
pp(q, iνm′′)İ

Λ,`−1
pp (q, iνm′′ , iνm′) , (2.24c)

where the two-particle irreducible vertex of channel r is defined by

Ir = Vr − Φr

= U +
∑
r′ 6=r

P̂r′→rΦr′ . (2.25)

As usual, the two-particle reducible vertex in the channel r, Φr, is always in the channel-
specific notation and Vr, written in the notation r, always contains all channels and the
bare interaction U .

The fermionic bubbles in Eqs. (2.23) and (2.24), defined as[
ΠΛ
ph(q, iωl, iνm)

]
nn′

=

∫
dpf∗n(p)fn′(p) GΛ(k)GΛ(q + k) , (2.26a)[

ΠΛ
pp(q, iωl, iνm)

]
nn′

=

∫
dpf∗n(p)fn′(p) GΛ(k)GΛ(q − k) , (2.26b)

are, in contrast to Eq. (2.17), not derived w.r.t. the scale Λ. However, the computational
difficulties and the solution thereof discussed in 2.4.3 are the same.

In any higher loop order the 1`-flow equations are corrected by multiloop contributions
with ` > 1

Φ̇Λ
r =

∑
1≤`≤N`

Φ̇Λ,`
r . (2.27)
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where Φ̇1` corresponds to Eq. (2.16) and the highest loop order N` is in principle sent to
infinity. The r.h.s. of the loop contribution to the flow equations becomes

Φ̇Λ,`
r = Φ̇Λ,`,L

r + Φ̇Λ,`,C
r + Φ̇Λ,`,R

r , (2.28)

where the left and right contributions from Eqs. (2.23) and (2.24) appear again and ad-
ditional central (C) diagrams for ` ≥ 3 have to be considered. Those diagrams carry
the derivative w.r.t. the scale Λ sandwiched between two contributions involving the full
vertex

Φ̇
Λ,`,C
ph (q, iνm, iνm′) =

∑
iνm′′ iνm′′′

(4VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)

İΛ,`−2,L
ph (q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ
ph(q, iνm′′′ , iνm′)

− 2VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)

İΛ,`−2,L
ph (q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ,`−1,L
ph (q, iνm′′′ , iνm′)

− 2VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)

İΛ,`−2,L

ph
(q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ,`−1,L
ph (q, iνm′′′ , iνm′)

− 2VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)

İΛ,`−2,L
ph (q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ,`−1,L

ph
(q, iνm′′′ , iνm′)

+ VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)

İΛ,`−2,L

ph
(q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ
ph(q, iνm′′′ , iνm′)

+ VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)

İΛ,`−2,L

ph
(q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ
ph

(q, iνm′′′ , iνm′)

+ VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)

İΛ,`−2,L
ph (q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ
ph

(q, iνm′′′ , iνm′)
)
(2.29a)

Φ̇
Λ,`,C

ph (q, iνm, iνm′) =−
∑

iνm′′ iνm′′′

VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)

İΛ,`−2,L

ph
(q, iνm′′ , iνm′′′)Π

Λ
ph(q, iνm′′′)V

Λ
ph

(q, iνm′′′ , iνm′)

(2.29b)

Φ̇
Λ,`,C
pp (q, iνm, iνm′) =−

∑
iνm′′ iνm′′′

VΛ
pp(q, iνm, iνm′′)Π

Λ
pp(q, iνm′′)

İΛ,`−2,L
pp (q, iνm′′ , iνm′′′)Π

Λ
pp(q, iνm′′′)V

Λ
pp(q, iνm′′′ , iνm′) .

(2.29c)

The scale derivative of the two-particle irreducible vertex İ`−2
r here depends on the `− 2

flow equation as the equation involves in total two fermionic bubbles. A part of the central
diagrams can be identified with the left (or respectively right) diagrams in Eq. (2.23)
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Figure 2.2: Example of 1`-, 2`- and 3`-diagrams in the crossed particle-hole channel. In
the 2`-diagram, only the left contribution is shown and in the 3` only the central. The
dash on a Green’s function indicates the scale derivative.

(or Eq. (2.24)) leading to numerically more convenient single loop equations

Φ̇
Λ,`,C
ph (q, iνm, iνm′) =

∑
iνm′′

(2VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)Φ̇

Λ,`−1,L
ph (q, iνm′′ , iνm′)

−VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)Φ̇

Λ,`−1,L
ph (q, iνm′′ , iνm′)

−VΛ
ph(q, iνm, iνm′′)Π

Λ
ph(q, iνm′′)Φ̇

Λ,`−1,L

ph (q, iνm′′ , iνm′)
)

(2.30a)

Φ̇
Λ,`,C

ph (q, iνm, iνm′) =−
∑
iνm′′

VΛ
ph

(q, iνm, iνm′′)Π
Λ
ph(q, iνm′′)Φ̇

Λ,`−1,L

ph (q, iνm′′ , iνm′)

(2.30b)

Φ̇
Λ,`,C
pp (q, iνm, iνm′) =−

∑
iνm′′

VΛ
pp(q, iνm, iνm′′)Π

Λ
pp(q, iνm′′)Φ̇

Λ,`−1,L
pp (q, iνm′′ , iνm′) .

(2.30c)

In Fig. 2.2, an example of a left flow diagram in the 2`-truncation and a central flow
diagram in the 3`-truncation is compared to flow diagrams already contained in the 1`-
truncation.

Further, for the full reproduction of the Schwinger-Dyson equation (Eq. (3.2)) with
the parquet approximated vertex, multiloop corrections for the self-energy flow equations
have to be considered

Σ̇Λ = Σ̇Λ,1` + Σ̇Λ,1 + Σ̇Λ,2 . (2.31)

The first correction

Σ̇Λ,1(k) =

∫
dpGΛ(p)

[
2İΛ,C
ph,m`(k, k, p)− İ

Λ,C
ph,m`(p, k, k)

]
, (2.32)

where m` stands for the sum over all contributions from 3` to N``, is proportional to the
central ph-irreducible diagrams

İΛ,C
ph,m`(k1, k2, k3) =

∑
3≤`≤N`

∑
n n′

[
fn(k1)f∗n′(k4)

[
Φ̇

Λ,`,C
pp (k1 + k3, iνm1 , iνm4)

]
nn′

+fn(k1)f∗n′(k2)
[
Φ̇

Λ,`,C

ph (k3 − k2, iνm1 , iνm2)
]
nn′

]
. (2.33)
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As the central diagrams are generated only at third loop order, the first self-energy flow
correction does not contribute to loop orders below 3`.

The second correction to the self-energy in the multiloop scheme is

Σ̇Λ,2(k) = −
∫
dp δSΛ(p)

[
2V Λ(k, k, p)− V Λ(p, k, k)

]
, (2.34)

where δSΛ = GΛΣ̇Λ,1GΛ. Also Σ̇Λ,2 does not contribute to loop orders below 3`.

In the definition of the single-scale propagator with Katanin subsitution ∂G, also the
corrections Σ̇Λ,1 and Σ̇Λ,2 should be entered. However, they depend on the vertex flow and
are therefore not known when the single-scale propagator is calculated for the first time.
At this point, the only possible solution is to self-consistently recalculate the multiloop
from the beginning with the corrected self-energy flow in Eq. (2.31) as many times as it
is needed to converge the self-energy multiloop corrections. This procedure is refered to
as self-energy iteration.

Finally, we report the multiloop equations for the response functions. The fermion-
boson vertex γΛ,l>1

3,η = γΛ,l,R
3,η +γΛ,l,C

3,η obtains two corrections and the susceptibility χΛ,l>1
η =

χΛ,l,C
η only one. For a specific loop order, these corrections read

γ̇Λ,`,R
3,η (q, iνm) = −

∑
iνm′

γΛ
3,η(q, iνm′)Π

Λ
η (q, iνm′)İ

Λ,`−1
η (q, iνm′ , iνm) (2.35a)

γ̇Λ,`,C
3,η (q, iνm) =

∑
iνm′ iνm′′

γΛ
3,η(q, iνm′)Π

Λ
η (q, iνm′)

İΛ,`−2
η (q, iνm′ , iνm′′)Π

Λ
η (q, iνm′′)V

Λ
η (q, iνm′′ , iνm) (2.35b)

χ̇Λ,`,C
η (q) = −1

2

∑
iνm′ iνm′′

γΛ
3,η(q, iνm′)Π

Λ
η (q, iνm′)İ

Λ,`−2
η (q, iνm′ , iνm′′)

ΠΛ
η (q, iνm′′)γ

Λ
3,η(q, iνm′′ , iνm) . (2.35c)

These mfRG-flow equations depend again on the scale derivative of the vertex but not of
the response functions themselves. As the loop order resolved γ̇Λ,`

3,η and χ̇Λ,`
η is not needed,

it is convenient to perform the summation over the loop order ` and consider directly
γ̇Λ,R

3,η,m` =
∑

1<`≤N`

γ̇Λ,`,R
3,η , γ̇Λ,C

3,η,m` =
∑

2<`≤N`

γ̇Λ,`,C
3,η and χ̇Λ

η,m` =
∑

2<`≤N`

χ̇Λ,`,C
η . The latter are

calculated directly through

γ̇Λ,R
3,η,m`(q, iνm) = −

∑
iνm′

γΛ
3,η(q, iνm′)Π

Λ
η (q, iνm′)İ

Λ
η,m`(q, iνm′ , iνm) (2.36a)

γ̇Λ,C
3,η,m`(q, iνm) = −

∑
iνm′

γΛ
3,η(q, iνm′)Π

Λ
η (q, iνm′)Φ̇

Λ,L
η,m`(q, iνm′ , iνm) (2.36b)

χ̇Λ
η,m`(q) =

1

2

∑
iνm′

γ̇Λ,R
3,η,(m−1)`(q, iνm′)Π

Λ
η (q, iνm′)γ

Λ
3,η(q, iνm′ , iνm) , (2.36c)

where İΛ
η,m` =

∑
1≤`<N`

İΛ,`
η , Φ̇Λ,L

η,m` =
∑

1<`<N`

Φ̇Λ,`,L
η and γ̇Λ,R

3,η,(m−1)` =
∑

1<`<N`

γ̇Λ,`,R
3,η . Note that

the summation range differs in γ̇Λ,R
3,η,(m−1)` w.r.t. γ̇Λ,R

3,η,m`. With these simplifications, the
flow equations for the response functions are composed by a 1`- and a m`-part according
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to

γ̇Λ
3,η =

1

2
γ̇Λ,1`

3,η +
1

2
γ̇Λ,R

3,η,m` + γ̇Λ,C
3,η,m` (2.37a)

χ̇Λ
η = χ̇Λ,1`

η + χ̇Λ
η,m` . (2.37b)

Using this multiloop extension for self-energy, vertex and susceptibilities, the solution
will satisfy by construction the Bethe-Salpeter equations for the two-particle reducible
vertices, the Schwinger-Dyson equation for the self-energy (see Eq. (3.2)) and the equations
connecting susceptibilities and vertices through the contraction of the latter

χη(q) =
∑
iνm

Πη(q, iνm) +
∑

iνm iνm′

Πη(q, iνm)Vη(q, iνm, iνm′)Πη(q, iνm′) . (2.38)

These relations are numerically verified in this work.

2.3 Flow schemes

The flexibility of fRG to choose between different flow regulators or cutoffs can be seen
as an advantage or as puzzle concerning the incomparable results obtained from different
schemes. In the following, these two points of view will be discussed, the flow schemes used
in this work are presented and it will be argued how the puzzle is lifted in the multiloop
extension of fRG.

The flow scheme defines in which order the degrees of freedom are integrated out during
the fRG flow. Therefore, different regulators yield critical scales with different physical
interpretations and depending on the physics to describe, the appropriate flow scheme
can be chosen. In the original idea of fRG an infrared cutoff which first integrates over
the degrees of freedom far away from the Fermi-surface, is proposed. The momentum
and the frequency cutoffs are typically infrared regulators which enter the single-particle
propagator through

GΛ
0 (k, iνm) = RΛ(k, iνm)G0(k, iνm) , (2.39)

where RΛinit(iνm,k) = 0 and RΛfinal(iνm,k) = 1. The simplest form of the regulator would
be a sharp momentum RΛ(iνm,k) = θ(|εk| −Λ) or a sharp frequency cutoff RΛ(iνm,k) =
θ(|iνm| − Λ). This work does not consider the momentum cutoff, as the inclusion of the
self-energy can shift the Fermi-surface. An infrared regulating momentum cutoff would
need to take this a priory unknown shift into account.

The here used frequency flow (Ω-flow) [53, 24] is implemented through the cutoff

RΛ(k, iνm) =
ν2
m

ν2
m + Λ2

, (2.40)

which is smeared out in order to facilitate numerical integration. The scale flows from
Λinit →∞ to Λfinal = 0. The evolution of the physical quantities with the scale Λ is very
slow for large values and becomes much more sensitive at scales around unity. It is studied
in Section 2.4.1, how the parametrization of the scale Λ(t) w.r.t. the integration parameter
t can speed up the numerical evaluation.

Other often used flow schemes are the regularizing temperature flow which gradually
decreases temperature [48], and the interaction flow describing the change with increasing
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bare interaction [42]. The cutoff used in the latter is RΛ(k, iνm) = Λ leading to to the
bare scale dependent propagator

GΛ
0 (iνm,k) = ΛG0(iνm,k) , (2.41)

where Λinit = 0 and Λfinal = 1. While this flow scheme is not regularizing, it has the
advantage that the result at each scale can be translated to the solution for a specific
smaller bare vertex U . For a detailed study on this scaling property at each loop order,
see Appendix B.

In 1` fRG, the drawback of the freedom of choice is a large variety of solutions of the
same model and method but different flow schemes. These differences are caused by the
truncation of the infinite hierarchy of flow equations. If no truncation would be used,
the flow schemes ultimately lead all to the same result. This is in particular the case for
the multiloop fRG which, by construction, sums up all parquet diagrams with the correct
weight [68]. As those are independent from the cutoff, this property extends to multiloop
fRG. From this perspective, one can also argue, why the 1` fRG is cutoff dependent. The
2` and 3` examples in Fig. 2.2 clearly depend on the cutoff scheme through the scale
derivative of the propagator which finally reflects in numerically different solutions in 1`
fRG.

Furthermore, the starting point for the fRG flow does not necessarily have to be the
free single-particle propagator. Also the DMFT solution can be used allowing to apply the
method to stronger interactions [130, 120]. This requires a particular DMFT conserving
flow scheme.

2.4 Implementation

In the following, some specific problems and solutions to the actual implementation are
presented. For a general outline of the code structure, see also Fig. 2.3 for the 1`-truncation
and for the full multiloop fRG scheme the description below. The used objects and symbols
are introduced in the specified subsections.

The computation of the fRG flow is preceded by a precalculation step in which the
projection matrices from one channel (see Section 2.4.2) to another and the weight W(R)
used in the calculation of the fermionic excitations (see Section 2.4.3) are initialized.
Further, the indices in the objects are grouped according to symmetry relations allowing
to reduce the calculation effort during the flow.

The core of the implementation is an ordinary differential equation solver for which the
ODEINT -library of boost was used. In this work, the Runge-Kutta Cash-Karp method was
chosen adopting further the adaptive integration possibility. Inside one Λ-step, first the
self-energy is calculated using Eq. (2.11). Then, the self-energy iteration loop is opened and
Σ̇ is used for the Katanin substitution according to Eq. (2.20). With the resulting single-
scale propagator, the fermionic excitations in Eqs. (2.17) and (2.26) (see Section 2.4.3)
are calculated. Those are used in the calculation of 1`-flow of the two-particle reducible
vertices reported in Eq. (2.16). For each of the three channels, a low frequency vertex Rr
and the corresponding asymptotics K1,r and K2,r are computed (see Section 2.4.2). Then,
the fermion-boson vertex γ3,η, its asymptotic γa3η and the susceptibilities χη are calculated
according to the 1`-flow equations in Eq. (2.18). After the evaluations of the 2`-flow
equations for the vertices and their asymptotics according to Eq. (2.23), the iteration
over mfRG-loops is started. First, the right (Eq. (2.24)) and left (Eq. (2.23)) multiloop
corrections are calculated and next, with the help of the latter, the central (Eq. (2.30))
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Figure 2.3: Summary of the code structure including information about object size, order
of computation and object dependencies restricted to the 1`-truncation. Also the numer-
ical effort for each step is estimated. IO denotes the number of elements in object O. It
is defined by the number of positive fermionic frequencies of the rest function Nf+, the
number of bosonic momentum patches Nq, the number of form factors NFF , the number
of momentum/real space points for the Fast-Fourier Transform Nk and the number of
frequencies Nf+int

in the integration of the fermionic excitation. The total number of ele-
ments IO is reduced by the symmetries to InO independent elements. The colored arrows
indicate the feedback of the different objects: e.g. the rest-function and frequency asymp-
totics of the two-particle vertices (red) feed back into the self-energy through a projection
to the fermionic notation and to the two-particle vertices themselves and the fermion-boson
response function through a channel-channel projection. The feedback of the two-particle
vertices to the susceptibilities is only indirect through the fermion-boson response func-
tion. The multiloop-extended version of the fRG program is not depicted. The multiloop
iteration would take place inside the Vertices-box adding also the multiloop-equations
for the self-energy. In addition, self-energy iteration would include both the Vertices-box
and the Bubble-box.
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Figure 2.4: Maximal absolute value of the two-particle reducible vertices as a function
of the adaptive integration step (left), the parametrization for the adaptive integration t
(central) and the scale Λ (right) in the Ω-flow scheme with different parametrizations of
the scale Λ(t).

multiloop corrections. After each loop, a convergence criterion is applied and if the total
and relative error on all objects is smaller than a threshold, or the maximum number of
loops is reached, the loop is exited. After completion of the loop on the vertex corrections,
the multiloop self-energy corrections according to Eqs. (2.32) and (2.34) are determined.
The sum of all self-energy contributions from Eq. (2.31) is then compared to the previous
self-energy iteration (or to the 1`-self-energy for the first iteration). Again, if the total
or relative error is smaller than a certain threshold or the maximal number of self-energy
iterations is reached, the self-energy iteration is finished. Finally, the multiloop corrections
of the response functions according to Eq. (2.36) are calculated. After the Λ-step is
concluded, the change in all objects is returned to the differential equation solver, which
then proposes the next scale Λ.

Within the Λ-step, the sum over multiloop corrections has to be tracked for the calcula-
tion of the multiloop correction of the self-energy, fermion-boson vertex and susceptibility.

In total, İΛ,C
ph,m`, Φ̇

Λ,L
η,m`, and İΛ

η,m` have to be recorded for the last order and additionally

İΛ
η,m` again for second to last loop order.

In Appendix A of [66] a pseudocode for the multiloop fRG is provided without the
calculation of the response functions but keeping explicitly track on intermediate results
and dependencies.

2.4.1 Parametrization of flow regulators

In Section 2.3, different flow schemes, among which the here used soft frequency cutoff
and the non-regularizing interaction flow, were introduced. Advantages and disadvantages
of the freedom of the scheme choice were discussed and it was pointed out that in the
multiloop limit, all flow schemes finally lead to the same result. Not all of the data
presented in this work are calculated in this limit, so it is worth to improve the flow
schemes independently.

In this section, the focus lies on the numerical efficiency of the scale parametrization
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Λ(t). In the interaction flow, the vertices grow roughly linearly with the scale Λ. Therefore,
the integration parameter t for the differential equation solver is conveniently proportional
to the scale Λ(t) = t. In contrast, the scale Λ(t) in the frequency flow extends over a large
range covering very high values at which the flow is weak and low values at which it is
very sensitive to scale changes. In order to integrate out the high-frequency regime faster
and slowing down the flow at low frequencies, the natural relation between the scale and
the integration parameter is

Λ(t) = 10t . (2.42)

The integration is started at tinit = 10 and ended at tfinal = −10. The flow of the strongest
two-particle channel, which in this case is Φph, for the 2D Hubbard model at half-filling,
U = 2 and 1/T = 5 (technical parameters: Nf+ = 4, Nqx = 12), is shown in Fig. 2.4.
In the left panel, the flow w.r.t. the performed integration steps is shown. Note that
in the central (right) panel, the flow goes from large to small integration parameters t
(frequency scales Λ(t)). The reason for the initially flat curve is the slow increase of the
vertex functions at high energies and the adaptive differential equation solver expecting
the solution to be of this order of magnitude (which could be presumably changed by the
absolute integration error allowed to the solver). There is a steep increase about t = 0 (or
Λ(t) ≈ 1) and a second plateau for t < 0. In the following it is discussed how to decrease
the second plateau at low frequencies. First, note that the flow according to Eq. (2.42) is
never reaching Λfinal = 0. If a linear component 10−11t is added, this final scale is exactly
reached at t = −10 and the flow is not changed at all. Increasing the linearity factor to
0.1t, the final scale is reached at tfinal = −1 where the adaptive integration is stopped.
With this choice, the plateau at low frequencies is shortened and the flow is concluded in
80% of the time needed of Eq. (2.42). The calculation time can be further decreased to
79% by

Λ(t) = 10t + 0.1t3 . (2.43)

Note that the computation time depends also on the number of attempted but rejected
integration steps of the solver. The optimal parametrization may finally depend also on
the actual system to be solved.

2.4.2 Parametrization of the two-particle vertex

The vertex is a highly complex object depending on three frequencies, three momenta and
in principle also spin and orbital degrees of freedom. While the spin degrees of freedom can
be simplified using SU(2)-symmetry (compare [94] for an exhaustive elaboration of one-
and two-particle vertex symmetries), the orbital degrees of freedom cannot be simplified
without loss of generality. An attempt for an efficient approximation was made in [46] in
particular designed for the constrained fRG approach. This work is restricted to the single
particle case.

After the parquet decomposition in Eq. (2.4), the problem of an efficient frequency and
momentum parametrization is shifted from the full two-particle vertex to the two-particle
reducible vertices. This important task can be devided into two parts: the TU formula-
tion of the momentum dependence and the decomposition of the vertices in high-frequency
asymptotics and precise low-frequency structures. The two methods are combined, start-
ing with the separation of the vertices into asymptotics and low frequency objects and
subsequently expanding the remaining fermionic dependencies on the form factors from
the TUfRG.
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Figure 2.5: a) Non-symmetrized versus b) symmetrized notation for the two-particle ver-
tices.

Figure 2.6: Crossed particle-hole irreducible vertex
[
Φph(iωl = 0, iνm, iνm′ ,q = (π, π))

]
0 0

in the 1`-fRG with Katanin substitution for interaction strengths U = 1 and U = 2 and
1/T = 5. The colored boxes indicate the frequency ranges used for the high-frequency
asymptotics and low-frequency structure. The frequency structure is more pronounced for
larger U and the overall values are larger.

Frequency asymptotics

In the numeric implementation of the frequencies, the symmetrized notation (compare
Fig. 2.5) is used

V (iνm1 , iνm2 , iνm3) ≈ U

+ Φph

(
iωm2−m1 , iνm1+

⌊
m2−m1

2

⌋, iν
m4+

⌊
m2−m1

2

⌋)
+ Φph

(
iωm3−m2 , iνm1+

⌊
m3−m2

2

⌋, iν
m2+

⌊
m3−m2

2

⌋)
+ Φpp

(
iωm1+m3+1, iνm1−

⌈
m1+m3+1

2

⌉, iν
m2−

⌈
m1+m3+1

2

⌉) , (2.44)

where iωl = i2lπT is a bosonic and iνm = i(2m + 1)πT a fermionic frequency. The floor
and ceiling operations are needed in order to work with integer indices. Further, note that
−iνm = iν−m−1 and iνm1 + iνm2 = iωm1+m2+1.

In the symmetrized notation, for any fixed bosonic frequency one can observe a struc-

22



ture in the fermionic frequencies similar to the one shown in Fig. 2.6. In Ref. [129]
similar plots with larger frequency windows show, that at large m and m′, the two-
particle reducible vertex of channel r only depends on the bosonic frequency iωl. There-
fore, a large portion of the information on the frequency dependence can be obtained
already from the so-called Kernel-1 function K1(iωl) = limνm,νm′→∞Φ(iωl, iνm, iνm′).
For one small and one large fermionic frequency, the frequency dependence is corrected
through the Kernel-2 functions K2(iωl, iνm) = limνm′→∞Φ(iωl, iνm, iνm′) − K1(iωl) and

K2(iωl, iνm′) = limνm→∞Φ(iωl, iνm, iνm′) − K1(iωl). The remaining dependency on all
three frequencies, called Rest-function R(iωl, iνm, iνm′), is bounded to a small frequency
window, which in the symmetrized notation is centered around m = 0 and m′ = 0. This
is the core advantage w.r.t. the non-symmetrized notation, where the center is shifted by
iωl/2 for finite bosonic frequencies.

Note that sending all frequencies to infinity, the bare interaction U is recovered. This
is in particular also true for the fully two-particle irreducible vertex V2PIR. With this
observation it can be argued that the fermionic momentum dependency simplifies together
with its corresponding fermionic frequency (compare Refs. [129, 131]).

Applying this frequency asymptotics based parametrization, the two-particle reducible
vertices can be obtained for any frequency combination through

Φr(q,k,k
′, iωl, iνm, iνm′) = Rr(q,k,k′, iωl, iνm, iνm′)+

K2,r(q,k, iωl, iνm) + K̄2,r(q,k
′, iωl, iνm′) +K1,r(q, iωl). (2.45)

The flow of the different Kernels is implemented through the very same functions as in
Eq. (2.16). The frequency limit to infinity is achieved by setting it to a large but finite
value.

For the extension to the calculation of response functions, a frequency Kernel for the
fermion-boson vertex can be defined analogously by γa3,η(iωl) = limνm→∞ γ3,η(iωl, iνm).

In order to obtain converged observables at small frequencies, it is sufficient to restrict
the calculation to a few low frequencies. Indeed, the rest function and asymptotics in
Fig. 2.6 are not completely decayed but the frequency parametrization here yields con-
verged results for the susceptibility. For an exemplary convergence study, see also Fig. 4.1
in Section 4.2.1.

Truncated-Unity fRG

While the expansion of the fermionic momentum dependencies of the vertex on form
factors was already performed in [53, 52, 24, 79], the formalisation under the name of
TUfRG was realized in [76]. The name comes from the insertion of the unity

1 =

∫
dp′
∑
n

f∗n(p′)fn(p) (2.46)

into the flow equations Eq. (2.13) and a truncation to only few form factors in the practical
application. The definitions of the form-factor projected two-particle reducible vertices in
Eq. (2.15) and the fermionic bubbles in Eqs. (2.17) and (2.26) follow naturally. While in
Refs. [76, 87, 18] the form-factor convergence was explicitly studied, for the here presented
results of the half-filled Hubbard model at t′ = 0 only the s-wave form factor is considered.
When going to finite doping or t′ 6= 0, the d-wave form factor is added. The form factors
implemented in the fRG-code are summarized in Table 2.1.
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n fn(k) fn(Ri,Rj)

LOC s-wave 0 1 δj,i
1NN 1

√
2 cos(kx) 1√

2
(δj,i+x + δj,i−x)

2
√

2 cos(ky)
1√
2
(δj,i+y + δj,i−y)

3
√

2 sin(kx) i√
2
(δj,i+x − δj,i−x)

4
√

2 sin(ky)
i√
2
(δj,i+y − δj,i−y)

1NN d -wave 1
(

cos(ky) + cos(kx)
)

1
2

(
δj,i+y + δj,i−y + δj,i+y + δj,i−y

)
Table 2.1: Local, first nearest-neighbor (full shell) and first nearest neighbor restricting
on d-wave form factors both in momentum and real space representation. It is specified
ih calculation which form factors are used. For a pure s-wave calculation only the local
form factor (top) is used, for s+d-wave either the first two nearest neighbors form factors
(center) or the d-wave form factor (bottom) are added, and a calculation with all nearest
neighbors form factors takes into account the local (top) and the four 1NN (center) form
factors.

Contrary to Ref. [76], we expand the non-symmetrized fermionic momenta on the form
factors. This leads to a simpler translation symmetry. In the purely fermionic momentum
space the latter is simply

Φ(k1,k2,k3) = Φ(k1 + K,k2,k3) = Φ(k1,k2 + K,k3) = Φ(k1,k2,k3 + K) (2.47)

with the reciprocal lattice vector K = ix×(2π, 0)+iy×(0, 2π). Also in the non-symmetrized
momentum version (compare Fig. 2.5) the vertices are invariant under a reciprocal lattice
vector shift in both bosonic and fermionic momenta

Φnon−symm(q,k,k′) = Φnon−symm(q + K,k,k′) =

Φnon−symm(q,k + K,k′) = Φnon−symm(q,k,k′ + K) . (2.48)

On the contrary, the translation symmetry in the scheme with symmetrized momenta
becomes more involved

Φsymm(q,k,k′) = Φsymm(q,k + K,k′) =

Φsymm(q,k,k′ + K) = Φsymm(q + K,k +
K

2
,k′ +

K

2
) . (2.49)

In the latter version, the backfolding of the form-factor projected two-particle reducible
vertex in bosonic momentum space involves a possible sign change[

Φsymm(q + K)
]
nn′

= snsn′
[
Φsymm(q)

]
nn′

, (2.50)

where sn is defined by fn(k + K
2 ) = snfn(k) and can assume the value ±1 for the form

factors presented in Table 2.1.
As in the non-symmetrized notation, the form-factor projected vertex has the trivial

backfolding property[
Φnon−symm(q + K)

]
nn′

=
[
Φnon−symm(q)

]
nn′

, (2.51)

it is more convenient for numerical implementation. A further issue of the symmetrized no-
tation is the appearance of ‘bosonic’ real space vectors R1+R2

2 in the real-space calculation
of the fermionic bubble and projection matrices.
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While the calculation of the fermionic excitation in the non-symmetrized momentum
notation is discussed in Section 2.4.3, we focus in the following on the projection of one
channel notation to another. The projection is needed in the calculation of the r.h.s. of
Eq. (2.16), where the parquet decomposition of the vertex has to be inserted for in the
correct channel projection Vr(q, iνm, iνm′). The first contribution of the projections of
the latter, is the projection of the fully two-particle irreducible vertex. In the parquet
approximation it is approximated by the bare interaction, giving

[P̂→pp[U ](q, iνm, iνm′)]nn′ = [P̂→ph[U ](q, iνm, iνm′)]nn′

= [P̂→ph[U ](q, iνm, iνm′)]nn′ = Uδn,0δn′,0 . (2.52)

Next, each vertex includes also the two-particle reducible vertex in the channel of the
notation (e.g. Φpp(q, iνm, iνm′) in Vpp(q, iνm, iνm′)) which does not need to be projected.
Finally, there are two two-particle reducible channels in a different notation than the total
vertex. The here needed projection from one channel to another has to be performed in
frequency and momentum (or form-factor) space. The former leads to a comparatively
simple linear combination of frequency arguments which can be found in Eq. (2.56).

In momentum space, the projection is more involved due to the form-factor dependence.
Following the procedure of Ref. [76], we identify the projection matrices which describe
the momentum translation from one channel to another using a matrix multiplication

[
P̂r′→r[Φr′ ](q, iωl, iνm, iνm′)

]
nn′

=
∑
mm′,l

Ar r
′

nn′,mm′(q, l)
[
Φr′(l, . . .)

]
mm′

, (2.53)

where . . . stands for a linear combination of frequency dependencies depending on the
specific channels involved in the projection.

We exemplify the projection for the ph-channel to the pp-channel. In momentum space,
it reads

[
P̂ph→pp[Φph](q, iωl, iνm, iνm′)

]
nn′

=

∫
dkdk′f∗n(k) fn′(k

′)×

Φph

(
q− k′ − k,k,k′, iω(−m′−m−|l mod 2|−1)≡l′ , iνm+d l

2
e+b l′

2
c, iνm′+d l

2
e+b l′

2
c

)
=
∑
ñ ñ′

∫
dkdk′f∗n(k) fn′(k

′) fñ(k) f∗ñ′(k
′)×[

Φph

(
q− k′ − k, iω(−m′−m−|l mod 2|−1)≡l′ , iνm+d l

2
e+b l′

2
c, iνm′+d l

2
e+b l′

2
c

)]
ñ ñ′

.

(2.54)

We now transform the form factors to real space and shift the momentum dependence in
order to get the matrix form of Eq. (2.53)

[
P̂ph→pp[Φph](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′

∫
dK

∑
RR1R2

eilR−iqRf∗n(R1 −R)fn′(R2 + R)×

fñ(R1)f∗ñ′(R2)
[
Φph

(
l, iω(−m′−m−|l mod 2|−1)≡l′ , iνm+d l

2
e+b l′

2
c, iνm′+d l

2
e+b l′

2
c

)]
ñ ñ′

.

(2.55)
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The same procedure for every channel projection leads to the matrix equations[
P̂ph→pp[Φph](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

App,phnn′,ñ ñ′(q, l)×[
Φph

(
l, iω(−m′−m−|l mod 2|−1)≡l′ , iνm+d l

2
e+b l′

2
c, iνm′+d l

2
e+b l′

2
c

)]
ñ ñ′

(2.56a)[
P̂ph→pp[Φph](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

App,phnn′,ñ ñ′(q, l)×[
Φph

(
l, iω(m′−m)≡l′ , iνm+d l

2
e+b l′

2
c, iν−m′−1+b l

2
c+b l′

2
c

)]
ñ ñ′

(2.56b)[
P̂pp→ph[Φpp](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

Aph,ppnn′,ñ ñ′(q, l)×[
Φpp

(
l, iω(m+m′+|l mod 2|+1)≡l′ , iνm−b l

2
c−d l′

2
e, iνm+d l

2
e−d l′

2
e

)]
ñ ñ′

(2.56c)[
P̂ph→ph[Φph](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

Aph,phnn′,ñ ñ′(q, l)×[
Φph

(
l, iω(m′−m)≡l′ , iνm−b l

2
c+b l′

2
c, iνm+d l

2
e+b l′

2
c

)]
ñ ñ′

(2.56d)[
P̂pp→ph[Φpp](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

Aph,ppnn′,ñ ñ′(q, l)×[
Φpp

(
l, iω(m+m′+|l mod 2|)≡l′ , iνm−b l

2
c−d l′

2
e, iνm+d l

2
e−d l′

2
e

)]
ñ ñ′

(2.56e)[
P̂ph→ph[Φph](q, iωl, iνm, iνm′)

]
nn′

=
∑
ñ ñ′,l

Aph,phnn′,ñ ñ′(q, l)×[
Φph

(
l, iω(m′−m)≡l′ , iνm−b l

2
c+b l′

2
c, iνm′+d l2 e−d

l
2
e

)]
ñ ñ′

(2.56f)

with the following projection matrices for the non-symmetrized notation

App,phnn′,ñ ñ′(q, l) =
∑

RR1R2

eilR−iqRf∗n(R1 −R)fn′(R2 + R)fñ(R1)f∗ñ′(R2) (2.57a)

App,phnn′,ñ ñ′(q, l) =
∑

RR1R2

eilR+iqR2f∗n(R1 −R)fn′(−R2 −R)fñ(R1)f∗ñ′(R2) (2.57b)

Aph,ppnn′,ñ ñ′(q, l) =
∑

RR1R2

eilR−iqRf∗n(R1 + R)fn′(R2 −R)fñ(R1)f∗ñ′(R2) (2.57c)

Aph,phnn′,ñ ñ′(q, l) =
∑

RR1R2

eilR+iqR2f∗n(R1 −R2 −R)fn′(−R)fñ(R1)f∗ñ′(R2) (2.57d)

Aph,ppnn′,ñ ñ′(q, l) =
∑

RR1R2

eil(R2−R)+iqRf∗n(R1 −R)fn′(R−R2)fñ(R1)f∗ñ′(R2) (2.57e)

Aph,phnn′,ñ ñ′(q, l) =
∑

RR1R2

eilR+iqR2f∗n(R1 −R2 −R)fn′(−R)fñ(R1)f∗ñ′(R2) . (2.57f)

The patching of the bosonic momentum is in principle arbitrary as long as the fermionic
excitation can be calculated on all patching points. As the latter are calculated through
Fast-Fourier-Transform routines, they are known on a uniform grid of Nkx ×Nkx patching
points. The bubble can then be extracted on a less dense grid with Nqx × Nqx patch-
ing points, if Nkx = mNqx is an integer multiple of Nqx (in this work usually m = 5).
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Figure 2.7: Patching points on the first Brillouin-zone with the same number of rough grid
points Nqx = 16, without (left), with small (central) and large (right) refined patching
around q = (π, π).

Therefore, the bosonic momentum q of the vertices is also discretized on the regular grid
defined by Nqx which covers the whole Brillouin-zone. A more involved patching scheme
is presented in the following.

Refined momentum grid for the antiferromagnetic peak

For the half-filled 2D Hubbard model, the magnetic susceptibility and vertex (or in the
diagrammatic language ph- and ph-vertex) exhibit a peak at the transfer momentum
q = (π, π) (=M). When approaching pseudo-critical temperatures or interactions, the
peak becomes higher and narrower while away from q = (π, π), the momentum dependency
is rather flat. It is therefore convenient to sample the Brillouin-zone on a finer grid around
the M -point. In the following, the possibility, implementation and impact of a refined
momentum grid is discussed.

The flow equations in Eq. (2.16) allow for any selection of momentum patches as
long as the fermionic bubbles and the full vertex are known on all points. The vertex
involves the projection from one channel to another. The hence needed calculation of the
projection matrices in Eq. (2.57) on an arbitrary momentum grid is possible as they depend
analytically on the bosonic momentum. The only difference occurs in the momentum
summation within the projection itself: Each contribution has to be accompanied by a
corresponding weight factor depending on the size of the patch. The fermionic bubbles
however can only be calculated on a regular momentum grid due the employment of Fast-
Fourier-Transform routines (see Section 2.4.3). Usually, this grid is much finer than the
bosonic patching grid. We can therefore add beneficial fine grid points to the list of bosonic
patching points. For convenience, the refined patching region is chosen again rectangular,
uniform, centered around q = (π, π) and with (2l−1)m×(2l−1)m patching points (where
l is an integer and m = Nkx/Nqx). Patching points included in both the broad and fine
grid are considered only once avoiding double counting. In Fig. 2.7, the momentum grids
without refinement (left), with the smallest additional refinement defined by l = 1 and
m = 5 (central) and an enlarged additional refinement defined by l = 2 and m = 5 (right)
are presented.

The effect of the refined momentum grid can be observed in Fig. 2.8. For the 2D
Hubbard model at half-filling, t′ = 0, U = 2 and a relatively small temperature T = 1/12,
the magnetic susceptibility was calculated using the smooth-frequency cutoff and the 1`
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Figure 2.8: Magnetic susceptibility on the momentum path Γ-X-M-Γ as obtained using
different patching refinements shown in Fig. 2.7 at half-filling, t′ = 0, U = 2 and 1/T = 12.
The frequency-cutoff scheme and the 1`-flow with Katanin substitution was applied.

flow with Katanin substitution. The peak at q = (π, π) is much higher with a better
resolution. One can also observe that the narrow peak width is not correctly resolved
without momentum refinement. With a larger refinement region (24 to 216 additional
points), the peak shrinks again slightly. If the whole momentum structure is covered with
the refined grid, an additional enlargement of the area (216 to 600 additional points) does
not change the peak height substantially.

The effect of momentum discretization and in particular the size of the refined patching
area, is discussed also in Section 5.2.1 in the framework of whether the pseudogap opening
at the antinodal point occurs before the vertex diverges. The momentum grid dependence
in Fig. 5.10 shows the importance of a versatile patching scheme.

Physical versus diagrammatic channels

The (m-)fRG equations for SU(2)-spin symmetric systems can be equally expressed in the
physical and diagrammatic channels. Initially, the mfRG equations were obtained from
argumentation in the diagrammatic channels [69] and shortly after from the derivation of
the parquet equations again in the diagrammatic channels [66]. In Ref. [110], the mfRG
equations are reported in the physical channels. The translation between diagrammatic
and physical channels is shown explicitly in Appendix A.

In the implementation, the diagrammatic channels are used for the vertices and the
physical channels for the response functions. In short, all vertex objects, including full,
two-particle reducible and irreducible vertices, are translated from the diagrammatic to
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the physical channels via

VD(q, iνm, iνm′) =Vph,↑↑,↑↑(q, iνm, iνm′) + Vph,↑↑,↓↓(q, iνm, iνm′)

=2Vph(q, iνm, iνm′)−Vph(q, iνm, iνm′) (2.58a)

VM(q, iνm, iνm′) =Vph,↑↑,↑↑(q, iνm, iνm′)−Vph,↑↑,↓↓(q, iνm, iνm′)

=−Vph(q, iνm, iνm′) (2.58b)

VSC(q, iνm, iνm′) =Vpp(q, iνm, iνm′). (2.58c)

where SU(2)-symmetry is used. In a second step, the singlet and triplet pairing vertices
can obtained via [9]

Vsinglet = Vpp,↑↓,↓↑(q, iνm, iνm′)−Vpp,↑↓,↑↓(q, iνm, iνm′)

= VSC(q, iνm, iνm′) + P̂crossingVSC(q, iνm, iνl−m′−1) (2.59a)

Vtriplet-0 = Vpp,↑↓,↓↑(q, iνm, iνm′) + Vpp,↑↓,↑↓(q, iνm, iνm′)

= VSC(q, iνm, iνm′)− P̂crossingVSC(q, iνm, iνl−m′−1) (2.59b)

where

P̂crossing
nn′,ñ ñ′ =

∫
dkdk′f∗n(k)fn′(k

′)fñ(k)f∗ñ′(q− k′) (2.60)

and the matrix multiplication in Eq. (2.59) is over the second form-factor bilinear.
As explicitly seen in Appendix A, the projections from one channel to another is less

complicated in the diagrammatic channels than in the physical channels. On the other
hand, the instability analysis for diverging flows is more straightforward in the physical
channels than in the diagrammatic ones.

2.4.3 Fermionic excitation

An efficient calculation of the (differentiated) fermionic particle-hole and particle-particle
excitation defined in Eq. (2.17) and used in the flow equations of the vertex Eq. (2.16)
is crucial for a fast fRG algorithm in particular when the self-energy feedback to the
vertex is considered or a flow scheme different from the interaction flow is applied. In
these cases, the calculation of the differentiated bubbles has to be performed at least
for every Λ-step and, if included, once per self-energy iteration. When the self-energy
feedback is neglected and the interaction flow is chosen, the bubbles reported in Eq. (2.26)
at Λf = 1 can be calculated in advance and multiplied by the current scale Λ in order

to obtain Π̇
Λ

= ΛΠΛf . The full fermionic particle-hole and particle-particle excitation
defined in Eq. (2.26) is used in the multiloop fRG and post-processing analysis. Contrary
to the differentiated excitation, it is calculated only once per Λ-step. As the difficulties
and solutions in the calculation are the same for the differentiated and full bubble, the
following argumentation is only done on the latter. The differentiated bubble can be
obtained by replacing G(k)G(q ± k) with G(k)S(q ± k) + S(k)G(q ± k).

The fermionic bubbles in the symmetrized frequency notation read[
Π̇ph(q, iωl, iνm)

]
nn′

=

∫
dpf∗n(p)fn′(p) G(k, iνm−b l

2
c)G(q + k, iνm+d l

2
e) , (2.61a)[

Π̇pp(q, iωl, iνm)
]
nn′

=

∫
dpf∗n(p)fn′(p) G(k, iνm+d l

2
e)G(q− k, iνb l

2
c−m−1) . (2.61b)
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At low temperatures, it is particularly important that the momentum summation is
chosen to be fine enough. Recent works using the TUfRG [76, 87] have used an adaptive
integration scheme for this purpose. They were able to reach both low temperatures and
high wavevector resolutions.

For the present implementation, a refined adaptive integration turned out to be com-
putationally challenging. Therefore it was replaced by an alternative efficient way of calcu-
lating the fermionic particle-hole and particle-particle bubbles exploiting the convolution
theorem. Rewriting the Green’s functions in real space, the bubbles can be calculated
without momentum integration via[

Π̇ph(q, iωl, iνm)
]
nn′

=
∑
R

eiRqWnn′(R)F
[
G(−R̃, iνm−b l

2
c)G(R̃−R, iνm+d l

2
e)
]
(q) ,

(2.62a)[
Π̇pp(q, iωl, iνm)

]
nn′

=
∑
R

e−iRqWnn′(R)F
[
G(R̃, iνm+d l

2
e)G(R̃ + R, iνb l

2
c−m−1)

]
(q) ,

(2.62b)

where F
[
f(R̃)

]
(k) is the Fourier transform and the weight Wnn′(R) is defined as

Wnn′(R) =
∑
R′

f∗n(R′)fn′(R + R′) . (2.63)

The Green’s function can be conveniently transformed to real space via Fast-Fourier-
Transform (FFT) routines. The real-space expression of the form factors is provided in
Table 2.1.

Eqs. (2.62) and (2.63) include an infinite sum over real space lattice points. Knowing
that in TUfRG the real-space range of all form factors is finite, the sum can be truncated
accordingly. The form-factor sum f∗n(R′) in Eq. (2.63) is zero when R′ is outside of the
form-factor range which defines the limit for the sum. Due to the form factor fn′(R+R′),
the weight Wnn′(R) in Eq. (2.63) is zero for R larger than twice the range of the form
factors. This information can be used in turn to constrain the summation in Eq. (2.62).
For calculations including only the local form factor, all sums trivially reduce to a single
contribution.

For a convenient translation to the bosonic momentum grid in the flow equations,
the grid for the momentum and real space points used in the Fourier transformations
should include the gridpoints on which the vertex is discretized. Nevertheless, especially
at low temperatures, the Green’s function momentum grid can and should be more dense
in analogy to the adaptive integration. For converged results, the number of FFT-grid
points Nk has to be examined in addition to the bosonic momentum grid size defined by
Nq of the vertex.
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3. Self-energy

The self-energy is an one-particle scattering amplitude describing the correction of the
propagation of a particle due to interaction with other particles. It carries information on
whether a material is conducting or insulating and is needed for a correct prediction of
the spectral function which is proportional to the imaginary part of the Green’s function
and can be measured directly in with angleresolved photoemission spectroscopy (ARPES)
and other scattering experiments.

From the functional viewpoint, the self-energy connects the free Green’s function with
the dressed Green’s function through the Dyson-equation in Eq. (2.1). Through this de-
pendency it enters in the calculation of the two-particle vertex and the response functions.

In fRG, the self-energy is calculated with the first flow equation of the hierarchy. Its
contribution to the effective action is relevant, meaning that in a regularizing scheme, its
importance increases during the flow of the scale Λ [82]. Of particular relevance is the
self-energy induced shift of the Fermi-surface.

Firstly, the relation between the self-energy flow equation, as obtained by the fRG
formalism, and the Schwinger-Dyson equation, which exactly connects the self-energy and
the two-particle vertex (see Section 3.1), is discussed. As in the TU-fRG the form factor
truncation destroys their equivalence even in the multiloop extension, a Schwinger-Dyson
inspired flow scheme for the self-energy is introduced (see Section 3.2) in order to restore
this property.

3.1 Relation of self-energy flow and Schwinger-Dyson equa-
tion

In the analysis of the conventional flow, the focus lies on the 1`-truncation. The multiloop
corrections, which contribute only to orders higher than O[U3], do not change the following
discussion. Assuming SU(2)-symmetry, the self-energy ΣΛ is calculated via the differential
equation

Σ̇Λ(k) =
∑
p

(
2V Λ(k, k, p)− V Λ(p, k, k)

)
SΛ(p) . (3.1)

In order to better understand its relation to the SDE, its computation in the TU-fRG
scheme is specified subsequently. The Λ-dependent vertex is written in the purely fermionic
notation as defined in Eq. (2.4). The summation over the momentum is performed over the
finer momentum grid used also in the Fast-Fourier-Transform routines. For the bosonic
momentum in Eq. (2.4), patching to the bosonic momentum grid of the vertex is needed,
while the fermionic dependency is known analytically through the form factors in Table 2.1.
This scheme only involves a single propagator, here the single-scale propagator SΛ (and
in the multiloop corrections Eqs. (2.32) and (2.34), the Green’s function GΛ).
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On the other hand, the Schwinger-Dyson equation (SDE) for the self-energy

Σ(k, iνm) =U
∑

k′,iνm′

G(k′, iνm′)e
±iν0+

−
∑
k′,q

∑
iνm′ ,iωl

V (k,k′,k′ + q,k + q, iνm, iνm′ , iνm′+l, iνm+l)

G(k′, iνm′)G(k′ + q, iνm′+l)G(k + q, iνm+l)U (3.2)

is an exact self-consistent many-body relation connecting the self-energy and the vertex.
In contrast to the conventional self-energy flow, it involves two fermionic loops over in total
three Green’s functions. It is used in the parquet approximation scheme [9, 95] for the
self-consistent calculation of the self-energy alongside with the Bethe-Salpeter equations
for the vertex (compare Section 4.3.1). In fRG, it is used as a consistency check for the
results of the multiloop fRG flow (compare Section 4.2.3). In the so-called post-processing
procedure, the vertex and self-energy at the final scale Λfin. are inserted on the r.h.s. of
Eq. (3.2) and the resulting self-energy is compared to the result of the flow. Formally,
in the mfRG-scheme including also the multiloop self-energy corrections in Eqs. (2.32)
and (2.34), the flowing self-energy and vertices fulfill the SDE at every scale Λ.

In TU-fRG, this is only true in the infinite form factor limit. In the following, the
influence of the finite form factor truncation is explained and then an alternative scheme
leading to finite form-factor SDE consistent solutions is proposed (see Section 3.2).

In TU-fRG, the SDE is best calculated by dividing it into different contributions
through the insertion of the parquet decomposition Eq. (2.4) (with parquet approximation
V2PIR ≈ U) leading to five different parts for the SDE

Σ(k, iνm) = ΣG(k, iνm) + ΣGGG(k, iνm) + Σph(k, iνm) + Σph(k, iνm) + Σpp(k, iνm) ,

(3.3)
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Figure 3.1: Second contributin on the r.h.s. of the Schwinger-Dyson equation (3.2) decom-
posed using the parquet approximation into channel specific parts. The first diagram on
the r.h.s is calculated through Fast-Fourier-Transform. In the remaining three diagrams,
the red colour indicates the principal channel. Solid (dashed) lines carry spin up (down).

where

ΣG(k, iνm) = U
∑

k′,iνm′

G(k′, iνm′)e
±iν0+

, (3.4a)

ΣGGG(k, iνm) = −U2
∑
k′q

∑
iνm′ iωl

GΛ(k′, iνm′)G
Λ(k + q, iνm+l)G

Λ(k′ + q, iνm′+l) , (3.4b)

Σph(k, iνm) = −
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

∑
iνm′′

[
ΦΛ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

,

(3.4c)

Σph(k, iνm) = −
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

∑
iνm′′

[
ΦΛ
ph

(k′ − k, iωm′−m, iνm+bm′−m
2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

,

(3.4d)

Σpp(k, iνm) = −
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

∑
iνm′′

[
ΦΛ
pp(k

′ + k, iωm′+m+1, iνm−dm′+m+1
2

e, iνm′′)Π
Λ
pp(k

′ + k, iωm′+m+1, iνm′′)U
]
n 0

,

(3.4e)

using the form factor expanded bare interaction Unn′ = Uδn,0δn′,0.
The first term on the r.h.s. of the SDE in Eq. (3.2) is the so-called Hartree-term. It

appears unchanged in Eq. (3.3) as it does only involve bare vertices. Its imaginary part is
zero while the real part is constant in frequency and momentum. It can be absorbed in a
shift of the chemical potential µ by U〈n〉/2. Therefore, it is neglected in the calculations,
although explicitly written down here.

The second term on the r.h.s of Eq. (3.2) is also represented graphically in Fig. 3.1.
After the parquet decomposition of the vertex, the two-particle reducible vertices are
accompanied by the corresponding fermionic bubble which substitutes two of the three
Green’s functions. The form factor truncation of the bubble does not introduce any
further approximation. This decomposition is used also in the parquet and in Ref. [18] it is
explicitly shown that although the same diagrams are summed up, a different combination
of two-particle reducible vertices and fermionic excitations leads to different results.

The different approximation of equivalent diagrams is also the reason why the self-
energy flow and the SDE lead to different results even in the multiloop extension of fRG
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(for numerical results see Sections 4.2.3 and 5.2.2). First, the form-factor approximation
in the SDE-approach is studied. In order to see its effect, the vertex is expanded in the
first orders of the bare interaction U and shown in Fig. 3.2. For simplicity, the self-energy
corrections to the propagators are neglected. The first-order tadpole diagram (gray) on
the r.h.s. is the Hartree-term. The second order diagram (red) is calculated using Fast-
Fourier-transforms. This diagram is not associated to any specific channel. At third order,
the colored boxes identify distinct diagrams coming from different channels (yellow for pp
and green for ph) for a better comparison with Fig. 3.3. The colored Green’s functions
show the order in which s-wave truncated excitations are inserted in the diagram. In this
convention, the orange excitation is projected and inserted in the blue excitation which
is finally closed by a single Green’s function. The shown diagrams do not involve any
inter-channel projection. Therefore, even the s-wave truncation is still completely correct
and does not introduce approximations through translation. At higher order, the form
factor truncation introduces quantitative approximations already on the vertex level.

For comparison, the corresponding diagrams produced by the conventional 1`-flow
of the self-energy are shown in Fig. 3.3. Here, the analysis is applied directly on the
r.h.s. of the differential equations. For the full vertex, the parquet vertex is inserted,
being aware that in the 1`-approximation, this is only true up to second order. The
diagrams are divided into contributions from the V↑↓ (left) and V↑↑ (right) vertex. This
is more intuitive than presenting the same diagrams which can be obtained from the
SU(2) symmetrized version of the flow equation. The gray boxes identify the tadpole
diagrams, which are only partly shown in Fig. 3.2 but will be reproduced also there once
the full self-energy correction to the Green’s functions is inserted. The red diagrams
correspond to the second order diagram in the SDE approach partly with inserted (gray)
Katanin substitution for the single-scale propagator. There are three different form-factor
approximations for the pure second order diagram, two on the first line of the ↑↓- and
one in the ↑↑-contribution. Here, all three diagrams are still correctly approximated as
the blue excitation has no other contribution than s-wave. At third order, there are five
different from factor approximations contributing both to the pp-contribution (yellow) and
the ph-diagram (green). Here, only one of each group is approximated correctly with the
s-wave truncation. For the pp-channel this would be the first yellow diagram and for the
ph-channel the last green diagram in the ↑↓-collection.

In order to understand how the other diagrams are affected by approximations, the first
green diagram of the ↑↓-contribution in local s-wave form-factor truncation is considered.
Here the yellow bubble is correctly approximated by the s-wave form factor while in the
ph-notation. But now it has to be translated into the pp-notation in order to be inserted
into the blue bubble. In the s-wave truncation, this leads to averaging over the ph-

Figure 3.2: Lowest order diagrammatic contributions to the SDE self-energy flow. In
order to facilitate the comparison to Fig. 3.3, the colored boxes group them into tadpole
diagrams (gray boxes), 2nd order diagrams (red boxes) and two different types of 3rd order
diagrams (yellow/green boxes). Self-energy corrections are neglected. Solid (dashed) lines
carry spin up (down) and the orange bubbles are projected to the blue ones.
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Figure 3.3: Conventional 1` self-energy flow, with the V↑↓ (left) and V↑↑ (right) contribu-
tion. For the notation and color description, see Fig. 3.2. At third order, the form factor
truncation approximates the diagrams from the same colour differently.

bosonic momentum and therefore information loss. In order to correctly resolve a peak
in the bosonic momentum, a large number of form factors would have to be taken into
account. Above all at perfect nesting (e.g. 2D Hubbard model, t′ = 0 and half-filling),
this convergence in form factor is impossible to achieve in practice.

3.2 Improved self-energy scheme for TU-fRG and TU-mfRG

Now, the second scheme for the calculation of the self-energy is introduced. It is inspired
by the close relation of the Bethe-Salpeter equation for the vertex and the SDE for the
self-energy to the multiloop fRG equations [66]. In particular, when deriving the SDE in
Eq. (3.2) w.r.t. a flow parameter Λ, one can recover the 1`-flow Eq. (3.1) together with
the higher loop corrections in Eqs. (2.32) and (2.34). In this derivation the equivalence of
different channel representations of the SDE-equation was used. As argued above, this is
not possible in the TUfRG-approach. The restriction to a finite set of form factors in one
channel will never allow to reproduce the full transfer momentum dependence in another
channel.

Therefore, for the numerical equivalence between mfRG and parquet, it is convenient
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to retain the derivative of the SDE w.r.t. the scale Λ without further adaptation

Σ̇(k, iνm) =Σ̇G(k, iνm) + Σ̇GGG(k, iνm) + Σ̇ph(k, iνm) + Σ̇ph(k, iνm) + Σ̇pp(k, iνm) ,

(3.5a)

Σ̇G(k, iνm) =U
∑

k′,iνm′

∂ΛG
Λ(k′, iνm′) , (3.5b)

Σ̇GGG(k, iνm) =− U2
∑
k′q

∑
iνm′ iωl

∂Λ

(
GΛ(k′, iνm′)G

Λ(k + q, iνm+l)G
Λ(k′ + q, iνm′+l)

)
,

(3.5c)

Σ̇ph(k, iνm) =−
∑

k′iνm′

∑
n

f∗n(k)f0(k)
∑
iνm′′

∂Λ

(
GΛ(k′, iνm′)

[
ΦΛ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

)
, (3.5d)

Σ̇ph(k, iνm) =−
∑

k′iνm′

∑
n

f∗n(k)f0(k)
∑
iνm′′

∂Λ

(
GΛ(k′, iνm′)

[
ΦΛ
ph

(k′ − k, iωm′−m, iνm+bm′−m
2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

)
, (3.5e)

Σ̇pp(k, iνm) =−
∑

k′iνm′

∑
n

f∗n(k)f0(k)
∑
iνm′′

∂Λ

(
GΛ(k′, iνm′)

[
ΦΛ
pp(k

′ + k, iωm′+m+1, iνm−dm′+m+1
2

e, iνm′′)Π
Λ
pp(k

′ + k, iωm′+m+1, iνm′′)U
]
n 0

)
,

(3.5f)

where the derivative w.r.t. Λ acts on the Green’s function GΛ, the two-particle reducible
vertex ΦΛ and the fermionic bubble ΠΛ. For each of Eqs. (3.5c) to (3.5f), three contribu-
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tions are obtained, exemplified here by the ph-contribution

Σ̇ph(k, iνm) =

−
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

∑
iνm′′

[
Φ̇

Λ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

−
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

∑
iνm′′

[
ΦΛ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π̇

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

−
∑

k′iνm′

∑
n

f∗n(k)f0(k)ĠΛ(k′, iνm′)

∑
iνm′′

[
ΦΛ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

.

(3.6)

The first contribution of Eq. (3.6) depends on the Λ-derivative of the two-particle reducible
vertex Φ̇. Therefore, it has to be evaluated after the flow equations for the channels. In
the pure 1`-scheme, ∂ΛG

Λ = SΛ = ∂ΛG
Λ|Σ=const is the single-scale propagator and the

self-energy change is not needed for the evaluation of the vertex flow. However, with the
Katanin subsitution (or any higher loop order) the single-scale propagator is replaced by
the scale derivative of the Green’s function ∂ΛG

Λ = SΛ +GΛΣ̇ΛGΛ. For the second part
of ∂ΛG

Λ, the self-energy change has to be known before the calculation of the vertex flow
and, in the SDE-scheme, inside the self-energy flow itself. It is convenient to perform
the first Katanin replacement with the self-energy change calculated via the 1`-flow in
Eq. (3.1). For a full feedback of the self-energy change, further iterations inside the Λ-step
replacing Katanin with the self-energy change calculated Eq. (3.5a) should be performed.
The number of the so-called self-energy iterations is specified by NΣ-iter.

In principle, the argumentation why the conventional flow approximates the self-energy
differently from the SDE in Section 3.1 applies also for the comparison of the Λ-derivative
of the SDE and the conventional flow. The diagrams in Fig. 3.4 illustrate this directly
on the level of the flow equation. The focus lies on two specific differentiated diagrams
contributing to the flow of the self-energy. In the upper panel, the flow using the Λ-
derivative of the SDE is represented. It is exemplified by the contribution of Eq. (3.5e)
represented graphically in the second to last summand on the r.h.s. of Fig. 3.1. The lowest-
order diagram for Φph is inserted, and the Λ-derivative is applied on the two spin-down
propagators (dashed lines). The same contributions are part of the conventional fRG self-
energy flow, shown in the lower panel of Fig. 3.4. The first diagram on the r.h.s. simply
follows from a second-order Φph diagram with two ph bubbles, and the second diagram

originates from the Φpp part of V , where the ph bubble (orange) is inserted into a pp bubble
(blue). As argumented in Section 3.1, the r.h.s. of both panels are formally equivalent,
but the form-factor truncation applies in a less favorable way on the right diagram in
fRG (lower panel): Only the two diagrams in the upper panel and the first in the lower
panel are exactly described by only s-wave form factors. However, when evaluating the
lower right diagram in an s-wave form-factor truncation, the ph contribution is completely
averaged in the process of translating it to the pp channel.
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Figure 3.4: Illustration of the self-energy flows using the SDE-derivative, restricted to the
part with Φph (upper panel), and conventional flow equations (lower panel). The r.h.s.
shows two exemplary differentiated diagrams contributing to the self-energy flow at third
order, where solid (dashed) lines carry spin up (down), and the diagonal dash symbolizes
a scale-differentiated bare propagator. Using the SDE-derivative, two bubbles from the
same channel (colored) are combined and then closed with the black line. By contrast, in
the conventional flow, the second diagram requires to insert a ph (orange) into a pp (blue)
bubble, before closing with the differentiated propagator (black).

It is emphasized that the two schemes, SDE-derivative and conventional flow, only give
different results with a finite form-factor truncation. With a straight-forward patching of
all three momentum dependencies on the very same grid, there is no loss of information in
the projection from one channel to another. However, as the bosonic momentum needs a
very fine grid close to the divergence of the magnetic channel, the numerical effort would be
overwhelming. Also in TU-fRG, both schemes should converge to the same result with an
increasing number of form-factors. This number might be as large as the bosonic patching
points as it should describe correctly the projection of the magnetic peak to other channels.
As the latter gets larger and narrower near the pseudocritical parameters, the SDE-flow
scheme for the self-energy in the finite form-factor TU-fRG is the best compromise between
accuracy and calculation effort.

When the SDE-flow scheme is used in the following, it is explicitly denoted either by
fRG* in multiloop fRG (in contrast to fRG for the conventional self-energy flow) or by
SDE in any loop truncation (in contrast to 1` for the conventional self-energy flow).

38



4. Numerical consistency and results
for the 2D Hubbard model

The following chapter is dedicated to the study of the convergence of the multiloop fRG
and effect of the new SDE-like flow equation for the self-energy. The results presented
here for the 2D Hubbard model can be taken as a guideline for applications of this method
to different parameter regimes and models. It covers different aspects which should be
taken into account to obtain quantitative predictions or, alternatively, help to estimate the
accuracy of an approximate solution. Starting with the presentation of the 2D Hubbard
model in Section 4.1, first the convergence of the fRG method is studied in Section 4.2.1.
This is performed w.r.t. the parameters defining the description of the vertex, the loop
number and self-energy iterations. Here, also the effect of different approximations is
presented. The chapter is concluded with the comparison of fRG* w.r.t. PA and dQMC
in Section 4.3, including different parameter regimes.

4.1 2D Hubbard model

Both for benchmark and the study of the pseudogap, the single-band Hubbard model in
2D is considered

Ĥ =
∑
i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µ
∑
i,σ

n̂iσ, (4.1)

where ĉ
(†)
iσ annihilates (creates) an electron with spin σ at the lattice site i, tij = −t is the

hopping between neighboring and tij = −t′ between next-nearest neighboring sites, µ the
chemical potential, and U the on-site Coulomb interaction. The bare propagator is

G0(k, iνm) =
(
iνm + µ− εk

)−1
(4.2)

with

εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky . (4.3)

It follows from Eq. (2.1) that the full propagator becomes

G(k, iνm) =
(
iνm + µ− εk − Σ(k, iνm)

)−1
. (4.4)

In the following the energy unit t ≡ 1 is used.
At half-filling, this model is known to generate large AF fluctuations with increasing

correlation lengths for lower temperatures. Therefore, the following discussion focuses on
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the AF susceptibility in this case. For finite doping, other susceptibilities play a more
important role. In particular at optimal doping and low temperatures, d-wave pairing is
expected. The following calculations away from half-filling are therefore calculated with
s- and d-wave form factors and the study of a larger variety of susceptibilities becomes
interesting.

4.2 Convergence in internal parameters

Before turning to the benchmark w.r.t. other methods, we first study if the results are
internally consistent.

The simplest check is to calculate a flow, first without and then with the exploitation
of specific symmetries, then compare the final results. In order to save computation time,
it is encouraged to approximate the interaction flow using the Euler integration with only
few fixed steps. If the final result is equal, trivial mistakes spoiling the symmetries can be
excluded.

In the following, the convergence of the multiloop fRG algorithm is studied w.r.t.
the technical parameters. In Section 4.2.1, the focus lies on the vertex and self-energy
parametrization through Nf+ and Nq and in Section 4.2.3 on the parameters related to
the multiloop extension of the fRG.

The convergence to a solution which does not change with a better parametrization is
another indicator of internal consistency.

4.2.1 Convergence of vertex and self-energy parametrization

The parameterization of the vertex presented in Section 2.4 combines the TUfRG scheme
[76] for the momentum dependence with the dynamical fRG implementation [129] for the
extension to frequency dependent vertices. In order to illustrate its efficiency, a conver-
gence study of the antiferromagnetic susceptibility χAF w.r.t. the number of Matsubara
frequencies, momenta and form factors is shown here. The AF susceptibility was obtained
by the 1`-flow in Eq. (2.18b). As test system, the 2D Hubbard model at half-filling, t′ = 0,
U = 2 and a temperature far from pseudo-criticality 1/T = 4 and of comparable value
1/T = 8 is used.

In the left panel of Fig. 4.1 the convergence in the number of fermionic frequencies
Nf+ is shown. This number corresponds to the extension in positive fermionic frequencies
of the rest-function R and all other frequency ranges are proportional to it. For 1/T = 4
one observes no significant change of the susceptibility w.r.t. Nf+. The system at this
temperature is only weakly correlated. Power counting arguments [31, 140] show that the
frequency dependence of the vertex is less important. This is also shown numerically for
small numbers of fermionic Matsubara frequencies, e.g., in Ref. [117]. At 1/T = 8 the
convergence w.r.t. Nf+ is slower. According to our tolerance of 1% we obtain convergence
at Nf+ = 8.

In the right panel of Fig. 4.1, we analyze the dependence of the AF susceptibility on
the number of bosonic patching points, Nq. The data for 1/T = 4 are already converged
at Nq = 64, while for 1/T = 8 a large number of patches Nq = 256 is needed. It can be
concluded that near the pseudocritical temperature Tpc, the convergence is more sensitive
to Nq than to Nν . The reason are long-ranged AF fluctuations requiring an increasingly
finer momentum resolution. An increase of the momentum patches is easier manageable
than larger frequency windows, as the size of the objects to handle grows only linearly
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Figure 4.1: Convergence of the relative error εrelconv = −(χ − χconv)/χconv of the (1`) AF
susceptibility for the half-filled 2D Hubbard model at t′ = 0, U = 2 and different values
of T . At Nq=144 and NFFT = 24 × 24 = 576 momentum patching points for the fast
Fourier transform, the number of positive fermionic frequencies Nf+ to obtain less than
1% deviation (dashed gray) is Nf+ = 4 for 1/T = 4 and Nf+ = 8 for 1/T = 8 (left).
At NFFT = max(576, 4 × Nq) and Nf+ = 4 for 1/T = 4 and Nf+ = 8 for 1/T = 8,
the number of bosonic momentum patches Nq needed for convergence is Nq = 8 × 8 for
1/T = 4 and Nq = 16× 16 (right).

with Nq while, at least for the rest-function R, it scales with the third power in Nf+

(compare Fig. 2.3). Moreover, the number of independent momentum patching points can
be substantially reduced by exploiting point-group symmetries of the lattice.

The convergence w.r.t. the form factors is not explicitly shown here. It is expected for
the half-filled 2D Hubbard model with t′ = 0 and moderate coupling strength that only
the s-wave form factor component of the vertex contributes strongly to the susceptibilities.
Nevertheless, it was verified that, for all values of T considered, the AF response function
does not change including also the first nearest neighbor form factors. Recent work with a
Truncated Unity parquet solver [18] on the half-filled 2D Hubbard model with U = 2 and
1/T = 5 shows that while the inclusion of the first nearest neighbor shell of form factors
(5 form factors instead of 1) barely changes the AF susceptibility, the second nearest
neighbor shell (9 form factors) leads to results changing by slightly more than 1%. While
this convergence issue should be similar in fRG, the small quantitative correction does not
justify the big additional computational effort (being 9× 9× 9× 9 times larger).

4.2.2 Effect of different approximations

Before turning to the multiloop implementation it is worth to take a step back and study
the effect of different vertex approximations already at the 1`-level with conventional
self-energy flow. Artificially suppressing the frequency dependence of the interactions or
neglecting the self-energy allow to gain a better understanding of the interplay of the
different interaction channels and the role of the self-energy.

Four approximation levels are shown in Fig. 4.2 in terms of the inverse AF susceptibility
as a function of temperature. The “full fRG” refers to the TUfRG scheme with an efficient
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Figure 4.2: Inverse (1`) AF susceptibility at q = (π, π) as a function of temperature, for
U = 2. Besides the curve obtained using the full TU dynamical fRG scheme (blue dots),
different approximations are shown: neglecting the self-energy feedback (green diamonds),
using a frequency independent vertex (red squares) and the combination of the previous
two approximations (yellow triangles).

inclusion of the vertex dynamics and self-energy inclusion. Approximation “no Σ” denotes
the flow with a frequency-dependent effective interaction but without the feedback of the
self-energy; “no ω dep” represents the static approximation for the effective interaction and
the self-energy, in which the fermion-fermion, fermion-boson and boson-boson vertices are
approximated by their value at zero frequency leading to frequency independent vertex;
and “no ω dep, no Σ” combines the neglect of the self-energy feedback with a static
approximation for the vertices.

In all approximations, the inverse AF susceptibility decreases quite linearly, i.e., Curie-
Weiss-like, upon lowering T . The intersection of the curve with the abscissa marks the
pseudocritical temperature. In the 1` fRG scheme, it assumes a finite value, violating the
Mermin-Wagner theorem. One can observe that the full TU-dynamic fRG approach leads
to larger inverse AF susceptibilities, or smaller χAF , than the other three approximations,
shifting Tpc to a smaller value.

It is to be expected, that the calculation without self-energy flow diverges at higher Tpc
w.r.t. the full one as the self-energy renormalizes the leading vertices and therefore also
susceptibilities, in accordance with the fRG studies in [24, 122]. The AF susceptibility
is therefore smaller with self-energy feedback and Tpc becomes lower. For a detailed
discussion on the pseudocritical temperatures on a wider range of parameters, we refer
the reader to Ref. [24] and [52].

The flow variants with static interactions “no ω dep” differ only slightly upon neglecting
the self-energy feedback. The reason for this is that using a static two-particle vertex also
the self-energy becomes frequency independent. Considering that because of the complex
conjugation relation Σ∗(k, iνm) = Σ(k,−iνm) the imaginary part of the self-energy is
antisymmetric in the frequency, the latter cancels. The only difference between “no ω
dep” and “no ω dep, no Σ” is therefore the inclusion of a frequency independent real part
of the self-energy. The increase in the pseudocritical temperature upon neglecting the
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self-energy feedback in a static calculation was already observed in Ref. [117]. The small
difference may come from the real part of the self-energy that can be understood as upward-
renormalization of the hopping parameter, or equivalently a downward-renormalization of
the density of states. Furthermore, Ref. [16] shows that the effect of the self-energy
inclusion in a static vertex approximation depends on the filling of a t-t′ Hubbard model.

Compared to the fRG flow scheme with frequency dependent vertex, the AF tendencies
in the static flow “no ω dep” are stronger. In the latter, the leading two-particle vertex
is overestimated as its static component is the strongest. This leads to larger AF suscep-
tibilities. Without self-energy feedback the picture is inverted. As the particle-particle
process is approximated by its static and therefore strongest part its screening on the
particle-hole susceptibilities increases and the static approximation leads to larger inverse
AF susceptibilities in the self-energy neglecting approximation. This was found also by
Ref. [52] and [24] for different next-to-nearest neighbor hoppings t′/t and van Hove filling.
Another study including self-energy feedback in Ref. [16] observes that, with finite t′ and
over a large range of doping, the dynamic case yields higher pseudo-critical scales than the
static one. In general, the two opposite effects described above are competing against each
other if the frequency dependence is neglected. The net effect depends on the self-energy
scheme and parameter regime.

In many previous works, the approximation without frequency dependence and self-
energy feedback was used, as the frequency dependence perpendicular to the Fermi sur-
face is irrelevant in the RG sense and neglecting the self-energy feedback simplies the fRG
scheme [82]. Various other fRG works have already explored the changes occurring by
using better approximations. Earlier studies of the self-energy without explicit frequency
dependence of the effective interaction pointed to the possibility of non-Fermi liquid behav-
ior first without [58] and later with self-energy feedback [92]. Channel-decomposed fRG
[52, 24] and N -patch fRG [117] were used to explore the effects of a frequency-dependent
effective interaction and of the self-energy feedback. Their results are consistent with the
ones in Fig. 4.2.

The closest approach to the one denoted by full fRG can be found in Ref. [122].
They used a refined 1` scheme and studied the role of the various frequency structures
in the interaction, parametrized by three frequencies. They argued that a one-frequency
parametrization can in some cases lead to spurious instabilities. The implementation used
here, differs from this work by the possibility to extend the truncation to more form
factors, a more economic description of the higher frequencies, and the implementation of
the multiloop corrections.

4.2.3 Convergence in loop numbers and self-energy iterations

In the following, the convergence w.r.t. the number of loops as well as the effect of the self-
energy iterations is studied. It is recalled that in fRG the conventional (multiloop) flow
equations for the self-energy were used while in fRG* the SDE-flow scheme was adopted.

For a specific mfRG-calculation, the maximal number of loops can be fixed but an
internal convergence condition allows to exit the loop also before. The advantage of this
additional convergence check can be understood from Fig. 4.3 which shows the actual
number of used loops #` as a function of the integration parameter t. In the frequency
flow (left panel), few loops are sufficient at the beginning of the flow (large positive t)
and the very end of the flow (large negative t). Around Λ = et = 1, the number of
used loops increases rapidly. The number of maximally allowed loop orders 24 is hit for
all shown interaction strengths. While the number of executed loops decreases for the
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Figure 4.3: Number of loops used during the flow as a function of the integration parameter
t. The smooth frequency cutoff (left panel, flow from right to left) needs many loop orders
around Λ = 1 (t = 0) and the interaction cutoff (right panel, flow from left to right)
towards the end of the flow Λ→ 1. The integration region in which the maximal number
of loops allowed N` = 24 is hit increases for higher interaction values.

smaller U = 2.5 already around t = −2 for the largest U = 3.5 considered here, the
decrease occurs only at the very end of the frequency flow. It is clear from this plot, that
for a full loop convergence, the maximally allowed number of loops N` should be increased
even further even if the final result for the susceptibilities might be already very close to
the converged one.

Also the interaction flow needs only few loops in the beginning (small integration
parameters t). The number of executed loops grows almost linearly until the maximal
value of loops is reached. Contrary to the frequency flow, it does not decrease at the end
of the flow (large integration parameters t). This behavior could be expected as larger
integration parameters translate into larger bare interactions U (see Appendix B).

In Fig. 4.4, the contribution to the r.h.s. of the Kernel function

K̇Λ,`
1,AF = lim

νm,νm′→∞

[
Φ̇

Λ,`
(q = (π, π), iωl = 0, iνm, iνm′)

]
0 0

= 2χ̇Λ,`
AFU

2 (4.5)

is shown as a function of loop order (starting with ` = 3). Apart from the factor U2, this
functional corresponds to the AF susceptibility (see Appendix C in [110]). The different

lines correspond to different scales. While in the lower panel, K̇Λ,`
1,AF is shown for all

scales, the top panels select specified values. The characteristic multiloop oscillations
can be observed here already at the level of the differential equation. At the parameters
considered, U = 3 and 1/T = 5, the amplitude decreases quickly at low loop numbers
and then converges slowly to zero. With increasing interaction, the initial amplitude is
of a similar height, but its damping is much weaker (not shown). If the damping of the
amplitude vanishes or the latter even increases, the multiloop fRG will not converge with
loop order. At this point, a strong-coupling many-body method should be preferred.

It is remarkable, that the oscillation period does not depend much on the scale (see
Fig. 4.4) or even the interaction strength (not shown). The reason for this is not yet
discovered but if it proves to be a general feature, it might be used for a more efficient
summation of the loop orders.

The final loop order study is shown in Fig. 4.5 where the AF susceptibility is shown
for calculations with increasing maximally allowed loop order N`. The solid lines show
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Figure 4.4: R.h.s of K̇Λ,`
1,AF /U

2 = 2χ̇Λ,`
AF as a function of the loop order plotted for different

values of the integration parameter t = log10 Λ in the frequency flow with parameters
U = 3, 1/T = 5.

the result obtained through the frequency and interaction flow, respectively. In addition,
the susceptibility was calculated in a post-processing procedure using Eq. (2.38). The full
convergence in terms of loop orders is not yet reached at 8`. Although this is far from the
needed N` ≈ 20 (compare to Table 4.1), the final result is already a good estimate with
only 4% deviation from the U = 2 result in Fig. 4.18. More importantly, the fact that

Figure 4.5: Comparison of the AF susceptibility calculated with the interaction flow and
the Ω-flow as well as through their respective post-processing, as a function of the maximal
number of loops, for U = 2 and 1/T = 5. The inset shows the relative difference w.r.t.
the 8` value (χN`

AF − χ
post-proc,N`
AF )/χN`=8

AF .
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all these calculation procedures converge to the same result indicates that the multiloop
approach provides the full reconstruction of the derivative of Eq. (2.38). In other words,
the vanishing relative difference (see also inset in Fig. 4.5) is the numerical verification
of the derivation of the mutliloop equations from the parquet formalism in Ref. [67]. A
more detailed analysis of this 8` results revealed a persisting small discrepancy between
the calculation schemes. Interestingly, this difference vanishes in absence of self-energy
flow. Therefore, it can be attributed to the inconvenient application of the form-factors in
the conventional self-energy flow. The newly introduced SDE-flow scheme in Section 3.2
solves this issue.

After the convergence in terms of loops, the effect of the self-energy iterations is
studied. These are needed because the r.h.s. of both the vertex and the self-energy
depend on each other through the single-scale propagator with Katanin substitution
SK(k, iνm) = dΛG(k, iνm) and either the conventional mutliloop corrections of the self-
energy Eqs. (2.32) and (2.34) or the first part of the SDE-flow equation Eq. (3.6). It was
argued in Section 2.2.2 that in the conventional flow the multiloop corrections of the self-
energy enter only at the third loop order. Therefore the correction due to the self-energy
iterations is of the order O

[
U3
]

for the self-energy and O
[
U5
]

for the vertex. In the SDE-

flow, the first term in Eq. (3.6) depending on Φ̇r prevents the insertion of the self-energy
in the first Katanin-substitution. It enters the self-energy at order O

[
U2
]

which leads to
corrections in the vertex with O

[
U4
]
. In order to improve the SDE-flow scheme, the first

self-energy iteration is performed with the Katanin-substitution from the conventional 1`
flow.

In Figs. 4.6 and 4.7, the effect of the self-energy iterations is studied both in the case
with the conventional (fRG) and with the SDE flow (fRG*). For this aim, full multiloop
calculations with first NΣ−iter = 0 (no Σ-iter.) and next NΣ−iter = 5 were calculated for
both flow schemes. The resulting self-energy is shown in Fig. 4.6 for a momentum path
along Γ-X-M-Γ restricting to the first Matsubara frequency and separating the real part
in the left panel from the imaginary part in the right panel. In addition, Fig. 4.7 shows
the imaginary part of the self-energy as a function of the frequency for the nodal (left

Figure 4.6: Real and imaginary part of the self-energy at the first Matsubara frequency
with and without self-energy iterations as obtained by the conventional fRG (blue) and
fRG* (red) for U = 2 and 1/T = 5. The self-energy iteration (dotted line) has its strongest
effect on the Fermi surface points of Im Σ in fRG*. It can be observed in the inset of Fig. 4.7
that the relative difference between the calculations with and without self-energy at the
nodal and antinodal point lies below 1% in fRG and above in fRG*.
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Figure 4.7: Imaginary part of the self-energy at the nodal and antinodal point with and
without self-energy iterations as obtained by the conventional fRG (blue) and fRG* (red)
for U = 2 and 1/T = 5. The self-energy iteration (dotted line) has its strongest effect on
the Fermi surface points of Im Σ in fRG*. The inset shows the relative difference between
the calculations with and without, where the green shaded area marks 1%.

panel) and antinodal (right panel) point. At the first Matsubara frequency, there are no
significant effects in fRG scheme and only slight differences can be observed in fRG*. With
larger frequencies, the corrections due to the iterations remain constant at a few percent
in fRG*, unlike in the fRG scheme, where the influence grows to 5− 10%.

One can observe two slight kinks in the self-energy calculated using the fRG scheme
in Fig. 4.7. They originate from the frequency treatment and more specifically from the
crossing of the low frequency tensor range and the high frequency asymptotics of the two-
particle vertex. As Nf+ = 4, they occur between the 4th and 5th frequency and again
between the 8th and 9th frequency. This effect is more pronounced in fRG than in fRG*
since the channel reducible vertices entering the conventional flow in Eq. (2.11) have a
richer frequency dependence than the bare interaction contracted channels in Eqs. (3.5d)
to (3.5f) needed for the calculation of the SDE-inspired fRG* flow.

The effect of the self-energy iterations on the AF susceptibility is studied in Fig. 4.8
where the AF susceptibility is shown as a function of the transfer frequency. The results
of the fRG (blue) and fRG* (red) flow with (solid line) and without (dotted line) are
shown alongside with the post-processed fRG* one (dashed line) which will be discussed
later. While the overall frequency structure is the same for both schemes and independent
of the self-energy iterations, one can observe changes in the peak height displayed in the
inset. Although in fRG, there are large effects at non-zero frequencies in the self-energy
itself, they can not be observed in the χAF . On the other hand, the small correction in
the self-energy in fRG* can be observed as a reduction of 2% of the AF-peak height.

As a last internal check, the post-processing procedure was applied. Applying exact
relations on the final results of the flow, the convergence in all technical parameters can be
tested without large effort. The agreement of a single observable calculated through the
flow with the corresponding one obtained from post-processing, is not sufficient to claim
convergence. But if all susceptibilities and the self-energy coincide, a strong hint towards
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Figure 4.8: Antiferromagnetic susceptibility χAF(iω) as obtained by conventional fRG
(blue) and the fRG* flow (red), together with the respective post-processed results (dashed
lines), for U = 2 and 1/T = 5.

the satisfaction of the parquet equations is given. This test is performed in Figs. 4.5
and 4.8 for the susceptibilities. The scale in Fig. 4.5 is so big, that the small discrepancies
due to loop convergence and conventional self-energy flow cannot be observed. It can be
observed in Fig. 4.8 that in fRG* the post-processed result (red dashed line) lies only
around 2% apart from the flowing AF-susceptibility (red solid line). Finally, the self-
energy consistency is studied in Fig. 4.9 and in Fig. 4.10 showing the imaginary part as
a function of frequency at the nodal (left panel) and antinodal point (right panel). The
post-processed self-energy lies on the flowing one only in the fRG*-scheme. Even though
the flowing self-energy calculated through the conventional flow equations differ from these
results for the reason already explained in Section 3.1, the differences decrease significantly
in the post-processing results due to a single application of the SDE.

Figure 4.9: Real and imaginary part of the self-energy at the first Matsubara frequency as
obtained by fRG (blue) and fRG* (red) compared to the respective post-processed results
for U = 2 and 1/T = 5. Within fRG*, the post-processed results (dashed red) lie exactly
on top of the fRG* flow ones (red solid).
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Figure 4.10: Imaginary part of the self-energy as a function at the nodal and antinodal
point as obtained by fRG (blue) and fRG* (red) compared to the respective post-processed
results for U = 2 and 1/T = 5. Within fRG*, the post-processed (dashed red) lie exactly
on top of the fRG* flow results (red solid).

4.3 External benchmark

After the internal convergence and consistency studies, the comparison of the fRG* results
to other methods can be performed. For the latter, the PA and the dQMC are considered
which are introduced in Section 4.3.1. In Section 4.3.2, numerical results as obtained
by these methods are presented. As convergence in fRG* is easier to reach for small
interaction strengths, first the comparison with PA at 1/T = 5 and U = 0.5 and then at
1/T = 5 and U = 2 is shown for the half-filled Hubbard model at t′ = 0, including also
dQMC results. Next, the interaction dependence is studied and finally the hole doped
case with finite t′ is considered. For all fRG* calculations in this section, the Ω-flow was
adopted.

4.3.1 Benchmark methods

In this benchmark, two comparing methods were chosen. On the one hand, fRG* is for-
mally equivalent to the PA if all approximation issues are overcome. In order to prove
this numerically, all results in this section are compared to PA. On the other hand, the
exact dQMC is used for comparison in order to test the validity of the parquet approxi-
mation. The difference between dQMC and PA or fRG*, is solely due to the completely
two-particle irreducible diagrams like e.g. the right diagram of Fig. 2.1.

Parquet

The PA results are provided by Christian J. Eckhardt and Anna Kauch with the truncated-
unity implementation of the parquet equations [18]. This method is based on the parquet
equation already introduced in Eq. (2.4) with the parquet approximation for the two-
particle irreducible part V2PIR(k1, k2, k3) ≈ U , the SDE in 3.2, and the Bethe-Salpeter
equations. These equations are solved by iteration until self-consistency is reached. Due
to the equivalence of the PA and the multiloop fRG formally shown [68] this method is
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closely related to fRG*. Many numerical challenges like the parametrization of the vertex
are very similar. A substantial difference is the absence of a flow parameters of cutoff
dependence in PA. Therefore, no differential equations are solved and the convergence to
a fixed point is achieved iteratively. The initial guess for the vertices is given here by the
lowest order diagrams.

The computational details can be found in [18] and only the most important aspects are
presented here. As in TUfRG, the momentum dependence of the vertices is parametrized
using the form-factor expansion [17]. The frequency dependence is evaluated on a the finite
frequency box. Values outside of the box were recovered by the asympotics as introduced
in Ref. [75] and also used in Ref. [74]. This leads to a different implementation of the
frequency asymptotics w.r.t. the one used in the fRG calculations.

Also a detailed analysis of the convergence in the number of form factors was performed
in Ref. [18]. From this follows that the single form factor approximation is justified at
half-filling. Further, all results are converged in terms of the other vertex parameters: for
the bosonic lattice momenta Nq = 32× 32 and for the frequencies Nf+ = 32 were used.

Determinant quantum Monte Carlo

The dQMC calculations were performed by Yuan-Yao He. dQMC is an exact method from
the quantum Monte Carlo family and as thus based on importance sampling. Applicable
to finite-temperature Fermi systems, the method integrates out the fermionic degrees of
freedom in order to obtain non-interacting fermions coupled to an auxiliary field [11, 99].

Yuan-Yao He describes the specific implementation in Ref. [38] referring also to Refs. [34,
35] for a detailed description of its most recent improvements. Here, just the technical
parameters are provided for completeness: The width for the discretization of the inverse
temperature is ∆τ = 0.2 in inverse units of t. Concerning the system size, the results are
converged with N = 28× 28 for t′ = 0 and half-filling and N = 24× 24 for t′ = −0.2 and
finite doping. Typically, 105 measurements samples are collected after the Markov Chain
equilibrium process. These parameters yield error bars smaller than the dQMC symbol
which are therefore not reported in the plots.

4.3.2 Results

In the following, fRG*, PA and dQMC are compared at T = 1/5 and different interaction
strengths U and finally also doping. If convergence can be achieved, fRG* and PA yield
in principle the same result. However, convergence in technical parameters related to the
vertex or the mutliloop implementation becomes harder at larger interaction strengths,
lower temperatures and away from half-filling when the channel competition sets in. While
the fRG* and PA are bounded to the parquet approximation, dQMC is correct. Therefore a
difference growing with U4 related to the first two-particle irreducible diagram is expected.
The following results are ordered according to their complexity. First self-energy and
susceptibilities for U = 0.5, then for the computationally more challenging U = 2 are
shown. Then, the interaction dependence for selected quantities is studied and finally,
results for

Self-energy and magnetic susceptibility at U = 0.5

As a proof of principle, the equivalence between fRG* and PA is studied here for 1/T = 5
and U = 0.5. At this weak interaction the AF peak is not so prominent and the system

50



Figure 4.11: Magnetic susceptibility at zero Matsubara frequency along the Γ-X-M-Γ path
as obtained by fRG* (red) and the PA (grey), for U = 0.5 and 1/T = 5.

Figure 4.12: Real and imaginary part of the self-energy as a function of the momentum
as obtained by fRG* (red) and the PA (grey), for U = 0.5 and 1/T = 5.

Figure 4.13: Imaginary part of the self-energy at the nodal and antinodal point as obtained
by fRG* (red) and the PA (grey), for U = 0.5 and 1/T = 5. The relative difference is
always below 1%.
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is only weakly correlated. Therefore the calculation requires only few momentum patches
and a large frequency box with Nf+ = 8 positive fermionic frequencies can be used. In
Fig. 4.11, the magnetic susceptibility at zero transfer frequency is shown for the momentum
path Γ-X-M-Γ. The fRG* and PA agree very nicely with the largest relative difference
of 4% at the non-relevant Γ-point, and only 0, 2% at the M-point, describing the AF
tendency. In Fig. 4.12, the real (left panel) and imaginary part (right panel) at the first
Matsubara frequency are shown as a function of momentum. The real part is perfectly
converged and the imaginary part has deviations at the nodal and antinodal point of only
1%. Fig. 4.13 shows the imaginary part of the self-energy as a function of frequency for
the nodal and antinodal point. For the imaginary part at the nodal and antinodal point,
the relative difference is below 1% for all frequencies. Besides the improved convergence,
also the box effects are suppressed w.r.t. smaller Nf+.

Self-energy and susceptibilities at U = 2

With increasing interaction strength, it is more challenging to reach for convergence in
all methods. Nevertheless, results for 1/T = 5 and U = 2 are shown for all methods in
Figs. 4.14 to 4.16. The technical parameters used are reported in Table 4.1 for fRG* and
in Section 4.3.1 for PA as well as dQMC.

First, the momentum dependence of the magnetic susceptibility at zero frequency
χM(q, iωl = 0) is presented in Fig. 4.14. The results of fRG*, the PA, and dQMC exhibit
quantitative agreement. The largest deviation is found at M = (π, π) and results in 2%
difference between fRG* and PA and 3% between fRG* and dQMC. The susceptibility at
this momentum point corresponds to AF fluctuations. In the inset, the latter is shown as
a function of frequencies as obtained by fRG* (red) and PA (grey).

From the momentum dependence of the magnetic susceptibility, the AF correlation
length ξ can be extracted. For this scope, the ansatz

χ(q, iωl = 0) ∼ 1

4 sin2( qx−π2 ) + 4 sin2(
qy−π

2 ) + ξ−2
(4.6)

is fitted to all points of χM(q, iωl = 0) within a distance of 0.3π from M . Eq. (4.6) reduces
to the Ornstein–Zernike formula for small momentum differences qx − π and qy − π (see

Figure 4.14: Magnetic susceptibility χM(q, iωl = 0) as obtained by fRG* (red), the PA
(grey), and dQMC (black), for U = 2 and 1/T = 5. The inset shows the AF susceptibility
as a function of frequency as obtained by fRG* (red) and PA (grey).
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Figure 4.15: Imaginary part of the self-energy at the nodal and antinodal point as obtained
by fRG* (red), the PA (grey), and dQMC (black), for U = 2 and 1/T = 5. Inset: relative
difference, with the green region indicating a deviation of less than 1%.

Ref. [93, 104]). For U = 2 and 1/T = 5, the number of momenta taken into account for
the fit is 45 in fRG*, 69 in PA, and 57 in dQMC and the standard deviation error is 0.019
in fRG*, 0.022 in PA, and 0.022 in dQMC. The resulting ξ = 1.38 in fRG*, ξ = 1.32 in PA,
and ξ = 1.36 in dQMC, show deviations under 5%. In particular the agreement between
fRG* and dQMC is astonishing, considering that the AF peak height is less accurate.

Next, Fig. 4.15 is discussed, comparing the behavior of the self-energy at the nodal
and antinodal point as a function of frequency using the different methods. The inset
shows the relative difference of fRG* w.r.t. dQMC (black) and PA (grey). The latter is
below 1% for all frequencies not affected by the box effects. The difference between fRG*
(or PA) w.r.t. dQMC is below 1% for the first frequency at the nodal point and within
few percents otherwise. The self-energy shows typical Fermi-liquid behavior, ImΣ(iν →
0) → 0, both at the nodal and the antinodal point. The antinodal point is affected
more strongly by correlations, manifesting itself through an increased absolute value for
the lowest Matsubara frequencies. While this momentum anisotropy is present, no clear
signature of a pseudogap is observed.

The deviations between fRG* and the PA are slightly larger at Matsubara frequencies
larger than Nf+. As the fRG* self-energy agrees perfectly with its post-processing result
(see also Fig. 4.10), these differences are not related to convergence issues but due to the
specific implementation of the high-frequency asymptotics of the the two-particle vertex
[129]. In fRG* the asymptotic functions are calculated and stored explicitly [110]. This
allows to retain smaller frequency tensors w.r.t. the PA for converged low frequency results
but on the other hand it evokes box effects in the intermediate frequency range. In the PA
implementation a large tensor over many fermionic and bosonic frequencies is used and
the values outside are constructed from the ones at the edges [75, 18].

On a quantitative level, in the full Green’s function G(k, iνm) the differences between
the frequency dependence of fRG* and the PA self-energy are almost negligible w.r.t. the
large iνm contribution in the denominator, see Eq. (4.4).

In Fig. 4.16, the comparison of the self-energy is performed as a function of momentum.
In the real part of the self-energy (left panel), fRG* compares nicely to PA while there is
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Figure 4.16: Real and imaginary part of the self-energy at the first Matsubara frequency
as obtained by fRG* (red), the PA (grey), and dQMC (black), for U = 2 and 1/T = 5.

a difference of 7% at the Γ- and M-point w.r.t. dQMC. The differences in the imaginary
part of the self-energy between fRG* (red) and the PA (grey) are largest at momenta far
away from the Fermi surface (see right panel). Since it is the Green’s function and not the
self-energy that directly enters the calculation of observables, these momenta have little
influence. Moreover, the relative difference between the methods for the Green’s function
at the Γ and M points is less than 3‰. The physically more important momenta X and
M/2 show only 1% difference between fRG* and PA which can also be observed in the
inset of Fig. 4.15.

Interaction dependence

In the following, selected quantities for a range of interaction values between U = 0 and
U = 3 and 1/T = 5 are shown. From this data, one can obtain information on the
validity of the parquet approximation with increasing interaction. Also limitations due
to numerical complexity are discussed. The latter can be overcome by further numerical
optimizations. The technical parameters used in this study are summarized in Table 4.1.

First, the results for the leading AF susceptibility, χAF are presented as a function

Figure 4.17: Antiferromagnetic susceptibility χAF as a function of the bare interaction U ,
for 1/T = 5.
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U Nq Nk Nf+ N` NΣ-iter

0.0 12× 12 + 24 60× 60 4 1 1
0.5 12× 12 + 24 60× 60 4 16 5
1.0 16× 16 + 24 80× 80 4 16 5
1.5 16× 16 + 24 80× 80 4 16 5
2.0 16× 16 + 24 80× 80 6 24 5
2.5 16× 16 + 24 80× 80 6 28 5
3.0 16× 16 + 24 80× 80 6 28 5

Table 4.1: fRG* parameters used in Section 4.3.2. The additional 24 bosonic patching
points in Nq are distributed around k = (π, π). Nk is the number of points in the
momentum integration of the fermionic bubble. The frequency ranges of the vertex and
vertex asymptotics are proportional to the number of positive fermionic frequencies Nf+

of the low-frequency object with three dependencies. Due to computational limits, the
calculations for U > 2 are not converged w.r.t. the number of loops N` and self-energy
iterations NΣ-iter.

of the bare interaction strength U using different loop truncations of fRG*. In Fig. 4.17,
the 24`-fRG* scheme (red) is compared to the 1` (green), 1` extended by Katanin sub-
stitution (yellow) and 2` flow scheme (orange) with conventional self-energy flow. The
1` scheme strongly overestimates the peak at momentum transfer q = (π, π) leading to
an AF ordering at finite interaction strength in violation of the Mermin–Wagner theorem
[81]. With increasing loop order, the AF peak is reduced. At an inverse temperature of
1/T = 5, the differences in the susceptibility between the 2` result and fRG* become very
small. In the loop truncations between the 2` and 24`, multiloop oscillations around the
24` result take place which are not shown here but can be observed in Fig. 4.5. We note
that for U = 3 fRG* is not fully converged w.r.t. loop order and for this reason no results
for larger values of U are displayed. The convergence threshold we use is of 1% for χAF,
Im Σ(k = (π, 0), iν0/1) and Im Σ(k = (π/2, π/2), iν0/1).

Next, χAF as obtained by fRG* (red), PA (grey), and dQMC data (black) is shown in
Fig. 4.18 as a function of U , together with the relative difference of fRG* w.r.t. PA and
dQMC shown in the inset. Up to U = 1.5, fRG* and PA coincide with a relative difference
of ≤ 1% (indicated by the green shaded area) and at U = 2 the difference is still less than
2%. For larger values of U , the convergence of fRG* in frequencies and also in loop
numbers and self-energy iterations becomes numerically challenging and is not reached
yet leading to deviations from the PA solution. This can be seen also in the comparison
with the post-processed result (dashed line) shown in the upper left panel of Fig. 4.21,
which differs from the flowing one (solid line). Concerning the comparison between the PA
and the numerically exact dQMC data, the deviation grows monotonously with U due to
the increasingly importance of the fully two-particle irreducible diagrams. These diagrams
contribute to fourth order in U . A fitting of the relative difference yields the dependence
∆rel ' 0.003U4. A second source of the differences between the PA solution and dQMC
is given by the form-factor expansion of the two-particle vertex which accounts only for
the local s-wave part. Due to perfect nesting, the physics at half-filling is dominated by
magnetic fluctuations peaked at q = (π, π) and at small coupling, there is only a small
quantitative correction due to the form-factor truncation [18].

Also the correlation length ξ, reported in Fig. 4.19, shows a very good agreement for
small U . For the fit of ξ Eq. (4.6) was used. The number of momenta taken into account
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Figure 4.18: Antiferromagnetic susceptibility χAF as a function of U , as obtained by fRG*
(red), the PA (grey), and dQMC (black), for 1/T = 5. The inset shows the relative
difference of fRG* w.r.t. the benchmark methods.

are between 33 and 45 in fRG*, 69 and 161 in PA, and 57 in dQMC. The maximal standard
deviation error is 0.027 in fRG*, 0.025 in PA, and 0.028 in dQMC.

The subleading susceptibilities κ, χCDW, χSC,s and χSC,d are shown as a function of U
in Fig. 4.20. In fRG*, the s-wave susceptibilities κ, χCDW and χSC,s are obtained through
the flow while the d-wave susceptibility χSC,d has been calculated using the post-processing
procedure. It was explicitly checked that χCDW = χSC,s. This property follows from the
simultaneous SU(2) spin and charge (particle-hole) symmetry present in the 2D Hubbard
model with t′ = 0 at half-filling and its analytical proof can be found in Appendix D
of Ref. [38]. The quantitative agreement between fRG*, PA and dQMC results for the
subleading susceptibilities is again very good for small U . The relative difference of fRG*
w.r.t. the PA at U = 3 is 14% for κ, 12% for χCDW, and 2% for χSC,d, and w.r.t. dQMC

Figure 4.19: Correlation length ξ extracted from χM(q, iωl = 0) as a function of U as
obtained by fRG* (red), the PA (grey), and dQMC (black), for 1/T = 5. See text for the
details of the fitting procedure.
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Figure 4.20: Compressibility κ, charge density wave χCDW = χSC,s, and superconduct-
ing susceptibility χSC,d(iωl = 0) (determined by post-processing) as a function of U , as
obtained by fRG* (red), the PA (grey), and dQMC (black), for 1/T = 5.

18% for κ, 14% for χCDW, and 3% for χSC,d. The compressibility κ is also consistent with
Ref. [60]. The good agreement between fRG* and PA, taking into account only the s-wave
form factor, and the exact dQMC indicates that the d-wave vertices are very small. This
justifies justifies in retrospect the truncation to a single s-wave form factor.

In contrast to χAF, all subleading susceptibilities in Fig. 4.20 decrease with U as
they are screened by the growing AF fluctuations. For a more detailed analysis, the
flowing susceptibilities are shown in Fig. 4.21 alongside with post-processing results and

Figure 4.21: Antiferromagnetic susceptibility χAF, compressibility κ, charge density wave
χCDW = χSC,s (for t′ = 0 and half-filling) and d-wave superconducting susceptibility χSC

as a function of U , as obtained by fRG* flow (solid lines) and the post-processed result
(dashed lines), with and without vertex corrections, for 1/T = 5.
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the ‘uncorrelated’ susceptibilities

χAF,GG = χCDW,GG

=
1

2

∑
iν

Πph,0 0(q = (π, π), iωl = 0, iνm) (4.7a)

κGG = 2
∑
iν

Πph,0 0(q = (0, 0), iωl = 0, iνm) (4.7b)

χSC,d,GG =
1

2

∑
iν

Πpp,1 1(q = (0, 0), iωl = 0, iνm) , (4.7c)

where the form-factor index 0 stands for s-wave and 1 for d-wave. The latter are calculated
using the dressed Green’s functions and are therefore affected by the self-energy but not
by two-particle vertex corrections.

Comparing the post-processed susceptibilities to the ones obtained from the flow, pro-
vides an indication of the fRG* convergence w.r.t. momenta, frequencies, and loop number.
The difference in χAF for U > 2 shows that convergence in frequencies and loop numbers
is difficult to achieve for the fRG* calculations at these parameters. On the other hand,
the agreement is within numerical accuracy for the subleading susceptibilities. The ef-
fect of the vertex contribution can be studied comparing the post-processed susceptibility
with the ‘connected’ post-processed susceptibilities. For χAF, the connected part decreases
with U as self-energy effects lead to enhanced screening. However, the vertex contribution
overcompensates this effect, leading to overall increasing AF fluctuations. In the sublead-
ing susceptibilities χSC,s and κ the decreasing tendency in the connected part is further

Figure 4.22: Imaginary part of the self-energy at the nodal and antinodal point as a
function of U , as obtained by fRG* (red), the PA (grey), and dQMC (black), for 1/T = 5.
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enhanced by the vertex contributions. Finally, in χSC,d the connected part is enhanced
by vertex corrections but unlike in χAF these are not strong enough to induce an overall
increasing susceptibility.

Finally the comparison of the self-energy as obtained from the different methods is
performed in Fig. 4.22. For this purpose, the imaginary part at the nodal k = (π/2, π/2)
(left panels) and antinodal k = (π, 0) (right panels) point is shown as a function of U , for
1/T = 5. Only the first (upper panel) and second (lower panel) frequencies are studied.
For the comparison at other frequencies, it is referred to Fig. 4.15 for U = 2 and Fig. 4.13
for U = 0.5. The agreement between fRG* and the PA is almost perfect for small values of
U , with slightly increasing deviations for larger U . In particular, at U = 2, fRG* and PA
agree within 0, 2% for all shown quantities. For U = 3, the relative difference is only 3% for
the second Matsubara frequency (lower panels) while the deviations at the first Matsubara
frequency (upper panels) are more pronounced, reaching 5%. However,the dQMC results
at U = 3 for the first Matsubara frequency differ considerably from those of fRG* and PA.
Moreover, in dQMC the self-energy at k = (π, 0) yield quasi-identical results for the the
first and second Matsubara frequency. The crossing of these values indicates an important
physical process: the onset of the pseudogap opening [101, 103, 107] which is discussed in
more detail in Chapter 5. The neglected fully two-particle irreducible diagrams prevents
the opening of the pseudogap in PA and fRG* at U ≤ 3 where the difference between the
first and second Matsubara frequency is still 11% for PA and 9% for fRG*.

Results away from half-filling

The following comparison between fRG*, PA, and dQMC is performed for the next-nearest
neighbor hopping t′ = −0.2 and different chemical potentials µ = −0.35, −0.7, −1.4, −2,
again for the inverse temperature 1/T = 5 and interaction U = 2. In presence of a finite
doping and an additional next-nearest neighbor hopping t′, the physical behavior is much
richer and not exclusively driven by AF fluctuations any more. The channel coupling
is expected to increase and in particular superconducting d-wave components become
relevant. Therefore the form-factor truncation is extended to both s- and d-wave. The
other technical parameters used in this study are reported in Table 4.2.

δ Nq Nk Nf+ N` NΣ-iter

−0.012 18× 18 90× 90 2 22 5
0.087 18× 18 90× 90 2 26 5
0.301 18× 18 90× 90 2 26 5
0.484 18× 18 90× 90 2 26 5

Table 4.2: fRG* parameters used in Section 4.3.2. The calculations are converged w.r.t.
Nq, Nk, N` and NΣ-iter. As the calculations with an additional d-wave form factor are
numerically challenging, the frequency range was fixed to Nf+ = 2.

Due to the self-energy flow in fRG*, the Fermi-surface shifts. Therefore the filling
changes in the flow and the final filling cannot be predicted a priori unless some additional
mechanism is included [82] e.g. through a counterterm [85] or an adaptive scheme [48].
Here, the fixed chemical potential approach is chosen which is both consistent and trans-
parent and has no need for further numerical evaluations. The Fermi-surface shift is very
small close to half-filling and increases with doping δ = 1 − 〈n̂〉. In the representation of
the result in Figs. 4.23 and 4.24 the final doping is reported.
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Figure 4.23: Magnetic susceptibility χM(iωl = 0) as obtained by fRG* (red), the PA
(grey), and dQMC (black), for U = 2, 1/T = 5 and different values of the doping δ.

In Fig. 4.23, it can be observed how the structure of the magnetic susceptibility
χM(q, iωl = 0) in momentum space is changed with the doping. Other susceptibilities
like the compressibility κ, the charge density wave χCDW, and superconducting χSC (s-
and d-wave) susceptibility are shown in Fig. 4.24 as a function of doping. Note that
the system is no longer particle-hole symmetric and therefore χCDW and χSC,s are not
equivalent any more.

The magnetic susceptibility dominates for all dopings. It is maximal at the commensu-
rate antiferromagnetic wave vector (π, π) for µ = −0.35 and µ = −0.7 (upper two panels),
and at incommensurate wave vectors for larger values of the doping (lower two panels),
consistent with previous fRG findings [121, 120].

There is no large superconducting susceptibility or even pairing instability found with
any of these parameters as the temperature 1/T = 5 is still very high. Also charge
susceptibilities are still reduced w.r.t. to χM(q, iωl = 0). However, the (in-)commensurate
peak in χM(q, iωl = 0) decreases for increasing δ and the subleading susceptibilities gain
importance in relation to the (in-)commensurate AF fluctuations. For the maximal doping
considered in Fig. 4.23, the maximum of χM(q, iωl = 0) is only half as large as χSC,d.

From Refs. [30, 53, 57, 120] it can be understood, that while the AF susceptibility
gradually evolves from the beginning of the flow, the superconducting d-wave susceptibility
emerges only in proximity of the critical scale. It is followed that the AF fluctuations are
responsible for the d-wave pairing. The parameter regime presented here is far away
from any instability. Hence, for a finite doping a large and diverging d-wave pairing
susceptibility is expected only at lower temperatures. These temperatures cannot be
accessed in the moment due to the high computational cost of low-T calculations. The
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Figure 4.24: Compressibility κ, charge density wave χCDW, and superconducting suscepti-
bility χSC in s- and d-wave (both from the flow) as obtained by fRG* (red), the PA (grey),
and dQMC (black), for U = 2, 1/T = 5 and different values of the doping δ.

key challenge is to achieve an accurate parametrization of the frequency dependence of
the two-particle vertex.

The agreement of fRG* with the PA and the numerically exact dQMC data is very
good also away from half-filling. No relative differences are shown because a comparison at
different fillings is not meaningful. Moreover, due to the high numerical cost, the present
fRG* calculation including s- and d-wave form factors is not fully converged in frequencies.
This hardly affects the susceptibilities, while the quantitative accuracy of the self-energy
appears to be more sensitive.
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5. Pseudogap

In the following, the new flow scheme of the self-energy is applied to the 2D-Hubbard
model in order to study whether a pseudogap can be observed with fRG. In contrast to
the conventional self-energy flow scheme, the new one actually is able to open a gap in the
spectral function at the antinodal point. Therefore the introduction of the improved self-
energy flow scheme is essential for future investigations of the pseudogap and the physics
related to it.

5.1 Pseudogap in the Cuprates

The pseudogap is a feature of the hole-doped cuprates observed between the antiferro-
magnetic instability and the superconducting dome. Experimentally it can be observed
by ARPES [14, 138] and was confirmed by scanningtunneling spectroscopy (STM) [40].
One observes that the spectral function is gapped at the antinodal momentum k = (π, 0)
at zero frequency while the quasiparticle weight along the Brillouin-zone diagonal per-
sists. Recent experiments using angle-dependent magnetoresistance suggest that nodal
hole pockets constitute the Fermi surface [19]. The underlying mechanism is object of
many experimental [113, 111] and theoretical [115, 98] studies.

As a theoretical model for the cuprates, the 2D Hubbard model at small but finite
next-to-nearest neighbor hopping t′. In some studies, an additional next-to-next-nearest
neighbor hopping t′′ is equally included.

In hole-doped cuprates, the bare onsite interaction U is considered to be large. This
strong-coupling scenario was studied in many different methods a selection of those being:
DCA [51, 77, 27, 25, 28], cluster perturbation theory (CPT) [106], (cellular) CDMFT [71].
A comparison between TPSC, DCA, and CDMFT was performed in [115] including also
considerations about weak coupling. Also at weak to intermediate coupling, the momen-
tum selective gap opening could be observed in TPSC [123, 106, 32, 115], diagrammatic
Monte Carlo (DiagMC) [136]. On the other hand, no gap could be found in CDMFT at
weak coupling even at low temperatures. Only with increasing the interaction strength,
pseudogap opened [26].

At the electron doped side, the coupling is considered to be less strong. Explicit studies
of this case were performed with TPSC [70] and CPT [106].

Apart from these material driven calculations with realistic long-range hopping param-
eters t′ and t′′, the 2D Hubbard model at t′ = 0 is often studied in order to gain insight in
the performance of specific methods and general mechanisms for gap-opening tendencies.
In this model, the half-filled case is particularly special as it provides perfect nesting. It
was studied by TPSC [123] and through a comparison of DΓA, lattice QMC and VCA
[101] mostly at weak to intermediate coupling. In the latter it was also proposed that the
physics of spectral gap opening changes from Slater-like at weak to intermediate coupling
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to Heisenberg-like at strong coupling. In other works [123, 106, 72, 70, 32, 101, 136], the
nature of the gap opening mechanism was studied using different model parameters. In
summary, it was found that while at strong coupling the actual antiferromagnetic cor-
relation length is less important, the weak-coupling mechanism requires this correlation
to be long ranged. Even more generally, there are strong indications that the pseudogap
originates from the antiferromagnetic correlations. The fluctuation diagnostics [29] of the
self-energy through a channel selective application of the Schwinger-Dyson equation vali-
dates this theory. In the following study, the 2D Hubbard model at t′ = 0, half-filling and
weak coupling strength is considered.

In the fRG studies [139, 43, 41, 47, 58, 92, 117, 122], the pseudogap opening and
momentum dependence of the quasiparticle weight depends on the specific parameter
regime. Mostly a finite next-to-nearest neighbor hopping t′ was considered. In this case,
the gap could be observed at hole-doping, van Hove filling and only on the hot spots
(momentum at which the Fermi-surface crosses the squared Fermi-surface of t′ = 0 and
half-filling) or antinodal points of the Fermi surface [92, 43, 58]. Moving away from van
Hove filling or to other momenta on the Fermi-surface, the gap closes fastly. On the other
hand, the study by Vilardi [122] which is the most similar to our implementation, does not
find any gap opening or strong momentum dependence of the self-energy at any filling.

At electron doping, no reduction of the spectral weight was found [41] in direct contrast
to the hole-doped case [43].

Without next-to-nearest neighbor hopping there are contradicting results: the quasi-
particle weight is renormalized strongly at the antinodal and less at the nodal point accord-
ing to Ref. [139] but no strong gap opening tendencies were found in Refs. [47] and [117].
The latter also reports that in the less nested case with t′ 6= 0, there is no break-down of
the Fermi-liquid, but the anisotropy in the quasiparticle weight increases.

The inconsistency in the findings can be explained by the different implementations.
In particular, only in two cases a frequency dependent vertex was used [117, 122]. In
the other works, the vertex is considered frequency independent and a straightforward
application of the flow equations in the one-particle irreducible fRG scheme leads to a
frequency independent self-energy. As conclusions regarding the opening of a gap can only
be obtained from the frequency dependence of the self-energy, either the Wick-ordered fRG
[92] was used, or the flow equation of the self-energy was altered by the insertion of the
vertex flow [43, 41, 47, 58]. In all of these schemes, the flow equation is constructed by a
fermionic two-loop diagram. Another approach for frequency independent calculations is
the direct solution of a flow equation for the quasi-particle weight [139]. With frequency
dependence, the straightforward one-loop diagram for the self-energy flow was used [117,
122] in both cases leading to a gap-less Fermi-surface. Furthermore, all studies except
[122] are performed using an N -patch fRG. The former and this work are inspired by the
TUfRG spirit, although only few form factors were considered.

Here, the TUfRG approach is used because it can describe long-range antiferromagnetic
correlations enabling the weak-coupling mechanism for pseudogap physics. For a good
resolution of the sharp antiferromagnetic peak in the magnetic vertex in momentum space,
a fine transfer momentum grid is needed. This is provided in the TUfRG, where the
transfer grid can be refined ad libitum while the fermionic momentum dependencies are
described by fewer form factors. A previous study with full frequency dependence of
the vertex and truncation to s-wave formfactors and additional d-wave form factor for
the pairing channel did not find a significant momentum dependence in the quasiparticle
weight [122]. This work is the first to find pseudogap physics in the framework of TUfRG.
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It is observed that a gap can actually be found in TUfRG but this depends strongly on the
actual implementation of the self-energy flow. In contrast to the convention self-energy
flow, used also in Ref. [122], the SDE-inspired flow scheme leads to the observation of
a pseudogap. This is also supported by a post-processing analysis of the self-energy by
Vilardi [119]. While the flowing self-energy indicates Fermi liquid behaviour, he could
observe a gap at the hot spot calculating the SDE at the end of the flow.

In addition, this study confirms the importance of the magnetic channel for pseudogap
physics through the calculation of low-order ph-diagrams and their contribution to the
self-energy.

5.2 Pseudogap with different self-energy flow schemes

In the following, the fRG formalism is used to study the opening of a pseudogap in the 2D
Hubbard model at half-filling. While the study does not claim quantitative correctness, it
shows how a different flow scheme for the self-energy completely changes the qualitative
behavior.

The following calculations are therefore restricted to one or few loops in the multiloop
extension. Moreover, for the two-particle vertex only a single local s-wave form factor and
a small number of frequencies were considered, verifying that an additional d-wave form
factor as well as more frequencies do not qualitatively affect the results in the considered
parameter regime. Specifically, the low frequency object depending on all three frequencies
is restricted to 8 fermionic and 17 bosonic frequencies. The same numbers are used in the
high-frequency asymptotics of one of the fermionic frequencies for the remaining bosonic
and fermionic frequencies. The asymptotic of both fermionic frequencies is described by
513 bosonic frequencies. The transfer momentum parametrization follows the spirit of
Fig. 2.7, where in addition to 16×16 momentum patches distributed on an equally spaced
grid in the Brillouin zone, an finer 5× 5 grid around the AF peak at q = (π, π) was taken
into account. A more detailed convergence analysis is shown in Fig. 5.10.

In this qualitative study, it is convenient to use the interaction cutoff. As shown in
Appendix B, the result at every scale Λ can be translated to the solution of a specific bare
interaction U and the interaction dependence can be read off directly from one run. In
the following, results and discussions are always presented through the rescaled self-energy
Σ(Λ2Ũ) = ΛΣΛ(Ũ) and vertices Φ(Λ2Ũ) = Λ2ΦΛ(Ũ) for an arbitrary Ũ = 4. The flow
is stopped at ΦΛpc(Ũ) >= 103 and the pseudo-critical interaction is obtained through

Upc = Λ2
pcŨ .

In Sections 5.2.1 and 5.2.2, it is shown how the SDE-derivative approach favors the
pseudogap opening, while the conventional flow does not. Explanations for this difference
are finally given in Section 5.2.3.

5.2.1 Self-energy flow versus Schwinger-Dyson equation

In this section, results for the self-energy comparing the 1` flow from Eq. (3.1) w.r.t. the
derivative of the SDE in Eq. (3.5a) are shown. The flow of the two-particle vertices is
explicitly restricted to the 1`-truncation and also the multiloop corrections for the self-
energy flow are neglected. In particular it is shown that using the SDE-derivative the
long-range AF fluctuations lead to a gap opening.

For both schemes, the flow of the self-energy w.r.t. the flowing interaction U is displayed
in Fig. 5.1, for an inverse temperature of 1/T = 10. The left panel with the green data
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Figure 5.1: Self-energy as a function of the flowing interaction U for 1/T = 10. Comparison
of the nodal (solid lines) and antinodal directions (dashed lines) for the first two Matsubara
frequencies in the conventional 1` scheme (left panel) with the derivative of the SDE for the
self-energy (right panel and inset). The crossings in the latter indicate the gap opening,
occurring first in the antinodal and then in the nodal direction.

corresponds to the fRG calculation with the 1` flow of the self-energy and the right one
with the blue data to the scheme with the derivative of the SDE. The flow of the imaginary
part of the self-energy is shown at the nodal kn = (π/2, π/2) (circle symbols in the plot)
and antinodal kan = (π, 0) (diamond symbols) momentum point, both for the first (filled
symbols, full lines) and second (open symbols, dotted lines) Matsubara frequencies.

The last data point on the right defines the so-called pseudo-critical interaction
at which the flowing maximal component of all two-particle reducible vertices exceeds
Max Φr,Λpc(Ũ = 4) = 103. In the 2D Hubbard model at half-filling, the diverging channel
is Φph (compare also Section 4.3.2). In Fig. 5.2 this contribution to the vertex is plotted
as a function of U . On a qualitative level, there are no big differences between the two
schemes. The curves differ only at large U . In the conventional flow scheme, Φph grows

Figure 5.2: Maximal two-particle reducible channel Max |Φr| = |[Φph(q = (π, π), iωl =
0)]0 0| as a function of the flowing interaction U for 1/T = 10.
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first, leading to smaller pseudo-critical interaction U = 1.64 in the conventional flow than
in the SDE scheme U = 1.68. This is consistent as the larger self-energy in the SDE
scheme increases the screening of the ph-excitations. In the SDE-scheme, crossings of the
imaginary parts of the self-energy at the first and second Matsubara frequency can be
observed which are not present in the conventional self-energy flow. At sufficiently low
temperatures this is associated with a smooth, non-critical transition between a Fermi-
liquid and an insulating behavior [107]. From the zoom in the inset of the right panel
the bare interaction values of the crossing Un = 1.58 for the nodal point and Uan = 1.68
for the antinodal point can be read out. The transitions occur only close to the pseudo-
critical temperature and the order in which the pseudo gap opens first at the nodal and
then at the antinodal point is consistent with the physics of the pseudogap regime. In the
following the evolution and robustness of this feature in fRG is studied.

Restricted to the kinetic part, the model describes a Fermi-liquid of free quasi-particles.
With increasing interaction, the quasi-particles become more and more correlated and the
quasi-particle weight Z(k) ≤ 1 decreases in the coherent part of the spectral function

A(k, ν) = 2Z(k)
Γ(k, ν)

(ν + µ− εk)2 + Γ(k, ν)2
(5.1)

where ν is a real frequency and Γ(ν,k) ≡ Z(k) Im Σ(k, ν) is the scattering rate [73]. In
the limit of vanishing imaginary part of the self-energy, Z(k) describes the strength of
the delta-peak of the spectral function at momentum k [78]. If the spectral function
vanishes at the Fermi surface, a gap is opened. In two dimensions without true long range
interaction, the full gap with exactly zero spectral weight is associated with long range
ordering and is therefore only reached at zero temperature.

The quasiparticle weight [78]

Z(k) =
(

1− ∂ Re Σ(ν,k)

∂ν

∣∣∣
ν→0

)−1
, (5.2)

is related to the low real frequency behavior of the self-energy. Calculating in Matsub-
ara frequencies, the self-energy on real frequencies has to be extracted through analytic
continuation. Being an ill-posed problem, this is a hard and ambiguous task.

Avoiding analytic continuation, the distinction between gapped and Fermi-liquid solu-
tion is made directly using the imaginary part of the self-energy on Matsubara frequencies.
The latter is antisymmetric around zero and negative for positive Matsubara frequencies.
Note that the spacing between Matsubara frequencies is proportional to the temperature,
making a low frequency analysis only meaningful for small enough temperatures. In order
to illustrate the different behavior, the bare interaction U was fixed just below and just
above the crossing points from Fig. 5.1 and the imaginary part of the self-energy as a func-
tion of the Matsubara frequency was analyzed in Fig. 5.3. The data for U = 1.55 show a
Fermi-liquid behavior with a clear upturn towards zero at low frequencies in both the 1`-
scheme and the SDE-scheme. At the antinodal point in the SDE-scheme (blue diamonds),
the self-energy is already bent away from the characteristic low frequency Fermi-liquid
behaviour. The interaction value U = 1.6 is just above the one which opens a gap in
the SDE-scheme and a slight downturn at the first frequency in the antinodal point of
the SDE-scheme appears. The nodal point and the 1`-scheme remain in the Fermi-liquid
behaviour. At U = 1.65 the gap feature is even stronger. Note that for the observation of
a gap at the nodal point in the SDE-scheme, one would have to tune the bare interaction
very close to the pseudocritical scale.
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Figure 5.3: Self-energy as a function of the Matsubara frequency iνm for 1/T = 10 and
U = 1.55, U = 1.6, U = 1.65 and U = 1.675 just below and above the gap opening at the
nodal (circles) and antinodal (diamonds) points. The results obtained in the conventional
1` flow are shown in green, the ones from the derivative of the SDE in blue. Note that
for U = 1.65 the 1` flow is already diverged. For comparison, also the second-order
perturbation theory for U = 1.55 is shown in gray.

The onset of a pseudogap can hence be detected by the crossing of the imaginary parts
of the self-energy at the first and second Matsubara frequency (see also Refs. [101, 100,
107, 104]). Therefore, the difference between the latter is studied via

∂ν Im Σ(k, iνm)|iνm=iπT =
Im Σ(k, i3πT )− Im Σ(k, iπT )

2πT
, (5.3)

with ∂ν Im Σ(k, iνm) ≤ 0 corresponding to the Fermi-liquid-like regime and

Figure 5.4: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT as a function of the flowing effective
interaction U for 1/T = 10. The conventional 1` self-energy flow (green) is compared to
the one of the derivative of the SDE (blue). The latter crosses zero for both momentum
points indicating the opening of a gap, while the conventional flow exhibits a monotonous
behavior.
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Figure 5.5: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT as a function of the momentum on
the Fermi surface.

∂ν Im Σ(k, iνm) > 0 to a (pseudo-)gap at momentum k.

In Fig. 5.4, the difference between the two flow schemes is plotted for the same pa-
rameters but this time using ∂ν Im Σ(k, iνm)|iνm=iπT as a function of U . The zeros in this
quantity corresponds to the crossings of first and second Matsubara frequency in Fig. 5.1.

The momentum anisotropy, resulting in different gap opening interaction values for
different momenta, is studied in Fig. 5.5. When leaving the antinodal and approaching
the nodal momentum point ∂ν Im Σ(k, iνm) decreases monotonously. With increasing
bare interaction, the factor is increased such that with U = 1.6, it finally crosses the zero
value at the antinodal point. All together, the momentum dependence is very soft in the
conventional flow scheme and only slightly more pronounced around the antinodal point
in the SDE-flow scheme.

In Fig. 5.6, ∂ν Im Σ(k, iνm) is shown as a function of U and for different temperatures
where 1/T = 10 (dark red) is the temperature considered in Figs. 5.1 and 5.3 to 5.5 and
1/T = 18 (yellow) is the lowest temperature used. The behavior is qualitatively the same:
There is no gap in the 1`-scheme while in the SDE-scheme, first a pseudogap opens at the
antinodal point and shortly before the pseudo-critical interaction, the gap opens also at
the nodal point.

The difference of the self-energy shape is shown again in Fig. 5.7 for different tem-
peratures and at the temperature dependent pseudo-critical interaction Upc(T ). In the
conventional scheme (left panel), the self-energy tends towards small values at small fre-
quencies and the form and size changes only slightly with temperature. More temperature
dependence can be observed in the SDE-flow scheme (right panel). Note that because of
the higher pseudo-critical interaction, the highest temperature shows the largest imaginary
part of the self-energy.

From the zero-crossing of ∂ν Im Σ(k, iνm) in Fig. 5.6, the gap opening bare interaction
can be extracted. The dependence of the latter from the temperature is reported in
the left panel of Fig. 5.8. Dashed line and diamond symbols represent the gap opening
interaction at the antinodal point and full line and blue dots at the antinodal point.
Gray squares which lie just below the gap opening at the nodal point indicate the pseudo
critical interaction, at which the ph-channel exceeds the critical value and the flow has
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Figure 5.6: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT as a function of the flowing interaction
U for different temperatures. Using the conventional 1` self-energy flow (left panel), no
gap opening occurs for any temperature, while the SDE-flow scheme (right panel) yields
a gap opening. The pseudo-critical and gap opening interactions decrease with decreasing
T .

been stopped. The gap opening at the antinodal point is fairly stable. It approaches the
pseudo-critical interaction for smaller temperatures but it is bending such that it does
not cross the pseudo-critical line. On the other side, the nodal gap opening occurs just
below the pseudo-critical scale for all interactions. Considering that the exact position of
the gap opening interaction is still depending on the exact parametrization of the vertex
(compare Fig. 5.10), no final conclusion for the nodal gap opening can be deduced from
this data alone. However, as the parquet solution predicts a gap opening for the nodal
point at U = 2 and 1/T = 30 even for one local form factor [18], one expects also a gap at

Figure 5.7: Self-energy as a function of the Matsubara frequency iνm for selected temper-
atures at the pseudo-critical interaction Upc(T ). The left panel shows the results obtained
in the conventional 1` flow and the right one in the SDE-approach.
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Figure 5.8: Flowing effective interaction U at which the gap opens (left panel) and ph-
reducible vertex at k = (π, π) and iωl = 0 at the gap opening interaction (right panel) as
a function of the temperature. The antinodal point (blue diamonds) and the nodal one
(blue dots) are shown. The gap opening interaction of the latter is almost on top of the
AF-divergence (grey squares).

the nodal point for fully converged results in momentum, frequency and loop order and
suitable physical parameters.

In the right panel of Fig. 5.8 the maximum two-particle reducible channel is shown at
the interaction at which the gaps at the antinodal (blue diamonds) and the nodal (blue
dots) open. At half-filling considered here, this is always the ph-channel at k = (π, π)
and iωl = 0 denoted ΦAF due to its close relation to the antiferromagnetic vertex. The
effective interaction needed for the gap opening at the antinodal point is almost two orders
of magnitude higher than the bare interaction and increases for smaller temperatures. The

Figure 5.9: Magnetic susceptibility (left panel) and AF correlation length (right panel) at
different temperatures and the bare interaction at which the gap at the antinodal point
opens Uan(T ). For lower temperatures, a large AF peak and longer correlations are needed
to open the pseudogap.

71



Figure 5.10: Flowing effective interaction U at which the gap opens as a function of
the number of momenta kx (with ky = kx) accounted for in the two-particle vertex, for
1/T = 10 (left panel) and 1/T = 18 (right panel). The gap at the antinodal point (blue
diamonds) always opens before the AF-divergence (grey squares) sets in, while the gap at
the nodal point (blue dots) vanishes with increasing resolution of the Brillouin-zone. All
other calculations are performed for kx = 16 (light blue line).

same conclusion is obtained from the peak of the magnetic susceptibility shown in the left
panel of Fig. 5.9. For this comparison, the calculations were performed at the tempera-
ture T and with the interaction Uan(T ) which opens the antinodal gap and depends on
temperature according to Fig. 5.8. A strong AF peak can be observed for all tempera-
tures and for lower temperatures, the strength of the AF susceptibility is much larger at
the gap opening. Also the correlation length obtained through fitting of Eq. (4.6) on χM

(also here within the distance of 0.3π from M) is shown in the right panel of Fig. 5.9.
Also ξ increases at the gap opening interaction for lower temperatures. It follows that the
gap opening mechanism is not only related to the strength and correlation length of the
antiferromagnetic channel but, much more subtle.

Finally, the robustness of the pseudogap w.r.t. the technical parameters is discussed.
While no qualitative difference is observed including more frequencies or form factors, the
convergence in terms of momentum points is more subtle as shown in Fig. 5.10. The
results shown previously are always calculated with 16 × 16 bosonic momentum patches
distributed on an equally spaced grid over the entire Brillouin-zone. In addition, a finer
patching around the antiferromagnetic peak at q = (π, π) is applied analogously to Fig. 2.7.
This configuration is indicated by the light blue vertical line in Fig. 5.10. For this study,
first the number of bosonic patching points is increased, leading at the same time to a
shrinking fine patching region. At 1/T = 10 it seems that with more patching points the
gap opening at the nodal point shifts to higher scales than the pseudo-critical scale. But a
more extended refinement (subscript f), including 15× 15 patching points and covering a
3×3 larger area, brings back the gap opening. The reason therefore is that the peak is still
quite large at 1/T = 10 but the region covered by fine patching decreases with increasing
kx such that it becomes smaller than the peak width. Also the value of interaction, at
which the gap opens at the antinodal point, varies with the patching. Still, the difference
is within a few percent and remains distant to the pseudo-critical interaction. While at
1/T = 10, with single refinement, the scale even decreases with the patch number, it has
a monotonous behaviour at 1/T = 18. At these low temperatures, the AF peak is so thin
that the fine patching region still covers all of it even with kx = 24.
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Therefore, the question whether in the low-temperature regime the gap opening at the
nodal point is stable would require a more refined convergence analysis.

5.2.2 Towards full multiloop fRG

In the 1` truncation, the conventional flow of the self-energy and the SDE-flow scheme
differ in two main aspects. The first consists of the form factor truncation explained in
Chapter 3 and reconsidered in Section 5.2.3 below and the second is the loop truncation of
the flow equations. Extending the calculation to more loops, the same qualitative picture
of the gap opening suggests that the loop truncation is not the main reason for the self-
energy flow scheme difference. Another reason to study the multiloop extension is the
decreasing pseudo-critical interaction giving in principal more space to the pseudogap to
develop. At least for the parameter range considered here, a larger pseudogap region is
not confirmed.

The precise form of the multiloop equations is reported in Chapter 2. In the SDE-flow
for the self-energy, both the 1`-equation and multiloop corrections of the self-energy are
replaced by Eq. (3.5a) according to the scheme presented in Chapter 3. The loop order N`

is specified for every calculation and the self-energy iterations are neglected (NΣ-iter = 0)
as they lead only to quantitative corrections. This means that the Katanin-substitution in
the SDE-flow scheme is always performed with the conventional 1`-flow for the self-energy.

Also in the multiloop extension of the flow equations, the scale at which the interaction
flow diverges can be translated into a pseudo-critical interaction. The proof for this can be
found in Appendix B. This allows to plot ∂ν Im Σ(k, iνm) from one single run as a function
of the bare interaction.

Figure 5.11: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT as a function of the flowing interaction
U , for 1/T = 10 and different loop orders `, both in the conventional fRG (left panel) and
the SDE-flow scheme (right panel). In the conventional fRG no zero crossing is observed
but there is a tendency towards gap opening very close to the pseudo-critical temperature.
In the SDE-approach, the gap opening at the antinodal point is observed also at higher
loop order, while the gap at the nodal point vanishes with increasing `. The gap opening
scales and the onset of the AF divergence are directly compared in Fig. 5.12 including
higher loop orders.
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Figure 5.12: Flowing interaction U at which the gap opens (left panel) and ph-reducible
vertex at k = (π, π) and iωl = 0 at the gap opening interaction (right panel) as a function of
the loop order `, for 1/T = 10. The gap opening at the antinodal point (blue diamonds)
always occurs before the AF divergence (grey squares), while the gap opening at the
nodal point (blue dots) disappears into the pseudo-ordered phase at higher loop order.
The pseudo-critical interaction shows the characteristic oscillatory behavior at high loop
order.

In Fig. 5.11, ∂ν Im Σ(k, iνm) is shown as a function of the flowing interaction U , at
fixed temperature T = 1/10 and different loop orders `. The pseudo-critical scale increases
with loop order in both self-energy flow schemes in accordance to the results in Chapter 4.
While in the conventional fRG no gap opens at any loop order, in the SDE-flow scheme,
the gap opening at the antinodal point persists and is shifted to higher interaction values
with higher loop order. In the SDE scheme and at 3`, the gap at the nodal point disap-
pears in the pseudo-ordered regime and does not recover at higher loop orders. A direct
comparison of the gap opening interaction and the onset of the AF divergence is shown
in the left panel of Fig. 5.12, as a function of the loop order. The trend towards higher
pseudo-critical interactions can again be observed already. Also higher loop orders are
displayed, showing the characteristic oscillatory behavior of the loop convergence [110].
Also the expectation that larger pseudo-critical interactions would leave more space for
the pseudogap to develop, can be disproved for these parameters. The gap at the nodal
point vanishes at higher loop order, while at the antinodal point sets in at a rather small
but constant distance from the pseudo-critical line. The fact that the gap opening at the
antinodal point persists shows that the gap opening tendency is not loop-order dependent.
Therefore the only remaining difference between the 1` and SDE scheme is the form-factor
truncation. In the right panel of Fig. 5.12, the maximal two-particle reducible channel at
the gap-opening interaction is shown. There is a jump between 2` and 3`, while for higher
loop orders the strength remains virtually constant.

The gap-opening interaction was also studied directly in PA in Ref. [18] and does not
contradict the fRG findings in this work. In PA, a pseudogap occurs at 1/T = 26 and a
full gap at 1/T = 30 for the only studied bare interaction U = 2. These temperatures
are presently difficult to access within a multiloop fRG calculation, due to the required
refinement of the momentum and frequency dependence of the two-particle vertex and the
high number of loop orders needed for convergence. From Fig. 5.8 it can be deduced that
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the pseudo-critical and the gap opening interactions decrease with temperatures and from
Fig. 5.12 that the latter increases with loop order. The combination of the two effects
should lead to the pseudogap opening interactions in parquet.

5.2.3 Analysis of approximation in TUfRG

In the following, the effect of the form factor truncation on the opening of a pseudogap
is studied. The difference of the conventional self-energy flow and the SDE-flow in the
TUfRG was already discussed in Chapter 3. Those insights are used also here together
with a very simple analysis on the gap opening mechanism.

As a first step, it is argued that the ph-channel drives the gap opening. Due to the
channel separation in fRG, the contributions of the other channels can be easily suppressed.
The result is shown in Fig. 5.13. Setting the particle-particle channel to zero (orange) or
setting both the direct particle-hole and particle-particle channel to zero does not open a
gap in the 1` scheme and preserves the gap at the antinodal point in the SDE scheme. If
only the ph-channel is taken into account, no gap occurs at the nodal point. However, it
was argued in Section 5.2.1 that the gap opening at this momentum is unstable w.r.t. the
momentum patching points and the loop order.

The role of the ph-channel Φph for the gap opening is analyzed in the following simpli-
fied study. For a more detailed discussion, see also Refs. [123, 1] and [84]. At half-filling,
the ph-channel, which is closely related to the magnetic channel according to Eq. (2.58),
dominates the physics. In a finite loop flow it diverges at a pseudo-critical interaction. In

Figure 5.13: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT as a function of the flowing interaction
U for 1/T = 10 and different channel approximations, both with the conventional fRG
(left panel) and the SDE-approach for the self-energy flow (right panel). Neglecting the
pp- and ph-channels does not qualitatively affect the appearance of the gap opening at
the antinodal point. At the nodal point, the gap opening is unstable and depends on the
parametrization.
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this limit, the contribution

Σph(k, iνm) = −
∑

k′iνm′

∑
n

f∗n(k)f0(k)GΛ(k′, iνm′)

×
∑
iνm′′

[
ΦΛ
ph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)Π

Λ
ph(k′ − k, iωm′−m, iνm′′)U

]
n 0

(5.4)

dominates over all others in Eq. (3.3). Close to the divergence, Φph exhibits a very strong
s-wave component such that other form-factor contributions can be neglected, yielding

Σph(k, iνm) ≈−
∑

k′iνm′

G(k′, iνm′)U

×
∑
iνm′′

[
Φph(k′ − k, iωm′−m, iνm+bm′−m

2
c, iνm′′)

]
0 0

[
Πph(k′ − k, iωm′−m, iνm′′)

]
0 0
.

(5.5)

This equation can be written in a more compact form

Σph(k, iνm) ≈−
∑

k′iνm′

[[
K2,ph(k′ − k, iωm′−m, iνm+bm′−m

2
c)
]

0
+K1,ph(k′ − k, iωm′−m)

]
G(k′, iνm′) , (5.6)

using the high frequency asymptotics of the two-particle vertex [129]. Here, K1,ph which
is proportional to the crossed-particle hole or to the (negative) magnetic susceptibility,
yields the strongest contribution and is further approximated by

K1,ph(k′ − k, iωm′−m) ≈ δk′−k=(π,π)δm,m′K1,ph((π, π), 0)

≈ −2δk′−k=(π,π)δm,m′χAF , (5.7)

leading to the following expression for the self-energy

Σph(k, iνm) ≈ 2χAFG(k + (π, π), iνm) ≈ 2χAF
1

iνm + εk+(π,π)
. (5.8)

For momenta on the Fermi surface εk+(π,π) = 0, the ph-contribution to the imaginary
part of the self-energy is −2χAF /(πT ) for the first and −2χAF /(3πT ) for the second Mat-
subara frequency. For all these momenta, this approximation leads to ∂ν Im Σ(k, iνm) =
2χAF /(3π

2T 2) > 0. For comparison, Im Σ(k, iνm = iπT ) = −2πTχAF /(π
2T 2 + 16) and

Im Σ(k, iνm = i3πT ) = −6πTχAF /(9π
2T 2 + 16) is estimated for the momenta k = (0, 0)

and k = (π, π), with ε(0,0) = −ε(π,π) = −4. In this simplified analysis, ∂ν Im Σ at these

momenta is negative for T > 4√
3π

= 0.735. At higher temperatures, the qualitative form of

the self-energy differs strongly for momenta on and far away from the Fermi surface already
in this very simplified analysis. Note that this analysis does not explain the anisotropy
between momenta on the Fermi surface like the nodal and antinodal point.

The self-energy in Eq. (5.8) basically coincides with the phenomenological ansatz of
Eq. (7) in Yang, Rice and Zhang [137]. This indicates that the phenomenology arising
from the numerical study here may indeed be useful to explain pseudogap features in
correlated materials like high-temperature superconductors.
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Figure 5.14: Comparison of lowest order diagrams describing the contribution of the ph-
channel to the self-energy, in the SDE-approach (above), and in the conventional 1`-
approach (below). The result up to 4th (7th) order is displayed in the left (right) panel
of Fig. 5.15, while the gap opening as a function of order in U is provided in Fig. 5.16.

This explanation is supported by the following low order analysis of selected diagrams.
Those contributing to the self-energy in the SDE scheme through the ph-channel (green
boxes in Fig. 3.2) are confronted to the ones of the same topology in the conventional
self-energy flow (green boxes in Fig. 3.3). The latter are in part badly approximated
because of the form-factor truncation. The diagrams are summarized in Fig. 5.14 up to
forth order and are weighted such that the total weight of diagrams belonging to the same
topology is the same as in the SDE-scheme. Higher orders are straightforward to obtain.
The calculation of these diagrams can be performed for U = 1 and the dependency on the

Figure 5.15: ∂ν Im Σ(k, iνm) evaluated at iνm = iπT resulting from the contributions of
the ph-channel up to the 4th and 7th order in U , as illustrated in Fig. 5.14. While at the
second order no gap opens, starting from the 3rd both approaches lead to a gap opening at
the nodal and antinodal point at some large value of U (not shown). At the 4th order, the
SDE-approach opens a gap at the antinodal point first. At the 7th order, one can already
see that both approaches open a gap first at the antinodal point and later at the nodal
one. In SDE-approach both gaps open before the first gap opening in the conventional 1`
flow. For a study of the gap opening as a function of order in U see Fig. 5.16.
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Figure 5.16: Gap opening as a function of order in U as extracted from ∂ν Im Σ(k, iνm)
evaluated at iνm = iπT , resulting from the contributions of the ph-channel only. With
increasing order, the gap opening occurs at lower values of U . The gap at the antinodal
point in the SDE-approach opens first and then the gap at the nodal point, consistently
with the full calculation in Fig. 5.4. The gaps in the 1`-approach open even later. The
pseudo-critical interaction cannot be shown in this approach as a divergence of the vertex
occurs only at infinite order.

interaction is then recovered by the multiplication of the correct order in U .

In Fig. 5.15, ∂ν Im Σ(k, iνm) is shown as a function of U summing the diagrams reported
in Fig. 5.14 up to 4th (left panel) and 7th order (right panel). The shape resembles the
one of the full fRG calculation in Fig. 5.4 with an initial downturn and a rapid upturn
at high interactions. Due to the separated calculation of the different orders in U , the
downturn of ∂ν Im Σ(k, iνm) can be related to the second order diagram. The higher order
contributions act against the downturn such that ∂ν Im Σ(k, iνm) always crosses the zero
value.

The diagrams with the correct form-factor approximation show the strongest upturn
tendency. Further, the antinodal point has more tendency to open a gap than the nodal
point. Therefore at 4th order, one can observe the zero crossing in the SDE-scheme at
the antinodal point at U = 4.7, while all other lines cross only at higher interaction U .
Going to higher orders, the zero crossing shifts to smaller interactions. At 7th order the
gap is first opened in the SDE-scheme starting from the antinodal and then at the nodal
point. In the 1`-scheme, where the correct form-factor approximation is mixed with less
favorable ones, the gap is opened at higher U , again first at the antinodal and then at
the nodal point. The gap opening interaction according to the simplified 4th to 7th order
analysis is reported in Fig. 5.16. Note that the gap opening here sets in at much higher
interactions because in fRG diagrams are summed up to infinite order. Also, no pseudo-
critical interaction can be obtained at any finite order in perturbation theory. Despite
these limitations, the low interaction order analysis illustrates the order in which the gap
opening occurs surprisingly well.

This analysis also explains why some fRG studies find strongly reduced quasi-particle
weight or even a pseudogap and others do not. Ref. [117, 122] used the conventional flow
for the self-energy for which it is more difficult to open a gap. As it can be expected from
the explanation above, the post-processing application of the SDE in Ref. [119] found a
gap feature. Reduced quasi-particle weight could also found in Ref. [47, 58], where the
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vertex flow is reinserted in the self-energy flow equation in order to recover a frequency
dependent self-energy from a static vertex. This leads to an equation with three fermionic
Green’s functions, formally very similar to the SDE. Also in the Wick-ordered flow of the
self-energy applied in [92], a nested fermionic loop appears reminding of the structure of
the SDE. However, for future quantitative studies of the pseudogap, the here presented
dynamic multiloop fRG approach should be applied with SDE-like flow equation for the
self-energy.
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6. Conclusion and Outlook

In this work, the fRG has been developed from a qualitative to a quantitative method.
The first important step for the quantitative improvement has been the realization of an
efficient parametrization of the vertex simultaneously in frequencies and momenta. In
practice, this has been realized by a combination of the high-frequency asymptotics and
the TUfRG. Time consuming parts of the code have been optimized, in particular the
calculation of the fermionic excitation and the projection from one channel to another.
The freed capacities have been used to include the self-energy flow equation as well as its
feedback to the vertices. At this point, a convergence study on the 2D Hubbard model
has been performed leading to the observation that, at t′ = 0 and half-filling, the results
converge fast in frequencies and sufficiently fast in momenta. From the study of different
common approximations, it has been concluded that the full fRG approach with converged
vertex parametrization and feedback of the self-energy leads to the lowest pseudo-critical
temperatures.

Next, the multiloop extension has been implemented both for the vertices and self-
energy. The evolution of intermediate and final results w.r.t. to the loop order has been
studied finding convergence to a flow scheme independent result and susceptibilities sat-
isfying exact relations. Concerning the self-energy, a new flow equation was introduced
in order to fulfil the corresponding exact relation, namely the SDE, in TUfRG. It allows
to obtain convergent results with a finite number of form factors, unlike the conventional
flow equation.

With these tools, a benchmark study was performed in which fRG was compared to
PA and dQMC. With the new flow equation for the self-energy, deviations between the
antiferromagnetic susceptibility obtained by PA and fRG were below 1% up to an inter-
action strength U = 1.5 (for t′ = 0 and half-filling). The increasing difference between
these formally equivalent methods for larger U is a consequence of different technical im-
plementation details which become more prominent near critical parameters. Considering
the comparison of several susceptibilities and of the self-energy, fRG and PA compare also
very well with dQMC which was verified at half-filling and at finite doping for interac-
tion strengths below U ≤ 3. The deviation between PA and dQMC scaling as O

[
U4
]

is
predicted by the parquet approximation V2PIR(k1, k2, k3) ≈ U .

Besides the validation of the presented implementation and a proof of principle of
convergence towards other methods, the presented study provides a guideline for the pa-
rameter setup in future realistic calculations. When setting up a new system, convergence
tests for the parametrization in frequencies, momenta and form-factors as well as the
number of loops and self-energy iterations should be performed. A rough estimate of
those can be deduced from the study here. For the calculation of spectral properties, the
SDE-like flow scheme for the self-energy above all when spectral properties is essential.
However, quantitative model studies are not always in need and sometimes a perfect vertex
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parametrization and convergence in loops is numerically out of reach. This is in particular
the case for more complex systems involving additional quantum numbers or for more
challenging parameter regimes at lower temperatures. For instance, a simple instability
study could be restricted to the 1`-approach with conventional self-energy flow. The re-
sulting pseudo-critical scale should however be presented with care as the here presented
results indicate that it is further suppressed by the full multiloop extension.

On top of this successful technical development, this work also addresses fundamental
physical questions. Among those is the improved fulfilment of the Mermin-Wagner theorem
[81] which states that there is no spontaneous symmetry breaking at finite temperature in
a two-dimensional system without long-range interactions. First of all, the implementation
of the full frequency dependence and feedback of the self-energy leads to a smaller pseudo-
critical scale than any approximation without one of those features. Secondly, this scale
decreases even further in the multiloop implementation. In principle it should be possible
to obtain vanishing pseudo-critical scales in the scheme with converged parametrization
and in the infinite multiloop as well as self-energy iteration limit as the PA obeys this
theorem. The numerical verification for the latter is discussed in Ref. [18] in which the
inverse AF susceptibility deviates from its linear Curie-Weiss behavior and bends towards a
vanishing pseudo-critical scale. This study is currently not feasible in fRG as the number
of bosonic patches needed for the correct description of the long-range AF fluctuations
increase rapidly for lower temperatures.

Another vividly discussed physical phenomenon is the pseudogap which is observed
experimentally in high-Tc superconductors and which could be found with several meth-
ods in the 2D Hubbard model with finite next-nearest neighbor hopping t′ and doping.
While contradicting predictions concerning gap opening obtained through the fRG exist,
the presented comparison of the conventional with the SDE-inspired flow revealed the
strong influence of the actual vertex parametrization in combination with the self-energy
scheme. The discrepancy between the finding of previous implementations could be ex-
plained underlining the crucial importance of the new self-energy flow for the prediction of
spectral properties. In conclusion, fRG with the proposed SDE self-energy scheme allows
for a gap opening even at t′ = 0 and half-filling while no gap opening was observed in the
conventional scheme. This difference was analysed using diagrammatic arguments lead-
ing also to the confirmation that long-range AF correlations are indeed the mechanism
responsible for the gap opening [106, 101].

The benchmark and qualitative pseudogap study provide the foundation for many pos-
sible applications and improvements. The efficient implementation of the multiloop fRG
with a smart vertex parametrization and feedback of the self-energy satisfying the SDE
can be easily applied to the Hubbard model with finite t′ and any doping. While in Sec-
tion 4.3.2 the benchmark away from half-filling was performed at rather high temperatures,
the qualitative physical aspect becomes more exciting in the regime of strong correlations
e.g. at lower temperatures. Quantitative predictions become increasingly difficult due to
the required parameter resolution of the vertex and multiloop order but the renormalizing
nature of this methods allows to study trends and relations between different physical
observables. For instance, the influence of the pseudogap opening on the superconducting
instability (connecting to Refs. [113, 126, 111, 26]) can be studied. While leaving the rest
of the flow scheme unaltered, the pseudogap opening tendency can be suppressed by the
use of the conventional self-energy flow equation and allowed by the SDE-inspired one. If
the pseudogap has an effect on the superconducting instability, the latter should come out
differently depending on which scheme is used.
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Further, the fRG implementation can extended to include non-local bare interactions.
When the next-nearest neighbor interaction dominates over the local one, charge ordering
is expected in the 2D Hubbard model at t′ = 0 and half-filling. This improved fRG scheme
is the perfect tool to complement the FLEX study in Ref. [86] on the competition between
the spin and charge instabilities in the intermediate regime or at finite t′ and doping.

As the fRG is intrinsically not restricted to geometry or complexity of the systems, it is
possible to apply it to all kind of models e.g. the triangular lattice, multi-orbital systems
[46, 49] and spin-orbit coupling [21].

In a second step, the implementation can be further optimized or MPI (Message Pass-
ing Interface) parallelized. This is in particular important for quantitative results in
strongly correlated regimes. For instance, for the proof of the Mermin-Wagner theorem,
the solution should be obtained for temperatures approaching zero. However, the spacing
between the Matsubara frequencies decreases linearly with the temperature and therefore
the window for the low-frequency vertex should include many more frequency points. In
addition, the AF-peak becomes stronger and narrower for smaller temperatures. As the
exponentially growing AF correlation length is the key ingredient for the verification of
the Mermin-Wagner theorem [123], a good resolution of this peak is required. This is only
possible by increasing the size of the vertex elements calculated and stored and therefore
requires more computational power. Also the improvement from qualitative to quantita-
tive predictions on the exact opening scale of the pseudogap is only possible with further
numerical optimizations.

Finally, the combination of different methods allows to access a larger parameter
regime, speed up calculations and overcome conceptual and technical difficulties. One
promising approach to combine the strength of DMFT and fRG is the so-called DMF2RG
[112, 120]. It is recalled that DMFT takes into account only local excitations. In DMF2RG,
the DMFT solution is taken as a starting point and fRG is used in order to include non-
local excitations. This allows to solve the model even for stronger interactions. While
this methods appears to be very similar to the DΓA approach, there is no need for the
use of the two-particle irreducible vertex. Therefore, non-physical vertex divergences [102,
100, 94, 124] can be avoided. The modular setup of this code allows for a straightfor-
ward adaption for an externally produced initial vertex and the implementation of the
DMFT-conserving flow regulator.

In the overall search for a method which can be both accurate and applicable on general
model systems, the fRG has become a promising candidate also through the developments
developed and shown in this work.
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A. Translation of mfRG equations
from diagrammatic to physical
channels

In the following, the translation of the mfRG equations from the diagrammatic chan-
nels r = {ph, ph, pp} to the physical ones η = {D,M,SC} is performed. The shifting of
frequencies and projection in momentum and form factor space is indicated by the projec-
tion operation P̂r→r′ for the translation from channel r to r′. For better readability, the
Λ-dependence is omitted in this derivation.

As a starting point, the form-factor projected 1`-equations in the physical channels
from Eq. (2.16) are reported

Φ̇ph(q, iνm, iνm′) =
∑
iνm′′

Π̇ph(q, iνm′′)
[
2Vph(q, iνm, iνm′′)Vph(q, iνm′′ , iνm′)

−Vph(q, iνm, iνm′′)Vph(q, iνm′′ , iνm′)

−Vph(q, iνm, iνm′′)Vph(q, iνm′′ , iνm′)
]

(A.1a)

Φ̇ph(q, iνm, iνm′) = −
∑
iνm′′

Vph(q, iνm, iνm′′)Π̇ph(q, iνm′′)Vph(q, iνm′′ , iνm′) (A.1b)

Φ̇pp(q, iνm, iνm′) = −
∑
iνm′′

Vpp(q, iνm, iνm′′)Π̇pp(q, iνm′′)Vpp(q, iνm′′ , iνm′) , (A.1c)

where

Vr(q, iνm, iνm′) = U + Φr(q, iνm, iνm′) +
∑
r′

P̂r′→r
[
Φr′
]
(q, iνm, iνm′) (A.2)

is the full vertex projected to the channel r. Π̇r denotes the diagrammatic fermionic
excitation bubble proportional to GS + SG for pure 1`-fRG defined in Eq. (2.17) or
GĠ + ĠG when the Katanin substitution is applied corresponding to the Λ-derivative of
Eq. (2.26).
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The translation to the physical channels is defined via

VD(q, iνm, iνm′) =Vph,↑↑↑↑(q, iνm, iνm′) + Vph,↑↑↓↓(q, iνm, iνm′)

=2Vph(q, iνm, iνm′)−Vph(q, iνm, iνm′) (A.3a)

VM(q, iνm, iνm′) =Vph,↑↑↑↑(q, iνm, iνm′)−Vph,↑↑↓↓(q, iνm, iνm′)

=−Vph(q, iνm, iνm′) (A.3b)

VSC(q, iνm, iνm′) =Vpp,↑↑↓↓(q, iνm, iνm′)

=Vpp(q, iνm, iνm′) (A.3c)

where the SU(2)-spin symmetry was used [94]. In the back transformation

Vph(q, iνm, iνm′) =
1

2
(VD(q, iνm, iνm′)−VM(q, iνm, iνm′)) (A.4a)

Vph(q, iνm, iνm′) =−VM(q, iνm, iνm′) (A.4b)

Vpp(q, iνm, iνm′) =VSC(q, iνm, iνm′) , (A.4c)

the spin-dependence was omitted with Vr denoting the ↑↑↓↓-contribution of the diagram-
matic channel r. The two-particle reducible channels are translated analogously via

ΦD(q, iνm, iνm′) =2Φph(q, iνm, iνm′)−Φph(q, iνm, iνm′) (A.5a)

ΦM(q, iνm, iνm′) =−Φph(q, iνm, iνm′) (A.5b)

ΦSC(q, iνm, iνm′) =Φpp(q, iνm, iνm′) (A.5c)

and its corresponding back transformation. Substituting Eq. (A.4) in Eq. (A.1) and using
this in the scale derivative of Eq. (A.5), the 1`-flow equations in the physical channels are
obtained

Φ̇D(q, iνm, iνm′) =−
∑
iνm′′

VD(q, iνm, iνm′′)Π̇D(q, iνm′′)VD(q, iνm′′ , iνm′) (A.6a)

Φ̇M(q, iνm, iνm′) =−
∑
iνm′′

VM(q, iνm, iνm′′)Π̇M (q, iνm′′)VM(q, iνm′′ , iνm′) (A.6b)

Φ̇SC(q, iνm, iνm′) =−
∑
iνm′′

VSC(q, iνm, iνm′′)Π̇SC(q, iνm′′)VSC(q, iνm′′ , iνm′) , (A.6c)

where the bubbles in the physical channels are defined through the ones in the diagram-
matic channels according to Eq. (2.19).

In order to obtain the full vertices directly from the two-particle reducible vertices in
the channel description without passing through the diagrammatic channels, Eq. (A.2) is
first substituted in Eq. (A.3) leading e.g. for the density vertex to Eq. (A.7a). Then the
Φr in the diagrammatic channels are replaced with the back transformation of Eq. (A.5)
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giving

VD(q, iνm, iν
′
m) =U + 2Φph(q, iνm, iνm′) + 2P̂ph→ph

[
Φph

]
(q, iνm, iνm′)

+ 2P̂pp→ph
[
Φpp

]
(q, iνm, iνm′)− P̂ph→ph

[
Φph

]
(q, iνm, iνm′)

−Φph(q, iνm, iνm′)− P̂pp→ph
[
Φpp

]
(q, iνm, iνm′) (A.7a)

=U + ΦD(q, iνm, iνm′)−
1

2
P̂ph→ph

[
ΦD

]
(q, iνm, iνm′)

− 2P̂ph→ph
[
ΦM

]
(q, iνm, iνm′) +

1

2
P̂ph→ph

[
ΦM

]
(q, iνm, iνm′)

+ 2P̂pp→ph
[
ΦSC

]
(q, iνm, iνm′)− P̂pp→ph

[
ΦSC

]
(q, iνm, iνm′) (A.7b)

VM(q, iνm, iνm′) =− U − 1

2
P̂ph→ph

[
ΦD

]
(q, iνm, iνm′) +

1

2
P̂ph→ph

[
Φm

]
(q, iνm, iνm′)

+ ΦM(q, iνm, iνm′)− P̂pp→ph
[
ΦSC

]
(q, iνm, iνm′) (A.7c)

VSC(q, iνm, iνm′) =U +
1

2
P̂ph→pp

[
ΦD

]
(q, iνm, iνm′)−

1

2
P̂ph→pp

[
ΦM

]
(q, iνm, iνm′)

− P̂ph→pp
[
ΦM

]
(q, iνm, iνm′) + ΦSC(q, iνm, iνm′) . (A.7d)

While the flow equations are more compact in the physical channels (compare Eq. (A.1))
than in the diagrammatic channels (compare Eq. (A.5)), the construction of the full ver-
tex requires more projections in the physical channels (compare Eq. (A.7)) than in the
diagrammatic channels (compare Eq. (A.2)). These projections are numerically expensive
and therefore calculations should only be performed in the physical channels if further
reasons exist.

We now turn to the left (L) and right (R) mfRG equations. Note that the 2`-flow equa-
tions have the same structure as the latter. Further, we report only the L-mfRG equations
as the R-mfRG equations differ only in the position of the two-particle irreducible and the
full vertex. The 2`-flow equations in the diagrammatic notation are defined in Eqs. (2.23)
and (2.24) and the two-particle irreducible vertex in the physical channels Ir in Eq. (2.25).

The translation between physical and diagrammatic channels for the vertex and the
two-particle reducible vertex is fixed by Eqs. (A.3) to (A.5). We define analogously the
translation of the two-particle-irreducible vertex by

İD(q, iνm, iνm′) =2İph(q, iνm, iνm′)− İph(q, iνm, iνm′) (A.8a)

İM(q, iνm, iνm′) =− İph(q, iνm, iνm′) (A.8b)

İSC(q, iνm, iνm′) =İpp(q, iνm, iνm′) (A.8c)

and its corresponding back transformation. This definition simultaneously satisfies İη =
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V̇η − Φ̇η. The explicit form of the scale-derived two-particle irreducible vertex is

İD(q, iνm, iνm′) =2P̂ph→ph
[
Φ̇ph

]
(q, iνm, iνm′) + 2P̂pp→ph

[
Φ̇pp

]
(q, iνm, iνm′)

− P̂ph→ph
[
Φ̇ph

]
(q, iνm, iνm′)− P̂pp→ph

[
Φ̇pp

]
(q, iνm, iνm′)

=− 2P̂ph→ph
[
Φ̇M

]
(q, iνm, iνm′)−

1

2
P̂ph→ph

[
Φ̇D

]
(q, iνm, iνm′)

+
1

2
P̂ph→ph

[
Φ̇M

]
(q, iνm, iνm′) + 2P̂pp→ph

[
Φ̇SC

]
(q, iνm, iνm′)

− P̂pp→ph
[
Φ̇SC

]
(q, iνm, iνm′) (A.9a)

İM(q, iνm, iνm′) =− 1

2
P̂ph→ph

[
Φ̇D

]
(q, iνm, iνm′) +

1

2
P̂ph→ph

[
Φ̇M

]
(q, iνm, iνm′)

− P̂pp→ph
[
Φ̇SC

]
(q, iνm, iνm′) (A.9b)

İSC(q, iνm, iνm′) =
1

2
P̂ph→pp

[
Φ̇D

]
(q, iνm, iνm′)−

1

2
P̂ph→pp

[
Φ̇M

]
(q, iνm, iνm′)

− P̂ph→pp
[
Φ̇M

]
(q, iνm, iνm′) . (A.9c)

The resulting L-mfRG equations assume a compact form

Φ̇`,L
D (q, iνm, iνm′) =−

∑
iνm′′

İ`−1
D (q, iνm, iνm′′)ΠD(q, iνm′′)VD(q, iνm′′ , iνm′) (A.10a)

Φ̇`,L
M (q, iνm, iνm′) =−

∑
iνm′′

İ`−1
M (q, iνm, iνm′′)ΠM(q, iνm′′)VM(q, iνm′′ , iνm′) (A.10b)

Φ̇`,L
SC(q, iνm, iνm′) =−

∑
iνm′′

İ`−1
SC (q, iνm, iνm′′)ΠSC(q, iνm′′)VSC(q, iνm′′ , iνm′) . (A.10c)

Finally, the central(C)-mfRG equations in the diagrammatic channels are defined accord-
ing to Eq. (2.30). No further objects have to be introduced and the C-mfRG equations in
the physical channels are directly reported

Φ̇`,C
D (q, iνm, iνm′) =−

∑
iνm′′

VD(q, iνm, iνm′′)ΠD(q, iνm′′)Φ̇
`−1,L
D (q, iνm′′ , iνm′) (A.11a)

Φ̇`,C
M (q, iνm, iνm′) =−

∑
iνm′′

VM(q, iνm, iνm′′)ΠM(q, iνm′′)Φ̇
`−1,L
M (q, iνm′′ , iνm′) (A.11b)

Φ̇`,C
SC (q, iνm, iνm′) =−

∑
iνm′′

VSC(q, iνm, iνm′′)ΠSC(q, iνm′′)Φ̇
`−1,L
SC (q, iνm′′ , iνm′) . (A.11c)
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B. Scaling property of the interac-
tion flow at any loop order

In Ref. [42], it is shown that the scale in the interaction flow can be translated to the
effective interaction. More specifically, the flow for a bare interaction U at the scale Λ
corresponds to the final result of a flow with bare interaction Λ2U . Here, the proof of this
property for all loop orders is presented, specifically

V Λ/l(l2U) = l2V Λ(U) (B.1a)

ΣΛ/l(l2U) = lΣΛ(U) , (B.1b)

where the superscript indicates the scale within the flow from 0 to 1 and the parameter in
the brackets is the bare interaction for which the flow is set up. By setting l = Λ, it can
be followed that a diverging V Λ(U) at some Λ < 1 indicates that the vertex would diverge
exactly at Λ = 1 for a bare interaction Λ2U which defines the pseudo-critical interaction.

Note that the following discussion simplifies the notation omitting the frequency and
momentum dependence, replacing the contractions of dependencies by the symbol ◦ and
restricting to a schematic description with only one channel (one might consider it to be
the particle-particle channel). However, as the scaling properties are not destroyed by
the projection to another basis and neither by linear combination of vertices, the other
channels analogous. For the same reason the proof holds also for the combination of all
channels.

First, it is shown that, for every loop order, an induction procedure can prove the
scaling property (B.1) if the condition

V̇ Λ/l(l2U) = l3V̇ Λ(U) (B.2a)

Σ̇Λ/l(l2U) = l2Σ̇Λ(U) (B.2b)

is true. It is assumed that the integration over Λ is performed in discrete steps. At each
step n, Λ takes the value Λn and the vertex is calculated through the equation

V Λn(U) = V Λn−1(U) + (Λn − Λn−1)V̇ Λn(U) . (B.3)

The base case for the scaling property of the vertex is

V Λ0/l(l2U) = l2U = l2V Λ0(U) . (B.4)

The induction step

V Λn/l(l2U) = V Λn−1/l(l2U) + (
Λn
l
− Λn−1

l
)V̇ Λn/l(l2U)

= l2V Λn−1(U) + l2(Λn − Λn−1)V̇ Λn(U)

= l2V Λn(U) (B.5)
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uses the induction hypothesis (B.1a) and the condition (B.2a).

The procedure for the self-energy is analogous using the equation

ΣΛn(U) = ΣΛn−1(U) + (Λn − Λn−1)Σ̇Λn(U) (B.6)

and the base case

ΣΛ0/l(l2U) = 0 = ΣΛ0(U) . (B.7)

Here, the induction hypothesis (B.1b) and the condition (B.2b) are used for the induction
step

ΣΛn/l(l2U) = ΣΛn−1/l(l2U) + (
Λn
l
− Λn−1

l
)Σ̇Λ/l(l2U)

= lΣΛn−1(U) + l(Λn − Λn−1)Σ̇Λ(U)

= lΣΛn(U) . (B.8)

For the proof of the condition (B.2) the scaling of the (differentiated) bubbles has to
be known. Those involve the Green’s function, single-scale propagator and single-scale
propagator with Katanin substitution which are defined in the interaction flow as

GΛ(U) = Λ
1

iνm + ε(k)− ΛΣΛ(U)
(B.9a)

SΛ(U) =
iνm + ε(k)

(iνm + ε(k)− ΛΣΛ(U))2
(B.9b)

SΛ
K(U) =

iνm + ε(k) + Λ2Σ̇Λ(U)

(iνm + ε(k)− ΛΣΛ(U))2
= SΛ(U) +GΛ(U)Σ̇Λ(U)GΛ(U) (B.9c)

and, using the assumption (B.1b) and condition (B.2b) on the scaling of the self-energy,
their scaling can be followed easily

GΛ/l(l2U) =
Λ

l

1

iνm + ε(k)− Λ
l ΣΛ/l(l2U)

=
Λ

l

1

iνm + ε(k)− ΛΣΛ(U)
=

1

l
GΛ(U)

(B.10a)

SΛ/l(l2U) =
iνm + ε(k)

(iνm + ε(k)− Λ
l ΣΛ/l(l2U))2

=
iνm + ε(k)

(iνm + ε(k)− ΛΣΛ(U))2
= SΛ(U) (B.10b)

S
Λ/l
K (l2U) =

iνm + ε(k) + (Λ
l )2Σ̇Λ/l(l2U)

(iνm + ε(k)− Λ
l ΣΛ/l(l2U))2

=
iνm + ε(k) + Λ2Σ̇Λ(U)

(iνm + ε(k)− ΛΣΛ(U))2
= SΛ

K(U) .

(B.10c)

Note that the single-scale propagator retains the same scaling property after the Katanin
substitution and the following proof is performed for both cases simultaneously. With
Eq. (B.10), the scaling of the (differentiated) bubbles becomes

ΠΛ/l(l2U) = GΛ/l(l2U)GΛ/l(l2U) =
1

l2
ΠΛ(U) (B.11a)

Π̇Λ/l(l2U) = GΛ/l(l2U)SΛ/l(l2U) + SΛ/l(l2U)GΛ/l(l2U) =
1

l
Π̇Λ(U) . (B.11b)
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In the 1`-approximation, the condition (B.2) is shown easily via

V̇ Λn/l(l2U) = V Λn−1/l(l2U) ◦ Π̇Λn/l(l2U) ◦ V Λn−1/l(l2U)

= l3V Λn−1(U) ◦ Π̇Λn(U) ◦ V Λn−1(U) = l3V̇ Λn(U) (B.12a)

Σ̇Λ/l(l2U) = SΛn/l(l2U) ◦ V Λn−1/l(l2U) = l2SΛn ◦ V Λn−1(U) = l2Σ̇Λ(U) (B.12b)

which are satisfied both with and without self-energy feedback.
For the m`-proof, an additional inner induction proof is needed showing that if the

equations at one specific Λn are true for loop order `, they are also true for loop order `+1.
This involves left, right and central diagrams. It is reminded that the left m`-correction is

Φ̇Λ,`+2,L
η = İΛ,`+1

η ◦ΠΛ
η ◦ V Λ

η , (B.13)

where İΛ,`
η =

∑
η′ 6=η Φ̇Λ,`

η′ . The right m`-correction is related to Eq. (B.13) by an exchange

of the position of İ and γ4 which does not change the structure and hence the scaling
property.

The central m`-correction is

Φ̇Λ,`+2,C
η = V Λ

η ◦ΠΛ
η ◦ İΛ,`

η ◦ΠΛ
η ◦ V Λ

η . (B.14)

The left, right and central contributions are added to the 1` vertex flow, which has
been considered above and shown to satisfy the scaling property. The following proof
assumes that the induction is performed flow step after flow step and, within each step,
loop order after loop order. Then, the central equation for the induction proof is

V̇ Λn,`(U) = İΛn,`−1(U) ◦ΠΛn(U) ◦ V Λn−1(U) + V Λn−1(U) ◦ΠΛn(U) ◦ İΛn,`−1(U)

+ V Λn−1(U) ◦ΠΛn(U) ◦ İΛn,`−2(U) ◦ΠΛn(U) ◦ V Λn−1(U) , (B.15)

omitting the channel index η. While for Λn = Λ0, all loop orders vanish trivially

V̇ Λ0/l,`(l2U) = 0 = V̇ Λ0,`(U) , (B.16)

for Λ1 is treated analogously as any flow step Λn shown in the following. There, two base
cases have to be considered as the multiloop correction according to Eq. (B.15) depends
both on `−1 and `−2. The first is actually the ` = 1 contribution (B.12a) and the second
the ` = 2 contribution

V̇ Λn/l,2(l2U) = V Λn−1/l(l2U) ◦ Π̇Λn/l(l2U) ◦ V Λn−1/l(l2U)︸ ︷︷ ︸
İΛn/l,1(l2U)

◦ΠΛn/l(l2U) ◦ V Λn−1/l(l2U)

+ (right ∼ left) + (central = 0 )

= l3V Λn−1(U) ◦ Π̇Λn(U) ◦ V Λn−1(U) ◦ΠΛn(U) ◦ V Λn−1(U)

= l3V̇ Λn,2(U) . (B.17)

At step n, the here used condition (B.2a) for V Λn−1/l(l2U) at the previous step n − 1 is
already fulfilled if the induction proof for each Λn is performed in increasing order of n.
Furthermore, at step n and loop order `, the condition (B.2a) was already proven for all
smaller loop orders at step n and therefore

İΛn/l,`−1(l2U) = l3İΛn,`−1(U)İΛn/l,`−2(l2U) = l3İΛn,`−2(U) (B.18a)
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can be used in the induction step

V̇ Λn/l,`(l2U) = İΛn/l,`−1(l2U) ◦ΠΛn/l(l2U) ◦ V Λn−1/l(l2U) + (right ∼ left)

+V Λn−1/l(l2U) ◦ΠΛn/l(l2U) ◦ İΛn/l,`−2(l2U) ◦ΠΛn/l(l2U) ◦ V Λn−1/l(l2U)

= l3İΛn,`−1(U) ◦ΠΛn(U) ◦ V Λn−1(U) + (right ∼ left)

+l3V Λn−1(U) ◦ΠΛn(U) ◦ İΛn,`−2(U) ◦ΠΛn(U) ◦ V Λn−1(U)

= l3V̇ Λn,`(U) , (B.19)

which proves the scaling property of the vertex flow.
Next, the two multiloop corrections of the self-energy are considered. For this, only

Eq. (B.2b) has to be shown in order to repeat the induction as outlined in Eq. (B.8) and
prove the scaling property. The first multiloop correction is

Σ̇Λn,1(U) = −GΛn(U) ◦
[
2İΛn,C(U)− İΛn,C(U)

]
(B.20)

for which it can be shown that the condition of the scale property is satisfied

Σ̇Λn/l,1(l2U) = −GΛn/l(l2U) ◦
[
2İΛn/l,C(l2U)− İΛn/l,C(l2U)

]
= −1

l
GΛn(U) ◦

[
2l3İΛn,C(U)− l3İΛn,C(U)

]
= l2Σ̇Λn,C(U) . (B.21)

Finally, the second correction reads

Σ̇Λn,2(U) = −δSΛn(U)
[
2V Λn(U)− V Λn(U)

]
(B.22)

where δSΛn(U) = GΛn(U)Σ̇Λn,1(U)GΛn(U) which satisfies

δSΛn/l(l2U) = δSΛn(U) . (B.23)

(B.24)

This is used in

Σ̇Λn/l,2(l2U) = −δSΛn/l(l2U) ◦
[
2V Λn/l(l2U)− V Λn/l(l2U)

]
= −δSΛn(U) ◦

[
2l2V Λn(U)− l2V Λn(U)

]
= l2Σ̇Λn,2(U) , (B.25)

which finalized the proof of the scaling property (B.1) in multiloop fRG.
In addition to this analytical study, it was also verified numerically that the scaling

property is satisfied at any loop order.
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C. Personal contribution to publi-
cations

C.1 Multiloop functional renormalization group for the
two-dimensional Hubbard model: Loop convergence of
the response functions

[A. Tagliavini, C. Hille, F. B. Kugler, S. Andergassen, A. Toschi, and C. Honerkamp.
“Multiloop functional renormalization group for the two-dimensional Hubbard model:
Loop convergence of the response functions”. In: SciPost Physics 6 (2019), p. 009. doi:
10.21468/SciPostPhys.6.1.009]

The work related to this publication sets the basis for future material and system
related calculations as well as method development. The collaboration between A. Tagli-
avini and myself was very close. All parts of the coding and derivation were understood
and double checked by both first authors. Especially for the coding and debugging part
we adopted the pair programming technique in order to minimize errors and increase the
readability of the code. Nevertheless, one can attribute main fields of activities. While A.
Tagliavini pushed our work regarding the susceptibilities and multiloop fRG implemen-
tation, I focussed on technical questions regarding the extension of the code to non-local
systems, including debugging, optimization and attempts of parallelization. In this pub-
lication, A. Tagliavini and me share first authorship. My contribution to the manuscript
consists in Sections 3.1., 4.2., 4.3, 4.4. and Appendices A, F and G.

C.2 Quantitative functional renormalization-group descrip-
tion of the two-dimensional Hubbard model

[C. Hille, F. B. Kugler, C. J. Eckhardt, Y.-Y. He, A. Kauch, C. Honerkamp, A. Toschi,
and S. Andergassen. “Quantitative functional renormalization-group description of the
two-dimensional Hubbard model”. In: pre-print (2020). arXiv: 2002.02733]

In this publication, the benchmark to other methods is performed. I developed the new
flow scheme for the self-energy and implemented it in the code already developed in the
framework of Ref. [110]. Also the post-processing of the self-energy was added by myself.
The idea on how to explain the difference of the self-energy flow schemes was preformed
in discussions with A. Tagliavini, C. Eckhardt and myself. The presentation thereof in the
paper was proposed by myself and improved through extensive input from F. B. Kugler.
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I performed all fRG calculations, collected the results from the other methods, fitted the
correlation length for all methods and created all plots. My contribution to the manuscript
consists in Sections II, III, V, VI and Appendix A to C. I also contributed in the shaping
of Section II.B. The paper was submitted to Physical Review Research on the 10th of
February 2020.

C.3 Pseudogap opening in the two-dimensional Hubbard
model: a functional renormalization group analysis

[C. Hille, D. Rohe, C. Honerkamp, and S. Andergassen. “Pseudogap opening in the two-
dimensional Hubbard model: A functional renormalization group analysis”. In: Phys.
Rev. Research 2 (2020), p. 033068. doi: 10.1103/PhysRevResearch.2.033068]

This publication applies the new flow scheme for the self-energy in order to study the
pseudogap opening in the half-filled 2D-Hubbard model. While the original idea to study
the gap opening with our code came from D. Rohe, I suggested to use the new flow scheme
which finally led to the interesting results shown. In this paper, I produced all data and
figures by myself. I developed the idea to compare the first orders of ph-diagrams and
implemented those. My contribution to the manuscript consists in a first version of Section
I, i Sections II and III and in Appendix A and B. The paper was submitted to Physical
Review Research on the 4th of March 2020.
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[103] T. Schäfer, A. Toschi, and K. Held. “Dynamical vertex approximation for the two-
dimensional Hubbard model”. In: Journal of Magnetism and Magnetic Materials
400 (2016), p. 107. doi: 10.1016/j.jmmm.2015.07.103.
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