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Abstract 
Understanding the molecular basis of the diverse morphological forms found 

within and across species is a longstanding goal in evolutionary biology. One 

especially relevant class of cis-regulatory elements are enhancers. This is because 

mutations affecting enhancers tend to be tissue- or stage-specific, which allows 

adaptation to proceed with relatively less harmful side effects in other organs or 

tissues. 

In Chapter 2 I explore how enhancers help drive morphological selection 

response within-species. We scanned the genomes of the Longshanks mice, which 

are mice selectively bred over 20 generations, for a 13% increase in tibiae. Against a 

backdrop of polygenic response, we found the bone repressor Nkx3-2, and 

specifically its enhancers, to be among the strongest contributor towards increased 

tibia length. I used transgenics to compare the enhancer activity of the F0 and F17 

alleles at 3 candidate enhancers (two near the Nkx3-2 gene; and one near the limb 

developmental regulator gene, Gli3). We found that both loss-of-function (Nkx3-2) 

and gain-of-function (Gli3) alleles contributed to the selection response. 

 In Chapter 3, we explored an approach to study macro-evolutionary variations 

across species. One of the major barriers to such study is the inability to perform 

direct genetic crosses due to hybrid sterility. We tackle the species barrier problem 

by inducing mitotic recombination in vitro in hybrid embryonic stem cells (including 

cross-species hybrids between Mus musculus and Mus spretus). This was achieved 

via Blm inhibition by the small molecule ML216. We further show, that the resultant 

mitotic recombinant cells can be used for genetic mapping by connecting tioguanine 

drug resistance to variations at the Hprt locus. Furthermore, in vitro recombinant 

stem cells can be used for rederivation of animals through laser-assisted morula 

injection, thus allowing the acquisition of morphological data.  

Here, through a multidisciplinary approach, we show that enhancer modulation 

contributes to morphological diversity and selection response within-species and 

provide a new methodology for enhancer study across-species, thus enabling the 

study of evolutionary developmental variations in genetic backgrounds that would 

otherwise be challenging to obtain. Overall, these studies highlight the relevance of 

enhancers in morphological diversification and provide new tools for their study. 
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Zusammenfassung  
Das Verständnis der molekularen Grundlage der unterschiedlichen inner- und 

zwischenartlichen Morphologien ist ein langjähriges Ziel der Evolutionsbiologie. Eine 

zentrale Klasse von cis-wirkenden Elementen sind Enhancer. Dies liegt 

insbesondere daran, dass Mutationen in Enhancern in der Regel spezifisch für ein 

Gewebe oder Entwicklungsstadium sind und deshalb eine Anpassung ermöglichen, 

die nur wenige negative Effekte auf andere Organe und Gewebe hat.   

In Kapitel 2 untersuche ich den Beitrag von Enhancern zur morphologische 

Selektion innerhalb einer Art. Dafür wurden die Genome von „Longshanks“-Mäusen 

untersucht, deren Tibialänge über 20 Generationen um 13% selektiv erhöht wurde. 

Im Rahmen dieser polygenen Selektion, trug der Knochen-Repressor Nkx3-2, und 

speziell seine Enhancer, den größten Anteil zu der Verlängerung der Tibiaknochen 

bei. Experimente mit Transgenen zum Testen der Aktivität von Enhancerkandidaten 

(zwei nahe Nkx3-2; einer nahe des Regulatorgens für Gliedmaßen, Gli3) in F0 und 

F17 Allelen zeigten, dass sowohl der Funktionsverlust (Nkx3-2) als auch der 

Funktionsgewinn (Gli3) dieser Allele zu der Selektionsantwort beitrugen. 

In Kapitel 3 untersuchten wir mithilfe eines neuen Ansatzes die makro-

evolutionären Unterschiede zwischen Arten, deren Kreuzung aufgrund von 

Hybridsterilität auf herkömmlichen Wege nicht möglich ist.  Durch Induktion von in 

vitro mitotischer Rekombination in embryonalen Hybridstammzellen der beiden 

Mausspezies Mus musculus und Mus spretus, konnte das Sterilitätsprobelm der 

Hybride umgangen werden. Dies konnte durch die Inhibierung von Blm mit Hilfe des 

Moleküls ML216 erreicht werden. Durch Verbindung von Variationen im Hprt Lokus 

mit der Resistenz gegen das Medikament Thioguanine wurde gezeigt, dass 

mitotisch-rekombinante Zellen für genetische Kartierung geeignet sind. Darüber 

hinaus können diese Zellen mittels laserbasierter Morula-Injektionen zur Entstehung 

von Embryonen und somit zum Gewinn morphologischer Daten genutzt werden.  

Dieser interdisziplinäre Ansatz zeigt, dass die Modulation von Enhancern zur 

morphologischen Vielfalt und Selektionsantwort innerhalb von Arten beiträgt und 

liefert eine neue Methode zur zwischenartlichen Enhancer-Analyse. Diese ermöglicht 

die Untersuchung evolutionär bedingter Variationen auch vor herausfordernden 

genetischen Hintergründen. Insgesamt zeigt diese Studie die Relevanz von 

Enhancern in der morphologischen Diversifizierung und bietet neue Analyseansätze. 
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Chapter 1: Aims and introduction 
 
Understanding the role of genetic and molecular mechanisms in the evolution 

of morphological diversity within and between species is a longstanding goal in 

evolutionary and developmental biology1-3. Owing to the importance and pleiotropism 

of genes required for proper body development and patterning, changes to protein 

coding sequences themselves can be fatal3,4. Furthermore, such genes are deeply 

conserved and shared across divergent taxa. These observations lead to the so-

called “cis-regulatory hypothesis of morphological evolution”, which proposes that 

morphology evolves primarily through tweaking the cis-regulatory networks that 

control developmental gene expression, leading to alterations of pattern 

(heterotopy), timing (heterochrony), or level of expression of genes1,2,4-9 (although 

cases where coding changes cause phenotypic alterations have been reported10-13).  

In my dissertation research, I explored how enhancers, a category of cis-

regulatory elements, contribute to intra- and inter-species morphological diversity. 

Here, I tackle these questions in two different ways: by exploring how enhancers 

contribute to morphological variation at the micro-evolutionary scale in the context of 

a mouse artificial selection experiment; and by developing a technique that opens 

the possibility to map how enhancers affect macro-evolutionary changes across 

species barriers.  

In Chapter 2, taking advantage of an artificial selection experiment, called 

Longshanks, where mice were selected for longer tibia, we identified multiple loci 

across the genome that contribute to tibia length increase. Furthermore, for two 

genes related to tibia length, I found that both enhancer gain- and loss-of-function 

mutations can contribute to selection response, with as few as 3 SNPs being enough 

to alter enhancer activity.  

In Chapter 3, I contributed to an effort to address one of the major barriers to 

the study of enhancers across species: hybrid sterility, which prevents crosses 

between species to be generated. We circumvented the species barrier problem by 

inducing stem cell mitotic recombination in vitro in F1 hybrid embryonic mouse stem 

cells, such as from a cross between Mus musculus and Mus spretus. We further 

show that the mitotic recombinant cells can be used for genetic mapping and, 
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excitingly, rederivation of animals through laser-assisted morula injection, thus 

allowing the acquisition of morphological data. 

 The aforementioned studies provide further support to the cis-regulatory 

hypothesis by showing that enhancer alterations can contribute to intraspecies 

morphological diversity and opening new research possibilities to investigate the cis-

regulatory hypothesis at the interspecies level. 

 

 

1.1 Morphological evolution and enhancers: 
 

The magnitude and nature of genomic changes required for morphological 

evolution have not yet been clearly defined under a single paradigm14, and research 

continues to gauge the importance, impact, and frequency of deletions, de novo 

creation, or modification of existing regulatory elements, epistatic interactions 

between such elements and associated pleiotropic effects4,15-18. To tackle these 

questions the scientific community employs powerful population genetic tools that 

allow the association of genotype to phenotype, such as evolve and re-sequence 

experiments19, quantitative trait loci mapping (QTL)20,21, and genome-wide 

association studies (GWAS)22; as well as genome wide regulatory elements 

screening techniques (such as ChIP-seq23 and ATAC-seq24). When coupled, 

population genetics and regulatory-element screening offer a powerful approach to 

address the role of cis-regulation in morphological evolution.  

Several categories of cis-regulatory elements that contribute to phenotypic 

diversity have been reported, including promoters25,26, enhancers27-31, silencers32 

and potentially insulators33,34. Enhancers are particularly relevant to the genesis of 

intra- and inter-species morphological diversity28,29, but to gauge their importance we 

need to look into how enhancers orchestrate gene expression. As stated above, 

developmental genes are often pleiotropic, i.e., mutations in such genes affect many 

downstream phenotypes because they control patterning of multiple body 

structures4,35. A classic example of pleiotropy in vertebrates comes from Hox gene 

clusters, which are required for the proper patterning and development of the axial 

skeleton36, limbs37, reproductive tract38, central nervous system39 and muscle40. 

Other relevant examples, referenced in Chapter 2, are: the Nkx3-2 gene that is 
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required for the development of the spleen41,42, pancreas41, and axial and limb 

skeleton42,43; and the Gli3 gene, whose function is essential for proper development 

of the limbs44,45, eyes46, brain47, and craniofacial structures48. Given their roles in 

development and the precise spatiotemporal control of gene expression required, it 

is no surprise that coding mutations in pleiotropic genes lead to severe 

morphological defects at birth or even perinatal lethality (as reported for Nkx3-242,49 

and Gli350,51).  

Much of the control of gene expression during development can be attributed to 

enhancers, which act in a tissue and time specific manner through recruitment of 

specific sets of transcriptional factors9,28,29,52. Indeed, several pleiotropic 

developmental genes have been shown to possess elaborate enhancer networks 

that control the timing and space of expression. These include the HoxD cluster 

whose early and late limb expression is controlled by different sets of enhancers53, 

and the complex Shh enhancer network that orchestrates specific limb and central 

nervous system expression patterns54. The HoxD and Shh enhancer networks also 

demonstrate another crucial feature of enhancers: modularity, i.e., each enhancer 

contributes independently and cumulatively to overall gene expression9,54-56. 

Furthermore, some enhancers exist as groups of redundant elements, as shown for 

Gli357 and Shox257 limb enhancers, thus providing developmental robustness57. 

Enhancers’ tissue/organ specificity, modularity, and redundancy make them great 

targets for evolution, as these characteristics allow for tissue/organ-specific gene 

expression changes while simultaneously buffering the risk of lethality and facilitating 

the accumulation of genetic variation58. Several vertebrate and invertebrate studies 

have highlighted how impactful enhancer modification can be on species 

morphology28-31. Research performed in Drosophila showed that both intra- and 

inter-species morphological diversity can be attributed to gene expression variation 

caused by enhancer sequence alteration27,30,31. In vertebrates, enhancer deletion 

can significantly alter morphological traits such as the presence/absence of a pelvic 

spine in natural populations of stickleback fish29 and the absence of limbs in 

snakes28. To understand how enhancer sequence and activity divergence mediate 

intra- and inter-species morphological diversity, it is essential to first understand their 

functional and structural organization. 
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1.2 Enhancer structure and control of transcriptional output: 
 
Understanding enhancer function and structure is crucial to comprehend how 

enhancer sequence alteration can affect gene transcription, and lead to the 

development of novel techniques for enhancer study. 

Enhancers are DNA sequences that make contact with gene promoters to 

initiate and/or amplify gene transcription in a distance- and orientation-independent 

manner, often spanning and skipping whole genes in between the enhancer and 

promoter52,59,60. These cis-regulatory elements range in size from tens61 to 

hundreds29,52,60 of base pairs, and are comprised of protein binding sites (such as for 

transcriptional factors and RNA polymerase II) and spacer elements62-65. An 

enhancer’s “syntax” is the arrangement of these binding sites and spacer elements, 

which can affect the activity of the enhancer. A report on a tissue-specific enhancer 

in the Ciona genus of sea squirts showed that fully optimizing the enhancer’s syntax 

can lead to a drastic alteration of enhancer activity, even causing the enhancer to be 

active in ectopic tissues/organs62. Surprisingly, robust tissue specificity was achieved 

with optimal spacing and low affinity biding sites62. This shows that there is ample 

ground for tweaking the transcriptional output and tissue specificity of an enhancer 

by altering its syntax, i.e., changing the number, type, affinity, spacing, and 

orientation of its transcription factor binding sites58,62.  

An additional feature of enhancers is the absence of nucleosomes in the 

enhancer “body”, possibly due to displacement by transcription factors. 

Nucleosomes flanking enhancers also undergo post-translational modifications such 

as mono- or tri-methylation at the lysine 4 residue of the histone subunit H3 

(abbreviated as “H3K4me” or “H3K4me3”) 66-68, or acetylation at the lysine 27 

residue (“H3K27ac”)69. Identifying these features associated with chromatin 

accessibility or remodeling have enabled the development of techniques for genome-

wide screening of enhancers, e.g., transposase accessible chromatin followed by 

sequencing (ATAC-seq)24, which finds open chromatin regions, and chromatin 

immunoprecipitation sequencing (ChIP-seq)23, which locates DNA regions 

associated with specific proteins or histone modifications. Additional reports have 

shown that the presence of RNA polymerase-II at enhancers leads to their 

bidirectional transcription into a class of non-coding RNAs known as eRNAs 
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(enhancer RNA)70,71. This latter signature can be captured most efficiently by 

polymerase run-on assays that can provide a read-out of active transcription, e.g., 

global run-on sequencing  (GRO-seq)72.  

To increase a gene’s transcriptional output, proper and specific contact must be 

established between the enhancer and the target gene’s promoter. The enhancer’s 

syntax-determined assembly of DNA-protein complexes is crucial for this enhancer-

promoter contact; as such, tweaking enhancer-promoter communication offers 

another method for enhancer-mediated change in gene transcription. Enhancer-

promoter affinity can even influence how ubiquitous or restricted gene expression 

is76,77. Furthermore, enhancer-promoter communication may require the interaction 

between specific transcriptional factors (biochemical compatibility)75,76. The 

mechanism of communication between enhancers and promoters is actively 

researched, and four models have been proposed73,74: linking, tracking, looping, and 

phase separation  (Table 1 provides a brief description of each model). Studies 

exploring enhancers’ impact on morphology often overlook how enhancer sequence 

alteration affects enhancer-promoter contacts, and thus the significance of enhancer-

promoter affinity alteration in the evolution of vertebrate morphological diversity 

remains poorly understood. 

 
Table 1: Models of enhancer-promoter communication. 

Model Description Range 

Linking73,74,78,

79 
A chain of transcriptional proteins establishes direct 
enhancer-promoter link. 

Very short range. 
Between promoter and 
proximal enhancer 
elements. 

Tracking80-82 

Enhancer-promoter contact is formed by unidirectional 
migration of the enhancer and its associated protein 
complexes towards the promoter. Intervening chromatin 
forms a loop. 

15 kbp or less. 

Looping73,74,83 

Enhancer-promoter contact through looping of the 
intervening DNA sequence. Initial loop is hypothesized to 
result from random chromatin collision and stabilized by 
high protein-protein affinity. 

Up to 1 Mbp. 

Phase 
separation84-

86 

Specific to "super-enhancers". Forms membraneless 
liquid-liquid phase separated areas of high concentration 
of transcriptional factors. 

Large range. 
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1.3 Techniques for enhancer identification and characterization: 
 

  A plethora of methodologies for enhancer identification and characterization is 

available to the scientific community. These techniques can be categorized into three 

groups: DNA based, RNA based, and chromatin based.  

Methods based on DNA sequencing include enhancer reporter assays87,88, 

which determine an enhancer’s area of activity, and techniques for enhancer 

identification such as the enhancer trap assay87, massively parallel reporter assays 

(MPRAS)89, self-transcribing active regulatory region (STARR-seq)90, and cross-

species sequence comparison91.  

RNA based methods include deep transcriptome-wide sequencing (RNA-

seq71), and RNA run-on assays that provide a snapshot of actively transcribed 

regions, such as GRO-seq72, precision run-on sequencing (PRO-seq)92, and 

chromatin run-on sequencing (ChRO-seq)93.  

Chromatin based methods include characterization of open or closed chromatin 

by screening for either: nucleosome free regions, e.g., ATAC-Seq24, DNAse I 

hypersensitive sites sequencing (DNAse-seq)94, and formaldehyde-assisted isolation 

of regulatory elements (FAIRE-Seq)93; or nucleosome bound regions, e.g., 

micrococcal nuclease digestion and sequencing (MNase-seq95). Other chromatin 

based techniques include 3D chromatin conformation capture (3C96 and derivative 

techniques, such as 4C97 and Capture-C98), which identify DNA-DNA contacts, and 

identification of genomic regions associated with transcription factors, RNA 

polymerase II, or histone modifications, e.g., ChIP-seq23,99, chromatin interaction 

analysis with paired-end tag (Chia-PET)100 and in silico transcriptional factor binding 

site analysis101.  

To date, no single method can simultaneously identify enhancers, report their 

strength, and describe their in vivo tissue/organ areas of activity; as such, a 

combination of multiple techniques is required for a thorough characterization of 

enhancers. Table 2 summarizes the techniques used in this thesis. In Chapter 2, we 

characterized enhancers with a genome-wide screen for regulatory regions using 

ChIP-seq and ATAC-seq data, followed by enhancer reporter assays to 

simultaneously determine if the identified regions were true enhancers and to 
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measure their respective in vivo activity. We also used 4C and in situ hybridization to 

link the identified enhancers with their target genes, thus providing an extensive 

characterization of enhancer activity. 

 
Table 2: Techniques used for enhancer identification and characterization. 

Method Objective Advantages Limitations 

ATAC-seq (Assay 
for transposase-
accessible 
chromatin) 

Genome-
wide open 
chromatin 
mapping. 

Low input required, even down 
to a single cell. Simple and 
fast. 

Does not allow for type-specification of 
the open chromatin regions. Biased 
towards small fragments. May lead to 
false positives due to unintentional 
closed-chromatin tagmentation. 

ChIP-seq 
(Chromatin 
Immuno-
precipitation) 

Determine 
genome-
wide specific 
DNA-protein 
association. 

Can be used for genome-wide 
scans of DNA associated with 
transcriptional factors, histone 
modifications and other 
relevant proteins. 

Dependent on antibody quality. High GC-
content biased. High sequencing 
coverage required. Can have high 
background noise caused by cell-type 
specific variation. 

3C (Chromosome 
conformation 
capture) and 
derivative 
methods (4C, 
Capture-C) 

Identification 
of contacts 
between 
different 
DNA regions. 

Links regulatory elements to 
their targets. 

Long and laborious protocol. Tendency 
for high noise. 

STARR-seq (Self-
transcribing active 
regulatory region) 

Genome-
wide screen 
of enhancer 
activity. 

High-throughput. No positional 
integration effects. 
Simultaneously assess 
enhancer activity and strength. 

Epissomal assay. Labor intensive. 

Transgenic 
reporter assay 

Visualize 
regulatory-
element's 
driven 
expression 
domains 

Can be used in vivo and in 
vitro. Allows detailed 
characterization of regulatory-
elements activity. 

High-cost. Subject to integration-site 
effects. 

ISH (In situ 
hybridization) 
techniques 

Visualize 
physical 
location of 
specific 
targets. 

Permits visualization of 
endogenous gene expression 
patterns or physical proximity 
between DNA elements. 
Probes can be re-used. 

Time-consuming and laborious. Low 
sensitivity and resolution. Dependent on 
probe quality. 

 

 

1.4 The vertebrate limb as a model to study enhancers’ impact on 
morphological diversity:  

 

To assess how enhancer variation contributes to morphological diversity, a 

suitable model system should display both intra- and inter-species variation, be 

readily available and easy to manipulate. The vertebrate limb fits these requirements 

as various species-specific morphological adaptations have occurred in the course of 

evolution in response to various locomotory requirements28,102. Such adaptations 
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also show striking convergence across distant taxa, such as swimming (e.g. fish and 

whales), flying (e.g., birds and bats), running (e.g. antelopes, wolfs), and hopping 

(e.g. jerboa and kangaroos). In addition, the major genetic pathways involved in limb 

development have already been identified in vertebrates103, and their mechanisms of 

action and impact on the patterning of all limb axes are well understood103. 

Furthermore, despite sharing the same core developmental program, the fore- and 

hindlimb can display striking morphological differences (e.g. bats and jerboa), hinting 

at fore- and hindlimb-specific genetic adaptations, which remain largely unexplored. 

Lastly, a large array of methodologies for limb studies is available ranging from 

morphometric analysis102, to in vivo techniques (such as enhancer reporter 

assays60), to genome-wide characterization of regulatory landscapes (such as 

ATAC-seq24,104 and ChIP-seq105). In Chapter 2 we use the mouse limb as a model to 

study the impact of enhancers in intra-species morphological diversification and 

selection response. 

 

 

1.5 Summary of findings and conclusions: 
 

A long-standing goal in evolutionary biology is to understand the molecular 

basis of the diverse morphological forms found within and across species. In 

Chapter 2 we explored how cis-regulatory elements, such as enhancers, may shape 

morphological traits at the micro-evolutionary scale. To identify loci that contribute to 

morphological variation in the mouse hindlimb, we scanned the genomes of the 

Longshanks mice, which were selectively bred over 20 generations for longer tibiae. 

Briefly, outbred CD-1 mice were separated into three closed populations with 14 

mating pairs each and maintained as two selected lines (Longshanks 1, LS1; and 

Longshanks 2, LS2) and one control line. The control group was randomly bred, 

while LS1 and LS2 were selected for having the longest tibia length relative to body 

mass. After 20 generations, we observed an average tibia length increase of 13.1% 

and 12.7% respectively in LS1 and LS2, while the control line showed no significant 

tibia length change (see Chapter 2, Fig.1, p.31). We sequenced all breeders from 

generations 0 (F0) and 17 (F17) of the selection experiment and identified 8 major 

loci likely contributing to selection response (see Chapter 2, Fig.2, p.34 and Table1, 
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p.36). Through chromatin profiling (combination of ChIP-seq, ATAC-seq and 4C) of 

two relevant regions where impactful coding changes were not found (Nkx3-2 and 

Gli3), we identified possible enhancers contributing to the increase in tibia length in 

Longshanks mice. We used in vivo enhancer reporter assays to compare the activity 

of the F0 and F17 enhancer alleles at 3 candidate enhancers (designated N1 and N3 

near the Nkx3-2 gene and G2 near the Gli3 gene) and found that both loss-of-

function (N1 and N3) and gain-of-function (G2) alleles contributed to the selection 

response, with as few as 3 SNPs being sufficient to alter enhancer activity (see 

Chapter 2, Fig.4 p.40 and Fig.4-S1, p.96). Furthermore, using stickleback enhancer 

reporter assays, we found that the mouse N1 enhancer is functionally conserved in 

fishes, hinting at deep conservation of Nkx3-2 dependent bone maturation 

mechanisms (see Chapter 2, Fig.5, p.45). We demonstrate that combining 

multidisciplinary techniques is crucial to identify and assay genetic elements that 

contribute to morphological selection response at high resolution (in this case down 

to individual SNPs), and thus to understand the impact of enhancers on intra-species 

morphological diversity.  

Overall, in the context of the Longshanks selection experiment, we found that 

tibia length is a polygenic trait, and that enhancers contributed to morphological 

selection response. Furthermore, both gain and loss of enhancer function can 

contribute to morphological evolution. We also found that cis-regulatory mechanisms 

were associated with selected alleles at a genome-wide scale, providing further 

support to the cis-regulatory hypothesis of morphological evolution (see Chapter 2 
Fig.3-S1, p.93). Future work should determine whether the identified genes and 

enhancers that control tibia length are also involved in limb morphology variation at 

the macro-evolutionary scale by employing techniques for genome-wide enhancer 

screening (such as STARR-seq) or more focused methods (such as cross-species 

sequence comparison of target enhancers and enhancer reporter assays). 

To date, a major barrier to the identification of the genetic basis of 

morphological evolution arises from the inability to perform mapping experiments 

across sufficiently diverged taxa due to cross-species hybrid sterility. In Chapter 3 

we show an approach that can overcome this problem by generating in vitro mitotic 

recombinant stem cells (IVR) from mice by suppressing the Bloom syndrome DNA 

helicase (Blm) using a small inhibitory molecule called ML216 (see Chapter 3 Fig.1 
p.120). We applied this technique to F1 crosses between mouse strains (Mus 
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musculus BL6 x 129) and species (Mus musculus x Mus castaneus - BL6/CAST; and 

Mus musculus x Mus spretus - BL6/SPRET) and successfully obtained IVR stem cell 

colonies. Whole genome sequencing of recombinant BL6/129 and BL6/CAST clones 

revealed that one or few recombination events occurred per recombinant clone and 

that recombination tended to happen near the telomeric ends of chromosomes. 

However, integration of a selection cassette caused recombination events to occur 

between the centromere and the cassette integration site (see Chapter 3, Fig.2, 
p122). 

Mapping traits in BL6/SPRET hybrids through traditional breeding is 

challenging due to F1 hybrid male sterility and reduced female fertility106; as such, 

applying classic mapping methodologies, though possible, is difficult. To determine if 

IVR cells can be used for mapping, we subjected F1 BL6/SPRET stem cells to in 

vitro recombination using ML216 and tested the resulting recombinant cells for 

tioguanine drug resistance. Following drug exposure we used FACS and whole 

genome sequencing (“Flow-mapping”) on these cells and were able to map drug 

resistance to the Hprt  (hypoxanthine-guanine phophoribosyltransferase) locus in 21 

days or less (see Chapter 3, Fig.3, p.126).  Furthermore, through laser-assisted 

morula injection of BL6/SPRET mitotic recombinant and non-recombinant stem cell 

clones, we obtained morphological data for individual clones. Using high-resolution 

X-ray micro computed tomography (microCT), we observed that embryos derived 

from non-recombinant BL6/SPRET stem cells showed normal development at 

embryonic day 14.5 (E14.5), while 4 out of 11 embryos derived from IVR stem cell 

clones showed severe craniofacial malformation and neural tube closure defects 

(see Chapter 3, Fig.4, p.128 and Fig.S8, p.162). Overall, we highlight the utility of 

blm inhibition to enable genetic mapping across species pairs that suffer from hybrid 

sterility. Recombinant stem cell clones open the door to explore fundamental 

evolutionary questions of morphological and developmental diversity that would 

otherwise be impaired by traditional breeding strategies. Future work should focus 

on increasing the mitotic recombination rate of the stem cells derived from cross-

species F1 crosses, and explore if recombinant clones can be used for mapping cell-

type specific traits through in vitro differentiation. 

In my dissertation, I studied the role of enhancers in intra-species 

morphological variation, and showed that enhancer activity alteration helps to drive 

morphological diversity, thus contributing to selection response. Furthermore I 
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helped to develop a novel method to overcome species barriers and open the door 

to research enhancer activity in previously hard-to-obtain cross-species genomic 

combinations. Overall, these studies illuminate the relevance of enhancers in 

morphological diversification and provide new tools for their study. 
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2.2.1 Abstract:  
 

Evolutionary studies are often limited by missing data that are critical to 

understanding the history of selection. Selection experiments, which reproduce rapid 

evolution under controlled conditions, are excellent tools to study how genomes 

evolve under selection. Here we present a genomic dissection of the Longshanks 

selection experiment, in which mice were selectively bred over 20 generations for 

longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. 

We synthesized evolutionary theory, genome sequences and molecular genetics to 

understand the selection response and found that it involved both polygenic 

adaptation and discrete loci of major effect, with the strongest loci tending to be 

selected in parallel between replicates. We show that selection may favor de-

repression of bone growth through inactivating two limb enhancers of an 

inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to 

connect individual base-pair changes to the overall selection response. 

 

2.2.2 Introduction:  
 

Understanding how populations adapt to a changing environment is an urgent 

challenge of global significance.  The problem is especially acute for mammal 

populations, which are often small and fragmented due to widespread habitat loss.  

Such populations often show increased inbreeding, leading to the loss of genetic 

diversity (1).  Because beneficial alleles in mammals typically come from standing 

genetic variation rather than new mutations like in microbes, this loss of diversity 

would ultimately impose a limit on the ability of small populations to adapt.  

Nonetheless, mammals respond readily to selection in many traits, both in nature 

and in the laboratory (2-5).  In quantitative genetics, such traits are interpreted as the 

overall effect from a large set of loci, each with an infinitesimally small (and 

undetectable) effect (“infinitesimal model”).  Broadly speaking, the infinitesimal model 

has performed remarkably well across a wide range of selection experiments, and 

the model is the basis for commercial breeding (6).  However, it remains unclear 

what type of genomic change is associated with rapid response to selection, 
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especially in small populations where allele frequency changes can be dominated by 

random genetic drift.   

While a large body of theory exists to describe the birth, rise and eventual 

fixation of adaptive variants under diverse selection scenarios (7-12), few empirical 

datasets capture sufficient detail on the founding conditions and selection regime to 

allow full reconstruction of the selection response.  This is particularly problematic in 

nature, where historical samples, environmental measurements and replicates are 

often missing.  Selection experiments, which reproduce rapid evolution under 

controlled conditions, are therefore excellent tools to understand response to 

selection—and by extension—adaptive evolution in nature (4). 

Here we describe an integrative, multi-faceted investigation into an artificial 

selection experiment, called Longshanks, in which mice were selected for increased 

tibia length relative to body mass (13).  The mammalian limb is an ideal model to 

study the dynamics of complex traits under selection: it is both morphologically 

complex and functionally diverse, reflecting its adaptive value; and limb development 

has been studied extensively in mammals, birds and fishes as a genetic and 

evolutionary paradigm (14).  The Longshanks selection experiment thus offers the 

opportunity to study selection response not only from a quantitative and population 

genetics perspective, but also from a developmental (15) and genomic perspective.  

By design, the Longshanks experiment preserves a nearly complete archive of 

the phenotype (trait measurements) and genotype (via tissue samples) in the 

pedigree.  Previously, Marchini et al. investigated how selection was able to 

overcome correlation between tibia length and body mass and produced 

independent changes in tibia length during the first 14 generations of the 

Longshanks experiment (13).  Importantly, that study focused on the phenotypes and 

inferred genetic correlations indirectly using the pedigree.  The current genomic 

analysis was initiated when the on-going experiment reached generation 17 and 

extends the previous study by integrating both phenotypic and genetic aspects of the 

Longshanks experiment.  By sequencing the initial and final genomes, the current 

analysis benefits from direct and highly resolved genetic information.  Here, with 

essentially complete information, we wish to answer a number of important questions 

regarding the factors that determine and constrain rapid adaptation: Are the 

observed changes in gene frequency due to selection or random drift?  Does rapid 

selection response of a complex trait proceed through innumerable loci of 
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infinitesimally small effect, or through a few loci of large effect?  What type of 

signature of selection may be associated with this process?  Finally, when the same 

trait changes occur independently, do these depend on changes in the same gene(s) 

or the same pathways (parallelism)?  

 

2.2.3 Results: 
 
Longshanks selection for longer tibiae 

At the start of the Longshanks experiment, we established three base 

populations with 14 pairs each by sampling from a genetically diverse, commercial 

mouse stock [Hsd:ICR, also known as CD-1; derived from mixed breeding of 

classical laboratory mice (16)].  In two replicate “Longshanks” lines (LS1 and LS2), 

we bred mice by pairing 16 males and females (and excluding sibling pairs) with the 

longest tibia relative to the cube root of body mass for each sex.  This corresponds 

to 15–20% of all offspring [only details essential to understanding our analysis are 

summarized here.  See (13) for a detailed description of the breeding scheme].  We 

kept a third Control line (Ctrl) using an identical breeding scheme, except that 

breeders were selected at random.  In LS1 and LS2, we observed a strong and 

significant response to selection in tibia length [0.29 and 0.26 Haldane or standard 

deviations (s.d.) per generation, from a selection differential of 0.73 s.d. in LS1 and 

0.62 s.d. in LS2].  Over 20 generations, selection for longer relative tibia length 

produced increases of 5.27 and 4.81 s.d. in LS1 and LS2, respectively (or 12.7% 

and 13.1% in tibia length), with a modest decrease in body mass [-1.5% in LS1 and -

3.7% in LS2; Student’s t-test, P < 2×10-4 and P  < 1×10-8, respectively; Fig. 1B & C; 

Fig. 1 – figure supplement 1; n.b. this relationship was in part biased by the F1 

generation, which were fed a different diet and phenotyped three weeks later than 

later generations, see (13) for details].  By contrast, Ctrl showed no directional 

change in tibia length or body mass (Fig. 1C; Student’s t-test, P > 0.05).  This 

approximately 5 s.d. change in 20 generations is rapid compared to typical rates 

observed in nature [(17), but see (18)] but is in line with responses seen in selection 

experiments (3, 5, 19, 20).  
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Fig. 1.  Selection for Longshanks mice produced rapid increase in tibia length.  
(A and B) Tibia length varies as a quantitative trait among outbred mice derived from 

the Hsd:ICR (also known as CD-1) commercial stock.  Selective breeding for mice 

with the longest tibiae relative to body mass within families has produced a strong 

selection response in tibia length over 20 generations in Longshanks mice (13%, 

blue arrow, LS1).  (C) Both LS1 and LS2 produced replicated rapid increase in tibia 

length (blue and red; line and shading show mean ± s.d.) compared to random-bred 

Controls (grey).  Arrowheads along the x-axis mark sequenced generations F0 and 

F17.  See Fig. 1 – figure supplement 1 for body mass data.  Lower panel: 

Representative tibiae from the Ctrl, LS1 and LS2 after 20 generations of selection. 

(D) Analysis of sequence diversity data (linked variants or haplotypes: lines; variants: 

dots) may detect signatures of selection, such as selective sweeps (F17 in LS1 and 

LS2) that result from selection favoring a particular variant (dots), compared to 

neutral or background patterns (Ctrl).  Alternatively, selection may elicit a polygenic 

response, which may involve minor shifts in allele frequency at many loci and 

therefore may leave a very different selection signature from the one shown here.  
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Simulating selection response: infinitesimal model with linkage   
The rapid but generally smooth increase in tibia length in Longshanks is 

typically interpreted as evidence for a highly dispersed genetic architecture with no 

individually important loci contributing to the selection response.  This is classically 

described under quantitative genetics as the infinitesimal model.  Crucially, the 

appropriate null hypothesis for the genomic response here should capture “polygenic 

adaptation” rather than a neutral model.  We therefore developed a simulation that 

faithfully recapitulates the artificial selection experiment by integrating the trait 

measurements, selection regime, pedigree and genetic diversity of the Longshanks 

selection experiment, in order to generate an accurate expectation for the genomic 

response.  Using the actual pedigree and trait measurements, we mapped fitness 

onto tibia length 𝑻 and cube-root body mass 𝑩 as a single composite trait 𝑙𝑛 𝑻𝑩! .  

We estimated 𝜙 from actual data as −0.57, such that the ranking of breeders closely 

matched the actual composite ranking used to select breeders in the selection 

experiment, based on 𝑻 and 𝑩 separately (13) (Fig. 1 – figure supplement 2A).  We 

assumed a maximally polygenic genetic architecture using an “infinitesimal model 

with linkage” (abbreviated here as HINF), under which the trait is controlled by very 

many loci, each of infinitesimally small effect (see Supplementary Notes for details).  

Results from simulations seeded with actual genotypes or haplotypes showed that 

overall, the predicted increase in inbreeding closely matched the observed data (Fig. 

1 – figure supplement 2B).  We tested models with varying selection intensity and 

initial linkage disequilibrium (LD), and for each, ran 100 simulated replicates to 

determine the significance of changes in allele frequency (Fig. 1 – figure supplement 

2C–E).  This flexible quantitative genetics framework allowed us to explore possible 

changes in genetic diversity over 17 generations of breeding under strong selection.  

In simulations, we followed blocks of genomes as they were passed down the 

pedigree. In order to compare with observations, we seeded the initial genomes with 

single nucleotide polymorphisms (SNPs) in the same number and initial frequencies 

as the data.  We observed much more variation between chromosomes in overall 

inbreeding (Fig. 1 – figure supplement 2B) and in the distribution of allele 

frequencies (Fig. 2 – figure supplement 1B) than expected from simulations in which 

the ancestral SNPs were initially in linkage equilibrium.  This can be explained by 

linkage disequilibrium (LD) between the ancestral SNPs, which greatly increases 
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random variation.  Therefore, we based our significance threshold tests on 

simulations that were seeded with SNPs drawn with LD consistent with the initial 

haplotypes (Fig. 1 – figure supplement 2C & E; see Supplementary Notes).      

Because our simulations assume infinitesimal effects of loci, allele frequency 

shifts exceeding this stringent threshold suggest that discrete loci contribute 

significantly to the selection response.  An excess of such loci in either a single LS 

replicate or in parallel would thus imply a mixed genetic architecture of a few large-

effect loci amid an infinitesimal background.   

 

Sequencing the Longshanks mice reveals genomic signatures of selection 
To detect the genomic changes in the actual Longshanks experiment, we 

sequenced all individuals of the founder (F0) and 17th generation (F17) to an 

average of 2.91-fold coverage (range: 0.73–20.6×; n = 169 with <10% missing F0 

individuals; Supplementary File 1).  Across the three lines, we found similar levels of 

diversity, with an average of 6.7 million (M) segregating SNPs (approximately 

0.025%, or 1 SNP per 4 kbp; Supplementary File 2; Fig. 2 – figure supplement 1A & 

Fig. 2 – figure supplement 2).  We checked the founder populations to confirm 

negligible divergence between the three founder populations (across-line FST on the 

order of 1×10-4), which increased to 0.18 at F17 (Supplementary File 2).  This is 

consistent with random sampling from an outbred breeding stock.  By F17, the 

number of segregating SNPs dropped to around 5.8 M (Supplementary File 2).  This 

13% drop in diversity (0.9M SNPs genome-wide) is predicted by drift.  Our simulation 

confirmed this and moreover, showed that selection contributed negligibly to the drop 

in diversity (Supplementary Notes, Fig. 1 – figure supplement 2B, D).  

We conclude that despite the strong selection on the LS lines, there was little 

perturbation to genome-wide diversity.  Indeed, the changes in diversity in 17 

generations were remarkably similar in all three lines, despite Ctrl not having 

experienced selection on relative tibia length (Fig. 2 – figure supplement 1A).  

Hence, and consistent with our simulation results (Fig. 1 – figure supplement 2B, D), 

changes in global genome diversity had little power to distinguish selection from 

neutral drift despite the strong phenotypic selection response. 
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Fig. 2.  Widespread genomic response to selection for increased tibia length.   
Allele frequency shifts between generations F0 and F17 in LS1, LS2 and Ctrl lines 

are shown as ∆z2 profiles across the genome (plotted here as fraction of its range 

from 0 to π2).  The Ctrl ∆z2 profile (grey) confirmed our expectation from theory and 

simulation that drift, inbreeding and genetic linkage could combine to generate large 

∆z2 shifts even without selection.  Nonetheless the LS1 (blue) and LS2 (red) profiles 

show a greater number of strong and parallel shifts than Ctrl.  These selective 

sweeps provide support for the contribution of discrete loci to selection response 

(arrowheads, blue: LS1; red: LS2; purple: parallel; see also Fig. 1 – figure 

supplement 2E, Fig. 2 – figure supplement 2, Fig. 2 – figure supplement 3) beyond a 

polygenic background, which may explain a majority of the selection response and 

yet leave little discernible selection signature.  Candidate genes are highlighted 

(Table 1).  An additional a priori candidate limb regulator Gli3 is indicated with a 

black arrowhead. 
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We next asked whether specific loci reveal more definitive differences between 

the LS replicates and Ctrl (and from infinitesimal predictions).  We calculated ∆z2, the 

square of arc-sin transformed allele frequency difference between F0 and F17; this 

has an expected variance of 1/2Ne per generation, independent of starting 

frequency, and ranges from 0 to π2.  We averaged ∆z2 within 10 kbp windows (see 

Methods for details), and found 169 windows belonging to eight clusters (i.e., loci) 

that had significant shifts in allele frequency in LS1 and/or LS2 (corresponding to 9 

and 164 clustered windows respectively at P ≤ 0.05 under HINF, max LD; ∆z2 ≥ 0.33 π2; 

genome-wide ∆z2 = 0.02  ± 0.03 π2; Fig. 2; Fig. 1 – figure supplement 2D, Fig. 2 – 

figure supplement 2, Fig. 2 – figure supplement 3; see Methods for details) and 8 

windows in 3 clusters in Ctrl (genome-wide ∆z2 = 0.01  ± 0.02 π2).  The eight loci 

each overlapped between 2 to 179 genes and together contained 11 candidate 

genes with known roles in bone, cartilage and/or limb development (e.g., Nkx3-2 and 

Sox9; Table 1; Fig. 2 – figure supplement 3, Fig. 3 – figure supplement 1).  Four out 

of the eight loci contain genes with a “short tibia” or “short limb” knockout phenotype 

(Table 1; P ≤ 0.032 from 1000 permutations, see Methods for details).  Of the 

broader set of genes at these loci with any limb knockout phenotypes, only fibrillin 2 

(Fbn2) is polymorphic for SNPs coding for different amino acids, suggesting that for 

the majority of loci with large shifts in allele frequency, gene regulation was likely 

important in the selection response (Fig. 3 – figure supplement 1; Supplementary 

File 3; see Supplementary Notes for further analyses on enrichment in gene 

functions, protein-coding vs. cis-acting changes and clustering with loci affecting 

human height).   

Taken together, two major observations stand out from our genomic survey.  

One, a polygenic, infinitesimal selection model with strong LD amongst marker SNPs 

performed better than moderate LD or no LD (Fig. 1 – figure supplement 2E); and 

two, we nevertheless find more discrete loci in LS1 and LS2 than in Ctrl, beyond the 

significance threshold set by the infinitesimal model (Fig. 2; Fig. 2 – figure 

supplement 2).  Thus, we conclude that although the genetic basis of the selection 

response in the Longshanks experiment may be largely polygenic, evidence strongly 

suggests discrete loci with major effect, even when each line is considered 

separately. 
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Table 1.  Major loci likely contributing to selection response.  These 8 loci show 

significant allele frequency shifts in ∆z2 and are ordered according to their estimated 

selection coefficients according to (21).  Shown for each locus are the full hitchhiking 

spans, peak location and their size covering the core windows, the overlapping TAD 

and the number of genes found in it.  The two top-ranked loci show shifts in parallel 

in both LS1 and LS2, with the remaining six showing line-specific response (LS1: 1; 

LS2: 5).  Candidate genes found within the TAD with limb, cartilage, or bone 

developmental knockout phenotype functions are shown, with asterisks (*) marking 

those with a “short tibia” knockout phenotype (see also Fig. 2 – figure supplement 3 

and Supplementary File 3 for full table). 
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Fig. 3.  Selection response in the Longshanks lines was largely line-specific, 
but the strongest signals occurred in parallel.   
(A) Allele frequencies showed greater shifts in LS2 (red) than in Ctrl (grey; left panel; 

diamonds: peak windows; dots: other 10 kbp windows; see Fig. 3 – figure 

supplement 2 for Ctrl vs. LS1 and Supplementary Notes for details).  Changes in the 

two lines were not correlated with each other.  In contrast, there were many more 

parallel changes in a comparison between LS1 (blue) vs. LS2 (red; middle panel; 

adjacent windows appear as clusters due to hitchhiking).  The overall distribution 

closely matches simulated results under the infinitesimal model with maximal linkage 

disequilibrium (HINF, max LD; right heatmap summarizes the percentage seen in 100 

simulated replicates), with most of the windows showing little to no shift (red hues 

near 0; see also Fig. 3 – figure supplement 2 for an example replicate).  Tick marks 

along the axes show genome-wide maximum ∆z2  shifts in each of 100 replicate 

simulations in LS1 (x-axis, blue) and LS2 (y-axis, red), from which we derived line-

specific thresholds at the P ≤ 0.05 significance level.  While the frequency shifts from 

simulations matched the bulk of the observed data well, no simulation recovered the 

strong parallel shifts observed between LS1 and LS2 (compare middle to right panel, 

points along the diagonal).  (B) Genome-wide ranking based on estimated selection 

coefficients s among the candidate discrete loci at P ≤ 0.05 under HINF, max LD.  While 

six out of eight total loci showed significant shifts in only LS1 or LS2, the two loci with 

the highest selection coefficients were likely selected in parallel in both LS1 and LS2 

(also see middle panel in A).  
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We next tested the repeatability of the selection response at the gene/locus 

level using the two LS replicates.  If the founding populations shared the same 

selectively favored variants, we may observe parallelism or co-incident selective 

sweeps, as long as selection could overcome random drift.  Indeed, the ∆z2 profiles 

of LS1 and LS2 were more similar to each other than to Ctrl (Fig. 2 & 3A; Fig. 3 – 

figure supplement 2; Pearson’s correlation in ∆z2 from 10 kbp windows: LS1–LS2: 

0.21 vs. LS1–Ctrl: 0.06 and LS2–Ctrl: 0.05).  Whereas previous genomic studies with 

multiple natural or artificial selection replicates focused mainly on detecting parallel 

loci (23-26), here we have the possibility to quantify parallelism and determine the 

selection value of a given locus.  Six out of eight significant loci at the HINF, max LD 

threshold were line-specific, even though all eight selected alleles were present in 

the F0 generation in both lines.  This prevalence of line-specific loci was consistent 

under different significance thresholds.  However, the two remaining loci that ranked 

first and second by selection coefficient were parallel, both with s > 0.3 (Fig. 3B; note 

that as outliers, the selection coefficient may be substantially overestimated, but their 

rank order should remain the same), supporting the idea that the probability of 

parallelism can be high among those loci with the greatest selection advantage (27).  

Finding just two parallel loci out of 8 discrete loci may appear to be low, given the 

genetic similarity in the founding generation and the identical selection applied to 

both Longshanks replicates.  However, one should bear in mind the very many 

genetic paths to increasing tibia length under an infinitesimal model, and that the 

effect of drift is expected to be very strong in these small populations.  In larger 

populations, the shift in the balance from drift to selection should result in selection 

being able to favour increasingly subtle variants and thus produce a greater 

proportion of parallel loci.  However, we expect the trend of parallelism being 

enriched among the top loci to hold.  In contrast to the subtle differences within each 

line in changes in global diversity over 17 generations (Fig. 2 and Fig. 2 – figure 

supplement 2), we found the signature of parallelism to be significantly enriched in 

the comparison between the selected replicates (𝜒2 test, LS1–LS2: P ≤ 1 ×10-10), as 

opposed to comparisons between each selected lines and Ctrl (LS1–Ctrl: P > 0.01 

and LS2–Ctrl: P > 0.2, both non-significant after correcting for multiple testing), or 

between simulated replicates (Fig. 3 – figure supplement 2; see Supplementary 

Notes for details).  Because the parallel selected loci between LS1 and LS2 have the 

highest selection coefficients and parallelism is not generally expected in our 
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populations, these loci provide the strongest evidence for the role of discrete major 

loci.  As such, the top-ranked parallel locus is the prime candidate for molecular 

dissection (see Fig. 4 – figure supplement 1 and Supplementary Notes “Molecular 

dissection of Gli3” for an additional a priori candidate locus with known limb 

function).  

 

Molecular dissection of the Nkx3-2 locus highlights cis-acting changes 
Between the two major parallel loci, we chose the locus on chromosome 5 

(Chr5) at 41–42 Mbp for functional validation because it showed the strongest 

estimated selection coefficient, its clear signature of selection was clear, and 

crucially for functional characterization, it contains only three genes, including Nkx3-

2 (also known as Bapx1), a known regulator of bone maturation (Fig. 2 & 4A) (29).  

At this locus, the pattern of variation resembles a selective sweep spanning 1 Mbp 

(Fig. 4A).  Comparison between F0 and F17 individuals revealed no recombinant in 

this entire region (Fig. 5 – figure supplement 1A, top panel), precluding fine-mapping 

using recombinants.  We then analyzed the genes in this region to identify the likely 

target(s) of selection.  First, we determined that no coding changes existed for either 

Rab28 or Nkx3-2, the two genes located within the topologically associating domain 

(TADs, which mark chromosome segments with shared gene regulatory logic) (22).  

We then performed in situ hybridization and detected robust expression of Nkx3-2 

and Rab28 in the developing fore- and hindlimb buds of Ctrl, LS1 and LS2 E12.5, in 

a domain broadly overlapping the presumptive zeugopod, the region including the 

tibia (Fig. 4 – figure supplement 2B).  A third gene, Bod1l, straddled the TAD 

boundary with its promoter located in the neighbouring TAD, making its regulation by 

sequences in the selected locus unlikely.  Consistent with this, Bod1l showed only 

weak or undetectable expression in the developing limb bud (Fig. 4 – figure 

supplement 2A).  We next combined ENCODE chromatin profiles and our own 

ATAC-Seq data to identify limb enhancers in the focal TAD.  Here we found 3 novel 

enhancer candidates (N1, N2 and N3) carrying 3, 1 and 3 SNPs respectively, all of 

which showed significant allele frequency shifts in LS1 and LS2 (Fig. 4B & C; Fig. 5 

– figure supplement 1A).   
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Fig. 4.  Strong parallel selection response at the bone maturation repressor 
Nkx3-2 locus was associated with decreased activity of two enhancers.   
(A) ∆z2 in this region of chromosome 5 showed strong parallel differentiation 

spanning 1 Mbp in both Longshanks but not in the Control line.  This 1 Mbp region 

contains three genes Nkx3-2, Rab28 and Bod1l (whose promoter lies outside the 

TAD boundary, shown as grey boxes).  Although an originally rare allele in all lines, 

this region had swept almost to fixation by generation 17 in LS2 (Fig. 5 – figure 

supplement 1A). (B) Chromatin profiles [ATAC-Seq, red, (28); ENCODE histone 

modifications, purple] from E14.5 developing limb buds revealed five putative limb 

enhancers (grey and red shading) in the TAD, three of which contained SNPs 

showing significant frequency shifts.  Chromosome conformation capture assays 

(4C-Seq) from E14.5 limb buds from the N1, N2 and N3 enhancer viewpoints (bi-

directional arrows) showed significant long-range looping between the enhancers 

and sequences around the Nkx3-2 promoter (heat-map from grey to red showing 

increasing contacts; Promoters are shown with black arrows and blue vertical 

shading).  (C) Selected alleles at 7 SNPs found within the N1–3 enhancers 

increased ~0.75 in frequency in both LS1 and LS2.  Selected alleles at 3 of these 

sites are predicted to lead to loss (red inhibition circles) of transcription factor binding 

sites in the Nkx3-2 pathway (including a SNP in N3 causing loss of 2 adjoining Nkx3-

2 binding sites) and thus reduce enhancer activity in N1 and N3.  (D, E) Transient 

transgenic reporter assays of the N1 and N3 enhancers showed that the F0 alleles 

drove robust and consistent expression at centers of future cartilage condensation 

(N1) and broader domains of Nkx3-2 expression (N3) in E12.5 fore- and hind limb 

buds (FL, HL; ti: tibia).  Fractions indicate number of embryos showing similar lacZ 

staining out of all transgenic embryos.  Substituting the F17 enhancer allele 

(replacing 3 positions each in N1 and N3) led to little observable limb bud expression 

in both the N1/F17 and N3/F17 embryos, suggesting that selection response for 

longer tibia involved de-repression of bone maturation through a loss-of-function 

regulatory allele of Nkx3-2 at this locus.  Scale bar: 1 mm for both magnifications. 
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Chromosome conformation capture assays showed that the N1–3 sequences 

formed long-range looping contacts with the Nkx3-2 promoter—a hallmark of 

enhancers—despite as much as 600 kbp of intervening sequence (Fig. 4B).  We 

next used transgenic reporter assays to determine whether these sequences could 

drive expression in the limbs.  Here, we were not only interested in whether the 

sequence encoded enhancer activity, but specifically whether the SNPs would affect 

the activity (Fig. 4C & D).  An examination of the predicted transcription factor 

binding sites showed that both the N1 and N3 enhancers contain multiple SNPs with 

consistent directional impact on the putative enhancer activity (Fig. 4C).  In contrast, 

the N2 enhancer contains only a single SNP and is predicted to have inconsistent 

effect on its activity.  We therefore excluded the N2 enhancer from further testing.  

We found that the F0 alleles of the N1 and N3 enhancers (3 SNPs each in about 1 

kbp) drove robust and consistent lacZ expression in the developing limb buds (N1 

and N3) as well as in expanded trunk domains (N3) at E12.5 (Fig. 4E).  In contrast, 

transgenic reporters carrying the selected F17 alleles of the N1 and N3 enhancers 

drove consistently weak, nearly undetectable lacZ expression (Fig. 4E).  Thus, 

switching from the F0 to the F17 enhancer alleles led to a nearly complete loss in 

activity (“loss-of-function”).  This is consistent with the role of Nkx3-2 as a repressor 

in long bone maturation (29).  It should be noted that even though our selective 

regime favored an increase in the target phenotype (tibia length), at the molecular 

level we expect advantageous loss- and gain-of-function variants to be equally likely 

favored by selection.  In fact, in an additional functional validation example at the 

Gli3 locus, we found a gain-of-function enhancer variant that may have been favored 

at that locus (see Fig. 4 – figure supplement 1 and Supplementary Notes “Molecular 

dissection of Gli3”). 

At the Nkx3-2 locus, we hypothesize that the F17 allele causes de-repression 

of bone formation by reducing enhancer activity and Nkx3-2 expression.  Crucially, 

the F0 N1 enhancer showed activity that presages future long bone cartilage 

condensation in the limb (Fig. 4E).  That is, the observed expression pattern recalls 

previous results that suggest that undetected early expression of Nkx3-2 may mark 

the boundaries and size of limb bone precursors, including the tibia (30) (Fig. 4 – 

figure supplement 2C).  Conversely, over-expression of Nkx3-2 has been shown to 

cause shortened tibia (even loss) in mice (31, 32).  In humans, homozygous 

frameshift mutations in NKX3-2 cause the rare disorder spondylo-megaepiphyseal-
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metaphyseal dysplasia (SMMD; OMIM: 613330), which is characterized by short-

trunk, long-limbed dwarfism and bow-leggedness (33).  The affected bones in SMMD 

patients broadly correspond to the expression domains of the two novel N1 (limbs) 

and N3 (limbs and trunk) enhancers.  Instead of wholesale loss of Nkx3-2 

expression, which would have been lethal in mice (34) or likely cause major defects 

similar to SMMD patients (33), our in situ hybridization data did not reveal qualitative 

differences in Nkx3-2 expression domains between Ctrl or LS embryos (Fig. 4 – 

figure supplement 2B).  Taken together, our results recapitulate the key features of a 

cis-acting mode of adaptation: Nkx3-2 is a broadly expressed pleiotropic 

transcription factor that causes lethality when knocked out (34).  We found no amino 

acid changes between the F0 and F17 alleles that could impact protein function.  

Rather, selection favoured changes in tissue-specific expression by modular 

enhancers.  By combining population genetics, functional genomics and 

developmental genetic techniques, we were able to dissect a megabase-long locus 

and present data supporting the identification of up to 6 candidate quantitative trait 

nucleotides (QTNs).  In mice, this represents a rare example of genetic dissection of 

a trait to the base-pair level. 

 

Linking molecular mechanisms to evolutionary consequence 
We next aimed to determine the evolutionary relevance of the Nkx3-2 enhancer 

variants at the molecular and the population levels.  At the strongly expressed N3/F0 

“trunk and limb” enhancer, we note that the SNPs in the F17 selected allele lead to 

disrupted Nkx3-1 and Nkx3-2 binding sites [Fig. 4C & 5A; UNIPROBE database 

(35)].  This suggests that the selected SNPs may disrupt an auto-feedback loop to 

decrease Nkx3-2 activity in the limb bud and trunk domain (Fig. 5A).  Using a GFP 

transgenic reporter assay in stickleback fish embryos, we found that the mouse 

N1/F0 enhancer allele was capable of driving expression in the distal cells but not in 

the fin rays of the developing fins (Fig. 5A).  This pattern recapitulates fin expression 

of nkx3.2 in fish, which gives rise to endochondral radials (homologous to ulna/tibia 

in mice) (36).  Our results suggest that strong selection may have favored the 

weaker N1/F17 and N3/F17 enhancer alleles in the context of the Longshanks 

selection regime despite the deep functional conservation of the F0 variants. 

Using theory and simulations, we went beyond qualitative molecular dissection 

to quantitatively estimate the selection coefficient at the Nkx3-2 locus and its 
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contribution to the total selection response in the Longshanks mice.  We retraced the 

selective sweep of the Nkx3-2 N1 and N3 alleles through targeted genotyping in 

1569 mice across all 20 generations.  The selected allele steadily increased from 

around 0.17 to 0.85 in LS1 and 0.98 in LS2 but fluctuated around 0.25 in Ctrl (Fig. 

5B).  We estimated that such a change of around 0.7 in allele frequency would 

correspond to a selection coefficient s of ~0.24 ± 0.12 at this locus (Fig. 5 – figure 

supplement 1B; see Supplementary Notes section on “Estimating selection 

coefficient of the top-ranking locus, Nkx3-2, from changes in allele frequency”).  By 

extending our simulation framework to allow for a major locus against an infinitesimal 

background, we find that the Nkx3-2 locus would contribute 9.4% of the total 

selection response (limits 3.6 – 15.5%; see Supplementary Notes section 

“Estimating selection coefficient” for details) in order to produce a shift of 0.7 in allele 

frequency over 17 generations.  To avoid inflation stemming from estimating from 

outliers, we also independently estimated the contribution of the Nkx3-2 locus using 

a linear mixed animal model based on the full genotyped series mentioned above 

(see Supplementary Notes section “Estimating selection coefficient, animal model” 

for details).   Using this alternative approach, we estimated that each selected allele 

increases tibia length by 0.36% (N=1569, 95% conf. int.: .07% – 0.64%, P = 0.0171).  

Multiplying the effect with the increase in the allele frequency suggests that the 

Nkx3-2 locus alone would account for approximately 4% of the overall 12.9% 

increase in tibia length.  This lower estimate of around 4% is nonetheless within the 

bounds of the estimate from simulations.  Together, both approaches agree that the 

Nkx3-2 locus contribute substantially to the selection response.  
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Fig. 5. Linking base-pair changes to rapid morphological evolution.  
(A) At the Nkx3-2 locus, we identified two long-range enhancers, N1 and N3 

(circles), located 600 and 230 kbp away, respectively.  During development, they 

drive partially overlapping expression domains in limbs (N1 and N3) and trunk (N3), 

which are body regions that may correlate positively (tibia length) and possibly 

negatively (trunk with body mass) with the Longshanks selection regime.  For both 

enhancers, the selected F17 alleles carry loss-of-function variants (grey crosses).  

Two out of three SNPs in the N3 F17 enhancer are predicted to disrupt an auto-

feedback loop, likely reducing Nkx3-2 expression in the trunk and limb regions.  
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Conversely, the enhancer function of the strong N1 F0 allele is evolutionarily 

conserved in fishes, demonstrated by its ability to drive consistent GFP expression 

(green) in the pectoral fins (pf, outlined) and branchial arches (white arrowhead, left) 

in transgenic stickleback embryos at 11 days post-fertilization.  The N1 enhancer can 

recapitulate nkx3.2 expression in distal cells specifically in the endochondral radial 

domain in developing fins (black arrowheads, right).  Scale bar: 250 µm for both 

magnifications. (B) Allele frequency of the selected allele (minor F0 allele, q) at N3 

over 20 generations (blue: LS1; red: LS2; grey broken line: Ctrl; results from N1 were 

nearly identical due to tight linkage).  Observed frequencies from genotyped 

generations in the Ctrl line are marked with filled circles.  Dashed lines indicate 

missing Ctrl generations.  Open circles at generations 0 and 17 indicate allele 

frequencies from whole genome sequencing.  The allele frequency fluctuated in Ctrl 

due to random drift but followed a generally linear increase in the selected lines from 

around 0.17 to 0.85 (LS1) and 0.98 (LS2) by generation 17.  Shaded contours mark 

expected allelic trajectories under varying selection coefficients starting from 0.17 

(red horizontal line; the average starting allele frequency between LS1 and LS2 

founders).  The grey shaded region marks the 95% confidence interval under 

random drift.   

 
 

2.2.4 Discussion: 
 

A defining task of our time is to understand the factors that determine and 

constrain how small populations respond to sudden environmental changes.  Here, 

we analyze the replicated and controlled Longshanks experiment to characterize the 

genomic changes that occur as small experimental populations respond to selection.   

An important conclusion from the Longshanks experiment is that selection 

response can be steady and robust even in extremely bottlenecked populations.  

That is, we found that tibia length increased readily and repeatedly in response to 

selection even with as few as 14-16 breeding pairs per generation.  The sustained 

response was possible because the lines were founded with enough standing 

variation, and generation 17 was still only a fraction of the way to the expected limit 

for the selection response at ~2Ne generations (37), estimated here to be around 90 
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(see legend for Fig. 1 – figure supplement 2B; Supplementary Notes on “Estimating 

the selection coefficient”).  Although other selective breeding studies using a similar 

base population of mice encountered selection limits at around generation 20-25 

[possibly due to countervailing selection rather than loss of genetic variance for high 

voluntary wheel running behavior (38) and for nest-building behavior (39), here all 

evidence suggest that the Longshanks mice should continue to show increase in 

tibia length for many more generations. 

The estimated Ne of 46 in the Longshanks experiment, while small, is 

comparable to those in natural populations like the Soay sheep (40), Darwin’s 

finches (41) or Tasmanian Devils (5) (this last study documents a rapid and parallel 

evolutionary response to transmissible tumor).  These populations span a wide 

range of time in sustained bottlenecking, from the most recent in Tasmanian devils, 

to likely many millions of years in Darwin’s finches.  Accordingly, we also expect very 

different dynamics during short- vs. long-term selection response: for a short bout of 

selection, such as the 20 generations analyzed in this study, selection response 

depends overwhelmingly on standing genetic variation, with little to no contribution 

from de novo mutations (43, 44).  Over the long term, however, de novo mutations 

would contribute increasingly.  In the Longshanks experiment, we observe a robust 

early response to selection (Fig. 1B & Fig. 1 – figure supplement 1), and a gradual 

decrease in sequence diversity, consistent with the effect of drift (Fig. 1 – figure 

supplement 2B & Fig. 2 – figure supplement 1A, Supplementary File 2).  There has 

long been broad empirical support for adaptation from standing genetic variation in 

nature (24, 42, 45) and breeding (46).  At least in the short-run, our result 

demonstrating robust selection response in the Longshanks experiment provides 

grounds for some optimism regarding the ability of populations to respond rapidly to 

changes in their environment.  

By combining pedigree records with sequencing of founder individuals, our data 

had sufficient detail to allow precise modeling of trait response, with predicted shifts 

in allele frequency distribution that closely matched our results (e.g. Fig. 1 – figure 

supplement 2D).  Furthermore, we functionally validated loci that showed allele 

frequency shifts outside the model’s predictions and found key enhancers of major 

effect.  Connecting trait changes to allele frequency changes at specific loci has 

been a longstanding objective in selection experiments, with a number of remarkable 

early attempts (47).  To date, we know of only a few studies that attempt to explicitly 
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link traits with changes in allele frequencies (48-51) and none have systematically 

tested the underlying architecture against an infinitesimal background.   Here, our 

results imply a mixed genetic architecture with a few discrete loci of large effect amid 

an infinitesimal background.  It remains to be seen whether other evolve-and-

resequence (E&R) studies, with different selection pressures and population 

parameters may reveal similar results.   

To put our finding of a mixed genetic architecture into perspective, it is worth 

noting that the infinitesimal model is still the most predictive model by far in practical 

quantitative genetics, for diverse domesticated species from cattle to crops, despite 

its intrinsically unrealistic assumptions (52-54).  In general, current genomic data for 

many traits is consistent with a very large number of loci, each with a small effect.  

From a practical point of view, however, the use of an infinitesimal model does not 

preclude the presence or indeed the importance of few major effect loci.  Rather, it 

simply assumes that they are rare enough to allow reasonable model fit [(55), page 

878].  Here, we note that it is actually not clear how one might parameterize a 

generally applicable predictive oligogenic model with more than a single major effect 

locus.  In this study, while we consider the most likely genetic architecture to be a 

small number of major effect loci together with a polygenic background, we cannot 

reject other alternative models that could also account for the observed response, 

such as an effectively infinitesimal model with linkage, as well as models with a few 

major trait loci.   

Among other classical examples of complex traits, such as height or body 

weight, that may have been subjected to selection, we observe a range of genetic 

architectures in ways often tightly connected to their population size and/or selection 

history.  Height in humans is often cited as the classical complex trait under possible 

selection of unknown (and much debated) intensity [see (56-59)].  It shows high 

heritability and a highly dispersed genetic architecture (with the top-ranked locus 

accounting for only 0.8% of the variation explained in cosmopolitan European 

populations) (60, 61). In contrast, as few as 4 to 6 loci account for 83% and 50% of 

the variation in height in horses and dogs, respectively (62, 63).  In both horses and 

dogs, selection has been strong and sustained, and breed populations tend to be 

small.  Interestingly, and in line with our experiment, the major allele at the IGF1 

locus stems from a standing genetic variant, despite many factors that may 

theoretically favor large-effect de novo mutations (64).  In chickens, modern breeding 
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practice and selection from large populations yielded a highly polygenic genetic 

architecture for body weight, with some of the best empirical evidence for epistasis 

(65-68).  Similarly, results from many selection experiments in Drosophila suggest 

that the genetic architecture underlying selection response may involve many genes 

(69-72).  By contrast, the extreme tail of the effect size distribution (as inferred from 

∆z2) from the Longshanks experiment appears to account for a substantial part of the 

selection response, presumably due to the combined effects of relatively low 

diversity in commercial mouse stock and the small founding populations.  But unlike 

these previous QTL studies or selection experiments, in which either the genetic 

architecture of a trait or the selection value were estimated separately, sometimes 

from only few parental individuals or lines, E&R studies sample a much broader pool 

of alleles and continually compete them against each other.  Thus, our approach 

allowed simultaneous inference of genetic architecture and distribution of effect 

sizes, is more likely to be representative of the population at large, and is more akin 

to genome-wide association studies (GWAS), except that here we can also directly 

connect a trait to its selective value and capture the trajectory of any given allele.   

Parallel evolution is often seen as a hallmark for detecting selection (25, 73-

75).  We investigated the factors that contribute to parallelism in allele frequency 

shifts over 17 generations by contrasting the two Longshanks replicates against the 

Control line.  However, we observed little parallelism between selected lines and 

Ctrl, or between simulated replicates under selection, even though the simulated 

haplotypes were sampled directly from actual founders.  This underscores that 

parallelism depends on both shared selection pressure (absent in Ctrl) and the 

availability of large-effect loci that confer a substantial selection advantage (absent 

under the infinitesimal model; Fig. 3; Fig. 3 – figure supplement 2).  With increasing 

population size, selection would be better able to detect variants with more subtle 

effects. This would in turn lower the threshold beyond which the selection advantage 

of an allele would become deterministic, i.e., exhibit parallelism. 

Through in-depth dissection of the Nkx3-2 locus, our data show in fine detail 

how the selective value of standing variants depends strongly on the selection 

regime: the originally common F0 variant of the N1 enhancer show deep functional 

conservation and can evidently recapitulate fin nkx3.2 expression in fishes (Fig. 5A).  

Yet, in the Longshanks experiment selection strongly favored the weaker allele (Fig. 

5B).  In fact, our molecular dissection of two loci show that both gain-of-function 
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(Gli3) and loss-of-function (Nkx3-2) variants could be favored by selection (Fig. 4E & 

5A; Fig. 4 – figure supplement 1D).  Through synthesis of multiple lines of evidence, 

our work uncovered the key role of Nkx3-2, which was not an obvious candidate 

gene like Gli3 due to the lack of abnormal limb phenotype in the Nkx3-2 knockout 

mice.  To our surprise, the same loss of NKX3-2 function in human SMMD patients 

manifests in opposite ways in different bone types as short trunk and long limbs (33).  

This matches the expression domains of our N1 (limb) and N3 (limb and trunk) 

enhancers (Fig. 5A).  Evidently, in the absence of lethal coding mutations, the F17 

haplotype was doubly beneficial at both enhancers for the limb and potentially also 

trunk target tissues under the novel selection regime in the Longshanks selection 

experiment.  We estimate that these enhancer variants, along with any other tightly 

linked beneficial SNPs, segregate as a single locus, which in turn contributes ~10% 

of the overall selection response.  

Despite our efforts to uncover the mechanism underlying the selective 

advantage of the Nkx3-2 locus, much remains unknown.  For example, it remains 

unclear how such a major allele could segregate in the general mouse stock (and as 

the reference C57BL/6J allele, no less).  It could be that this allele has the same 

effect in the general mouse population but is conditionally neutral under non-

selective breeding and simply escaped notice.  However, our preliminary exploration 

in a panel of C57BL/6-by-DBA/2 (“BXD”) mice suggested otherwise: mapping of tibia 

length or mineral density did not reveal this locus as a major QTL determining tibia 

length (unpublished data kindly provided by Weikuan Gu), suggesting that this 

allele’s effect on tibia length may depend on the genetic background.  Alternatively, 

the broader C57BL/6 allele could be linked to a compensatory mutation that became 

uncoupled among the founders of the Longshanks lines.  Finally, although we do 

observe the specific N1 and N3 SNP positions as variable across the rodent and 

indeed the broader mammalian lineages, further work is needed to determine their 

effect, if any, on limb development. 
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2.2.5 Conclusion: 
 

Using the Longshanks selection experiment and synthesizing theory, empirical 

data and molecular genetics, we show that it is possible to identify some of the 

individual SNPs that have contributed to the response to selection on morphology.  

In particular, discrete, large-effect loci are revealed by their parallel response.  

Further work should focus on dissecting the mechanisms behind the dynamics of 

selective sweeps and/or polygenic adaptation by re-sequencing the entire selection 

pedigree, testing how the selection response depends on the genetic architecture, 

and the extent to which linkage places a fundamental limit on our inference of 

selection.  Improved understanding in these areas may have broad implications for 

conservation, rapid adaptation to climate change and quantitative genetics in 

medicine, agriculture and in nature. 

 

2.2.6 Material and Methods:  
 
Animal Care and Use  

All experimental procedures described in this study have been approved by the 

applicable University institutional ethics committee for animal welfare at the 

University of Calgary (HSACC Protocols M08146 and AC13-0077); or local 

competent authority: Landesdirektion Sachsen, Germany, permit number 24-

9168.11-9/2012-5.   

 

Reference genome assembly 
All co-ordinates in the mouse genome refer to Mus musculus reference mm10, 

which is derived from GRCm38.   

 

Code and data availability 
Sequence data have been deposited in the SRA database under accession 

number SRP165718 and GEO under GSE121564, GSE121565 and GSE121566.  

Non-sequence data have been deposited at Dryad. Analytical code and additional 

notes have been deposited in the following repository: 

https://github.com/evolgenomics/Longshanks. 
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Pedigree data 
Tibia length and body weight phenotypes were measured as previously 

described (13).  A total of 1332 Control, 3054 LS1, and 3101 LS2 individuals were 

recorded.  Five outlier individuals with a skeletal dysplasia of unknown etiology were 

removed from LS2 and excluded from further analysis.  Missing data in LS2 were 

filled in with random individuals that best matched the pedigree.  Trait data were 

analyzed to determine response to selection based on the measured traits and their 

rank orders based on the selection index. 

 

Simulations 
Simulations were based on the actual pedigree and selection scheme, following 

one chromosome at a time.  Each chromosome was represented by a set of 

junctions, which recorded the boundaries between genomes originating from 

different founder genomes; at the end, the SNP genotype was reconstructed by 

seeding each block of genome with the appropriate ancestral haplotype.  This 

procedure is much more efficient than following each of the very large number of 

SNP markers.  Crossovers were uniformly distributed, at a rate equal to the map 

length (76).  Trait value was determined by a component due to an infinitesimal 

background (Vg); a component determined by the sum of effects of 104 evenly 

spaced discrete loci (Vs); and a Gaussian non-genetic component (Ve).  The two 

genetic components had variance proportional to the corresponding map length, and 

the heritability was estimated from the observed trait values (see Supplementary 

Notes under “Major considerations”).  In each generation, the actual number of male 

and female offspring were generated from each breeding pair, and the male and 

female with the largest trait value were chosen to breed. 

SNP genotypes were assigned to the founder genomes with their observed 

frequencies.  However, to reproduce the correct variability requires that we assign 

founder haplotypes.  This is not straightforward, because low-coverage individual 

genotypes cannot be phased reliably, and heterozygotes are frequently mis-called as 

homozygotes.  We compared three procedures, which were applied within intervals 

that share the same ancestry: assigning haplotypes in linkage equilibrium (LE, or “no 

LD”); assigning the two alleles at heterozygous sites in each individual to its two 

haplotypes at random, which minimizes linkage disequilibrium but is consistent with 

observed diploid genotypes (“min LD”); and assigning alleles at heterozygous sites in 
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each individual to the “reference” and “alternate” haplotype consistently within an 

interval, which maximises linkage disequilibrium (“max LD”) (Fig. 1 – figure 

supplement 2C).  For details, see legend in Fig. 1 – figure supplement 2. 

 

Significance thresholds 
To obtain significance thresholds, we summarized the genome-wide maximum 

∆z2 shift for each replicate of the simulated LS1 and LS2 lines, averaged within 10kb 

windows, and grouped by the selection intensity and extent of linkage disequilibrium 

(LD).  From this distribution of genome-wide maximum ∆z2 we obtained the critical 

value for the corresponding significance threshold (typically the 95th quantile or P = 

0.05) under each selection and LD model (Fig. 3A; Fig. 1 – figure supplement 2E).  

This procedure controls for the effect of linkage and hitchhiking, line-specific 

pedigree structure, and selection strength.   

 
Sequencing, genotyping and phasing pipeline 

Sequencing libraries for high-throughput sequencing were generated using 

TruSeq or Nextera DNA Library Prep Kits (Illumina, Inc., San Diego, USA) according 

to manufacturer’s recommendations or using equivalent Tn5 transposase expressed 

in-house as previously described (77).  Briefly, genomic DNA was extracted from ear 

clips by standard Protease K digestion (New England Biolabs GmbH, Frankfurt am 

Main, Germany) followed by AmpureXP bead (Beckman Coulter GmbH, Krefeld, 

Germany) purification.  Extracted high-molecular weight DNA was sheared with a 

Covaris S2 (Woburn, MA, USA) or “tagmented” by commercial or purified Tn5-

transposase according to manufacturer’s recommendations.  Each sample was 

individually barcoded (single-indexed as N501 with N7XX variable barcodes; all 

oligonucleotides used in this study were synthesized by Integrated DNA 

Technologies, Coralville, Iowa, USA) and pooled for high-throughput sequencing by 

a HiSeq 3000 (Illumina) at the Genome Core Facility at the MPI Tübingen Campus.  

Sequenced data were pre-processed using a pipeline consisting of data clean-up, 

mapping, base-calling and analysis from software fastQC v0.10.1 (78); trimmomatic 

v0.33 (79); bwa v0.7.10-r789 (80); GATK v3.4-0-gf196186 modules BQSR, 

MarkDuplicates, IndelRealignment (81, 82).  Genotype calls were performed using 

the GATK HaplotypeCaller under the GENOTYPE_GIVEN_ALLELES mode using a 

set of high-quality SNP calls made available by the Wellcome Trust Sanger Centre 
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[Mouse Genomes Project version 3 dbSNP v137 release (83)], after filtering for sites 

segregating among inbred lines that may have contributed to the original 7 female 

and 2 male CD-1 founders, namely 129S1/SvImJ, AKR/J, BALB/cJ, BTBR T+ 

Itpr3tf/J, C3H/HeJ, C57BL/6NJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HiJ, MOLF/EiJ, 

NOD/ShiLtJ, NZO/HlLtJ, NZW/LacJ, PWK/PhJ and WSB/EiJ based on (16).  We 

consider a combined ~100x coverage sufficient to recover any of the 18 CD-1 

founding haplotypes still segregating at a given locus.  The raw genotypes were 

phased with Beagle v4.1 (83) based on genotype posterior likelihoods using a 

genetic map interpolated from the mouse reference map (76) and imputed from the 

same putative CD-1 source lines as the reference panel.  The site frequency spectra 

(SFS) were evaluated to ensure genotype quality (Fig. 2 – figure supplement 1A).  

 

Population genetics summary statistics 
Summary statistics of the F0 and F17 samples were calculated genome-wide 

(Weir–Cockerham FST , π, heterozygosity, allele frequencies p and q) in adjacent 10 

kbp windows or on a per site basis using VCFtools v0.1.14 (84).  The summary 

statistic ∆z2 was the squared within-line difference in arcsine square-root 

transformed MAF q; it ranges from 0 to π2. The resulting data were further processed 

by custom bash, Perl and R v3.2.0 (85) scripts.   

 

Peak loci and filtering for hitchhiking windows 
Peak loci were defined by a descending rank ordering of all 10 kbp windows, 

and from each peak signal the windows were extended by 100 SNPs to each side, 

until no single SNP rising above a ∆z2 shift of 0.2 π2 was detected.  A total of 810 

peaks were found with a ∆z2 shift ≥ 0.2 for LS1 and LS2.  Following the same 

procedure, we found 766 peaks in Ctrl.   

 

Candidate genes 
To determine whether genes with related developmental roles were associated 

with the selected variants, the topologically associating domains (TADs) derived from 

mouse embryonic stem cells as defined elsewhere (22) were re-mapped onto mm10 

co-ordinates.  Genes within the TAD overlapping within 500 kbp of the peak window 

(“core span”) were then cross-referenced against annotated knockout phenotypes 

(Mouse Genome Informatics, http://www.informatics.jax.org).  This broader overlap 
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was chosen to include genes whose regulatory sequences (e.g., enhancers), but not 

necessarily their gene bodies, fall close to the peak window.  We highlight candidate 

genes showing limb- and bone-related phenotypes, e.g., with altered limb bone 

lengths or epiphyseal growth plate morphology, as observed in Longshanks mice 

(15), of the following categories (along with their Mammalian Phenotype Ontology 

term and the number of genes): “abnormal tibia morphology/MP:0000558” (212 

genes), “short limbs/MP:0000547” and “short tibia/MP:0002764” (223 genes), 

“abnormal cartilage morphology/MP:0000163” (321 genes), “abnormal osteoblast 

morphology/MP:0004986” (122 genes).  Note that we excluded compound mutants 

or those conditional mutant phenotypes involving transgenes.  To determine if the 

overlap with these genes were significant, we performed 1000 permutations of the 

core span using bedtools v2.22.1 shuffle with the -noOverlapping option (86) and 

excluding ChrY, ChrM and unassembled scaffolds.  We then followed the exact 

procedure as above to determine the number of genes in the overlapping TAD 

belonging to each category.  We reported the quantile rank as the P-value, ignoring 

ties.  To determine other genes in the region, we list all genes falling within the entire 

hitchhiking window (Supplementary File 3).   

 

Identification of putative limb enhancers 
We downloaded publicly available chromatin profiles, derived from E14.5 limbs, 

for the histone H3 lysine-4 (K4) or lysine-27 (K27) mono-/tri-methylation or 

acetylation marks (H3K4me1, H3K4me3 and H3K27ac) generated by the ENCODE 

Consortium (87).  We intersected the peak calls for the enhancer-associated marks 

H3K4me1 and H3K27ac and filtered out peaks overlapping promoters [H3K4me3 

and promoter annotation according to the FANTOM5 Consortium (88)].   

 

Enrichment analysis 
To calculate enrichment through the whole range of ∆z2, a similar procedure 

was taken as in Candidate genes above.  For knockout gene functions, genes 

contained in TADs within 500 kbp of peak windows were included in the analysis.  

We used the complete database of annotated knockout phenotypes for genes or 

spontaneous mutations, after removing phenotypes reported under conditional or 

polygenic mutants.  For gene expression data, we retained all genes which have 

been reported as being expressed in any of the limb structures, by tracing each 
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anatomy ontological term through its parent terms, up to the top level groupings, 

e.g., “limb”, in the Mouse Genomic Informatics Gene Expression Database (89).  For 

E14.5 enhancers, we used a raw 500 kbp overlap with the peak windows because 

enhancers, unlike genes, may not have intermediaries and may instead represent 

direct selection targets.  

For coding mutations, we first annotated all SNPs for their putative effects 

using snpEff v4.0e (90).  To accurately capture the per-site impact of coding 

mutations, we used per-site ∆z2 instead of the averaged 10 kbp window.  For each 

population, we divided all segregating SNPs into up to 0.02 bands based on per-site 

∆z2.  We then tracked the impact of coding mutations in genes known to be 

expressed in limbs, as above.  We reported the sum of all missense (“moderate” 

impact), frame-shift, stop codon gain or loss sites (“high impact”).  A linear 

regression was used to evaluate the relationship between ∆z2 and the average 

impact of coding SNPs (SNPs with high or moderate impact to all coding SNPs). 

For regulatory mutations, we used the same bins spanning the range of ∆z2, 

but focused on the subset of SNPs falling within the ENCODE E14.5 limb enhancers.  

We then obtained a weighted average conservation score based on an averaged 

phastCons (91) or phyloP (92) score in ±250 bp flanking the SNP, calculated from a 

60-way alignment between placental mammal genomes [downloaded from the 

UCSC Genome Browser (93)].  We reported the average conservation score of all 

SNPs within the bin and fitted a linear regression on log-scale.  In particular, 

phastCons scores range from 0 (un-conserved) to 1 (fully conserved), whereas 

phyloP is the 𝑙𝑜𝑔!"  of the P-value of the phylogenetic tree, expressed as a positive 

score for conservation and a negative score for lineage-specific accelerated change.  

We favored using phastCons for its simpler interpretation.   

 

Impact of coding variants 
Using the same SNP effect annotations described in the section above, we 

checked whether any specific SNP with significant site-wise ∆z2 in either LS1 or LS2 

cause amino acid changes or protein disruptions and are known to cause limb 

defects when knocked out.  For each position we examined outgroup sequences 

using the 60-way placental mammal alignment to determine the ancestral amino acid 

state and whether the selected variant was consistent with purifying vs. diversifying 

selection.  The resulting 12 genes that matched these criteria are listed in 
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Supplementary File 4.  

 

Association with human height loci 
We downloaded the set of 697 SNPs associated with loci for human height (61) 

to test if these loci cluster with the selected loci in the Longshanks lines.  In order to 

facilitate mapping to mouse co-ordinates, each human SNP was expanded to 

100 kbp centering on the SNP and converted to mm10 positions using the liftOver 

tool with the multiple mapping option disabled (93).  We were able to assign 

positions in 655 out of the 697 total SNPs.  Then for each of the 810 loci above the 

HINF, no LD threshold in the selected Longshanks lines, the minimal distance to any of 

the mapped human loci was determined using bedtools closest with the -d option 

(86).  When a region actually overlapped, a distance of 0 bp was assigned.  To 

generate a permuted set, the 810 loci were randomly shuffled across the mouse 

autosomes using the bedtools shuffle program with the -noOverlapping option.  Then 

the exact same procedure as the actual data was followed to determine the closest 

interval.  The resulting permuted intervals followed an approximately normal 

distribution, with observed results falling completely below the range of permuted 

results, i.e., closer to height-associated human SNPs. 

 

In situ hybridization 
Detection of specific gene transcripts were performed as previously described 

in (94).  Probes against Nkx3-2, Rab28, Bod1l and Gli3 were amplified from cDNA 

from wildtype C57BL/6NJ mouse embryos (Supplementary File 5).  Amplified 

fragments were cloned into pJET1.2/blunt plasmid backbones in both sense and 

anti-sense orientations using the CloneJET PCR Kit (Thermo Fisher Scientific, 

Schwerte, Germany) and confirmed by Sanger sequencing using the included 

forward and reverse primers.  Probe plasmids have also been deposited with 

Addgene.  In vitro transcription from the T7 promoter was performed using the 

MAXIscript T7 in vitro Transcription Kit (Thermo Fisher Scientific) supplemented with 

Digoxigenin-11-UTP (Sigma-Aldrich) (MPI Tübingen), or with T7 RNA polymerase 

(Promega) in the presence of DIG RNA labelling mix (Roche) (University of Calgary).  

Following TURBO DNase (Thermo Fisher Scientific) digestion, probes were cleaned 

using SigmaSpin Sequencing Reaction Clean-Up columns (Sigma-Aldrich) (MPI 

Tübingen), or using Illustra MicroSpin G-50 columns (GE Healthcare) (University of 
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Calgary).  During testing of probe designs, sense controls were used in parallel 

reactions to establish background non-specific binding. 

 

ATAC-seq library preparation and sequencing pipeline  
ATAC-seq was performed on dissected C57BL/6NJ E14.5 forelimb and 

hindlimb.  Nuclei preparation and tagmentation were performed as previously 

described in (28), with the following modifications.  To minimize endogenous 

protease activity, cells were strictly limited to 5 + 5 minutes of collagenase A 

treatment at 37 ºC, with frequent pipetting to aid dissociation into single-cell 

suspensions.  Following wash steps and cell lysis, 50 000 nuclei were tagmented 

with expressed Tn5 transposase.  Each tagmented sample was then purified by 

MinElute columns (Qiagen) and amplified with Q5 High-Fidelity DNA Polymerase 

(New England Biolabs) using a uniquely barcoded i7-index primer (N701-N7XX) and 

the N501 i5-index primer.  PCR thermocycler programs were 72ºC for 4 min, 98ºC for 

30 s, 6 cycles of 98ºC for 10 s, 65ºC for 30 s, 72ºC for 1 min, and final extension at 

72ºC for 4 min.  PCR-enriched samples were taken through a double size selection 

with PEG-based SPRI beads (Beckman Coulter) first with 0.5X ratio of PEG/beads to 

remove DNA fragments longer than 600 bp, followed by 1.8X PEG/beads ratio in 

order to select for Fraction A as described in (95).  Pooled libraries were run on the 

HiSeq 3000 (Illumina) at the Genome Core Facility at the MPI Tübingen Campus to 

obtain 150 bp paired end reads, which were aligned to mouse mm10 genome using 

bowtie2 v.2.1.0 (96).  Peaks were called using MACS14 v.2.1 (97). 
 

Multiplexed chromosome conformation capture (4C-Seq)  
Chromosome conformation capture (3C) template was prepared from pooled 

E14.5 liver, forelimb and hindlimb buds (n = 5–6 C57BL/6NJ embryos per replicate), 

with improvements to the primer extension and library amplification steps following 

(98).  The template was amplified with Q5 High-Fidelity Polymerase (New England 

Biolabs GmbH, Frankfurt am Main, Germany) using a 4C adapter-specific primer and 

a pool of 6 Nkx3-2 enhancer viewpoint primers [and, in a separate experiment, a 

pool of 8 Gli3 enhancer-specific viewpoint primers; Supplementary File 6].  Amplified 

fragments were prepared for Illumina sequencing by ligation of TruSeq adapters, 

followed by PCR enrichment.  Pooled libraries were sequenced by a HiSeq 3000 

(Illumina) at the Genome Core Facility at the MPI Tübingen Campus with single-end, 
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150 bp reads.  Sequence data were processed using a pipeline consisting of data 

clean-up, mapping, and analysis based upon cutadapt v1.10 (99); bwa v0.7.10-r789 

(80) ; samtools v1.2 (100); bedtools (86) and R v3.2.0 (85).  Alignments were filtered 

for ENCODE blacklisted regions (101) and those with MAPQ scores below 30 were 

excluded from analysis.  Filtered alignments were binned into genome-wide BglII 

fragments, normalized to Reads Per Kilobase of transcript per Million mapped reads 

(RPKM), and plotted and visualized in R.   

 

Plasmid construction 
Putative limb enhancers corresponding to the F0 and F17 alleles of the Gli3 G2 

and Nkx3-2 N1 and N3 enhancers were amplified from genomic DNA of Longshanks 

mice from the LS1 F0 (9 mice) and F17 (10 mice) generations and sub-cloned into 

pJET1.2/blunt plasmid backbone using the CloneJET PCR Kit (Thermo Fisher 

Scientific) and alleles were confirmed by Sanger sequencing using the included 

forward and reverse primers (Supplementary File 7).  Each allele of each enhancer 

was then cloned as tandem duplicates with junction SalI and XhoI sites upstream of 

a β-globin minimal promoter in our reporter vector (see below).  Constructs were 

screened for the enhancer variant using Sanger sequencing.  All SNPs were further 

confirmed against the rest of the population through direct amplicon sequencing.   

The base reporter construct pBeta-lacZ-attBx2 consists of a β-globin minimal 

promoter followed by a lacZ reporter gene derived from pRS16, with the entire 

reporter cassette flanked by double attB sites.  The pBeta-lacZ-attBx2 plasmid and 

its full sequence have been deposited and is available at Addgene. 

 

Pronuclear injection of F0 and F17 enhancer-reporter constructs in mice 
The reporter constructs containing the appropriate allele of each of the 3 

enhancers were linearized with ScaI (or BsaI in the case of the N3 F0 allele due to 

the gain of a ScaI site) and purified.  Microinjection into mouse zygotes was 

performed essentially as described (102).  

At 12 d after the embryo transfer, the gestation was terminated and embryos 

were individually dissected, fixed in 4% paraformaldehyde for 45 min and stored in 

PBS.  All manipulations were performed by R.N. or under R.N.’s supervision at the 

Transgenic Core Facility at the Max Planck Institute of Cell Biology and Genetics, 

Dresden, Germany.  Yolk sacs from embryos were separately collected for 
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genotyping and all embryos were stained for lacZ expression as previously 

described (103).  Embryos were scored for lacZ staining, with positive expression 

assigned if the pattern was consistently observed in at least two embryos. 

 
Genotyping of time series at the Nkx3-2 N3 locus 

Allele-specific primers terminating on SNPs that discriminate between the F0 

from the F17 N3 enhancer alleles were designed (rs33219710 and rs33600994; 

Supplementary File 8).  The amplicons were optimized as a qPCR reaction to give 

allele-specific, present/absent amplifications (typically no amplification for the absent 

allele, otherwise average ∆Ct > 10).  Genotyping on the entire breeding pedigree of 

LS1 (n = 602), LS2 (n = 579) and Ctrl (n = 389) was performed in duplicates for each 

allele on a Bio-Rad CFX384 Touch instrument (Bio-Rad Laboratories GmbH, 

Munich, Germany) with SYBR Select Master Mix for CFX (Thermo Fisher Scientific) 

and the following qPCR program: 50ºC for 2 min, 95ºC for 2 min, 40 cycles of 95ºC 

for 15 s, 58ºC for 10 s, 72ºC for 10 s.  In each qPCR run we included individuals of 

each genotype (LS F17 selected homozygotes, heterozygotes and F0 major allele 

homozygotes).  For the few samples with discordant results between replicates, DNA 

was re-extracted and re-genotyped or otherwise excluded.  

 

Transgenic reporter assays in stickleback fish 
In sticklebacks, transgenic reporter assays were carried out using the reporter 

construct pBHR (74).  The reporter consists of a zebrafish heat shock protein 70 

(Hsp70) promoter followed by an eGFP reporter gene, with the entire reporter 

cassette flanked by tol2 transposon sequences for transposase-directed genomic 

integration.  The Nkx3-2 N1/F0 enhancer allele was cloned as tandem duplicates 

using the NheI and EcoRV restriction sites upstream of the Hsp70 promoter. 

Enhancer orientation and sequence was confirmed by Sanger sequencing.  

Transient transgenic stickleback embryos were generated by co-microinjecting the 

plasmid (final concentration: 10 ng/µl) and tol2 transposase mRNA (40 ng/µl) into 

freshly fertilized eggs at the one-cell stage as described in (74).   
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2.2.10 Supplementary Notes: 
 
Major considerations in constructing the simulations 

In the Longshanks experiment, the highest-ranking male and the highest-

ranking female from each family were chosen to breed with the highest-ranking mice 

from other families within a line (i.e., disallowing sibling mattings).  Thus, if we 

disregard non-Mendelian segregation, and the fraction of failed litters (15%), 

selection acts solely within families, on the measured traits.  Such selection does not 

distort the pedigree and allows us to follow the evolution of each chromosome 

separately. 

Our simulations track the inheritance of continuous genomes by following the 

junctions between regions with different ancestry.  In principle, we should simulate 

selection under the infinitesimal model by following the contributions to the trait of 

continuous blocks of chromosomes across the whole genome.  However, this is 

computationally challenging, since the contributions of all the blocks defined by every 

recombination event have to be tracked.  Instead, we follow a large number of 

discrete biallelic loci checking that the number is sufficiently large to approach the 

infinitesimal limit (Fig. 1 – figure supplement 2D).  We made a further slight 

approximation by only explicitly modelling discrete loci on one chromosome at a 

time.   We divided the breeding value of an individual into two components.  The first, 

Vg, is a contribution from a large number of unlinked loci, due to genes on all but the 

focal chromosome, as represented by the infinitesimal model.  The values of this 

component amongst offspring are normally distributed around the mean of the 

parents, with its variance being: 

 

𝑉! = (𝑉!  /2)  (1−   β)  (1  −   𝐹!! − 𝐹!!) 

 

where: 𝑉! is the initial genetic variance, and  

𝐹!! , 𝐹!!  are the probabilities of identity between distinct 

genes in each parent, 𝑖 , 𝑗 ; 𝐹!! , 𝐹!!  are calculated from the 

pedigree;  

β is the fraction of genome on the focal chromosome. 
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The second component, Vs, is the sum of contributions from a large number, 𝑛, 

of discrete loci, evenly spaced along the focal chromosome (here we used 10,000), 

and contributing a fraction 𝛽 of the initial additive variance.  We choose these to 

have equal effects and random signs, ±α , such that initial allele frequencies 

𝑝! = 𝑞! =
!
!
, and equal effects α , such that 𝛽𝑉!,! = 2 𝛼!𝑝!,!𝑞!,!!

!!! .  The initial 

population consists of 28 diploid individuals, matching the experiment, and loci have 

initial frequencies of 1, 4, 12 and 28 out of the diploid total of 56 alleles, in equal 

proportions.  Inheritance is assumed to be autosomal, with no sex-linkage.  This 

choice of equal effects approaches most closely to the infinitesimal model, for a 

given number of loci. 

The decrease in genetic variance due to random drift is measured by the 

inbreeding coefficient, defined as the probability of identity by descent, relative to the 

initial population.  We distinguish the identity between two distinct genes within a 

diploid individual, 𝐹!, from the probability of identity between two genes in different 

individuals, 𝐹!.  The overall mean identity between two genes chosen independently 

and at random from all  2𝑁 genes is: 

 

 𝐹 = !(!!!)!!!!!!!
!!

.   

 

The proportion of heterozygotes in the population decreases by a factor of 

1− 𝐹!, the variance in allele frequency increases with 𝐹, and the genetic diversity, 

 𝔼 = [2𝑝𝑞] , decreases as 1− 𝐹.   

 

Fig. 1 – figure supplement 2B shows that in the absence of selection, the 

identity 𝐹! increases slower than expected under the Wright–Fisher model with the 

actual population sizes (compare light shaded lines with black lines).  These 

differences are a consequence of the circular mating scheme, which was designed 

to slow the loss of variation.  The dotted line show the average 𝐹, estimated from the 

loss of heterozygosity in 50 replicate neutral simulations, each with 104 loci on a 

chromosome of length R=1 Morgan.  These are close to the prediction from the 

pedigree (light shaded lines), validating the simulations.   

The thick colored line in Fig. 1 – figure supplement 2B shows 𝐹, estimated in 

the same way from simulations that include truncation selection on a trait with within-
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family variance 𝑉!/𝑉! = 0.584 (a value we abbreviate as 𝜃 = 1), which matches the 

observed selection response and parent-offspring regression.  The rate of drift, as 

measured by the gradient in 𝐹 over time, is significantly faster in simulations with 

selection, by 6.7% in LS1 and 9.8% in LS2 (Student’s t-test P ≤ 0.008 in LS1 and P ≤ 

0.0005 in LS2).  However, this effect of selection would not be detectable from any 

one replicate, since the standard deviation of the rate of drift, relative to the mean 

rate, is ~13% between replicates.  On average, the observed loss of heterozygosity 

fits closely to that expected from the pedigree (large dot with error bars), though 

there is wide variation among chromosomes (filled dots), which is substantially 

higher than seen in simulations seeded with SNP at linkage equilibrium (compare 

filled and open dots).   

We then performed 100 simulations, seeding each founding generation with 

actual genotypes and using actual pedigrees, selection pressure or heritability 

parameters (within-family heritability ℎ!  of the fitness dimension: 0.51).  A main 

conclusion from our modelling is that the overall allele frequencies were hardly 

perturbed by varying selection from random drift to even doubling the selection 

intensity.  Upon closer examination, it became clear that under the standard 

“infinitesimal” model, selection could generate a weak but detectable excess of allele 

frequency sweeps compared to strict neutrality with no selection (Fig. 1 – figure 

supplement 2D, SNP classes 1/56 and 4/56).  However, it would take many 

replicates (assuming no parallelism) for this excess to become statistically 

significant.  Taken at face value, this result echoes many “evolve-and-resequence” 

(E&R) experiments based on diverse base populations that show only weak 

evidence of selective sweeps at specific loci (23, 71).   

 

Broader patterns and analyses of parallelism 
On a broader scale, we also observed greater extent of parallelism globally 

than in the simulated results or with the empirical Ctrl line.  For example, out of the 

2405 and 2991 loci found above the HINF, no LD cut-off in LS1 and LS2, 398 were 

found in both lines (13%; 𝜒2 test, N~150,000 windows; 𝜒2=2901.4, d.f.=1, P ≤ 1 ×10-

10); whereas we found only 10 or 7 overlaps in Ctrl–LS1 or Ctrl–LS2 comparisons, 

respectively.  This difference is statistically significant (940 significant Ctrl loci at the 

HINF, no LD threshold; N~150,000 windows; Ctrl–LS1: 𝜒2=0.7; Ctrl–LS2: 𝜒2=6.0; both P 

= n.s.; see also Fig. 3 – figure supplement 2).  In fact, there was not a single window 
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out of a total of 8.4 million windows from the 100 replicates where both simulated 

LS1 and LS2 replicates simultaneously cleared the HINF, no LD threshold.   In contrast 

to our earlier analysis in single LS replicates, the parallel selected loci in both LS 

replicates loci may provide the strongest evidence yet to reject the infinitesimal 

model.  

 

Heritability estimate by an animal model 
We estimated heritability using linear mixed effect “animal models” with 

maximum likelihood (Fig. 1 – figure supplement 1D) in the R package MCMCglmm 

v2.5 [104; following guide by (105)].  Because the animal model makes inference of 

the parameter estimates to the base population, to compare heritability as it changed 

over time we estimated heritability in blocks of 5 generations F0-4, 5-9, 10-14, and 

15-19, separately for each selected line.  In testing each block, we used the full 

pedigree to build the relationship matrix but only phenotypes from the individuals in 

those generations.  As an alternative, we tested each block with a truncated 

pedigree, in which the first generation of each block is treated as unrelated (i.e., the 

base population).  The two methods produced similar results.  In all analyses, we 

standardized the composite trait 𝑙𝑛 𝑻𝑩!!.!"  (𝑻  = tibia length in mm; 𝑩 = cube-root 

body mass in ∛g; see Simulating selection response: infinitesimal model with linkage 

in main text) within each generation and line to account for fluctuations in mean and 

variance (38).  The phenotypic variance was partitioned as VP = fixed effects + VA + 

VR, where fixed effects were sex, age, and litter size, VA was additive genetic 

variance, and VR was residual variance. Heritability was estimated as h2 = VA /( VA + 

VR).  

 
Enrichment for genes with functional impact on limb development 

To determine what types of molecular changes may have mediated the 

selection response, we performed a gene set enrichment analysis.  We asked if the 

outlier loci found in the Longshanks lines were enriched for genes affecting limb 

development (as indicated by their knockout phenotypes) and found increasingly 

significant enrichment as the allele frequency shift ∆z2 cut-off became increasingly 

stringent (Fig. 3 – figure supplement 1A).  The “limb/digital/tail” category of affected 

anatomical systems in the Mouse Genomic Informatics Gene Expression Database 

(59) showed the greatest excess of observed-to-expected ratio out of all 28 
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phenotype categories (the excluded “normal” category also showed no enrichment).  

In contrast, genes showing knock-out phenotypes in most other categories did not 

show similar enrichment as ∆z2 became more stringent (Fig. 3 – figure supplement 

1A).  For genes expressed in limb tissue, there was a similar, but weaker increase, 

with the enrichment only appearing at higher ∆z2 cut-off.  We did not observe similar 

enrichment using data and thresholds derived from Ctrl (Fig. 3 – figure supplement 

1A, lower panels).  To investigate the impact on regulatory sequences, we obtained 

21,211 limb enhancers predicted by ENCODE chromatin profile at a stage 

immediately preceding bone formation (Theiler Stage 23, at approximately 

embryonic day E14.5) (87).  We found likewise an enrichment throughout the range 

of significance cut-offs (Fig. 3 – figure supplement 1A).  Again, there was no similar 

enrichment in Ctrl.   

 
Clustering with loci associated with human height 

Since tibia lengths directly affect human height, we tested if an association 

exists between loci controlling human height (61) and a set of 810 loci at the P ≤ 

0.05 significance level under HINF, no LD described here.  After remapping the human 

loci to their orthologous mouse positions (n = 655 out of 697 total height loci; data 

from the GIANT Consortium), we detected significant clustering with the 810 peak 

loci (mean pairwise distance to remapped height loci: 1.41 Mbp vs. mean 1.69 Mbp 

from 1000 permutations of shuffled peak loci, range: 1.45–1.93 Mbp; n = 655 height 

loci and 810 peak loci; P < 0.001, permutations).  We interpret this clustering to 

suggest that a shared and conserved genetic program exist between human height 

and tibia length and/or body mass. 

 

Genome-wide analysis of the role of coding vs. cis-acting changes in response 
to selection 

We examined the potential functional impact of coding or regulatory changes 

as a function of ∆z2 in all three lines.  For coding changes, we tracked the functional 

consequences of coding SNPs of moderate to high impact (missense mutations, 

gain or loss of stop codons, or frame-shifts).  Whereas we found only mixed 

evidence of increased coding changes as ∆z2 increased in the LS lines, there was a 

depletion of coding changes in Ctrl line as ∆z2 increased, possibly due to purifying or 
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background selection (Fig. 3 – figure supplement 1B; linear regression, LS1: P ≤ 

0.015, slope > 0; LS2: P = 0.62, n.s., slope ≈ 0; Ctrl: P ≤ 5.72×10-9, slope < 0).   

For regulatory changes, we used sequence conservation in limb enhancers 

overlapping a SNP as a proxy for functional impact.  In contrast to the situation for 

coding changes, where the correlations differed between LS1 and LS2, the potential 

impact of regulatory changes increased significantly as a function of ∆z2 in both LS 

lines (Fig. 3 – figure supplement 1B): within limb enhancers, SNP-flanking 

sequences became increasingly conserved at highly differentiated SNPs (phastCons 

conservation score, ranging from 0 to 1 for unconserved to completely conserved 

positions; linear regression, log-scale, P < 1.05×10-9 for both, slopes > 0).  This 

relationship also exists for the Ctrl line, albeit principally from lower ∆z2 and 

conservation values (P < 0.8×10-3, slope > 0; Fig. 3 – figure supplement 1B).  Taken 

together, our enrichment analysis suggests that while both coding and regulatory 

changes were selected in the Longshanks experiment, the overall selection 

response may depend more consistently on cis-regulatory changes, especially for 

developmental regulators involved in limb, bone and/or cartilage development (Table 

1; Supplementary File 3; c.f. Supplementary File 4 for coding changes).  This is a 

key prediction of the “cis-regulatory hypothesis”, especially in its original scope on 

morphological traits (106). 

 

Genes with amino acid changes of potentially major impact 
We have further identified 12 candidate genes with likely functional impact on 

limb development due to specific amino acid changes showing large frequency shifts 

(albeit only one, Fbn2, cleared the stringent P ≤ 0.05 HINF, max LD threshold; 6 in LS1, 

9 in LS2, of which 3 were shared; Supplementary File 4).  Consistent with strong 

selection for tibia development, all 12 genes show limb or tail phenotypes when 

knocked out, e.g., “short limbs” for the collagen gene Col27a1 knockout.  Most of 

these genes encode for structural cellular components, e.g., myosin, fibrillin and 

collagen (Myo10; Fbn2; and Col27a1 respectively), with Fuz (fuzzy planar cell 

polarity protein) being the only classical developmental regulator gene.  All but one 

of these genes have also been shown to have widespread pleiotropic effects with 

broad expression domains, and their knockouts were often lethal (eight out of 12) 

and/or exhibit defects in additional organ systems (11 out of 12).  Based on this 

observation, we anticipate that the phenotypic impact of these selected coding 
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missense SNPs (n.b. not knockout) would not be restricted to tibia or bone 

development. 

 

Molecular dissection of Gli3, a candidate limb regulator, reveal gain-of-
function cis-acting changes  

We anticipated that genes related to major limb patterning, like Gli3, may 

contribute to the selection response (107, 108).  We thus performed an in-depth 

molecular dissection of Gli3, an important early limb developmental regulator on 

chromosome 13 (Chr13; Fig. 4 – figure supplement 1A).  This locus showed a 

substantial shift in minor allele frequency of up to 0.42 in LS1 (∆q, 98th quantile 

genome-wide, but below the HINF, max LD threshold to qualify as a discrete major 

locus).  We performed functional validation of Gli3, given its limb function (109) and 

considering that Gli3 could be among the many minor loci in the polygenic 

background contributing to the selection response in LS1.   

At the Gli3 locus we could only find conservative amino acid changes (D1090E 

and I1326V) that are unlikely to impact protein function.  Because the signal in LS1 

was stronger in the 5’ flanking intergenic region, we examined the Gli3 cis-regulatory 

topologically associating domain (TADs, which mark chromosome segments with 

shared gene regulatory logic) (22) and identified putative enhancers using chromatin 

modification marks from the ENCODE project and our own ATAC-Seq data (Fig. 4 – 

figure supplement 1B) (28, 90).  Four putative enhancers carried SNPs with large 

allele frequency changes.  Among them, an upstream putative enhancer G2 (956 bp) 

carried 6 SNPs along with two 1- and 3-bp insertion/deletion (“indel”) with putative 

functional impact due to predicted gain or loss in transcription factor binding sites 

(Fig. 4 – figure supplement 1C).  We tested the G2 putative enhancer in a transgenic 

reporter assay by placing its sequence as a tandem duplicate upstream of a lacZ 

reporter gene (see Methods for details).  We found that only the F17 LS1 allele was 

able to drive consistent lacZ expression in the developing limb buds (Fig. 4 – figure 

supplement 1D).  Importantly, this enhancer was active not only in the shaft of the 

limb bud but also in the anterior hand/foot plate, a major domain of Gli3 expression 

and function (Fig. 4 – figure supplement 1A).  Furthermore, substitution of the 

enhancer sequence with the F0 allele (10 differences out of 956 or 960 bp) abolished 

lacZ expression (Fig. 4 – figure supplement 1D).  This showed that 10 or fewer 

changes within this novel enhancer sequence were sufficient to convert the inactive 
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F0 allele into an active limb enhancer corresponding to the selected F17 allele 

(“gain-of-function”), suggesting that a standing genetic variant of the F17 allele may 

have been selectively favoured because it drove stronger expression of Gli3, a gene 

essential for tibia development (110) [but see (111)]. 

 

Estimating the selection coefficient of the top-ranking locus, Nkx3-2, from 
changes in allele frequency  

The significant locus on Chr5 containing Nkx3-2 shows strong changes in SNP 

frequency in both LS1 and LS2.  Here, we estimate the strength of selection on this 

locus, and the corresponding effect on the selected trait.  We approximate by 

assuming two alternative alleles, and find the selection coefficient implied the 

observed parallel changes in allele frequency; we then set bounds on this estimate 

that take account of random drift.  Finally, we use simulations that condition on the 

known pedigree to estimate the effect on the trait required to cause the observed 

strong frequency changes; these show that linked selection has little effect on the 

single-locus estimates. 

We see strong and parallel changes in allele frequency at multiple steps.  

There are 14 non-overlapping 10kb windows that have a mean square change in 

arc-sin transformed allele frequency of ∆𝑧! >   2 in both LS1 and LS2, spanning a 

260 kbp region and including 807 SNP.  SNP frequencies are tightly clustered, 

corresponding to two alternative haplotypes (Fig. 5A & Fig. 5 – figure supplement 

1A).  The initial (untransformed) allele frequencies average q0 = 0.18, 0.17 in LS1, 

LS2, respectively, and the final frequencies average q17 = 0.84, 0.98, respectively 

(also see Fig. 5 – figure supplement 1A, lower panel).  These frequencies depend on 

the arbitrary threshold for which windows to include.  However, this makes little 

difference, relative to the wide bounds on our estimates. 

Under constant selection, 𝑙𝑜𝑔 !
!
 changes linearly with time, at a rate equal to the 

selection coefficient, 𝑠 .  Therefore, a naive estimate of selection is given by 

𝑠 = !
!
log !!"

!!"

!!
!!

 (21)  thus, 𝑠 =0.19, 0.32 for q in LS1, LS2, and averages 0.26.  Here, 

males and females with longest tibia are chosen to breed; the strength of selection 

on an additive allele depends on the fraction selected and the within-family trait 

variance.  The former is kept constant, and there is little loss of variance due to drift 

(𝐹~0.17). Thus, assuming constant selection is reasonable (Fig. 5B), unless there is 
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strong dominance. 

To set bounds on this estimate, we must account for random drift.  The 

predicted loss of diversity over 17 generations, based on the pedigree, is 𝐹=0.173, 

0.175 for LS1, LS2, which corresponds to an effective size 𝑁! = 44.9, 44.4 , 

respectively (note that due to differences in estimation methodology, this 𝑁! differs 

slightly from that mentioned in Fig. 1 – figure supplement 2 but is largely consistent).  

Therefore, we calculate the matrix of transition probabilities for a Wright–Fisher 

population with 2𝑁 rounded to 90, 89 copies for LS1, LS2, over a range of selection, 

𝑠.  This yields the probability that the number of copies would change from the 

rounded values of 16/90 to 75/90 in LS1, and from 14/89 to 87/89 in LS2—that is, 

the likelihood of 𝑠, given the observed changes in allele frequency, and the known 

𝑁!.  There is no significant loss of likelihood by assuming the same selection in both 

lines; overall, 𝑠 = 0.24 (limits 0.13–0.36; Fig. 5 – figure supplement 1B). 

 
Estimating the selection coefficient, accounting for linked loci 

The estimates above using the simple approach do not account for selection on 

linked loci, and do not give the effect on the composite trait.  We therefore simulated 

conditional on the pedigree and on the actual selection regime, as described above, 

but including an additive allele with effect A at the candidate locus on Chr5.  The 

genetic variance associated with the unlinked infinitesimal background, and across 

Chr5, were reduced in proportion, to keep the overall heritability the same as before 

𝑉!/ 𝑉! + 𝑉! =  0.539.  The selection coefficient inferred from the simulated changes 

in allele frequency was approximately proportional to the effect on the trait, with best 

fit 𝑠 = 0.41𝐴/ 𝑉! (Fig. 5 – figure supplement 1C, left).  Assuming this relationship, 

we can compare the mean and standard deviation of allele frequency from 

simulations with linked selection, with that predicted by the single locus Wright–

Fisher model (points vs. line in Fig. 5 – figure supplement 1C, middle & right). These 

agree well, showing that linked selection does not appreciably change the 

distribution of allele frequencies at a single locus.  This is consistent with Fig. 1 – 

figure supplement 2D, which shows that linked selection only inflates the tail of the 

allele frequency distribution, an effect that would not be detectable at a single locus. 

Combining our estimates of the selection coefficient with the relation               

𝑠 = 0.41𝐴/ 𝑉!,  we estimate that the locus on Chr5 has effect  𝐴 = 0.59 𝑉!, with       
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2-unit support limits 0.32 𝑉! to 0.87 𝑉!.  This single locus is responsible for ~9.4% of 

the total selection response (limits 3.6–15.5%).  

This analysis does not allow for the inflation of effect that might arise from 

multiple testing.  This is hard to estimate, because it depends on the distribution of 

effects across the genome, and also on the excess variation in estimates due to LD 

in the founder population.  However, we note that if the effect of this locus is large 

enough that it would certainly be detected in this study, then there is no estimation 

bias from this source. We also assume that there are two haplotypes, each with a 

definite effect.  There might in fact be heterogeneity in the effects of each haplotype, 

for two reasons.  First, this region might have had heterogeneous effects in the 

founder population, with multiple alleles at multiple causal loci.  Second, as 

recombination breaks up the founder genomes, blocks of genome would become 

associated with different backgrounds.  To the extent that genetic variation is spread 

evenly over an infinitesimal background, this latter effect is accounted for by our 

simulations, and has little consequence.  However, we have not tested whether the 

data might be explained by more than two alleles, possibly at more than one discrete 

locus.  Testing such complex models would be challenging, and we do not believe 

that such test would have much power.  However, the estimates of selection made 

here should be regarded as effective values that may reflect a more complex reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	   83 

Estimating the contribution of the Nkx3-2 locus using an animal model 
We used a linear mixed “animal model” to estimate the effect of the enhancer 

N3 (of the major locus in Nkx3-2) on the composite selected trait 𝑙𝑛 𝑻𝑩!!.!" , see L. 

129 and Fig. 1 – figure supplement 2A. The model was: 

VP = fixed effects + VA + VR  

where: 

fixed effects = sex, generation, litter size (i.e., number of siblings in 

family), genotype at N3 (0, 1, or 2 copies of F17 allele), and replicate 

line 

VA = additive genetic variance 

VR = residual variance  

 

We found a small but significant effect of the genotype at enhancer N3 on the 

composite trait (mean effect = 0.0036; 95% CI: 0.00069–0.0064; P=0.017).  Given 

the same body mass 𝑩, the mean effect corresponds to 0.36% increase in tibia 

length per copy of the F17 allele, or ~1% of the variance in tibia length at generation 

F01.  The observed increase of this allele from ~0.18 to 0.91, averaged over the two 

lines, implies that it accounts for ~4% of the total selection response.  This is within 

the confidence limits in the main text, based on the change in SNP frequency (3.6–

15.5%) and note that the latter may be biased upwards by ascertainment.  However, 

the exact effect of the allele is difficult to pinpoint in any given generation or 

population due the nature of the composite trait and change in variance in the 

composite trait over generations.  
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2.2.11 Supplementary Figures: 
 

 
 

 
Fig. 1 – figure supplement 1.  Artificial selection allowed detailed 
reconstruction of selection parameters.  Rapid response to selection produced 

mice with progressively longer tibiae (A) and slightly lower body weight (B) within 20 

generations.  Having complete records throughout the selection experiment makes it 

possible to reconstruct the selection response for both phenotypes and genotypes in 

detail.  Individuals varied in tibia length in both Longshanks lines (LS1, left; LS2, 

right).  Lines connect parents to their offspring.  The actual selection depended on 

the within-family and within-sex rank order of the tibia length-to-body mass (cube 

root) ratio (see (13) for details).  The overall selection response was immediate and 

rapid for tibia length (A), suggesting a selection response that depended on standing 

variation among the founders (black lines show the best fitting quadratic function, 

with shading indicating 95% confidence interval; adjusted R2 = 0.61 for LS1; 0.43 for 

LS2).  Strong selection response led to rapid increase in tibia length.  In contrast, 

there was only minor decrease in body weight over the course of the experiment.  

(C) Trajectory in selection response shows decoupling of correlation between tibia 
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length and body mass.  Despite overall correlation between tibia length and body 

mass (grey arrow and major axes in confidence envelopes), cumulative trait 

displacement over the 20 generations (expressed in s. d. units at F1; arrows, dots 

and 95% confidence envelopes, color-coded according to generation) showed 

persistent increase in tibia length with only minor change in body mass along the 

general direction of selection pressure (black arrows from F1; vector length and 

directions based on logistic regression).  This shows that the Longshanks selection 

experiment was successful in specifically selecting for increased tibia length while 

keeping relatively unchanged body mass.  (D) Despite persistent and strong 

selection, heritability for the composite trait 𝑙𝑛 𝑻𝑩!!.!"  (𝑻 = tibia length in mm; 𝑩 = 

cube-root body mass in ∛g) (see Simulating selection response: infinitesimal model 

with linkage in main text) was maintained over 20 generations.  Heritability was 

estimated by a linear mixed “animal model” in which the phenotypic variance was 

partitioned as VP = fixed effects + VA + VR, where fixed effects were sex, age, and 

litter size, VA was additive genetic variance, and VR was residual variance. 

Heritability was estimated as h2 = VA /( VA + VR).  Each tested block used the full 

pedigree but only phenotypic information from individuals within the block.  We 

tested an alternate model for each block using truncated pedigrees wherein the first 

generation of each block was assumed to be unrelated, but found similar results. 
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Fig. 1 – figure supplement 2.  Simulating selection on pedigrees.  This figure 

summarizes the results from our analyses to determine parameters used during the 

simulation. For full detail, see Supplementary Notes, section “Major considerations in 

constructing the simulations”.  (A) Finding the correct 𝜙 value for the composite trait 

𝑙𝑛 𝑻𝑩! .  In each simulated family, offsprings are split by sex and ranked by their 

composite trait.  Due to occasional use of back-up crosses, the average rank of 

actual breeders is greater than 1.  We vary 𝜙 to find the value where actual breeders 

in the LS lines have the best (lowest) rank.  We find 𝜙 = -0.571 to show the best 

match for males and 0.605 for females.  For subsequent analyses we set 𝜙 to be -

0.57. (B) Increase in inbreeding over the course of the Longshanks experiment.  The 

lines show the change in identity between two alleles between diploid individuals, 𝐹!, 

over 20 generations, as calculated from the pedigree (light shade); an average of 50 

neutral simulations without selection (dotted line); or the average of 50 simulation 

replicates with selection intensity at 𝑉!/𝑉! = 0.584 (𝜃 = 1; thick, dark line).  While the 

𝐹!  trajectories based on pedigree or neutral simulations are indistinguishable, 

inbreeding increases slightly faster under selection (thick line).  The black line shows 

the increase in identity expected under a Wright–Fisher model with the actual 

population sizes; under this model, 𝐹!   and 𝐹!   are close to each other, and to 

1− (1− !
!!!
)!,  with 𝑁! equal to the harmonic mean, 24.8.  The large dot (with error 

bar showing the interquartile range among chromosomes) at right show the actual 

𝐹!, estimated from the decline in average 2𝑝(1− 𝑝) over 17 generations. Small filled 

dots show the estimates from each of the 20 chromosomes.  Open dots show 40 

replicate simulations, made with the same pedigree and the same selection 

response 𝜃 = 1 and sub-sampling from the simulated chromosome according to the 

actual map length of each of the mouse chromosomes (46).  The simulation agrees 

well with the observed genome-wide average.  Most of the observed data from 

chromosomes fall within a range comparable to simulated replicates (compare large 

dot with open dots), with LD being the likely source of this excess variance.  (C) 

Three different schemes to seed founder haplotypes.  We simulate founder 

haplotypes that are consistent with observed genotypes (shown here as black, white 

and grey dots as the two homozygous and the heterozygous states) by directly 

sampling from founder individuals in each LS line.  Under the linkage equilibrium 

scheme, we sample from the list of allele counts at all SNPs.  This produces founder 
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haplotypes that carry no linkage disequilibrium (“no LD”).  Under the random 

assignment scheme, we sample according to each individual (shown as “diplotypes” 

within the box for easy comparison).  At heterozygote sites in each individual 

(arrowheads), we randomly assign the alleles to the two haplotypes.  This produces 

founder haplotypes that show minimal LD that is consistent with the observed 

genotypes (“min LD”).  Under the “max LD” assignment scheme, we also sample 

according to each individual, except that we consistently assign its haplotypes 1 and 

2 with reference (white) and alternate (black) alleles, respectively.  This maximizes 

LD in the founder haplotypes (“max LD”).  (D) Simulated vs. expected allele 

frequency shifts.  The distribution of minor allele frequencies q0 at generation 17 is 

compared with the distribution expected with no selection (blue) or with selection 

(red), given a frequency of 1, 4, 12 or 28 minor alleles out of 56 founding alleles. The 

black line shows the diffusion limit, calculated for scaled time !"
!!

, with 𝑁! estimated to 

be 51.7 and 48 in LS1 and LS2 respectively, from the rate of increase in 𝐹 , 

calculated from the pedigree in panel A above. (E) Significance threshold values 

under varying LD from 100 simulated replicates (blue: no selection; red: observed 

selection response in the actual experiment, 𝜃 = 1; see panel C on LD assignment 

methods).  In order to account for non-independence of adjacent windows due to 

linkage, a distribution of genome-wide maximum ∆z2 was used to determine the 

significance threshold at each LD level.  ∆z2 is the square of arc-sin transformed 

allele frequency difference between F0 and F17; this has an expected variance of 

1/2Ne per generation, independent of starting frequency, and ranges from 0 to π2.  

As seen in previous panels, increasing selection pressure does produce greater 

shifts in ∆z2 despite using the same pedigree due to a relatively greater proportion of 

additive genetic variance 𝑉!.  However, a far greater impact on ∆z2 is due to changes 

in LD.  This is because weak associations between large numbers of SNP can 

greatly inflate the variance of ∆z2.  Of the three LD levels, “max LD” likely produced 

overly conservative thresholds, whereas “min LD” may lead to higher false positives.  

We have opted conservatively to use maximal LD in our analysis. 
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Fig. 2 – figure supplement 1.  Broad similarity in molecular diversity in the 
founder populations for the Longshanks lines and the Control line.  (A) Shown 

are the site frequency spectra from LS1, LS2 and Control lines at F0 (top; folded 

based on a global minor allele frequency or MAF ≤ 0.5) and F17 (bottom; unfolded, 

but tracking the same minor allele as in F0).  Overall the spectra were very similar to 

each other within each generation.  The Control population was mostly intermediate 

in the decay in the rarer alleles.  After 17 generations, the same alleles were 

generally more spread out, leading to more broadly distributed spectra.  There was 

again little overall difference between the Longshanks and Control lines.  (B) 

Variations between chromosomes (separate same-colored lines) shown in each 

population and generation.  The unfolded site frequency spectrum is shown based 

on the MAF assigned as in A. There is substantial variation between chromosomes, 

which shows increased distortions in F17. (C) Allele frequencies between the 

founder populations were very similar. Joint minor allele frequencies shown as box 

plots in 2% bands between the Control and LS1 (blue), LS2 (red); or the two LS lines 

(purple). Outliers were omitted for clarity.  The overall trends follow closely the parity 

line (grey line along the diagonal), except at frequencies very close to 0.5. Similar to 

the site frequency spectra in panel A, a small number of sites have a MAF above 0.5 

(grey box), because of the use of an overall MAF ≤ 0.5 to determine minor allele 

status to enable comparisons across lines.  Correlations between all pairwise 

combinations were around 0.93. 
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Fig. 2 – figure supplement 2.  Selected lines showed more extreme values of 
∆z2 than the Control line.  Histogram of within-line ∆z2 values in 10 kbp windows 

across the genome in the LS1, LS2, and Control.  Overall similarity is high across all 

3 lines, but there was an excess of large ∆z2 value starting from as low as < 0.1 π2 .  

This pattern becomes clearly distinct above the threshold value of 0.125 , which 

corresponds to the lenient significance threshold P ≤ 0.05 under HINF, no LD (inset).  

There were clearly an excess of windows in LS2 above the more stringent P ≤ 0.05 

threshold under HINF, max LD.  Such excess supports discrete loci contributing to 

selection response in LS2 that give rise to greater distortion of ∆z2 spectra.  
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Fig. 2 – figure supplement 3. Detailed ∆z2 profiles at the 8 Longshanks 
significant loci. For each significant locus, ∆z2 profiles are shown for Ctrl (grey), 

LS1 (blue) and LS2 (red).  Plots are shaded if the locus is significant in a given line.  

TADs within 250 kbp of the significant signals are shown as grey bars above each 

locus.  Above the TADs are highlighted genes whose knockout phenotypes belong to 

the following categories: “abnormal tibia morphology”, “short limb”, “short tibia”, 

“abnormal cartilage morphology”, “abnormal osteoblast morphology”.  The gene 

symbols are colored according to the gene function(s) in limb development (green), 

bone development (purple) or both (boxed).  Gene symbols marked by asterisks (*) 

have specifically reported “short tibia” or “short limb” knockout phenotypes.  All of the 

above categories show significant enrichment at the 8 loci (number of genes per 

category: 4–7, nominal P ≤ 0.03, see Supplementary Notes, section “Enrichment for 

genes with functional impact on limb development” for details on the permutation), 

except “abnormal cartilage morphology”, with 4 genes and a nominal P-value of 

0.083.  No overlap was found with any gene in these categories from the three 

significant loci from the Ctrl line. 
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Fig. 3 – figure supplement 1.  Loci associated with selection response in 
Longshanks lines show enrichment for limb function likely associated with 
cis-acting mechanisms.  (A) Gene set enrichment analysis of knock-out 

phenotypes (KO) showed that selection response (here shown as ∆z2 cut-off values, 

see Supplementary Methods for details on cut-off values and inclusion criteria) were 

found among topologically associating domains (TADs) containing limb and tail 

developmental genes (red solid lines) or genes with limb expression (red dotted 

lines) in LS lines (top) but not in Ctrl (bottom).  Among KO phenotypes, limb defects 

show the greatest excess out of 28 phenotypic categories (other grey lines, with 

other extreme categories labeled, the “normal” category is excluded here).  Among 

developmental enhancers for limb, heart, liver and brain tissue, we also observed an 

association with ∆z2 peaks in LS lines (top) for limb but not in Ctrl lines (bottom).  

The simulated significance thresholds based on HINF, max LD are also shown for 

reference (vertical grey lines).  The data from the LS line suggest that enrichment 

start to increase around P ≤ 0.5 threshold and remained largely stable by P ≤ 0.05, 

corresponding a cut-off of around 0.33 π2. (B) Coding vs. regulatory impact.  

Frequency of moderate to major coding changes (top panels, amino acid changes, 

frame-shifts or stop codons), or average conservation score of regulatory sequences 

immediately flanking SNPs (based on conservation among 60 eutherian mammals; 

bottom panels) were used as proxies to estimate the functional impact of coding and 

regulatory mutations, respectively.  In LS1, major coding changes became more 

common at high ∆z2 ranges; however the rate of SNPs with potentially major 

phenotype consequences did not increase in LS2 and in fact seems to decrease in 

Ctrl.  In contrast, regulatory changes showed increased conservation associated with 

greater allele frequency shifts or ∆z2 in all three lines, except that SNPs with large 

shifts and strong conservation were more abundant in LS1 and LS2.  Trend lines are 

shown with LOESS regression but statistical comparisons were performed using 

linear regressions. 
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Fig. 3 – figure supplement 2. Changes in ∆z2  across lines.  Shown are changes 

in ∆z2 in individual 10 kbp windows (all windows: circles; peak windows: diamonds).  

Generally there were no clear differences in ∆z2 along the axes except a slight skew 

toward higher values in LS2.  When taken as a joint LS1–LS2 comparison, however, 

we observed that many windows show shifts in both LS1 and LS2 (left panel; in 

purple).  In contrast, very few windows show parallelism in Ctrl–LS2 and Ctrl–LS1 

comparisons (middle two panels).  The right panel shows a single selected simulated 

replicate (selection pressure !!
!!
= 0.58; maximum LD) found to have among the 

greatest extent of parallel ∆z2 among the replicates.  The excess in parallel loci in 

observed results is clear both among the significant loci at P ≤ 0.05 under HINF, max LD 

and highly significant at the more relaxed HINF, no LD  threshold.   
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Fig. 4 – figure supplement 1.  An enhancer in chromosome 13 boosts Gli3 
expression during limb bud development.  (A) LS1 showed elevated ∆z2 in the 

intergenic region containing Gli3.  (B) Putative limb enhancers (grey bars) were 

identified through peaks from ATAC-Seq (top) and histone modifications (bottom 

tracks, data from ENCODE project).  Four of the enhancers contain mutations (in 

brackets) with significant allele frequency shifts between F0 and F17 in LS1 (red 

shading).  One of the enhancers located close to the peak ∆z2 signal (G2, 

arrowhead) containing 10 bp differences was chosen for transgenic reporter assay.  

(C) Analysis of individual mutations showed an average increase of 0.33 in allele 

frequency, with 6 mutated positions affecting predicted binding of transcription 

factors in the Gli3 pathway (including 3 additional copies of Gli3 binding site), all of 

which are predicted to boost the G2 enhancer activity.  (D) The F17 G2 enhancer 

variants together drove robust and consistent lacZ reporter gene expression at 

E12.5, recapitulating Gli3 expression in the developing fore- and hindlimb buds 

(right; see also Fig. 4 – figure supplement 2).  Substitution of 10 positions (F0 

haplotype) led to little observable expression in the limb buds (left).  These G2 

enhancer gain-of-function mutations (contrasting the major allele between F0 and 

F17) may confer an advantage under selection for increased tibia length. Scale bars: 

1 mm for both magnifications. 
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Fig. 4 – figure supplement 2. Gene expression patterns at the Gli3 and Nkx3-2 
candidate intervals.  (A) Gli3 expression was determined using in situ hybridization.  

Gli3 was robustly expressed during limb development in both developing fore- and 

hindlimb buds, especially in the autopod (hand/foot plate).  Lower panel shows 

expression of Nkx3-2 and its neighboring genes Rab28 and Bod1l.  The stronger 

expression of Nkx3-2 in the developing limb buds as well as the known role of Nkx3-

2 in bone maturation (30) strongly argues for Nkx3-2 being the gene underlying the 

selection response at the Chr5 locus. Scale bars: 1 mm for whole-mounts; 0.5 mm 

for limb buds. FL, forelimb; HL, hind limb; unless otherwise indicated by “L”, all 

images were taken from the right side. (B) We collected E12.5 embryos from each 

line and performed in situ hybridization to determine the sites and level of expression 

of Nkx3-2 and Rab28 in the Longshanks (right columns) and Control (left column) 

lines.  Both genes are expressed in similar sites overall and specifically in the 

developing fore- and hindlimb buds in the region of the presumptive zeugopods.  

These data indicate common sites of expression and rule out qualitative 

presence/absence differences in expression.  (C) Although the N1 enhancer pattern 

appear to differ from endogenous Nkx3-2 expression, it matches the pattern of Nkx3-

2 expression, as indicated in (30).  The use of a Nkx3-2 Cre-driver line suggested 

possibly undetected early expression of Nkx3-2 prior to bone formation in the limb 

buds (lineage tracing experiment using a Cre-driver and revealed through crossing to 

Rosa26R, a lacZ reporter line). Image modified from (30), reused with permission. 

Scale bar: 1mm. h, humerus; r, radius; u, ulna; ti, tibia; fi, fibula; sty, stylopod; z, 

zeugopod; a, autopod; scp, scapula; mt, metacarpals; d, digits. 
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Fig. 5 – figure supplement 1. Selection at the Nkx3-2 locus.  (A) Raw genotypes 

from the F0 and F17 generations from LS1 (left) and LS2 (right) are shown, clearly 

indicating the area under the selective sweep.  The genotype classes are shown as 

C57BL/6J homozygous (BL6, white), heterozygous (black) and alternate 

homozygous (dark grey).  Lower Panel: Tracking MAF from both lines show that the 

originally rare F0 allele (thin line) rose to high frequency at F17 (thick lines).  The 

plateau profile from both lines suggested that the same originally rare allele was 

segregating at in both founder populations and became very common by F17 in both 

lines (see raw genotypes).  Note that in LS2 F17 the region is fixed for the BL6 allele 

except the bottom-most individual).  (B) The log likelihood of the selection coefficient, 

s, for LS1 and LS2 (blue and red, respectively), based on transition probabilities for a 

Wright–Fisher population with the appropriate Ne.  The horizontal red line shows a 

loss of log likelihood of 2 units, which sets conventional 2-unit support limits.  (C) 

Simulations of an additive allele with effect A on the trait; 40 replicates for each value 

of A.  Left: The selection coefficient, estimated from the change in mean allele 

frequency, as a function of 𝐴/ 𝑉!; the line shows the least-squares fit 𝑠 = 0.41𝐴/ 𝑉! 

.  Middle: dots show the mean allele frequency at generation 17; the line shows the 
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prediction from the single-locus Wright–Fisher model, given 𝑠 = 0.41𝐴/ 𝑉!.  Right: 

the same, but for the standard deviation of allele frequency.   
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2.2.12 Supplementary Tables: 
 
 

 
 
Supplementary Table 1. Sequencing Summary.  For each line and generation, we 

individually barcoded all available individuals and pooled for sequencing.  We aimed 

for a sequencing depth of around 100x coverage for 50–64 haplotypes per sample.  

Since the CD-1 mice were founded by an original import of 7 inbred females and 2 

inbred males, we expect a maximum of 18 segregating haplotypes at any given 

locus.  This sequencing design should give sufficient coverage to recover haplotypes 

genome-wide.  Our successful genome-wide imputation results validated this 

strategy. 

  

!

Pool n Total reads 

Mapped 

Sequence 

(Gbp) 

Fold-

coverage 

(x) 

Median 

cov./Sample 

(x) 

Ctrl, F0 25 1,856,046,931 251.3 92.0 2.42 

LS1, F0 26 1,858,953,260 256.1 93.8 2.82 

LS2, F0 25 2,011,646,609 283.2 103.7 3.57 

Ctrl, F17 32 1,882,838,451 260.2 95.3 2.97 

LS1, F17 32 2,071,122,164 292.1 107.0 2.95 

LS2, F17 31 1,897,174,855 267.0 97.8 2.93 

Total sum 169 11,577,782,270 1609.9 589.5 2.91 
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Supplementary Table 2.  Pairwise FST and segregating sites (S) between 
populations.  As expected, there is a general trend of decrease in diversity after 17 

generations of breeding.  Globally, there was a 13% decrease in diversity, but F17 

populations still retained on average ~5.8M segregating SNPs (diagonal).  There 

was very little population differentiation, as indicated by low FST among the three 

founder populations, however FST increases by at least 100-fold among lines by 

generation F17 (above diagonal, orange boxes).  Within-line FST is intermediate in 

this respect, reaching about half of the differentiation observed between lines. 

 

 

!

S \ FST Ctrl F0 LS1 F0 LS2 F0 Ctrl F17 LS1 F17 LS2 F17 

Ctrl F0 6,642,764 0.00095 0.00176 0.06067 0.09601 0.10694 

LS1 
F0 

7,213,186 6,612,653 0.00100 0.07731 0.08045 0.10830 

LS2 

F0 
7,306,904 7,282,910 6,772,383 0.07535 0.09505 0.09634 

Ctrl 

F17 
7,101,376 7,118,072 7,227,135 5,847,708 0.17469 0.17942 

LS1 

F17 
7,121,979 7,062,183 7,214,508 6,795,919 5,813,162 0.17631 

LS2 

F17 
7,218,921 7,155,580 7,239,774 6,832,125 6,778,518 5,749,742 
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Supplementary Table 3.  Full details on the eight discrete loci.  Listed here are 

the eight loci shown in Table 1, with additional details on the core span and the TAD 

span used to identify candidate genes, and a full list of genes within the full span.   

 

 

 

Rk: ranking by s
Chr: Chromosome
Mbp: megabase pairs
s: selection coefficient

* Genes with short limb, short tibia or abnormal tibia knockout phenotypes
† Genes with cartilage or osteoblast morphology knockout phenotypes
Gene Genes within the TAD span

Supplementary File 3.  Full details on the eight discrete loci.  Listed here are the eight loci 
shown in Table 1, with additional details on the core span and the TAD span used to identify 
candidate genes, and a full list of genes within the full span.  
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Chrom: Chromosome 
KO: knock-out 
Dir.: directionality 
PUR: purifying 
DIV: diversifying 

 
 
 
Supplementary Table 4. Detected protein-coding changes with large allele 
frequency shift in amino acids.  Listed are genes carrying large frequency 

changing SNPs affecting amino acid residues. Highlighted cells indicate the line with 

greater frequency changes ≥ 0.34 (red text with shading).  Other suggestive changes 

are also shown with red numbers in unshaded cells.  The changed amino acids are 

marked using standard notations, with the directionality indicated as “purifying” or 

“diversifying” with respect to a 60-way protein sequence alignment with other 

placental mammals.  The conservation score based on phastCons was calculated at 

the SNP position itself, ranging from 0 (no conservation) to 1 (complete 

conservation) among the 60 placental mammals.  For each gene, reported knockout 

phenotypes of the “limbs/digits/tail” category is reported, along with whether lethality 

was reported in any of the alleles, excluding compound genotypes.  A summary of 

the mutant phenotype as reported by the Mouse Genome Informatics database is 

also included to highlight any systemic defects beyond the “limbs/digits/tail” category 

(lethal phenotypes reported in bold). 
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Chr: Chromosome 

For: forward 

Rev: reverse 
 

Supplementary Table 5. Oligonucleotides for in situ hybridization probes. 
 
 

 

 
 

VP: Viewpoint 

Chr: Chromosome 
 

Supplementary Table 6. Oligonucleotide primers for multiplexed 4C-seq of 
enhancer viewpoints at the Nkx3-2 locus.  The 4C-seq adapter and adapter-

specific primer sequences are given in (98). N2-DS denotes its location as 18 kbp 

downstream of the actual N2 enhancer.  All viewpoints are pointed towards Nkx3-2 

gene body (“+” strand). 

 
 

!

Gene Chr Start End Size Type Primer (5' - 3') 
Rab28 5 41,698,405 41,625,451 785 For AGGTGGCAAGATGTTGGATAAATAC 

     Rev GATCATCAAAGCTTGGAGCAGC 
Nkx3-2 5 41,763,877 41,762,039 579 For GCGATCCTCAACAAGAAAGAGGA 

     Rev GCGCTTCTTTCGCGGTTTAG 
Bod1l 5 41,832,764 41,828,797 873 For GATGCCATGTCAATCTTGGAAACC 

     Rev CACTGTGAGTTCGTCATCAGAATC 

!

VP Chr Start End Type Primer (5' - 3') 

N1 5 41,165,684 41,165,705 Biotin /5Biosg/GAGTTATCTCTATGGGAGAAGT 

 
5 41,165,733 41,165,752 Nested CTTGAGTTTGCCACCCAAAC 

N2-DS 5 41,403,983 41,404,002 Biotin /5Biosg/TGGCGATCTGAAGAACTAAG 

 
5 41,403,985 41,404,010 Nested GCGATCTGAAGAACTAAGAAGCTTAG 

N3 5 41,535,787 41,535,806 Biotin /5Biosg/GTGGTTGTAAGTAGCAGACA 

 
5 41,535,790 41,535,813 Nested GTTGTAAGTAGCAGACACAGAGAT 
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Enh: Enhancer 

Chr: chromosome 

For: forward 

Rev: reverse 

 

Supplementary Table 7. Oligonucleotide primers for amplifying the enhancers 
at the Nkx3-2 locus.  Each of the amplicons are tagged with SalI (forward) or XhoI 

(reverse) sites (underlined) for concatenation and flanked by EcoRV sites 

(underlined and bold) for insertion into the pBeta-lacZ-attBx2 reporter vector 

upstream of the β-globin minimal promoter. 

 

 
 

 
 
 
Chr: Chromosome 

For: forward 

Rev: reverse 
 
Supplementary Table 8. Oligonucleotide primers for allele-specific genotyping 
of the N3 enhancer.  The primers were designed to target two SNPs (bold) in the 

N3 enhancer, rs33219710 and rs33600994. 
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Chapter 3: Genetic mapping of species differences 
via in vitro crosses in mouse embryonic stem cells 
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3.2.1 Abstract: 
 

Discovering the genetic changes underlying species differences is a central 

goal in evolutionary genetics (1). However, hybrid crosses between species in 

mammals often suffer from hybrid sterility, greatly complicating genetic mapping of 

trait variation across species. Here we describe a simple, robust and transgene-free 

technique to generate “in vitro crosses” in hybrid mouse embryonic stem (ES) cells 

by inducing random mitotic crossovers with the drug ML216, which inhibits Bloom 

syndrome (BLM) (2). Starting with an interspecific F1 hybrid embryonic stem cell line 

between the Mus musculus laboratory mouse and Mus spretus (~1.5 million years of 

divergence) (3, 4), we demonstrate the feasibility of mapping the genetic basis of 

drug resistance to the anti-metabolite tioguanine to hypoxanthine-guanine 

phosphoribosyltransferase (Hprt) in as few as 6 days through “flow mapping”, by 

coupling in vitro crosses with fluorescence-activated cell sorting (FACS). We also 

show how our platform can enable direct study of developmental variation by re-

deriving embryos carrying recombinant hybrid genomes. We demonstrate how in 

vitro crosses can overcome major bottlenecks in mouse complex trait genetics and 

address fundamental questions in evolutionary biology that are otherwise intractable 

through traditional breeding due to high cost, small litter sizes and/or hybrid sterility. 

In doing so we describe an experimental platform towards studying evolutionary 

systems biology in mouse and potentially in human and other mammals, including 

cross-species hybrids. 

 

3.2.2 Keywords: Interspecific hybrids; mitotic recombination; genetics 
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3.2.3 Significance Statement: 
 

How species differ from each other is a key question in biology. But genetic 

mapping between species often fail because of sterile hybrid crosses. Here we have 

developed a novel technique called in vitro recombination to circumvent breeding. 

We induce genetic reshuffling through mitotic recombination with the drug ML216 

and mapped trait variations in a dish. Starting with hybrid embryonic stem cells 

between the Mus musculus laboratory mouse and Mus spretus spanning ~1.5 million 

years of divergence, we show it is possible to map the gene responsible for 

differential resistance to the drug tioguanine in as few as 6 days. Our technique 

opens up novel experimental avenues in genetic mapping across mouse species 

and potential applications in personalized medicine. 

 

 

3.2.4 Introduction: 
 

Discovering the genetic changes underlying species differences is a central 

goal in evolutionary genetics (1). However, hybrid crosses between even recently 

diverged species in animals often suffer from hybrid sterility (1, 4), greatly 

complicating genetic mapping of trait variation, especially in mammals. On the other 

hand, within-species genetic mapping has been tremendously successful in linking 

genetic polymorphisms to trait variations in innumerable organisms since the early 

twentieth century (5–7). Genetic mapping typically involves breeding and analyzing 

mapping panels to identify genetic loci controlling trait variations, or quantitative trait 

loci (QTL). The ability to disentangle linked genetic associations determines mapping 

resolution and is largely dependent on the number of meiotic crossovers. 

Accordingly, researchers are driven to create ever-larger mapping populations 

and/or accumulating recombination over at least two, often many generations to 

achieve gene-level mapping resolutions (8–10). In the mouse, genetic studies are 

complicated by the relatively long generation times and small litter sizes, which often 

decline with increased inbreeding. Consequently, compared to yeast, worms and 

Arabidopsis (8–10), genetic mapping in the mouse requires far greater resources, 

yet relatively few traits have been mapped to the gene level (but see landmark 
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studies identifying Tlr4 and Prdm9) (11, 12). This challenge was particularly acute for 

crosses at or beyond the species level, where hybrid sterility often makes it 

impossible to generate a panel in the first place. Nonetheless, the potential to reveal 

unique biology occurring at the species boundaries in mammalian evolution makes 

such panels worthy attempts, even allowing for lower mapping resolution (13–17). 

This is because evolutionary changes in trait architecture (even at the cellular or 

tissue level) can reveal much about the underlying evolutionary process. Should 

genetic exchange in hybrid animal genomes become feasible, direct genetic 

mapping of species differences would become routinely possible. 

We set out to establish a universal method that allows genetic mapping in 

mammals without breeding, even across divergent species with viable but otherwise 

sterile hybrids. We opted to use mouse ES cells to take advantage of the full 

spectrum of genetic manipulations available in tissue culture. A minimal system will 

have the two following features: an ability to induce on-demand extensive genetic 

exchange; and genetic (and trait) variation such as those found in F1 hybrid ES cells, 

ideally between species. 

Intriguingly, the technique to create genetic variation through recombination 

has been in broad use in the mouse genetics community, albeit never explicitly in F1 

hybrid ES cells with the goal of genetic mapping. In 2004, two independent groups 

showed that recessive, biallelic mutants could be reliably recovered in mouse ES 

cells without breeding by suppressing Bloom Syndrome (Blm; Fig. 1A) (18, 19). Yusa 

and coworkers showed that these recessive mutants arose via mitotic recombination 

between homologous chromosomes (20). We reasoned that the same mechanism 

could be leveraged to generate genome-wide random mitotic recombination. This 

mechanism enabled the creation of panels of arbitrary size carrying recombinant 

genomes, while avoiding the limitations of hybrid sterility or inbreeding depression 

(Fig. 1B). 
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3.2.5 Results: 
 

To test if BLM inhibition could lead to elevated homologous recombination rates 

in mitosis, we inhibited BLM in a number of mouse ES cell lines using a recently 

discovered small molecule inhibitor ML216 (Fig. 1C) (2). As a first test, we started 

with F1 ES cells between the laboratory mouse strains C57BL/6J (“BL6” in short) 

and 129 that carried a targeted transgene as a hemizygous allele at the GtRosa26 

locus on distal Chromosome 6. We estimated homologous recombination by 

counting colony survival under fialuridine (FIAU) treatment, which selected against 

the transgene consisting of hygromycin phosphotransferase–thymidine kinase 

(HyTK) and a green fluorescent protein (GFP; Fig. S1). We found that BLM inhibition 

led to highly elevated rates of homologous recombination, as revealed by increased 

numbers of FIAU-resistant colonies (Fig. 1C; in vitro recombination rate: 2.9×10-4 per 

cell per generation) and the appearance of mosaic GFP expression within a colony 

(Fig. 2A, right panels). This is consistent with previously reported rates under Blm 

suppression or disruption (targeted tetracycline inhibition or knockout alleles: 2.3–

4.2×10-4; vs. wildtype rates between 8.5×10-6–2.3×10-5) (18, 19). The small molecule 

BLM inhibitor ML216 offers unique experimental advantages, because its application 

is simple, rapid and reversible, eliminating the use of transgenes against Blm (18, 

19) or repeated transfections of small interfering RNA to achieve continued 

suppression of Blm. Importantly, elevated homologous recombination under BLM 

inhibition is not associated with increased aneuploidy (N=154 metaphase spreads; 

Mann-Whitney U test, W=1871, h1>0, n.s.; Fig. S2A). Further, ML216-treated ES 

cells retained robust expression of NANOG, a key stemness marker (Fig. S3). 
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Fig. 1. In vitro recombination via Bloom syndrome suppression. (A) Bloom 

syndrome (Blm) encodes a helicase normally active during mitosis. Loss of Blm 

activity leads to increased improper sister chromatid exchange as well as 

recombination between homologous chromosomes. Mitotic recombination can give 

rise to recombinant diploid daughter cells with loss of heterozygosity (LOH) between 

the breakpoint and the telomeres. (B) In vitro recombination (IVR) allowed the 

circumvention of hybrid sterility in crosses between the laboratory mouse, e.g., 

C57BL/6J (BL6) and a murine sister species Mus spretus (SPRET). (BL6 x 

SPRET)F1 hybrid mice were viable and allowed derivation of F1 ES cells despite 

male sterility (3). Applying IVR to F1 ES cells allowed rapid and efficient generation 

of recombinant ES cell panels for genetic mapping. Scale bar = 50 µm. (C) Efficiency 

of IVR was estimated by colony survival assay. We estimated recombination rate 

between homologous chromosomes with cells hemizygous for a dominant selectable 
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marker (hygromycin phosphotransferase-thymidine kinase, abbreviated HyTK, 

green). We induced IVR by adding a small molecule BLM inhibitor ML216 (2) to the 

culturing medium for 1 or 5 days (d). Under fialuridine (FIAU) negative selection, 

cells having undergone mitotic recombination to become homozygous for the 

wildtype BL6 alleles (blue) survived; while non-recombined cells or recombinant cells 

retaining the HyTK transgene metabolized FIAU, resulting in cell death due to 

misincorporation of toxic nucleotide analogues (top and middle cells with red 

chromosomes). Under ML216 treatment (25 µM), IVR rate was estimated to be 

2.9×10-4 per cell per generation, yielding 800–1500 FIAU-resistant colonies per 

million following treatment. 

 

 

To determine the frequency and distribution of mitotic crossovers under ML216-

mediated BLM inhibition, we sequenced and compared the genomes of 11 clones 

that survived ganciclovir selection (a FIAU alternative; Fig. 2B). We also treated F1 

hybrid ES cells derived from BL6 and Mus castaneus (diverged ~1 million years ago; 

CAST/EiJ, abbreviated to CAST) (21) with ML216 but otherwise grown without 

selection. Using the transgene-free (BL6 x CAST)F1 line (21), we screened 46 

randomly-picked ML216-treated clones for LOH recombinants and recovered 

recombinants in both BL6/BL6 and CAST/CAST directions on Chromosome 1. 

Sequencing of representative clones revealed conversion from F1 heterozygous 

genotypes towards both homozygous genotypes at the telomeres (Fig. 2C, clones 21 

and 50, note also additional recombination on Chromosome 13). In contrast, control 

non-recombinant clones retained heterozygosity at the telomeres (clone 54 and 56). 

But even here we discovered a single clone carrying additional internal recombinants 

on Chromosome 1 (Fig. 2C). 

Genome-wide sequencing of the recombinants revealed several striking 

patterns. First, crossover breakpoints were distributed along the entire chromosome 

(Fig. 2B), suggesting recombinants can be used for interval mapping. Second, 

ganciclovir selection significantly enriched for recombinant chromosomes compared 

to unselected conditions (N=11 out of 11 vs. 9 out of 826; Fisher Exact Test, 

P < 2.2×10-16), with the recombination map biased strongly by the location of the 

selection cassette (all 11 crossovers were centromeric to Chromosome 6, 113 Mbp, 

Fig. 2B). This is presumably because chromosome segments telomeric to the 
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cassette had no effect on selection. In our subsequent experiments on natural 

variations, this centromeric bias became a useful signature for trait mapping. Third, 

crossovers created by mitotic recombination usually occurred only on one or few 

chromosomes at a time (Fig. 2 B and C; Fig. S4)(20,22), unlike in meiosis with 

typically one crossover per chromosome arm. Taken together, the data show that 

BLM inhibition efficiently generated in vitro recombination (IVR) across wide 

evolutionary distance and IVR ES cell panels may constitute genetically distinct 

lineages suitable for genetic mapping. 
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Fig. 2. Widespread in vitro recombination across a range of evolutionary 
divergence. (A) ES cell colonies displayed mosaic GFP expression within a colony 

when cultured with ML216, but not under control conditions, consistent with 

homologous recombination and loss of GFP through IVR. Recombination between 

homologous chromosomes could result in daughter cells with two wildtype (BL6 

allele, dark) or transgenic copies (129 allele, bright). Early recombination events 

followed by random cell loss during clonal expansion could produce completely dark 

colonies. Scale bar = 100 µm. (B) After expansion under negative selection against 

the transgene (both ganciclovir and FIAU kill cells expressing HyTK), 11 ganciclovir-

resistant and GFP-negative colonies were whole genome sequenced. Selection 

favoured loss of transgene (homozygous BL6/BL6 genotypes) at distal Chromosome 

6. In contrast to normal meiotic recombination (averaging 1 or more crossovers per 

chromosome pair), mitotic recombination typically affected only a single 

chromosome pair: much of the genome remained heterozygous (yellow), with the 

exception of the transgene-carrying chromosome 6 (mostly BL6/BL6, blue) and the 

single 129 Chromosome X (male, 129, red). Mitotic recombination events converted 

genotypes telomeric to the breakpoint towards homozygosity (LOH, yellow to blue). 

(C) IVR also occurred in cells carrying divergent genomes with no transgenes. (BL6 

x CAST)F1 hybrid ES cells were treated with ML216 and screened by PCR 

genotyping at diagnostic telomeric markers. Selected clones (two recombinant and 

control clones each) were whole genome sequenced, showing recombination events 

towards both homozygous genotypes, consistent with PCR genotype screening 

results (total breakpoints per clone ranged from 0–2). Additional recombination 

events were also recovered, even though the Chromosome 1 telomeric marker 

remained heterozygous (clone 54). These clones also carried non-recombined 

chromosomes (e.g., Chromosome 6, fully heterozygous, yellow). 

 

 

Our experiments to determine IVR rate demonstrated that the collective 

location of recombination breakpoints could reveal the position of the selectable 

transgene (HyTK or GFP), with the major difference that under mitotic recombination 

the critical interval was defined only on the centromeric side. To further illustrate the 

potential of this approach, we used IVR to map naturally-occurring variations. One 
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classical polymorphism is the 25 to 75-fold increased activity of the Mus spretus “a” 

allele of hypoxanthine-guanine phosphoribosyltransferase (Hprta) compared to the 

laboratory mouse Hprtb allele (23). Importantly, HPRT metabolizes the anti-

metabolite tioguanine (6-TG) and causes cytotoxicity. It should be noted that beside 

the known Hprt polymorphism, tioguanine susceptibility itself has not been previously 

mapped genetically within or between mouse species. Here, we expected ES cells 

carrying Hprta to be highly susceptible to 6-TG treatment, whereas Hprtb/b or Hprt-/- 

ES cells should survive far higher 6-TG concentrations (Fig. S5). We set out to map 

the QTL for differential 6-TG susceptibility using a bulk segregant assay simply by 

comparing allele frequencies across the genome between pools of 6-TG susceptible 

and resistant ES cells. 

We first confirmed the absence of chromosome-scale rearrangements between 

the parental strains that could preclude mapping using the de novo assembled 

genomes of the parental strains made available by the Wellcome Trust Sanger 

Institute (BL6 and SPRET/EiJ, abbreviated to SPRET here) (24, 25). We generated 

IVR panels by treating a female (BL6 x SPRET)F1 hybrid ES cell line (“S18”) (3) with 

ML216 over 5, 10 and 21 days (d; Fig. 3A). The use of a female ES cell line, which 

carried two active X chromosomes prior to the onset of X inactivation during 

differentiation (26), allowed direct selection on the alternative Hprta and Hprtb alleles. 

After confirming biallelic Hprt expression in S18 cells using quantitative PCR, we 

treated control and IVR S18 cells with 6-TG and determined cell viability via a 4’,6-

diamidino-2-phenylindole (DAPI) exclusion assay. Damaged cells with ruptured 

membrane exhibited rapid uptake of DAPI, a feature unaffected by ML216 treatment, 

and were distinguishable by fluorescent-activated cell sorting (FACS; “Live” 

proportions under ML216 treatment vs. “Live” proportions under 6-TG treatment, N = 

5 paired treatments; Kruskal-Wallis test, 𝜒2 = 13.17, d.f.= 1, P < 0.0003; Fig. 3A; Fig. 

S6). We separately recovered and sequenced each “Resistant” (6-TGR) and 

“Susceptible” (6-TGS) pool (Fig. 3A). Under both 5d and 21d ML216 treatment, a 

large skew towards enriched SPRET coverage was observed on Chromosome X in 

the 6-TGS relative to the 6-TGR pool (Fig. 3 A and B). This was in stark contrast to 

the genomic background, which showed little deviation from equal SPRET and BL6 

contributions (normalized SPRET coverage for Chromosome X: 1.10, 95% 

confidence interval: 1.02–1.19; autosomes: 0.998, conf. int.: 0.986–1.01). The 

genome-wide peak SPRET enrichment window was found on Chromosome X, 53 
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Mbp, and it contained the Hprt gene itself (normalized SPRET coverage in 6-TGS 

pool, 1 Mbp window: 1.19, conf. int.: 1.09–1.28). Here, our forward genetic mapping 

for 6-TG susceptibility clearly identified a single locus, suggesting that 6-TG 

susceptibility depended only on Hprt genotypes. To confirm the role of Hprt in 

mediating differential 6-TG susceptibility beyond bulk sequencing, we also 

sequenced 46 individual 6-TGR IVR clones after 10d ML216 treatment to determine 

their recombination breakpoints (Fig. 3C). Echoing the skewed crossovers patterns 

centromeric to the HyTK selection cassette (Fig. 2B), we observed more SPRET-to-

BL6 than BL6-to-SPRET centromeric recombinants (N = 35 vs. 8, P ≤ 2 × 10-5, exact 

binomial test, h1≥ h0) and also ruled out aneuploidy or deletion of Hprta as major 

contributors to 6-TG resistance. We note, however, that despite the strongly skewed 

ratio of 27 BL6/BL6 homozygous clones at the Hprt locus out of 46 total recovered 

clones, we still observed 9 heterozygotes and 10 SPRET/SPRET homozygous 

clones (BL6/BL6 58.6%; Chi-squared test using observed allele counts, 𝜒2 = 13.17, 

d.f. = 2, P ≤ 0.002). Close examination of our flow cytometry data suggests that the 

original DAPI-only FACS gating may not be sufficiently exclusive (as opposed to 

gating using additional channels, Fig. 3A and S6). Other alternative explanations 

may be a quantitative, rather than absolute allelic difference in susceptibility to 

25 µM 6-TG treatment (Fig. S5); or other mutation(s) at Hprt or elsewhere leading to 

6-TG resistance (18). Taken together, we conclude that we were able to perform 

forward genetic mapping using IVR and recover Hprt as the gene underlying 6-TG 

susceptibility differences between BL6 and SPRET. 
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Fig. 3. In vitro genetic mapping of variation in tioguanine susceptibility 
between divergent species. (A) A female ES cell line S18 derived from a Mus 

spretus and C57BL/6N F1 interspecific hybrid was treated with ML216 (25 µM) and 

subjected to the anti-metabolite tioguanine (6-TG) for 1d prior to fluorescence-

activated cell sorting (FACS). ES cells were evaluated for viability based on 4’,6-

diamidino-2-phenylindole (DAPI) exclusion. Resistant and susceptible (6-TGR and 6-

TGS) sub-populations were gated conservatively (shaded arrows) and pooled for 

sequencing. Individual clones from the 10d ML216 treatment were cultured and 

whole genome sequenced. (B) Skewed allelic contributions between the 6-TGR and 
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6-TGS pools suggested that the SPRET allele on Chromosome X conferred 6-TG 

susceptibility. Allele frequencies were normalized against 6-TGR sample as an 

internal ML216 treatment control. Plotted are per megabase mean SPRET allele 

frequencies ± s.e.m. after 5 d and 21 d ML216 treatment. In both cases, the 

genome-wide peak window contains the Hprt gene with the SPRET allele showing 

significantly increased susceptibility. (C) Individual 6-TGR clones following 10 d 

ML216 treatment were sequenced to determine recombination breakpoints. 

Crossovers in clones surviving 6-TG treatment recombined significantly more likely 

in the SPRET-to-BL6 direction (S>B = 37; B>S = 5; P ≤ 2×10-5) between the 

centromere and Hprt, consistent with strong selection favouring the BL6 Hprtb allele. 

In contrast, only 3 additional crossovers were detected telomeric to Hprt. At Hprt, 

most 6-TG surviving clones are homozygous for the Hprtb allele (27 vs. 9 

heterozygotes and 10 Hprta homozygotes). 

 

 

The ability to easily circumvent hybrid sterility in evolutionarily divergent murine 

species led us to ask what developmental phenotypes may arise from such 

otherwise inaccessible genetic configurations (M. spretus–laboratory mouse hybrid 

males are sterile, following Haldane’s rule. Backcrosses using female hybrids are 

possible but extremely challenging) (17). Assaying developmental phenotypes from 

evolutionarily divergent hybrid ES cells is non-trivial, because hybrid sterility makes 

conventional re-derivation impossible due to the lack of germ line transmission in the 

chimera generation. Instead, we directly produced fully ES cell-derived founder 

animals using laser-assisted morula injection (27) with two karyotypically normal but 

genetically distinct IVR ES cell lines along with control, non-recombined S18 cells 

(IVR 1 and 2; Fig. S2; Fig. S7; Movies S1–3). We succeeded in obtaining multiple 

embryos per line at embryonic (E) 14.5d of development (N=36, 24 from IVR lines 

vs. N=9 untreated S18 line). Using high-resolution micro-computer tomography 

(microCT), we observed that the embryos from the untreated clones showed 

uniformly normal development, whereas embryos from both IVR lines showed both 

normal development and dramatic craniofacial and neural tube closure defects (2 

abnormal embryos out of 4 scanned embryos in IVR line 1; 2 out of 7 in line 2; and 0 

out of 6 from the original S18 line; Fig. 4; Fig. S8; Movies S1–3). Neural tube and 

craniofacial defects are among the most common developmental defects due to the 
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complex coordination of cell migration and cell–cell communications, which may be 

impaired due to novel genetic combinations in the IVR lines (Fig. S7). Besides major 

developmental defects, we also made 3D measurements from various organs, 

including sub-regions of the brain, the heart and the liver, in individual embryos from 

each ES cell line. This approach illustrates for the first time the potential and 

feasibility of characterizing, or given an expanded IVR panel, mapping the genetic 

basis of evolutionary developmental variation using recombinants from divergent 

species. 

 

 

 

 

Fig. 4. Accessing developmental phenotypes in recombinants between 
evolutionarily divergent species. Embryos at mid-gestation (14.5 d after 

fertilization) with nearly exclusive ES cell contribution were derived from non-

recombinant F1 S18 ES cells (A) and IVR lines 1 (B) and 2 (C). Embryos were 

dissected, contrast-stained and scanned using X-ray micro-computer tomography at 

9.4 µm resolution. The high scanning resolution allowed identification and precise 

measurements of individual organs (colorized here). Major developmental 

craniofacial and neural tube closure defects were observed in the IVR lines (B, 

caudal view with arrowhead indicates neural tube lesion). Scale bar = 200 µm. 
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3.2.6 Discussion: 
 

A central goal of evolutionary genetics is to identify how mutations arose during 

evolution and influenced phenotypes. For many organisms, a major barrier has been 

the inability to reliably generate diverse and large mapping panels of sufficient 

evolutionary diversity. Here we describe a simple and robust method to make “in 

vitro crosses”, resulting in functionally intercross panels from otherwise sterile 

interspecific hybrid crosses. Being able to bring forth genetic diversity in a petri dish 

creates the unique opportunity to conduct mouse genetic mapping at unprecedented 

speeds with “flow mapping” (similar to “X-QTL” in yeast (28)) or arbitrarily large 

panels unmatched by most other model organisms, except possibly yeast (22, 28). 

As renewable stem cells, IVR panels can be expanded, archived and shared, 

offering a cellular resource with many of the advantages sought from traditional 

community resources such as recombinant inbred line panels. Further, we have 

shown that our IVR method works in a broad range of ES cells. With millions of 

potentially recombinant (thus genetically distinct) ES cells in a petri dish, we 

demonstrated how IVR enabled mapping of QTLs for drug resistance in as few as 6 

days (with an estimated total of 5 doublings over 5 days). Putting this in context, 

such an experiment using traditional mouse crosses would have taken 450 days, 

based on the typical mouse generation time of 90 days, assuming that hybrid sterility 

could be overcome and allowing for selfing.  

Rather than a challenge to current organismal genetic mapping methods, we 

see IVR as a complementary extension. In the mouse, the largest organismal 

recombinant inbred (RI) panel BXD contains “only” ~160 lines (with most published 

work based on the ~35 original BXD strains) (29) and attempts in generating panels 

incorporating greater divergences encountered enormous challenges (30). 

Nevertheless, mouse RI resources still represented some of the most powerful tools 

available to dissect system genetics in the mouse, the prime biomedical model 

organism (31). Seen in this light, IVR represents an alternative approach that could 

greatly extend the available renewable resources, not least because the genotype 

combinations between divergent species are hitherto impossible to obtain in the first 

place. 
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Recently, Sadhu and coworkers have also achieved a major advance in genetic 

mapping using CRISPR/Cas9-mediated mitotic recombination in yeast (22). In 

contrast to CRISPR targeting, our transgene-free approach offers the simplicity of 

inducing genome-wide recombinants by the simple addition of a single inexpensive 

small molecule to the tissue culture medium. Going forward, we envision a 

combined, complementary approach to IVR: using BLM inhibition for mapping panel 

generations and efficient QTL identification, then switching to targeted transgene-

based screening or CRISPR/Cas9-based IVR for fine-scale mapping. 

We are currently working on improving the efficiency of IVR panel creation from 

hybrid cell lines and developing robust phenotyping protocols, in order to make 

mapping interspecific trait differences in mouse or other mammals using in vitro 

recombination routine. In addition to the traits we have investigated, Mus spretus and 

the Mus musculus laboratory mouse differ in a number of distinct traits, such as 

longevity and telomere lengths (32), cancer and inflammation resistance (33, 34) and 

metabolism (35). Many of these traits have tissue or cellular models suitable for IVR 

mapping panels or flow mapping through fluorescent detection of specific proteins or 

metabolites. Future experiments may also probe even greater evolutionary 

divergence: early work has shown that F1 hybrids spanning as much as 6 million 

years between Mus musculus and Mus caroli was viable (36). Given active 

development in single-cell genomics and disease modeling from patient-specific 

induced pluripotent stem cells (iPSC), including organoids or organ-on-a-chip 

microfluidics systems, we anticipate that the in vitro recombinant platform can be 

broadly applied to mouse, human or even other species to accelerate the 

identification of the genetic basis of many traits and diseases. 

 
 

3.2.7 Materials and Methods: 
 
Animal Care and Use  

All animal experiments have been approved by the applicable animal welfare 

ethics committees: Faculty of Sciences, Ghent University, Belgium (reference 

number 06/022); and Landesdirektion Sachsen, Germany, permit number 24-

9168.11-9/2012-5. 
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Cell Culture  
Table S1 summarizes the ES cell lines used in this study. Unless otherwise 

stated, ES cell lines were cultured on SNL76/7-4 feeder cells in Attachment Factor 

(AF)-coated plates under 2i medium, supplemented with LIF (see SI Methods for 

details). 

 

BLM Inhibition using ML216  
BLM inhibition was performed using 25 µM ML216 (Sigma Aldrich) in 2i/LIF 

media on inactivated feeders.  

 

Generation of HyTK-EGFP-Neo cell line  
Starting with G4 ROSALUC B12 ES cells (37), we replaced the cassette at the 

GtRosa26 locus with a cassette carrying two selectable markers, HyTK and 

enhanced green fluorescent protein (EGFP, selectable in fluorescence-assisted cell 

sorting; Fig. S1; see SI Methods for details). Successful replacement of the cassette 

was confirmed through selection using geneticin (G148; ThermoFisherScientific) and 

genotyping.  

 

Colony Survival Assay 
HyTK-EGFP-Neo cells were seeded at a density of 5×105 per 10 cm AF/feeder 

plate, followed by 25 µM ML216 treatment for 1 or 5 d. Prior to the start of negative 

selection, cells were re-plated at 2×105 per 10 cm AF/feeder plate and FIAU (0.2 µM, 
Sigma Aldrich) or ganciclovir (10 µM, Sigma Aldrich) selection was applied for 5 d. 

Colonies were stained with the Alkaline phosphatase kit (EMD Millipore, Billerica, 

MA, USA), photographed and counted to determine survival rates. The entire 

procedure was repeated multiple times and the survival colony counts averaged to 

determine IVR rate. 

 

Screening for Spontaneous Recombinant ES Cell Colonies  
Cells were treated with ML216 for 2 d at 5 µM, then 3 d at 25 µM. Cells were 

then re-plated and cultured for 5 d in 2i/LIF without ML216. One hundred and eighty-

nine colonies were randomly picked (without selection), of which 136 were screened 

with multiplexed genotyping. 
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Multiplexed genotyping for detection of loss-of-heterozygosity (LOH) 
 Diagnostic markers between BL6, CAST and SPRET strains at tips of each 

chromosome were designed to track the presence of each allele. The markers were 

amplified with fluorescence-tagged primers as proposed in (38) (see SI Methods and 

Table S2 for details). The PCR reactions were pooled at equimolar proportions and 

analyzed with a 3730xl DNA Analyzer capillary sequencer (ThermoFisher Scientific, 

Germany) and scored for conversion from heterozygous into homozygous genotypes 

(LOH) at the tips of each chromosome. 

 

6-TG treatment and DAPI exclusion assay  
Prior to the main experiments, killing curves for 6-tioguanine (Sigma Aldrich) 

was performed using WST-1 assay (Roche) according to the manufacturer’s 

instructions (Fig. S5). For the main experiments, S18 ES cell line was cultured for 5, 

10 or 21 d with 25 µM ML216. Following the designated ML216 treatment, the cells 

were re-plated and treated with 25 µM 6-TG in 2i/LIF. We determined “live/dead” cell 

viability using 4’,6-diamidino-2-phenylindole (DAPI) staining (1 µg/mL, Sigma 

Aldrich) after 1 d of 25 µM 6-TG treatment.   

 

Fluorescence-Activated Cell Sorting (FACS)  
Flow cytometry was performed using an Aria II Cell Sorter (Becton Dickinson 

GmbH, Heidelberg, Germany). We defined the 6-TGR and 6-TGS populations using 

the DAPI exclusion assay in reference ES cell populations. In sorting experiments, 

ML216-treated or control 6-TGR and 6-TGS population were recovered for 

sequencing. For quantification, we performed post-hoc analysis using the R 

Bioconductor package flowCore (39), principally by clustering using the forward 

scatter area (FSC-A) and DAPI/Pacific Blue-A channels into “Live” and “Dead” 

clusters using mclust v5.2 (40, 41) in 6-TG-treated experiments, considering ML216-

treated and controls separately (Fig. S6).   

 

Sequencing and analysis pipeline  
Sequencing libraries for high-throughput sequencing were generated using 

Nextera DNA Library Prep Kit (Illumina, Inc., San Diego, USA) according to 

manufacturer’s recommendations or equivalent purified Tn5 transposase as 

described in (42). Each sample (FACS-sorted clones, single colonies or pooled cells) 
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was barcoded through PCR extension using an i7-index primer (N701-N763) and the 

N501 i5-index primer. Pooled libraries were sequenced by a HiSeq 3000 (Illumina) 

and analyzed using a custom pipeline (see SI Methods for details). We performed 

genotyping based on allelic coverage per megabase using known informative 

variants between the BL6, CAST and SPRET strains (Mouse Genomes Project 

version 3 dbSNP v137 release)(25). Scripts are available at: 

https://github.com/evolgenomics/HybridMiX . 

 

Laser-assisted morula injection  
Fully ES cell-derived embryos were obtained through injection into 8-cell stage 

embryos (morulae) as described in (27). At 14 d after the injection and subsequent 

embryo transfer into surrogates (approximating developmental stage E14.5), the 

gestation was terminated and embryos were dissected and fixed with 4% 

paraformaldehyde for microCT scanning.  

 

Micro computer-tomography (microCT)  
Soft tissue X-ray contrast staining was done via 4 d perfusion in 25% Lugol’s, 

or iodine potassium iodide solution. Then the embryos were rehydrated, mounted in 

1% agarose and scanned with a Skyscan 1173 instrument (Bruker Corporation, 

Billerica, MA, USA) at 9.96 micron resolution (0.5 mm aluminium filter, energy at 70 

kV and 110 µA). Image analysis, segmentation and visualizations were performed 

using Amira v6.2.0 (FEI, Hillsboro, OR, USA) with the XImagePAQ extension 6.2. 
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3.2.10 Supplementary Text: 
 
Major differences between mitotic and meiotic mapping  

As a novel mapping system, we observed a number of key differences between 

IVR and conventional meiotic genetic mapping. First, recombination tends to occur 

as loss-of-heterozygosity between the breakpoint and the telomeres. Unlike 

conventional breeding with random assortment, under IVR in F1 hybrids, outcrosses 

are not possible. As a result, we tend to observe only heterozygous genotypes near 

the centromere, with informative crossovers almost always found between the 

centromere and a selectable QTL but not on the telomeric side. This asymmetry 

often led to a plateau in the association profiles from the QTL towards the telomeres 

on a given chromosome (Fig. 2B and 3C), an effect also reported elsewhere (21). As 

a consequence, interval mapping in IVR analogous to those in meiotic panels yields 

excellent genetic resolution on the centromeric side but poor resolution on the 

telomeric side (see distribution of crossover directions and breakpoints in Fig. 3C 

and (21). Second, access to common tissue culture methods under IVR greatly 

mitigates typical concerns such as panel sizes and power calculation in generating 

meiotic mapping panels. Since it is trivial to freeze samples and introduce selectable 

markers at any given locus or targeted chromosome breaks with a CRISPR/Cas9 

panel (21) with ES cells under tissue culture conditions, refinement of mapping 

resolution under IVR no longer depends on the diminishing return of breeding and 

screening for increasingly rare informative recombinants. To underscore this point, 

our flow mapping experiment for 6-TG susceptibility identified the single region 

containing the known causal Hprt gene within weeks. Third, while it is true that 

mitotic recombination as used in IVR depends on error-prone repair of double-strand 

breaks that could affect phenotype through chromosome rearrangements and new 

mutations at breakpoints, two observations from our results may moderate this 

concern. One, we did not observe elevated aneuploidy under ML216 treatment, 

suggesting that IVR did not elevate rates of chromosome rearrangements (Fig. S2). 

Two, millions of variants already exist in our (BL6 x CAST) F1 or (BL6 x SPRET) F1 

lines. These variants vastly outnumber any new mutations generated through IVR. 

Assuming a typical spectrum of mutation effects, these parental variants likely would 

contribute far more to trait variance than new mutations arising in a specific line. 
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Since genetic mapping depends on testing for different genotypic effect of an allele 

across all lines carrying the same genotype at loci that are typically megabases 

away from a random double-strand breakpoint, it is reasonable to expect that the 

mutagenic effect of mitotic recombination should have a rather limited impact on 

genetic mapping. Under the flow mapping design, the mutagenic effect of mitotic 

recombination is further diluted, because millions, if not tens of millions of cells in 

bulk population cultures are phenotyped and sequenced as pools. This conclusion is 

supported by our ability to locate and map various transgenes or QTLs in this current 

study. We are nonetheless in the process to formally characterize the relative 

contribution to trait variation due to the mutagenic effects of IVR and that of the 

parental genomes. 

 
3.2.11 Supplementary Materials and Methods: 
 
Animal Care and Use  

All experimental procedures described in this study have been approved by the 

applicable University institutional ethics committee for animal welfare at the Faculty 

of Sciences, Ghent University, Belgium, (reference number 06/022); or local 

competent authority: Landesdirektion Sachsen, Germany, permit number 24-

9168.11-9/2012-5. 

 

Reference genome assembly  
All co-ordinates in the mouse genome refer to Mus musculus reference mm10, 

which is derived from GRCm38. Sequence data have been deposited in the GEO 

database under accession number PRJNA390071. 

 

Cell Culture  
Unless otherwise stated, murine stem cell lines have been cultured on 

Attachment Factor Protein (AF) (ThermoFisherScientific, Schwerte, Germany) 

coated cell culture dishes on inactivated SNL 76/7-4 feeder cells (“feeder” plates; 

SCRC-1050, ATCC, Middlesex, United Kingdom) and using 2i/LIF media as follows: 

KnockOut Serum Replacement (ThermoFisherScientific), KnockOut DMEM 

(ThermoFisherScientific), 2-Mercaptoethanol, 1000x, 55 mM 
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(ThermoFisherScientific); MEM Non-Essential Amino Acids Solution, 100x 

(ThermoFisherScientific); GlutaMAX Supplement, 100x (ThermoFisherScientific); 3 

µM GSK-3 inhibitor CHIR99021 (Sigma Aldrich, Munich, Germany); 1 µM MEK 

inhibitor PD0325901 (Sigma Aldrich); insulin solution, human (Sigma Aldrich), 1000 

U/mL recombinant mouse LIF (expressed in-house). Unless otherwise stated, cell 

culture media was replaced daily. 

 

BLM inhibition using ML216  
BLM inhibition was performed using 25 µM ML216 (Sigma Aldrich) in 2i/LIF 

media on inactivated feeders. Killing curves for ML216 was performed using the 

WST-1 assay (Roche, Basel, Switzerland) according to the manufacturer’s 

instructions. 

 

Plasmid construction  
The pMK11 plasmid was constructed by blunt-end ligation of the pRMCE-DV1 

plasmid’s backbone, after excision of its chloramphenicol–ccdB cassette between 

the EcoRV and SbfI sites, and replacing it with the HindIII-excised hygromycin 

phosphotransferase-thymidine kinase cassette (HyTK) from the RV-L3-HyTK-2L 

plasmid (43) (Plasmid # 11684, Addgene, Cambridge, USA). The final pMK11 

construct contained flanking FRT wt and FRT mutant sites for recombinase-

mediated cassette exchange detailed below. 

 

Generation of HyTK-EGFP-Neo cell line  
G4 ROSALUC B12 ES cells (37) were co-transfected with pMK11 described 

above and FLP mRNA (StemMACS Flp Recombinase, Miltenyi Biotec, Bergisch 

Gladbach, Germany) or pCAG-Flpo (44) (Plasmid # 60662, Addgene) using 

Lipofectamine 2000 (ThermoFisherScientific). We replaced the cassette at the 

GtRosa26 locus with a cassette carrying two selectable markers, HyTK and 

enhanced green fluorescent protein (EGFP, selectable in fluorescence-assisted cell 

sorting; Fig. S1). Successful replacement of the cassette with a re-activated 

neomycin resistance gene was selected for with 200 µg/mL geneticin (G148; 

ThermoFisherScientific). Resistant colonies were picked after 7 days (d) of selection 

and further expanded. Correct replacement was confirmed by junction PCR with 

primers SA_loxP_Rev: 5’–GCGGCCTCGACTCTACGATA–3’ and 
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ROSA26_3HA_F_BamHI: 5’–GCGGGATCCCCTCGTGATCTGCAACTCC–3’. The 

presence of an intact BL6 wildtype allele was confirmed by an alternative reverse 

primer oIMR8545 5’–AAAGTCGCTCTGAGTTGTTA–3’. PCR was performed as a 

quantitative PCR reaction. See “RNA Extraction, Reverse Transcription and “Real 

Time PCR” section below for more details. 

 
Colony Survival Assay  

HyTK-EGFP-Neo cells were seeded at a density of 5×105 per 10 cm AF/feeder 

plate. Eight hours (h) following the plating, 25 µM ML216 treatment was initiated and 

continued for 1 or 5 d. Prior to the start of negative selection, cells were re-plated at 
2×105 per 10 cm AF/feeder plate and FIAU (0.2 µM, Sigma Aldrich) or ganciclovir 
(10 µM, Sigma Aldrich) selection was initiated after 1d and continued for 5d. 

In order to determine the plating efficiency after ML216 treatment, cells were 

plated at 1×103 per 6 cm AF/feeder dish. Colonies were stained with the Alkaline 

phosphatase kit (EMD Millipore, Billerica, MA, USA). Before the application of 

negative selection, 20 random views of each plate were taken using an EVOS FL 

Cell Imaging System (ThermoFisherScientific) and counted using Fiji v2.0.0-rc-

54/1.51h (45). 

 
Screening for spontaneous recombinant ES cell colonies  

Cells were plated at a density of 1×105 per 3.5 cm AF plate. Treatment with 5 

µM ML216 was initiated 16 h after plating, continued for 2d and then followed by 3d 

of 25 µM ML216 treatment. Cells were then re-plated on a 10 cm AF plate and 

cultured for 5d in 2i/LIF without ML216. One hundred and eighty-nine colonies were 

randomly picked and 153 were expanded for multiplexed genotyping. 

 

Multiplexed genotyping for detection of loss-of-heterozygosity (LOH) 
Diagnostic insertions or deletions (indels) between BL6, CAST and SPRET 

strains that are greater than 20bp in length and located within the most distal 10Mbp 

of each chromosome were filtered from the publicly available variant panel from the 

Mouse Genomes Project made available by the Wellcome Trust Sanger Centre (v5 

dbSNP v142 release) (23, 24) using VCFtools v0.1.14 (46). Automated primer 

design was carried out with Primer3 v.1.1.3 using the following parameters: 
PRIMER_OPT_SIZE=20; PRIMER_MIN_SIZE=18; PRIMER_PRODUCT_OPT_SIZE=300; 



	  

	   142 

PRIMER_PRODUCT_SIZE_RANGE=250-400;  

PRIMER_MAX_SIZE=23; PRIMER_NUM_NS_ACCEPTED=1; 

PRIMER_LEFT_MIN_TM=58 PRIMER_LEFT_MAX_TM=62; 

PRIMER_RIGHT_MIN_TM=58; PRIMER_RIGHT_MAX_TM=62; 

PRIMER_MAX_DIFF_TM=2; PRIMER_MIN_GC=45.0; PRIMER_MAX_GC=85.0; 

PRIMER_MAX_POLY_X=3; PRIMER_SELF_ANY=4. Among indels with successfully 

designed primer pairs, the most telomeric amplicons were chosen and an extension 

was added to either the forward (M13F) or reverse (M13R-46) oligonucleotide to 

allow for easy fluorophore incorporation as described (38). The amplicon sizes were 

further optimized following pilot capillary sequencer runs to avoid amplicon size 

overlap in a multiplexed run. All primers and expected fragment sizes are listed in 

Table S1.  

For genotyping of cell colonies, primers pairs were pooled into 4 multiplexed 

PCR reactions. Group 1 (Chr1, Chr7, Chr13, Chr14 and Chr18) and Group 2 (Chr3, 

Chr6, Chr16, Chr17 and Chr19) primer mixes contained 2 and 4 µM of forward and 

reverse primers, respectively, for each listed chromosome plus 20 µM of the 

universal FAM-labeled M13F_FAM primer. Chromosomes 13 and 17 primers were 

mixed at 6 and 12 µM concentration. For Group 3 (Chr2, Chr4, Chr5, Chr11, ChrX) 

and Group 4 (Chr8, Chr9, Chr10, Chr12, Chr15) mixes, the forward and reverse 

primers were mixed at 4 and 2 µM concentration, along with the HEX-labelled M13R-

46_HEX primer at a concentration of 20 µM. QIAGEN Multiplex PCR Plus Kit 

(Qiagen, Hilden, Germany) was used according to manufacturer’s recommendations 

(including the addition of 5× Q-Solution) at 10 µL final reaction volume with 3 to 10 

ng of DNA per PCR reaction. The PCR program used was: 95°C for 15 min, then 52 

cycles of 94°C for 30 s; Group-specific annealing temperature for 2.5 min; and 72 ºC 

for 1 min; followed by a final extension at 72°C for 30 min and hold at 4 ºC. The 

group-specific annealing temperatures were: Group 1: 63°C; Group 2: 63.8°C; Group 

3: 57°C; and Group 4: 64°C. Then the PCR reactions were pooled at equal 1 µL 

proportions and analyzed with a 3730xl DNA Analyzer capillary sequencer 

(ThermoFisher Scientific, Germany) using the fragment analysis program with the 

G5-RCT Dye Set. Electropherogram traces were analyzed with the Microsatellite 

Plugin in Geneious v7.1.9 (47). 

 

 



	  

	   143 

6-TG treatment and DAPI exclusion assay  
Prior to the main experiments, killing curves for 6-tioguanine (Sigma Aldrich) 

was performed using WST-1 assay (Roche) according to the manufacturer’s 

instructions (Fig. S5). For the main experiments, S18 ES cell line was cultured for 5, 

10 or 21d with 25 µM ML216 prior the treatment with 25 µM 6-TG in 2i/LIF starting 

from an initial seeding concentration of 1×105 cell per 3.5 cm AF plate. To avoid 

overcrowding, at day 3 of the ML216 treatment colonies were dissociated using 

Accutase Cell Dissociation Reagent (ThermoFisherScientific) and re-seeded on a 10 

cm AF-plate. At day 5, the cells were moved to a 15 cm AF plate prior to 6-TG 

treatment. After 16 h, 6-TG in 2i/LIF was added at a concentration of 25 µM. From 

each plate 2.5×104 cells were used to continue the experiment until day 10 or 21. 

4’,6-diamidino-2-phenylindole (DAPI) staining (1 µg/mL, Sigma Aldrich) was 

employed for “live/dead” cell viability determination after 1d of 25 µM 6-TG 

treatment. Briefly, ES cells were treated with ML216 and/or 6-TG to induce IVR and 

cell death, respectively. Colonies were dissociated using Accutase and re-

suspended in phosphate buffered saline (PBS) within 1 h of analytical or preparative 

fluorescence-activated cell sorting (FACS). For details on FACS see below. 

 

Fluorescence-Activated Cell Sorting (FACS) 
Flow cytometry was performed at the University Clinic Tübingen Dermatology 

Clinic FACS Core Facility using an Aria II Cell Sorter (Becton Dickinson GmbH, 

Heidelberg, Germany). To determine cell viability, we performed the DAPI exclusion 

assay. After excluding cell aggregates, we defined the 6-TGR and 6-TGS populations 

using conservative interval gates based on evaluating the data from reference flow 

experiments with 6-TG-treated DAPI-stained ES cells. For cell population 

evaluations, flow cytometry data was exported from BD FACSDiva Software v8.0.1 

(Becton Dickinson). We carried out basic data handling and log10 transformation 

using the R Bioconductor package flowCore (39). Since live and dead cells cluster 

also in other measurements, we took both forward scatter area (FSC-A) and DAPI 

into account for our quantification, rather than using a simple interval gate on the 

DAPI/Pacific Blue-A channel. We defined data-driven “Live” and “Dead” clusters 

using mclust v5.2 (40, 41) in 6-TG-treated experiments, considering ML216-treated 

and controls separately. We then classified each cell in to the “Live” and “Dead” 

clusters, applying a 5% uncertainty cut-off. “Live” and “Dead” proportions were then 
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calculated from the confidently assigned cells. Data was visualized using the 

package flowViz (48) (Fig. S5). 

 
RNA Extraction, Reverse Transcription, and Real Time PCR  

RNA was isolated using TRIzol Reagent (ThermoFisherScientific) with a single-

step method following (49). Complementary DNA (cDNA) was generated using High-

Capacity cDNA Reverse transcription kit (ThermoFisherScientific) with 500 ng of 

RNA per reaction according to the manufacturer’s instructions. The newly 

synthesized cDNA (20 µl reaction) was diluted 5-fold and quantitative PCR (qPCR) 

was performed with SYBR-select Master Mix for CFX (ThermoFisherScientific) using 

a CFX384 Real-Time PCR system instrument (BioRad, Munich, Germany). We used 

the following primers for allele-specific amplification and detection:  

Hprta (SPRET) forward: 5’–CAAAGCCTAAGAGCATGAGCGC–3’,  

reverse: 5’–CAGAGGGAACTGATAGGCTGGC–3’, amplicon size: 229bp;  

Hprtb (BL6) forward: 5’–GCCAAATACAAAGCCTAAGATGAGCG–3’,  

reverse: 5’–CCAGCCTACCCTCTGGTAGATTG–3’, amplicon size: 236bp. The 

standard CFX mode for Tm ≥ 60°C was used, with the following thermocycling 

program: 50ºC for 2 min, 95ºC for 2 min, followed by 35 cycles of 95ºC for 15 s, 60ºC 

for 1 min. Melting curve analysis over 80 steps of 0.5ºC increments was performed 

and curves inspected to ensure uniform annealing. 

 

Immunofluorescence staining  
ES cells were cultured for 3d on 12 mm cover glasses pre-coated with AF and 

feeder layer. Cells where then fixed 10 min in 4% paraformaldehyde, permeabilized 

10 min in 0.25% Triton X, blocked in 5% serum for 1 h at room temperature. ES cell 

colonies were stained with anti-Nanog (1:100, rabbit, Cat # ab80892, Abcam, 

Cambridge, UK) antibodies for 2 h at room temperature and conjugated secondary 

antibody (1:400, anti-rabbit Alexa 467) for 1 h at room temperature. Nuclei were 

counter-stained for 5 min with DAPI at 1 µg/mL, mounted with ProLong Diamond 

Antifade Mountant (ThermoFisherScientific) and imaged using an AXIOVERT 200M 

inverted microscope (Zeiss, Oberkochen, Germany)  
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Karyotyping  
Metaphase spreads were prepared from Control and ML216-treated ES cells 

under 2i conditions (5d culture for treatment on the original S18 background, 2d for 

the IVR lines 1 and 2; see Cell Culture above for detailed description of culturing 

conditions). Metaphase spreads were prepared essentially as described in (50) with 

the following modifications. Cells were initially plated at a density of 2×105 cells per 

10 cm AF-coated culture dish. Spreads were mounted with ProLong Diamond 

Antifade Mountant (ThermoFisherScientific). Metaphase chromosomes were imaged 

with a 63x objective in a Zeiss APOTOME AXIO Imager.Z1 (Zeiss) equipped with an 

Orca-flash4.0 digital camera (C11440-22CU, Hamamatsu, Herrsching am 

Ammersee, Germany) and coupled to HCImage v4.3.5.8 image acquisition software. 

Chromosomes were anonymized and independently counted twice manually in Fiji 

v2.0.0-rc-54/1.51h using the multi-point tool. 

 

Sequencing and analysis pipeline  
Sequencing libraries for high-throughput sequencing were generated using 

Nextera DNA Library Prep Kit (Illumina, Inc., San Diego, USA) according to 

manufacturer’s recommendations or using equivalent Tn5 transposase expressed in-

house as previously described (42). Briefly, genomic DNA was extracted from FACS-

sorted clones, single colonies or pooled samples by standard Protease K digestion 

(New England Biolabs GmbH, Frankfurt am Main, Germany) followed by AmpureXP 

bead (Beckman Coulter GmbH, Krefeld, Germany) purification. Extracted high-

molecular weight DNA was “tagmented” by commercial or purified Tn5-transposase. 

Each tagmented DNA sample was then PCR amplified with Q5 High-Fidelity DNA 

Polymerase (New England Biolabs) using barcoded i7-index primer (N701-N763) 

and the N501 i5-index primer. Pooled libraries were sequenced by a HiSeq 3000 

(Illumina) at the Genome Core Facility at the MPI Tübingen Campus. Sequenced 

data were processed using a custom pipeline consisting of data clean-up, mapping, 

base-calling and analysis based upon fastQC v0.10.1 (51); trimmomatic v0.33 (52); 

bwa v0.7.10-r789 (53); GATK v3.4-0-gf196186 modules MarkDuplicates and 

IndelRealignment (54, 55); samtools v1.2 (56, 57); bcftools v1.2 (58); and R v 3.2.0 

(59). Genotype calls were performed against known informative single and multiple 

nucleotide variants between C57BL/6NJ, CAST/EiJ and SPRET/EiJ strains made 

available by the Wellcome Trust Sanger Centre (Mouse Genomes Project version 3 
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dbSNP v137 release) (25). Coverage depths for the reference and alternative alleles 

were calculated based on the DP4 field in the variant VCF files. For flow mapping, 

each pool was sequenced to an average of 9.8x coverage of the mouse genome, 

corresponding to an average of 100272 ± 32692 read-depth over informative SNPs 

in each of 1 Mbp bin, our analytical unit for flow mapping. For individual clones, each 

clone were sequenced to an average of 0.95x, yielding on average 1841 ± 1159 

reads per 1 Mbp bin. Crossover breakpoints were called by TIGER (60), using 

default parameters. Custom Perl scripts were used to process files prior to plotting 

and visualization in R. Scripts have been deposited in the following repository: 

https://github.com/evolgenomics/HybridMiX. 

 
Statistical analysis  

Chromosome loci affecting 6-TG susceptibility were evaluated using the 

following statistical methods: smoothing function, window-based analyses. For the 

smoothing function, we first calculated the raw SPRET excess using the following 

formula: (SPRET – BL6) / (SPRET + BL6) fraction in each adjacent megabase 

window. Then in cases with two contrasting 6-TGR and 6-TGS pools (5d and 21d 

ML216 treatments), a differential SPRET excess was calculated by subtraction (6-

TGS – 6-TGR). Otherwise the raw SPRET excess for the sole pool (6-TGR after 10d 

ML216 treatment) was reported. Then a LOESS smoothing function with 10% span 

was applied along the chromosome to obtain both the fit and standard error of the 

estimates. We then reported the regions in the genome with a LOESS fit that is 

greater than 1 s.e.m. away from 0 as coloured bars in Fig. 3C (a 0 indicates no bias 

for either SPRET or BL6 reads). Between the 5d and 21d ML216 treatments we 

found only such bias on ChrX, with one of the common region overlapping Hprt (5d: 

49–60 Mbp; 10d: 42–169 Mbp; 21d: 24–81 Mbp) and additional telomeric regions 

(Fig. 3C). For the window-based analysis, we broke each one megabase window 

into up to a hundred 10 kbp bins and estimated the SPRET bias. We separately 

obtained a genome-wide outlier threshold at P ≤ 0.05 (after applying Bonferroni 

correction). Any window lying greater than 1 s.e.m. beyond the threshold are 

considered genome-wide significant (Fig. S6A). All but one outlier windows in any 

treatment are found on ChrX, with the main cluster falling in the same region 

containing Hprt. Both methods converge towards the same area on ChrX, indicating 

the known role of Hprt in mediating 6-TG susceptibility. 
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Laser-assisted morula injection  
ES cell-derived embryos were obtained essentially as previously described in 

(27). Briefly, female C57BL/6NCrl mice were mated and host embryos harvested. ES 

cells from untreated S18 line and two IVR lines were injected into 8-cell stage 

embryos (morulae) after perforation of the zona pellucida with a laser pulse. The 

introduction of excess ES cells were expected to produce embryos with fully ES cell 

contributions. This was confirmed using coat-colour analysis from previous injections 

performed under R.N. After incubation for 1.5–2 h, injected embryos were 

transferred into the oviducts of E0.5 pseudo-pregnant CD1-ICR female foster mice. 

The host mice were monitored for recovery and development. At 14d after the 

embryo transfer (approximating developmental stage E14.5), the gestation was 

terminated and embryos were individually dissected, fixed with 4% 

paraformaldehyde for 45 min and stored in PBS. All manipulations were performed 

by R.N. or under R.N.’s supervision at the Transgenic Core Facility at the Max 

Planck Institute of Cell Biology and Genetics, Dresden, Germany. Due to sample 

preparation and fixation, genotyping of microCT-scanned embryos were not 

performed. Instead, control (unscanned) embryos were dissociated and genotyped 

at diagnostic loci using Taqman probes designed to specifically anneal to allele-

specific polymorphisms on Chr14 and ChrX (Fig. S7 and Table S1). Quantitative 

real-time PCR was performed on C1000 Touch Thermal Cycler (Bio-Rad) with 

TaqMan Universal Master Mix II, with UNG (Life Technologies), 20 ng template DNA 

and 1x PrimeTime qPCR Assay. Genomic DNA controls from SPRET and BL6 mice 

were used in mixed pool of known proportions. At this point we cannot formally rule 

out that ES cell contributions to the embryo proper can be incomplete due to reasons 

related to lower ES cell viability (e.g., genetic incompatibilities) compared to typical 

results from morulae injections involving only laboratory strains (27).   

 

Micro computer-tomography (microCT)  
Prior to scanning, embryos were perfused for 4d in 25% Lugol’s, or iodine 

potassium iodide solution. Contrast-stained embryos were rehydrated and mounted 

in 1% low-melting agarose and scanned with a Skyscan 1173 instrument (Control 

software version 1.6, Build 15; Bruker Corporation, Billerica, MA, USA) at 9.96 

micron (µm) resolution using a 0.5 mm aluminium filter with energy settings at 70 kV 

and 110 µA. Volume reconstructions were performed using NRecon v.1.6.10.4 
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(Bruker Corporation) using parameters determined based on fine-tuning for each 

scan (misalignment correction: 23–30; beam-hardening correction: 25%; ring-artifact 

correction: 10; no smoothing). Image analysis, segmentation and visualizations were 

performed using Amira v6.2.0 (FEI, Hillsboro, OR, USA) with the XImagePAQ 

extension 6.2. 
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3.2.13 Supplementary Figures: 
 

 

 

 

 

 
 
 
Fig. S1.  Site-specific integration of a versatile selection reporter cassette into 
the G4 ROSALUC ES cell line. Utilizing the recombination-mediated cassette 

exchange (RMCE) technique, the targeting vector was inserted by a Flp-

recombinase into the ROSALUC allele as previously described (37).  The vector 

introduced the hygromycin phosphotransferase-thymidine kinase (HyTK) fusion 

selectable marker, the enhanced green fluorescent protein (EGFP) and the 

phosphoglycerate kinase 1 (PGK) promoter, thus restoring the expression of the 

latent neomycin resistance gene upon the successful integration of the vector into 

the ROSALUC allele.  Figure modified from (37). 
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Fig. S2.  Normal karyotypes were maintained under culturing and IVR 
treatment.  (A) Representative metaphase spreads from S18 line under control and 

ML216 treatment show normal karyotype of 2n = 40.  (B) After confirmed IVR 

treatment, selected lines 1 and 2 were chosen for re-derivation.  The karyotypes of 

both lines are also normal with high levels of euploidy.  Whole embryos derived from 

laser-assisted morulae injection results showed that the S18 line, and IVR lines 1 

and 2 are broadly competent to differentiate into diverse cell lineages (Fig. 4, S7 & 

S8). 
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Fig. S3.  ML216 treatment is compatible with ES cell culturing.  (A) 

Determination of cell survival under culturing with varying ML216 concentrations.  It 

should be noted that rather than a selection treatment or kill curve, here our interest 

is to determine the highest concentration that is compatible with good survival.  

Based on the results 25 µM (grey, n.s.) was chosen. (B) To determine if ML216 

treatment affect ES cell colony viability and maintenance of stemness, we cultured 

ES cells strains G4 Rosaluc [(BL6 x 129S) F1] and S18 [(BL6 x SPRET) F1] under 

control 2i/LIF and 25 µM ML216 plus 2i/LIF conditions for 3 days.  Both control and 

ML216 treated colonies showed good colony morphology, cell density and robust 

stem cell marker NANOG expression in both ES cell lines.   We concluded that 

ML216 induction of in vitro recombination is compatible with ES cell culturing across 

considerable evolutionary divergence. Scale bar = 200 µm.  
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Fig. S4.  Multiplexed PCR genotyping screen for spontaneous recombinants.  
Hybrid ES cells [(BL6 x CAST) F1 hybrid line “E14”] were treated with ML216 and 

screened by multiplexed PCR genotyping at diagnostic markers within the last 

10Mbp of each autosome chromosome (see Methods & Table S1).  Amplified 

fragment sizes were determined using a capillary sequencer.  The markers were 

designed such that they show staggered fragment sizes, allowing clear identification 

using fragment analysis software.  Shown above are the electropherogram traces 

corresponding to the clones shown in Fig. 2, out of 46 total clones.  The blue (FAM) 

and green (HEX) channels are shown separately for each sample, adjusted 

according to size standards (LIZ, orange, in basepairs.  Fluorescence levels are 

shown on arbitrary units on the Y-axis).  Genotype calls corresponding to BL6 (solid 

circles) and CAST or SPRET (open circles) alleles for each chromosome are shown 

underneath the called peaks (markers were designed for both outgroups.  Only E14 

analyses are included in this study).  Missing genotypes indicative of recombination 

or LOH events are indicated in red.  Chromosome 14 calls were removed due to 
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invariant calls in all samples, including untreated F1 hybrid cells.  This approach 

allowed us to rapidly screen through many colonies to detect possible recombinants.  

Notably, whole genome sequencing results suggested that in addition to the typical 

recombination events recovered by this multiplexed fragment analysis, further 

recombination events may occur elsewhere in the genome.  

 

 

 

 
Fig. S5.  Optimal 6-TG concentration for differential Hprt-dependent 
cytotoxicity.  (Left) Concentration for 6-TG treatment was determined by treating 

ES cells with concentrations ranging from 1.5 to 200 µM.  Cell survival were 

determined by a colorimetric WST-1 absorbance assay.  ES cells carrying different 

Hprt-a, -b or null alleles on various genetic backgrounds were assayed in duplicates 

over 24, 48 or 72 hours (Hprta/b on (BL6 x SPRET)F1 S18 background: red; Hprtb/b 

on R1/E 129X1/129S1 background: blue; and Hprt-/- on AB2.2 129S5 background: 

grey).  Absorbance values were normalized against control treatment of no 6-TG 

after subtracting blank measurements.  We chose 25 µM 6-TG treatment for 

subsequent experiments for the strong survival difference between cells carrying 

Hprta and those carrying Hprtb or null genotypes after 48 h.  To ensure genome 
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integrity for sequencing in flow mapping, we performed FACS already after 24 h of 

25 µM 6-TG treatment together with a more sensitive DAPI exclusion cell viability 

assay.  Plotted values are normalized mean between replicates ± s.d. 

(Right) S18 cells under various treatments were analyzed by flow cytometry to 

determine if ML216 (25 µM) treatment induces cell death.  Under ML216 treatment 

alone, cells show robust viability (second column).  Only after 1 d 6-TG (25 µM) 

treatment do the cells exhibit greatly increased cell death, as shown by the increased 

proportion of the “Dead” population (third column; red).  Notably, combined ML216 

and 6-TG treatment appears to mitigate cell damage and death, as indicated by the 

increased proportion of the “Live” population (third vs. fourth column; blue). 
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Fig. S6. Flow mapping localization of SPRET bias signal to a region on ChrX 
overlapping Hprt. (A) Raw sequencing read counts matching the BL6 (reference) or 

SPRET alleles from 6-TGS and 6-TGR pools were binned into 10 kbp windows and 

the fraction of SPRET bias was calculated as the difference between SPRET and 

BL6 read counts out of the total in each window, which are themselves grouped into 

1 Mbp windows. For the 5d and 21d ML216 treatments, we plotted the differential 

SPRET bias between the two pools (6-TGS – 6-TGR). For the 10 d ML216 treatment 

we plotted the raw SPRET bias since only one 6-TGR pool was present. In both 

cases the SPRET bias estimates are represented by dots and lines showing ± 1 

s.e.m. The dots and lines are coloured according to treatment (5d ML216: brown; 

21d ML216: red; 10d ML216: light blue;) if they are significantly different from 0 as 

detailed below. Coloured dashed lines at around 0 show that the genome-wide 

average estimate in each treatment lie very close to no deviations between the 6-

TGS, and the 6-TGR pools (and from the original 1:1 contribution in each pool in the 

5d and 21d treatments, plots omitted for clarity). The outer dash lines indicate the 

critical values at P ≤ 0.05 (after applying the Bonferroni correction for multiple 

testing) given the observed genome-wide distribution of (differential) SPRET bias 

within the sample.  Note also that the data from the telomeric end of Chr14 were 

excluded (grey shading) due to consistent loss of the chromosome end and 

conversion towards SPRET genotypes in the S18 line regardless of ML216 or 6-TG 

treatment.  
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Both the 5d ML216 and the 21d ML216 pools show generally a very tight distribution 

on autosomes around 0.  At significant outlier windows, shading on the excess side 

(SPRET or BL6) highlight the region, with the shading extended if nearby windows 

are also significant. Across all autosomes, there is a single outlier window on Chr4: 

40Mbp in the 5d ML216 sample that is not matched by the other time points.  

However, on ChrX, there were many significant outlier windows, mostly in the 21d 

ML216 sample but also a few from the 5d ML216 treatment, with the main area of 

overlap around Hprt (53 Mbp, grey vertical line with arrowhead) from approximately 

48 Mbp to 68 Mbp, in the direction of expected Hprta increase activity (SPRET bias). 

In the 5d ML216 treatment the skew was less evident compared to the LOESS 

method shown in Fig. 3, due to the more conservative thresholds after correcting for 

multiple testing. Here, a single window near (but not overlapping) Hprt at 62 Mbp 

was significantly skewed in the SPRET direction and showed a frequency estimate 

consistent with its neighbouring windows, unlike the other more centromeric windows 

with significant skews. The significant window at 62Mbp falls within the common 

region across treatments. Due to the small sample size in the 10d ML216 (46 6-TGR 

clones) which can cause greater fluctuations in allele frequencies, we observed no 

outlier windows. However, from ChrX: 45Mbp onwards the frequency plateaus 

towards BL6 bias (blue shading). The combined area overlaps Hprt.  

(B) Individual 6-TGR clones following 10 d ML216 treatment were sequenced to 

determine recombination breakpoints.  Crossovers of the indicated directions as in 

Fig. 3C are shown here to allow matching with raw data. At Hprt, most 6-TG 

surviving clones are homozygous for the Hprtb allele (27 vs. 9 heterozygotes and 10 

Hprta homozygotes).   
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Fig. S7.  Genome-wide genotype of the two S18 IVR ES cell lines selected for 
embryo re-derivation.  High-confidence genotypes of each line for each 

chromosome are plotted as heterozygous (yellow) and the two BL6/BL6 (blue) and 

SPRET/SPRET (red) homozygous genotypes.   Low-coverage or repetitive regions 

were considered ambiguous (grey).  Both lines 1 and 2 showed substantial 

proportion of the genome carrying heterozygous genotypes, reflecting their F1 hybrid 

origin.  Because these lines were obtained through 6-TG selection, much of the 

observed recombinant genotypes belong to Chromosome X. In addition, we have 

observed chromosome instability at the distal end of Chromosome 14 (also see Fig. 

S4).  In addition, there are major genotypic differences between IVR lines 1 and 2 on 

chromosomes 6, 16 and 18, as well as X.  Such recombinant genotype would be 

difficult, if not impossible to obtain under conventional breeding.  These results 

illustrate the potential of applying IVR at expanded scale to investigate the genetic 

basis of species divergence. 
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Fig. S8.  Whole embryos derived from F1 hybrid S18 non-recombinant and IVR 
ES cells.  (Top) Embryos with almost exclusively ES cell contribution could be 

generated in the founder generation via laser-assisted morula injection.  This allowed 

phenotyping of organismal traits by circumvention of hybrid sterility.  Embryos were 

dissected in mid-gestation stage (approximately 14.5 days post-coitus, or embryonic 

E14.5), contrast-stained and scanned using X-ray micro-computer tomography 

(microCT) at 9.4 micron (µm) resolution.  The use of contrast staining allowed 

identification and precise measurements of individual organs (colorized here for 

clarity).  Embryos from non-recombinant S18 ES cells (left column) and two IVR ES 

cell lines were examined (columns 2–3 and 4–5 respectively).  Representative 

individuals displaying normal and abnormal developmental phenotypes are shown as 

whole embryos with representative sagittal and coronal sections.  In contrast to non-

recombinant S18-derived embryos, multiple embryos from each IVR lines showed 

major craniofacial and neural tube closure defects.  Despite a small sample size, 

such occurrence was highly atypical.  Notably, defects in cell migration and cell–cell 

communication are consistent with hybrid incompatibilities.  Following speciation, 

divergent genotype combinations carried by the same individuals have not been 

subjected to selection for compatible functions.  Consequently, hybrid 

incompatibilities often result in developmental defects.  Derivation of embryos from 

panels of IVR ES cell lines may allow genetic dissection of developmental variation 

arising from evolutionary divergences.  (Bottom) Volume measurements from 

individual organs were obtained and their distributions shown here, after excluding 

embryos with defects.  There are no statistically significant differences between 

embryos derived from different ES cell lines.  With increased sample size certain 

organs, such as heart, lung and liver, may be good candidates to screen for 

consistent trait differences between lines. 
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3.2.14 Supplementary Tables:  
 
Table S1. Oligonucleotide primers for multiplexed genotyping of sub-telomeric 
markers. Each pair of primers carry an extension (underlined) to allow easy 

attachment of a third, universal fluorophore-conjugated primer for fragment analysis 

in a capillary sequencer as described in (10). 

 


