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Abstract Stability of a dynamic equilibrium in a predator-
prey system depends both on the type of functional response
and on the point of equilibrium on the response curve. Satu-
ration effects from Holling type II responses are known to
destabilise prey populations, while a type III (sigmoid) re-
sponse curve has been shown to provide stability at lower
levels of saturation. These effects have also been shown in
multi-trophic model systems. However, stability analyses of
observed equilibria in real complex ecosystems have as yet
not assumed non-linear functional responses. Here, we evalu-
ate the implications of saturation in observed balanced
material-flow structures, for system stability and sustainabili-
ty. We first make the effects of the non-linear functional re-
sponses on the interaction strengths in a food web transparent
by expressing the elements of Jacobian ‘community’matrices
for type II and III systems as simple functions of their linear
(type I) counterparts. We then determine the stability of the
systems and distinguish two critical saturation levels: (1) a
level where the system is just as stable as a type I system
and (2) a level above which the system cannot be stable unless
it is subsidised, separating a stable materially sustainable re-
gime from an unsustainable one. We explain the stabilising
and destabilising effects in terms of the feedbacks in the sys-
tems. The results shed light on the robustness of observed
patterns of interaction strengths in complex food webs and
suggest the implausibility of saturation playing a significant
role in the equilibrium dynamics of sustainable ecosystems.

Keywords Predator-prey networks . Stability . Functional
response . Interaction strength . Feedback loops .

Sustainability

Introduction

The functional response of a predator population is the change
in its feeding rate per unit predator density relative to the
change in the prey population density (Fig. 1). The type of
response is crucial to the dynamics of the predator-prey sys-
tem. If an increase in prey density does not lead to a corre-
sponding increase in the food uptake by the predator, the
predator will not be able to keep the prey population in check
(May 1973). Oaten and Murdoch (1975) elegantly show how
the stability of an equilibrium depends not only on the type of
functional response but also, in particular, on the point of
equilibrium on a functional response curve. They present a
criterion in terms of the maximum equilibrium density for
which a Holling III response (Holling 1959; Takahashi
1964) will be stabilising. The term stabilising here means that
an increase or decrease in the prey density leads to a greater
than proportionate increase or decrease in the rate of predation
per predator (Oaten and Murdoch 1975). In other words, there
will be a negative (corrective) feedback which is stronger than
that resulting from a linear functional response (type I), where
the change in predator uptake is proportional to the change in
prey population. The Holling II response (Holling 1959 and
1965) is always destabilising. The relative stability of systems
with type III versus II responses has been shown also for
complex multi-trophic systems, in synthetic food web models
(Oaten and Murdoch 1975; Gross et al. 2004, 2009; Williams
and Martinez 2004; Brose et al. 2006).

Although these functional responses are commonly used in
non-linear food-web models, local stability analyses (in the
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sense of May 1973) of observed equilibria in real multi-trophic
communities (de Ruiter et al. 1995; Rooney et al. 2006; Neutel
et al. 2007; Neutel and Thorne 2014) have as yet not assumed
underlying non-linear functional responses. The rationale for this
is that there is no empirical basis formore complex equations; the
observations do not provide the parameter values for non-linear
responses. Such local stability analyses have shown patterns in
the strengths of the interactions among the populations that are
crucial for system stability (de Ruiter et al. 1995; Neutel et al.
2007; Neutel and Thorne 2014; James et al. 2015), underpinning
the importance of the organisation of many weak and few strong
links in a community (Paine 1992; Polis 1994; McCann et al.
1998; Neutel et al. 2002) This raises the question how robust
such patterns obtained from observed equilibria in real ecosys-
tems are or to what extent the stability of these equilibria depends
on the linear type of functional response assumed.

In analogy with Oaten and Murdoch (1975), we
analysed how, for type II and III functional responses,
the level of saturation affects the stability of an equilibri-
um, comparing it to the stability with type I responses. We
did this for complex multi-trophic food webs. A more
general, abstract framework for the evaluation of un-
known functions and parameter values in multi-trophic
food webs has been offered by Gross and Feudel (2006).
Our aim was not to provide a new approach to this gen-
eral problem but to make the effects of simple non-linear
functional responses on the community matrix of ob-
served equilibria transparent and explain the conse-
quences for system stability by quantifying the feedbacks
in the system. We first expressed the values of the inter-
action strengths of community matrices with underlying
Holling II and III type functional responses in terms of
their type I counterparts. We then modelled stability using
observed equilibria in real ecosystems for which the
fluxes were known and found critical saturation levels
for stability and sustainability.

Methods

Model formulation

Let the dynamics of a population Xi (with X referring to its bio-
mass) of each population i=1…n in a food web be described by

dX i

dt
¼ riX i−miX i

þ
X n

h¼1
ehi f i X hð ÞX i−

X n

j¼1
f j X ið ÞX j−ciiX 2

i ; i

¼ 1…n ð1Þ
where fi(Xh) is the functional response in a consumer, ri andmi

are the intrinsic growth and loss rates (we assume net intrinsic
growth for basal species and ri=0 for non-basal species), cii is
a proportionality constant referring to intraspecific competi-
tion and ehi is the biomass conversion efficiency. All parame-
ters are defined positive. The Jacobian ‘community’ matrix, a
linearisation of the system around the non-trivial equilibrium
(where each species has a positive population density), is
specified by the partial derivatives of the above differential
equations evaluated at equilibrium (May 1973).

Linear functional response

In the case of linear functional responses (type I), Eq. (1)
becomes a Lotka-Volterra type equation with intraspecific
competition terms (see for example Pimm 1982):

dX i

dt
¼ riX i−miX i

þ
X n

h¼1
ehichiX hX i−

X n

j¼1
ci jX iX j−ciiX 2

i ; i

¼ 1…:n ð2Þ
where cij and chi are proportionality constants (dimension
per biomass per time). The elements of the community
matrix Α on row i are effects of predator j on prey i,
αij = − cijXi

∗, effects of prey h on consumer i, αih = ehic-

hiXi
*, and intraspecific effects αii=−ciiXi

∗ (since at equi-

librium, ri−mi þ ∑
n

h¼1
ehichiX h− ∑

n

j¼1
ci jX j−ciiX i ¼ 0 ).

Thus, the effects of a predator j on its prey i and vice versa
(the latter are partial derivatives of predator j’s growth equa-
tion with respect to the size of species i) are related to each

other (Pimm 1982) according to α ji ¼ ei jci jX *
j ¼ −ei j

X *
j

X *
i

*

αi j:

Assuming that the equilibrium biomass densities Xi
* and feed-

ing rates fj(Xi)* and the biomass conversion efficiency values eij
can be directly obtained from observation, such observational
values give us the off-diagonal elements of communitymatrixΑ:

αi j ¼ − f j X ið Þ* and α ji ¼ ei j
X *

j

X *
i

f j X ið Þ*: ð3Þ

Fig. 1 Schematic of the three common types of functional response,
Holling I, II and III
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Non-linear functional response

Now we replace the linear functional response by a non-
linear one, incorporating fj(Xi)=bijXi

g/(Di
g+Xi

g) in Eq. (1),
where bij is a proportionality constant, generally referred
to as search or attack rate (dimension per time), Di is the
prey population level where the predation rate per unit
predator is half its maximum value and g is a positive
integer indicating the type of response. We used the most
weak form of non-linear functional response where the
predator’s consumption rate on each prey type depends
only on that prey’s density and prey types cannot com-
pensate for each other. For g=1 and g=2, we have Holling
type II (Holling 1959, 1965) and Holling type III (Holling
1959; Takahashi 1964) functional responses, respectively.
Note that the non-linearity in the responses is limited to
the dependence on the prey, i.e. there is a linear numerical
response (dependence of growth and predation terms on
predator density). For the community matrix (Γ), this
means that the elements γij representing effects of preda-
tors j on prey i (partial derivatives with respect to predator
density) are predation rates relative to predator population
size in equilibrium, just as in the case of Lotka-Volterra-
type equations:

γi j ¼ −bi jX *
i
g
.

Dg
i þ X *

i
g� � ¼ − f j X ið Þ* ¼ αi j: ð4Þ

The effects of prey i on their predator j are partial deriva-
tives with respect to prey density:

γ ji ¼ gei jD
g
i bi jX

*
i
g−1

X *
j

.
Dg

i þ X *
i
g� �2

¼ −gei jDg
i X

*
j

.
X *

i Dg
i þ X *

i
g� �� �

γi j: ð5Þ

Mathematical analysis

In order to analyse the saturation levels at equilibrium, we
expressed the half saturation value in terms of the equilibrium
population size,Di

g=kX*i
g, rewriting the effects of predators j on

prey i, γi j ¼ − 1
kþ1 bi j and effects of prey i on their predator j,

γ ji ¼ gei j
bi jk X *

i
gð Þ2X*

j

X *
i kþ1ð Þ X*

i
gð Þð Þ2 ¼

k
kþ1ð Þ2

X*
j

X *
i
gei jbi j, whe re k i s

some positive number. Thus, the effects of prey i on their pred-

ator j are γ ji ¼ − k
kþ1

X*
j

X *
i
gei jγi j and in terms of their type I

counterparts, using Eq. (3),

γ ji ¼
k

k þ 1
gα ji: ð6Þ

The intraspecific effects (partial derivatives evaluated at
equilibrium) are

γii ¼ ri−mi þ ehi∑n
h¼1

bhiX *g

h

Dg
h þ X *g

h

� � −∑n
j¼1

gbi jDiX *g−1

i X *
j

Dg
i þ X *

g

i

� �2 −2ciiX *
i ; i ¼ 1…:n:

ð7Þ

In equilibrium, the population sizes do not change; there-
fore, Eq. (1) is set to zero:

ri−mi þ ehi∑n
h¼1

bhiX
g
h

Dg
h þ X g

h

� � −∑n
j¼1

bi jX
g−1
i X j

Dg
i þ X g

ið Þ −ciiX i ¼ 0; i ¼ 1…:n ð8Þ

Subtracting the left-hand side of Eq. (8) from Eq. (7), this
can be reduced to

γii ¼ −
Xn

j¼1

gbi jD
g
i X

*g−1

i X *
j

Dg
i þ X *g

i

� �2 þ
Xn

j¼1

bi jX *g−1

i X *
j

Dg
i þ X *g

i

� � −ciiX *
i ; i

¼ 1…:n

This can be rewritten in terms of the off-diagonal elements,
using Eqs. (4) and (5),

γii ¼ −
Xn

j¼1

1

ei j
γ ji−

Xn

j¼1

X *
j

X *
i

γi j−ciiX
*
i ; i ¼ 1…:n

and can be expressed in terms of the elements of Α

γii ¼ αii þ
X n

j¼1

1

ei j
α ji−

X n

j¼1

1

ei j
γ ji ¼ αii

þ
X n

j¼1

1

ei j

1−gð Þk þ 1

k þ 1
α ji; i ¼ 1…:n

ð9Þ
where j is a predator and i is its prey. Equation (9)
directly shows how the relation between the diagonal
elements resulting from assuming non-linear functional
responses and their type I counterparts depends directly
on the effect of non-linearity in the functional response
on the positive off-diagonals. If the linear and non-
linear functional responses result in the same positive
off-diagonals, non-linearity of the functional response
also has no effect on the diagonals and matrix Γ will
be the same as Α. Tables 1 and 2 present an overview
for type II (g=1) and III (g=2) community matrix ele-
ment values. They specify three levels of saturation,
k→0, in which case the system is fully saturated, at
the half-saturation value k=1, and k≫1, in which case
the system is very undersaturated.
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Intraspecific competition as a control parameter

We used the level of intraspecific competition as a con-
trol parameter, following Neutel et al. (2002). The ra-
tionale is as follows. For a given food web in equilib-
rium, with known biomass densities Xi

*, feeding rates
fj(Xi)* and biomass conversion-efficiency values eij, the
non-predatory loss rates are also known, since in equi-
librium total loss for each population equals total gain.
This total non-predatory loss rate consists of intrinsic
death and intraspecific competition: diXi

*=miXi
*+ciiXi

*2.
The amount of intraspecific competition may not be
known but it is contained within the energetic bound-
aries of the system 0≥ciiXi

*≥di. The level of intraspecif-
ic competition relative to the total non-predatory loss at

equilibrium was our control parameter s, s ¼ ciiX *
i

di
, where

0≤s≤1.
In our analyses, we determined for which values of s

the maximum real part of the eigenvalues was just be-
low zero, that is, we used s to make the system just

stable (Neutel et al. 2002). This critical value of intra-
specific competition was called s*. In the case of linear
functional responses, intraspecific competition directly
represents the diagonal elements αii=−ciiXi

*=−sdi. In
the case of non-linear functional responses, the interspe-
cific interactions also contribute to self-damping or self-
enhancing effects and add a value to the diagonal ele-
ments (see Eq. (9)). This means that we used the vari-
able s to compensate also for possible diagonal effects
caused by the non-linear functional responses.

Feedback metric

To analyse the effects of non-linear functional responses
on the stability of a community, we used the metricffiffiffiffiffiffi

ja3a2j3

q
proposed by Neutel and Thorne (2014), where

a2 and a3 are the coefficients of the characteristic poly-
nomial of the community matrix. In a matrix with zero
diagonal elements, the second coefficient, a2, represents

Table 1 Elements of community
matrix Γ assuming a Holling II-
type response

Holling II Elements of the Jacobian community matrix (i is prey and j is predator)

Negative interspecific
effects γij

Positive interspecific
effects γji

Intraspecific effects γii

In general αij k
kþ1α ji αii þ ∑

n

j¼1

1
e j

1
kþ1α ji

Saturated (k→0) ≈0
αii þ ∑

n

j¼1

1
e j
α ji

Half-saturated (k=1)
1
2α ji αii þ ∑

n

j¼1

1
2e j

α ji

Extremely undersaturated (k>>1) αji αii

Elements are expressed in terms of those of Α, assuming linear (type I) responses and conversion efficiency
values ej, and the undersaturation level k

Table 2 Elements of community matrix Γ assuming a Holling III-type response

Holling III Elements of the Jacobian community matrix (i is prey and j is predator)

Negative interspecific effects γij Positive interspecific effects γji Intraspecific effects γii
In general αij 2k

kþ1α ji αii þ ∑
n

j¼1

1
e j

1−k
kþ1α ji

Saturated (k→0) ≈0
αii þ ∑

n

j¼1

1
e j
α ji

Half-saturated (k=1) αji αii

Extremely undersaturated (k>>1) 2αji

αii− ∑
n

j¼1

1
e j
α ji

For legend, see Table 1
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the sum of all the two-link feedback loops (Levins
1974), resulting from the pairs of predator-prey interac-
tions, which are by definition negative: F2=∑γijγji. The
third coefficient, a3, represents the sum of all the three-
link loops, coming from the smallest omnivorous struc-
tures, each generating a positive and a counteracting
negative feedback loop: F3=∑(γijγjkγki+γikγkjγji), where
i is the bottom prey, j is the intermediate predator and k
is the omnivore. It has been shown for type I systems
that the sum of the positive and counteracting negative
loop in each three-link omnivorous structure is by def-
inition positive (Neutel and Thorne 2014),

Using Eq. (6), these feedbacks in type II and III systems
could be expressed in terms of the type I matrix elements:

a3
a2

¼
X

γi jγ jkγki þ γikγk jγ ji

� �
X

γi jγ ji

¼

X
αi jα jkαki þ gk

k þ 1
αikαk jα ji

� �
X

αi jα ji

: ð10Þ

Equation (10) shows that for higher levels of saturation
(small k), the negative three-link loops will be relatively weak
and hence net positive feedback will be relatively strong. This
relatively strong positive feedback can be expected to de-
crease stability. Note that the two-link loops and the positive
three-link loops contain one, and the negative three-link loops
contain two positive elements. Note also that for k=0, the
positive off-diagonal elements will be zero and there will be
no interspecific feedback, neither positive nor negative. In this
extreme case, the feedback metric has no meaning.

Results

Table 1 shows how for type II responses, saturation leads to
smaller positive off-diagonal interaction strength and adds pos-
itive (self-enhancing) diagonal effects. Only extreme
undersaturation (very large k) leads to community matrices sim-
ilar to type I. Table 2 shows how for type III responses, half-
saturation (k=1) results in the same matrix as that of type I
systems. Less saturation (k>1) will result in larger positive off-
diagonal interaction strength and will add negative (self-
damping) diagonal effects. More saturation (k<1) will result in
smaller positive off-diagonal interaction strength and adds pos-
itive (self-enhancing) diagonal effects, just as in type II systems.

We evaluated the effect of these non-linear functional re-
sponses on the stability of observed equilibria. For this analy-
sis, we used the food webs of terrestrial Antarctic ecosystems
described by Neutel and Thorne (2014), where, averaged over
time, material-flux observations showed a steady state. The

observed equilibrium biomass densities Xi
*, equilibrium feed-

ing rates fj(Xi)
*, and biomass conversion efficiency values

provided us with the type I Jacobian community matrix Α
(Neutel and Thorne 2014). In our stability calculations for
type II and III functional responses, we assumed for
simplicity’s sake that all species in a system had the same type
of functional response. As was evident from Tables 1 and 2,
very undersaturated type II systems had similar stability, and
the half-saturated type III system had the same stability as that
of the type I system. The material basis of the community
matrices allowed us to distinguish two different stability
zones: stable and sustainable (where the critical level of intra-
specific interaction s*≤1) and stable but not energetically fea-
sible unless subsidised (s*>1). Saturation (smaller values of
k) rapidly enhanced the critical level of intraspecific competi-
tion of communities in type II systems and did the same for
saturation levels beyond half-saturation (k<1) in type III
models (Fig. 2). For type II systems, even low levels of

Fig. 2 Local stability of an observed food web in equilibrium, assuming
non-linear functional responses of types II and III. The curve shows the
relation between undersaturation level (k) and critical level of
intraspecific competition (s*), where s* is the amount needed to make
the system just stable, that is, where the maximum real part of the
eigenvalues is just below zero (see BMethods^). The red dotted line
indicates s* of the system assuming a linear (type I) functional
response. In the green zone, the systems are stable and materially
sustainable; in the red zone, they are stable but materially unsustainable
given the equilibrium feeding rates, unless subsidy from outside the
system is assumed. The white zone below the curve is the unstable
zone, but note that the whole state space (the whole graph area) refers
to mathematically and physically feasible equilibria. The figure shows the
stability results for the Antarctic dry tundra ecosystem (Neutel and
Thorne 2014), but the tendencies are representative of other observed
complex food webs
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saturation already led to an unsustainable system. Figure 2
shows the results for the dry Antarctic tundra ecosystem,
which has a very low level of critical intraspecific compe-
tition with type I dynamics. Less stable food webs, with
higher levels of critical intraspecific competition in the type
I case, were found to result in much stronger saturation
effects from type II and III responses, that is, they led to
even higher levels of critical intraspecific competition, al-
ready at lower saturation levels (larger values of k).

We then separated the effects of non-linearity on the off-
diagonal patterns from those on the diagonal, by removing the
diagonal effects caused by type II or III functional responses
from the community matrices. The change in off-diagonal pat-
terns of interaction strengths caused by the non-linear functional
responses hardly affected stability (Fig. 3a). Higher levels of
saturation caused smaller positive interaction strengths

(Tables 1 and 2). Lower levels of saturation in type III systems
caused larger positive interaction strengths (Table 2). This af-
fected the negative two-link predator-prey feedbacks, but it
also impacted on the longer negative and positive feed-
backs, resulting in an increase or decrease in net positive
three-link feedback (see BMethods^). Figure 3b shows that
the impact of the changes in off-diagonal matrix elements
on stability (measured as the largest real part of the eigen-

values) could be quantified by the feedback metric

ffiffiffiffiffiffiffi
a3
a2

			 			3

r

(Neutel and Thorne 2014), where a3 and a2 are the total
three-link and two-link feedback in a system. The decrease
in stability with saturation turned into an increase at very
high levels of saturation, when the positive interaction
strengths became so small that there was effectively not
enough off-diagonal feedback left to destabilise the system

0
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.0
5

3
a3

a2

       '

Fig. 3 Local stability of the observed food web shown in Fig. 2,
with type II and III responses but with the diagonal effects of
non-linear functional responses removed. a Impact of k on s*,
showing a slightly destabilising effect (increase in s*) of satura-
tion (decrease in k). b Relation between the maximum real part of
the eigenvalues of the community matrices without diagonal ele-
ments (Γ0) and the strength of three-link and two-link feedback
loops in these matrices, with varied levels of k. We used
the feedback metric proposed by Neutel and Thorne (2014).
See BMethods^ for an explanation of this feedback metric.

The metrics were relative to the type I value, λ
0
d ¼ λd Γ 0ð Þ

λd A0ð Þ and

ffiffiffiffiffiffiffi
a3
a2

			 			3

r 0

¼

ffiffiffiffiffiffi
a3
a2

			 			3

r
Γ 0ð Þffiffiffiffiffiffi

a3
a2

			 			3

r
A0ð Þ

. The relation between stability and feedback

explains the destabilising effect of saturation shown in a. At very high
values of k (no saturation, bottom left of the curve), the systems are most
stable (low λd). Stability decreases with saturation up to the point where it
suddenly increases again (top right of the curve). As k→0, the effects of
prey on their predators become very small (Tables 1 and 2) and the
resulting feedback becomes too weak to destabilise the system (λd→0).
Note that at k=0 the feedback metric is not defined
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(Fig. 3b), so that, at full saturation, virtually no intraspecific
competition was needed to provide stability (Fig. 3a).

Since the large decline in stability with increasing satura-
tion shown in Fig. 2 could not have been caused by a change
in patterns of the interspecific interaction strengths (Fig. 3), we
concluded that it was effectively the change in the diagonal
elements which was responsible for the stability effects. In
Tables 1 and 2, the expressions for the intraspecific effects
quantify the self-damping or self-enhancing feedback caused
by non-linear functional responses, and hence, they directly
specified the destabilising or stabilising effects of type II and
III systems, compared to type I systems.

Discussion

By deriving Jacobian community matrices for predator-prey
systems with the weakest form of Holling type II and III func-
tional responses, we made the stabilising and destabilising
effects of these non-linear functional responses transparent.
We found that saturation has such a strong self-enhancing
effect on the populations and that communities at equilibrium,
in order to maintain their stability, need levels of intraspecific
competition far beyond the energetic constraints of the system.
We therefore conclude that, unless systems are highly
subsidised, that is, the populations receive their main energy
input from external sources, it is implausible that saturation
plays a significant role in multi-trophic equilibrium dynamics.

Implausibility of Holling-type saturation

Our type II and III models assumed only the weakest form of
saturation, that is, relative feeding rates of predators on a certain
prey only saturated with an increase of that prey type and were
not dependent on other, alternative prey. More common forms
of type II and III models, which assume that prey types in a
predator’s diet can compensate for each other, would have
caused different stability properties. However, dependence of a
predator-prey interaction on all prey in a predator’s diet leads to
addedweakmutualistic effects between prey populations (Gross
and Feudel 2006) and to saturation of a predator at even lower
densities of its specific prey (since feeding depends on the total
biomass of a predator’s prey). Both effects add to the positive
feedback in the system and can therefore be expected to result in
even higher levels of critical intraspecific competition.

The material basis of our models allowed us to evaluate the
consequences of saturation effects for the energetic feasibility
of multi-trophic equilibria. Our findings from observed equi-
libria suggest that saturation resulting from Holling II or III
functional responses is not likely to play a role in the kinds of
patterns of interaction strengths that we observe in nature,
since these responses result in unsustainable systems already
at relatively low saturation levels.

Other and more complex types of functional response have
been proposed (Ivlev 1961; Jassby and Platt 1976;
Beddington 1975; DeAngelis et al. 1975; Arditi and Ginzburg
1989), with consequences for stability. Even apparently simi-
lar curves can have very different stability results depending
on the level of saturation (Fussmann and Blasius 2005). Our
findings from Holling type II and III responses are in coher-
ence with evolutionary food web model analyses showing that
stable, diverse multi-trophic level patterns with many weak
and strong links as found in empirically based food web stud-
ies (Paine 1992; Polis 1994; de Ruiter et al. 1995) naturally
emerge from adapted Lotka-Volterra type or ratio-dependent
population-dynamical functions but not from common or
adapted Holling-type responses (Drossel et al. 2004).

Analysing the effects of non-linear functional responses
on stability

The destabilising effect of saturation resulting from Holling II
and III functional responses and the relative stability of type
III compared to type II systems are well known for multi-
trophic communities (Gross et al. 2004, 2009). We analytical-
ly derived community matrices for type II and III systems in
terms of type I matrix elements, separated the effects on sta-
bility resulting from the off-diagonal patterns from those
resulting from the diagonal elements, and explained these ef-
fects, using a recently proposed feedback metric (Neutel and
Thorne 2014). By doing this, we provided a mechanistic un-
derstanding of the consequences of non-linear functional re-
sponses for system stability.

The patterning of strong and weak interaction strengths in
the systems was found to be very robust, in the sense that
while saturation effects from type II and III responses led to
different off-diagonal interaction strengths than those resulting
from type I responses, these differences hardly affected sys-
tem stability. The off-diagonal effects on stability could be
understood from the change in negative three-link feedback
loops, resulting in a relatively strong net positive three-link
feedback. The robustness of the off-diagonal patterns sheds
light on the structural stability of food web models and em-
phasises the importance of model parameterisation in network
stability analyses (Neutel and Thorne 2014; Rohr et al. 2014).
It underpins the remarkable balance between positive and neg-
ative feedbacks resulting from the natural patterning of strong
andweak links inmulti-trophic equilibria, leading to only very
little intraspecific competition needed to stabilise a communi-
ty (Yodzis 1981; de Ruiter et al. 1995; Neutel et al. 2002;
Neutel and Thorne 2014; James et al. 2015).

Our stability results showed that in complex communities,
the destabilising effect of saturation is neither that the correc-
tive force of the predator population on the prey is diminished
(May 1973) nor is it the weakening of the longer neg-
ative feedbacks that has a significant effect. Saturation in type
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II systems (and more-than-half saturation in type III systems)
adds a positive term to the diagonal elements, which explains
the strong destabilising effect. This self-enhancing feedback
has to be compensated for by intraspecific competition, in or-
der to maintain stability.We found that saturation required very
high levels of compensatory intraspecific competition. Our re-
sults for complex multi-trophic systems mirrored recent find-
ings in small, single-interaction model systems parameterised
from experiments (Johnson and Amarasekare 2015).

Ecological relevance

We found two stable regimes: one that is sustainable and largely
undersaturated and one that is unsustainable (unless subsidised)
and has some level of saturation. This offers a newperspective on
the paradox of enrichment (Rosenzweig 1971): saturation causes
instability (Gross et al. 2004), unless it is accompanied by an
increase in intraspecific competition to a level that takes it beyond
the carrying capacity of the system, which is only possible if the
system is subsidised (enriched) with material from outside. Thus,
enrichment in our models was not forced upon the system as a
changed input parameter but was an emergent property of the
system’s equilibrium dynamics. Our results suggest that we
might find saturation playing a role in the steady state of natural
systems in circumstances where all non-predatory death is due to
intraspecific competition (there is no death through old age), with
a large input from allochtonous material. These circumstances
can be found in open, aquatic systems. Thus, the results hint at
observed shifts between oligotrophic and eutrophic conditions
(Gross et al. 2004; Scheffer and Carpenter 2003). On the other
hand, the levels of competition and subsidy required may be too
high for complex natural communities, and saturation has in fact
been found to lead to a relatively simple trophic structure
(Drossel et al. 2004). Nature’s complexity in general is hungry
and has to be in order to be stable.
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