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Abstract

Context Habitat fragmentation is increasing as a

result of anthropogenic activities, especially in urban

areas. Dispersal through fragmented habitats is key for

species to spread, persist in metapopulations and shift

range in response to climate change. However, high

habitat connectivity may also hasten the spread of

invasive species.

Objective To develop a model of spread in frag-

mented landscapes and apply it to the spread of an

invasive insect in urban woodland.

Methods We applied a patch-based model, based on

electric network theory, to model the current and

predicted future spread of oak processionary moth

(OPM: Thaumetopoea processionea) from its source

in west London. We compared the pattern of ‘effective

distance’ from the source (i.e. the patch ‘voltage’ in

the model) with the observed spread of the moth from

2006 to 2012.

Results We showed that ‘effective distance’ fitted

current spread of OPM. Patches varied considerably in

their ‘current’ and ‘power’ (metrics from the model),

which is an indication of their importance in the future

spread of OPM.

Conclusions Patches identified as ‘important’ are

potential ‘pinch points’ and regions of high ‘flow’,

where resources for detection and management will

be most cost-effectively deployed. However, data on

OPM dispersal and the distribution of oak trees

limited the strength of our conclusions, so should be

priorities for further data collection. This application

of electric network theory can be used to inform

landscape-scale conservation initiatives both to

reduce the spread of invasives and to facilitate

large-scale species’ range shifts in response to

climate change.

Keywords Spatial habitat networks � Patch-based

graph � Connectivity � Random walks � Electric
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Introduction

The study of networks, i.e. systems of interacting

components, is a rapidly increasing field of research

with wide applications across life, physical and social

sciences (Newman 2003). Within biology, networks

have been used to model many different types of

interactions from genes within cells, to species in

ecosystems and habitat patches in landscapes (Bas-

compte 2007). The term ‘ecological network’ has been

used to refer to the interactions between species (e.g.

in food webs), networks of suitable habitat patches or

protected areas (Lawton et al. 2010; Galpern et al.

2011), and the combination of the two: meta-networks

of interacting species in fragmented landscapes (Mas-

sol et al. 2011). Here, we consider the spatial network

of habitat patches linked by species dispersal.

Spatial networks representing landscape structure

have been widely studied to evaluate the effect of

habitat loss and fragmentation (Fortuna et al. 2006).

This has resulted in many new techniques for

modelling ecological processes on spatial networks,

in particular, measuring the connectivity of the

landscape. Improving connectivity across large re-

gions is widely seen as one of the most important

strategies for mitigating the effects of climate change

and maintaining biodiversity (Heller and Zavaleta

2009; Lawler et al. 2013). A well-connected landscape

facilitates meta-population dynamics (Hanski 1999),

improves gene flow (Garroway et al. 2008) and

facilitates range shifts (Nuñez et al. 2013). However,

well-connected landscapes can also accelerate the

establishment and spread of invasive species (Kineza-

ki et al. 2010), which are one of the major threats to

biodiversity (Mack and Simberloff 2000; Mooney and

Cleland 2001) and result in substantial economic costs

(Pimentel et al. 2005).

In this study, we specifically consider the spread of

the oak processionary moth (OPM), Thaumetopoea

processionea (Lepidoptera: Notodontidae), across ur-

ban green infrastructure in the United Kingdom. OPM

is a univoltine species found in many countries across

Europe (Groenen and Meurisse 2012) and is a major

defoliator of oak trees (Wagenhoff and Veit 2011).

The larvae live communally in nests and feed almost

exclusively on the leaves of oak trees (Quercus spp.)

(Forest Research 2014). An additional concern with

OPM is that its larvae have setae (hairs) containing an

urticating toxin (thaumetopoein) (Maier et al. 2003).

These hairs can be dispersed up to 500 m (Fenk et al.

2007) and can be harmful to humans and domestic

animals, causing cutaneous reactions and potentially

serious respiratory symptoms (Maier et al. 2003).

OPM was accidentally introduced to two parts of

west London in 2006 on young oak trees imported

from continental Europe, from which it has become

established and spread (Townsend 2008, 2013). The

spread from these areas is concerning, especially if it

reaches semi-natural woodlands outside London,

because it will then be impossible to control. The

green infrastructure of woods, parks and trees in

London could therefore contribute to the spread of the

moth, but as yet, there is no accepted model to predict

the likely spread of OPM. It is especially important to

identify how the green infrastructure contributes to the

spread of OPM.

In this study, we developed a patch-based method

derived from electric network theory to assess species

spread across highly fragmented landscapes; and

applied the method to model changes in the distribu-

tion of OPM occupied woodland patches in west

London. Given the patchy distribution of oak trees,

there are likely to be particular ‘pinch points’ and

stepping stones between well-connected clusters of

patches that could act as foci for management

interventions to restrict the further spread of the

moth. We assessed how well our models match the

observed spread of OPM and used the models to

identify these potential ‘pinch points’. This has wide

relevance beyond OPM in the analysis of spatial

ecological networks, particularly for informing con-

servation policy (to facilitate the movement of native

species in response to climate change) and manage-

ment (to inhibit the spread of invasive species).

Electric network theory and random walks

Electric network theory (or circuit theory) explains the

flow of electricity through a network of resistors when

a voltage or potential difference is placed across the

network (i.e. by connecting a battery and earthing or

grounding part of the circuit). Here we use the theory

as an analogue of movement across a spatial network

of patches. The system of equations representing the

electric network model is mathematically identical to

that of a random walk on the same network moving

from a source until it reaches a sink. In the random

walk model the resistors are ‘links’ between patches,
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with their conductances related to the probability of

the random walker taking that particular path (Doyle

and Snell 1984).

The connection between random walks and electric

network theory was first established by Nash-Williams

(1959). This relationship has been widely discussed in

the mathematical literature (Doyle and Snell 1984;

Tetali 1991; Klein and Randić 1993; Chandra et al.

1996; Palacios 2001; Volchenkov 2011). Electrical

network theory has been used in a variety of ecological

contexts: to understand genetic isolation in heteroge-

neous landscapes (McRae 2006; McRae and Beier

2007; Spear et al. 2010); to model the resistance of the

landscape to species movement (McRae et al. 2008;

Lawler et al. 2013); and to calculate the speed of range

shifts in fragmented landscapes (Hodgson et al. 2012).

Using the analogy between electric networks and

random walks, the flow of a species across the

landscape can be thought of as either a random walk

across the network of habitat patches or, equivalently,

the distribution of current from a battery across an

electrical network of resistors. The advantage of this

model over other measures of connectivity or land-

scape resistance (e.g. least-cost pathway analysis,

Chardon et al. 2003; Adriaensen et al. 2003) is that the

inclusion of all possible pathways across the network

is implicit in any network metric (e.g. voltage, current,

expected commute time etc. see ‘‘Methods’’ section

for details). This modelling framework is equally

applicable whether considering movement of an

individual (in which case the model represents an

average trajectory of an individual, McRae et al. 2008)

or spread at a population level, i.e. movement of many

individuals over multiple generations (in which case

the dispersal kernel models the successful dispersal

events and colonisation of patches, Hodgson et al.

2012).

Patch-based and raster-based electric networks

We developed a patch-based approach to model

movement across the landscape (see also Hodgson

et al. 2012) where the structure of a habitat patch

network is characterised by the position and size of

habitat patches. Previously, electric network theory

has been applied as a raster-based approach, e.g.

Circuitscape (Shah and McRae 2008). In Circuitscape,

nodes in the electric network are raster grid cells, each

connected to their eight adjacent grid cells (McRae

et al. 2008), although other connections could be

included, whereas in our method, nodes are habitat

patches and are connected to all other patches.

Circuitscape requires the resistance of every grid cell

to be parameterised. This can provide a realistic

representation of the whole landscape (including

varying quality of matrix in between habitat patches),

but parameterisation can be difficult and require

estimation of unknown information. In a raster

representation, movement from one cell is restricted

to adjacent cells so dispersal events that cover multiple

cells are dependent on a sequence of steps across the

raster grid, constraining the form of the dispersal

kernel. In contrast, in our patch-based approach, the

landscape is categorised as either suitable or unsuit-

able. Therefore less information is required about the

landscape and it is relatively straightforward to model

different dispersal characteristics by using different

dispersal kernels (including fat-tailed and multi-modal

dispersal kernels). These can be altered to implicitly

incorporate variation in the matrix habitat quality,

where this is quantified. For large landscapes, a patch-

based approach reduces the size of the data set, which

means less computing power is required to analyse the

model. Finally, the square raster grids used in most

land cover maps are not rotationally invariant (Dunn

2009) whereas a patch-based approach avoids issues

with rotational invariance (Etherington 2012). We

believe a patch-based approach provides a valuable

alternative to raster-based methods like Circuitscape,

particularly for habitat that is highly fragmented or

when considering the movement of habitat specialists,

when a binary classification of the landscape is

reasonable. Here we consider a case study meeting

these criteria, where OPM (an oak specialist) is

spreading in urban areas where oak trees occur in

highly fragmented patches.

Methods

Distribution of oak processionary moth

and woodland patches

Surveys for OPM larval nests have been undertaken in

west London each year from 2006 to 2012 (N. Straw,

Forest Research and A. Hoppit, Forestry Commision,

unpubl. data used with permission, Fig. 1c). These

surveys were undertaken by multiple contractors with
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the aim of providing a complete census of the

population (in order to direct management interven-

tions). Resources were limited so, in practice, once

OPM became established, surveys were focused at the

edges of the known distribution so that population

spread could be determined (the surveys are discussed

by Townsend 2013). Therefore, although occupancy

in the core of the range was probably under-estimated,

we expected that population spread was accurately

assessed. Follow-up sampling was not routinely

conducted, so we could not assess the impact of

management interventions. Given that OPM was

continually spreading during our period of study

(Fig. 1c), we made the assumption that once detected

in a location, OPM remained present throughout the

period.

The main host of OPM, i.e. oak trees (Quercus

spp.), forms an important component of the green

infrastructure in London, being a constituent of

woodlands, parks and linear green features (railway

embankments and road verges). However, no directo-

ry of oak trees exists for this region so, for our model,

we used an inventory of woodlands from the Natural

England Habitat Inventory (Natural England 2013).

We selected all polygons where the main habitat type

is described as ‘‘deciduous woodland’’ within a circle

with a 40 km radius centred on the locations of first

recorded instances of OPM. This circle extended to

semi-natural woodland around the edge of London.

This dataset therefore did not include single trees

standing in other habitat types e.g. grassland, private

gardens, cemeteries or parks.

Assessing the suitability of the habitat data

for modelling the distribution of OPM

It was important to assess the degree to which the

inventoried woodland patches captured the observed

distribution of oak trees occupied by OPM. Presence

of OPM on oak trees outside inventoried woodland

patches would indicate that our woodland patch

dataset did not completely capture suitable breeding

habitat for this species.

We compared the spatial extent of the observed

point distribution of OPM and woodland patches

positive for OPM records up to 2012 (inclusive) by

calculating the overlap between the two distributions.

There are several methods used in home range

estimation which would be suitable to describe the

extent of each point distribution; the minimum convex

polygon is one of the most straightforward and

commonly-used (Powell 2000). However, we used

negative a-hulls because they avoid some of the biases

introduced by outlying points, which are associated

with minimum convex polygons (Burgman and Fox

2003), while remaining simple to implement. Nega-

tive a-hulls are constructed by surrounding the

distribution of points to be approximated, by all the

possible circles of radius a that do not overlap any

points in the distribution. The negative a-hull is the

remaining area not covered by any circles (Edelsbrun-

ner et al. 1983). The shape of the hull depends on a and

because there is no method to select a ‘correct’ value

of a we manually selected a value that adequately

described the irregular outline of the distribution as

simply as possible.

We wanted to assess whether woodland patches

were adequate to consider the distribution of OPM (the

alternative being that there were many oaks hosting

OPM outside the woodland patches, or many appar-

ently suitable woodland patches without OPM). We

assessed this with ‘precision’ and ‘sensitivity’ by

comparing the a-hull of the known distribution of

OPM against the a-hull of woodland patches with

Fig. 2 The distribution of all oak processionary moth (OPM)

records up to 2012 (white with black surround) and woodland

patches with OPM records up to 2012 (grey) as described by

negative a-hulls (a = 800 m). The binary classification

categories are shown where FN is false positive, TP is true

positive and FP is false positive
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OPM records (Fig. 2). True positives (TP) are given

by the area of intersection of the a-hulls, false

positives (FP) by the area covered by the woodland

patch a-hull but not the OPM record a-hull and false

negatives (FN) by the area covered by the OPM record

a-hull and not the woodland patch a-hull (Fig. 2). We

could not use measures that include true negatives

since their number depend on the extent of the

landscape included in the analysis, and by increasing

the size of the landscape more true negative patches

far away from the outbreak are added, hence inflating

assessments of fit. Precision was calculated as the

proportion of the occupied woodland a-hull that

intersected the OPM record a-hull: TP/(TP ? FP),

whereas sensitivity was calculated as the proportion of

the OPM record a-hull that captured the occupied

woodland a-hull: TP/(TP ? FN).

Modelling framework

There were two stages to the modelling process: firstly

we built a network which represents the arrangement

of habitat within the landscape and the probability that

a species can successfully move from one patch to

another, and secondly we modelled the spread of the

focal species across the network (in this case OPM

spreading out of west London).

Building the network involves dividing the land-

scape into suitable habitat (the deciduous woodland

polygons) and non-suitable habitat (everything else).

Suitable habitat patches were the nodes and species

dispersal was represented by links. The links were

weighted using a dispersal kernel representing the

probability that OPM from one patch can colonise

another patch. We modelled the probability of a

successful colonisation event from patch i to patch j as

a function of Euclidean distance, dij, and area of each

patch, Ai and Aj (further details below). We weighted

the link between patches i and j by ‘conductance’ (the

inverse of ‘resistance’) given by

Cij ¼ AiAjd
�b
ij : ð1Þ

Since the OPM is a habitat specialist, feeding and

reproducing almost exclusively in oak trees, we

assumed that the matrix is uniform and that Euclidean

distance is an appropriate distance metric. If this

assumption did not hold then it would have been

straight-forward to implement a different distance

metric e.g. a least-cost pathway (Adriaensen et al.

2003), although this could have been computationally

expensive depending on the number of links in the

network. We represented the dispersal kernel by a

power law function of the form d�b where the

exponent, b, dictates the rate of decay in dispersal

probability. We chose the power law function because

it has a ‘fat tail’ so incorporating a higher probability

of rare long distance dispersal events than exponential

functions (Nathan 2001). An alternative choice of

dispersal kernel is easily applied in the model.

The area of the donor patch (Ai) was included since a

larger patch can potentially accommodate a larger

population of OPM and therefore it is more likely that a

successful dispersal event from that patch will occur.

We assumed that the population density is constant in

occupied patches, so larger area means more organisms

starting from that point. The area of the target (Aj) patch

was included since a dispersing individual is more

likely to encounter a large patch than a small patch and

we assumed this was directly proportional to the area.

We modelled the spread of the species across the

network using the analogy between electric network

theory and random walks. We were interested in the

spread of OPM over many generations so each step

in the random walk across the network represents the

dispersal event from the emergence of the moth after

pupation through to reproduction at a new site. We

defined a source area (where the battery is connected

or where the random walk starts), specifically this

was the location of the records of OPM in 2006 in

Ealing and Kew, and a sink area (where the circuit is

earthed), specifically the perimeter of a 40 km circle

centred on the two sources. This circular arrange-

ment modelled spread from the source to the sink, in

all directions. By using undirected edges we im-

posed no preference on each step in the random

walk. These sources and sinks gave a system of

equations for the voltage at each node where voltage

is the potential difference between the node and the

earth, as follows.

Ohm’s law gives a relationship between current,

voltage and conductance (Ohm 1827)

Iij ¼ Cij vi � vj

� �
: ð2Þ

Iij is the current in the link joining nodes i and j, vi is

the voltage at node i, and Cij is the conductance of the

link between nodes i and j, given by Eq. (1).
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Kirchhoff’s law states that (Kirchhoff 1847)
X

j 6¼i

Iij ¼ 0; ð3Þ

so at each node (not the source or the target) the total

current is equal to zero, that is incoming or positive

current is equal to the outgoing or negative current.

We obtain a system of equations for the voltages by

applying (2) and (3) at each node. At node i, this gives

an equation of the form

X

j6¼i

�Cij

 !

vi þ
X

j 6¼i

Cijvj ¼ 0: ð4Þ

We can think of (4) as defining the ith row of a

symmetric N �N matrix, M, with off-diagonal

entries given by Cij (i.e. the ‘conductance’ or ‘inverse

resistance’ between patches) and diagonal entries that

make the row sums zero. Equation (4) requires us to

solve for the voltages, v, with boundary conditions at

the source (voltage = 0) and target (voltage = 1)

nodes imposed by b

Mv ¼ b: ð5Þ

This system is equivalent to that for the escape

probability of a random walker on the same network

(Doyle and Snell 1984) and is the same system of

equations considered by Hodgson et al. (2012).

The random walk and electrical network modelling

schemes are based on different physical interpreta-

tions of the same underlying system and their

equivalence allowed us to make analogies with

ecological concepts (see Table 1, adapted from

McRae et al. 2008). Voltage increases as you move

from the source towards the target so it can be thought

of as ‘effective distance’ across the network (i.e.

‘escape probability’ in a random walk model). In a

regular one-dimensional lattice (a string of nodes the

same distance apart) the change in voltage is linear

with distance. However in more complex networks

this is not the case; the structure of the network

influences the change in voltage, so voltage represents

the ‘effective distance’ in terms of ease of crossing the

network for the organisms being modelled. The

electric current gives an indication of how much

‘flow’ is expected along an edge or through a patch. It

is an assessment of how connections and patches

facilitate the flow across the landscape. In the random

walk model, this represents the expected net number

of times the random walk will cross that edge or patch

before it reaches the target area. The ‘effective

resistance’ is a whole network metric of the overall

permeability or resistance of the landscape (i.e. the

commute time, which is the expected time for a

random walker to traverse the network) and can be

used to compare landscapes or evaluate the effect of

adding or removing patches.

We also considered the power, Eij, in an edge

(resistor) given by

Eij ¼ vijIij: ð6Þ

This metric has no direct equivalence in random

walk models, but we can explain it as ‘effective

distance’ (voltage, v) multiplied by ‘flow’ (current, I),

i.e. distance-weighted flow. This means that long

inter-patch links have higher ‘power’ than shorter ones

with the same flow, and that links with high flow have

higher ‘power’ than links of the same distance but with

lower flow. Ecologically, ‘high power’ indicates larger

numbers of organisms or more biological material,

travelling further. Power is a useful metric because

in our unpublished related work, we have shown

Table 1 Mathematically equivalent relations between electric network theory and random walks, and the proposed ecological

interpretations. Adapted from McRae et al. (2008) with the addition of descriptors of ‘power’

Electric network descriptors Random walk equivalents Ecological interpretation

Voltage/potential, vi Escape probability ‘Effective distance’ across the network

Edge current, Iij Expected net number of traverses Flow of organisms between patches

Node current, Ii Expected net number of visits Flow of organisms through a patch

Effective resistance Commute time Traversibility of the landscape

Edge power, Eij N/A Distance-weighted flow between patches

Node power, Ei N/A Distance-weighted flow through a patch

Landscape Ecol (2015) 30:905–918 911
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mathematically that the power of a node accurately

predicts the change in effective resistance of the

network caused by the removal of that node, whereas

the current of a node does not accurately predict this.

Power can therefore be used to assess the importance

of patches within a network in terms of the overall

resistance of the landscape.

Calibrating the model to predict OPM arrival time

If voltage is a measure of ‘effective distance’ across the

network then the value of ‘voltage’ can be taken as an

indication of the time elapsed before OPM arrives at a

location. In order to calibrate the relationship between

voltage and ‘OPM arrival time’, we estimated for each

year for which we had OPM records the threshold of

v up to which OPM had spread. To do this, we chose for

each year a range of v-thresholds up to which OPM has

supposedly spread and compared the resulting pres-

ence/absence maps to the observed OPM presence/

absence map of that year. For each year we selected the

threshold which maximised the agreement, using a

metric known as the F1 score (van Rijsbergen 1979),

given by = 2TP/(2TP ? FP ? FN), where: true posi-

tives (TP) are patches with simulated OPM presence

and observed OPM presence; false positives (FP) are

patches with simulated OPM presence but observed

OPM absence; and false negatives (FN) are patches

with simulated OPM absence but with observed OPM

presence. A scatterplot of time (year) and voltage

should reveal a relationship that allows linking voltage

to OPM arrival time.

Models were run in the Python programming

language (Python Software Foundation 2012) and

systems of linear equations were solved using the

LAPACK package (Anderson et al. 1999).

Results

Summary and data validation

There were 4439 records of OPM from west London

between 2006 and 2012. In general, these data indicate

that the moth is spreading (Fig. 1c). However, the

spread is not even and so far appears to be fastest to the

south-west (Fig. 1c). The woodland patch dataset

comprised 1069 patches within 10 km of the initial

sources and 16,869 patches within 40 km of the initial

sources.

Only 36 % of woodland patches that intersected with

the OPM record a-hull had OPM records, and 51 % of

individual OPM records were from outside of woodland

patches. However, this considered individual records,

which probably under-estimated colonies in woodland,

and hence under-estimated overall precision and sen-

sitivity. In order to consider the overall pattern we

approximated the recorded distribution of OPM and the

distribution of woodland patches positive for OPM

records with an a-hulls, with a = 800 m to produce the

best approximation to the distributions (Fig. 2). Preci-

sion (proportion of occupied woodland patch a-hull that

intersects with OPM record a-hull) was 93 % and

sensitivity (proportion of OPM record a-hull that

intersects with occupied woodland patch a-hull) was

54 %. Sensitivity rose to 70 % when considering the

total extent (i.e. filling internal holes in the a-hulls).

Overall, these results indicate that the range of OPM in

west London can be reasonably well approximated with

reference to the woodland patches alone (see ‘‘Discus-

sion’’ section for more details).

Network metrics

We ran the electric network model on the network of

deciduous woodland patches and found that voltage

Fig. 3 The voltage of woodland patches (represented as

individual points) as calculated from our electric network

model. Points are coloured by the voltage (‘distance’ from the

sources) of the patch. Points represent individual patches within

40 km of the two initial sources (marked in black) and other

boundaries are described in Fig. 1
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(i.e. ‘effective distance’) increased from the source to

the edge of the network, but did not do so uniformly

due to variations in the structure of the network

(Fig. 3). Where voltage declines rapidly with geo-

graphic distance, this indicates regions where move-

ment across the landscape is predicted to be hindered

(i.e. there is high resistance causing a slower predicted

spread of OPM) due to a lower density of habitat (i.e.

small patches or few patches; Fig. 3). Conversely,

smaller changes in voltage indicate areas where the

spread of OPM is predicted to be facilitated by the

arrangement of patches (i.e. large and/or numerous

patches).

As voltage can be taken as an indicator of ‘OPM

arrival time’ (section ‘Calibration of the model to

predict OPM arrival time’ presents a quantitative

calibration of this relationship), results displayed in

Fig. 3 suggest that OPM would initially spread south

west (dark blue patches, v \ 0.1), which was con-

firmed by data between 2006–2012 (Fig. 1c). The next

phase of spread occurs mainly due south and to a lesser

extent north-west (pale blue patches, 0.3 \ v \ 0.4,

Fig. 3), and the following phase of spread occurs

largely to the north-east (yellow to orange patches,

0.6 \ v \ 0.7, Fig. 3). In the later stages spread

appears to be easier to the north east while a region

with fewer patches to the south west holds up spread in

that direction.

The routes through which OPM was predicted to

spread were assessed by the ‘current’ through the

patches, where high current indicates patches with a

high flow (irrespective of the patch’s voltage). Move-

ment across the whole network was concentrated in a

small number of high current patches and these were

often arranged in pathways through the network

indicating important corridors concentrating the po-

tential spread of OPM (Fig. 4).

Considering the ‘power’ of individual patches (the

‘effective distance’-weighted flow of species), the

distribution of patches with high power (Fig. 5) is very

different to the distribution of patches with high current

(Fig. 4). Weighting flow by the ‘effective distance’

travelled highlights patches which are not just impor-

tant in terms of flow per se but also with respect to the

progress that flow makes across the landscape. Patches

with high power are stepping stones, linking groups of

well-connected patches together where you have high

flow over larger distances.

Calibration of the model to predict OPM arrival

time

We assessed the agreement of the observed OPM

presence/absence data for each year with the simulated

OPM presence/absence (patches with voltage v \ V).

Fig. 4 The current of woodland patches (represented as

individual points) as calculated from our electric network

model. Points are coloured by the percentile rank of current of

the patch. Points represent individual patches within 40 km of

the two initial sources (marked in black) and other boundaries

are described in Fig. 1. The black boxes indicate areas where

monitoring effect could be focused (see ‘‘Discussion’’ section)

Fig. 5 The power of woodland patches (represented as

individual points) as calculated from our electric network

model. Points are coloured by the percentile rank of power of the

patch. Points represent individual patches within 40 km of the

two initial sources (marked in black) and other boundaries are

described in Fig. 1
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The level of agreement (maximum F1 score) increased

for each year (Fig. 6a).

For each year, the voltage at the maximum F1 score

represented the predicted OPM presence. This voltage

generally increased annually, confirming that increas-

es in voltage approximated to arrival time, although

this relationship was not linear (Fig. 6b), meaning that

it is difficult to extrapolate and predict precise arrival

time of OPM based on the value of patch voltage.

Discussion

We have presented a model based upon electric

network theory to analyse the spread of OPM in south

west London. Although the data had limitations, it

served as a valuable empirical test of this model.

Validating these models is particularly important

when they are intended to guide landscape-scale

development with expected impacts decades in the

future because test data is, obviously, difficult or

impossible to obtain. Here, we consider the implica-

tions (and limitations) of our case study, before

considering the broader use of this electric network

modelling approach and how it can be further

developed.

Modelling the spread of OPM

In our case study of the spread of an insect pest (Oak

Processionary Moth: OPM) in fragmented green

infrastructure in urban areas, we were able to identify

patches that are likely to be key stepping stones or

pinch points (i.e. have high ‘current’ or ‘power’).

These areas should be the focus of management to

reduce the likelihood of OPM spreading further. We

showed that increasing ‘effective distance’ (voltage)

from the points of introduction (source) was related to

time of arrival, but this relationship is non-linear so it

was not possible to extrapolate specific values of

‘effective distance’ (voltage) to specific predicted

arrival times (although see Hodgson et al. 2012).

Given the limitations of the data (see below), we are

cautious in making strong recommendations about the

management of OPM in this region. However, our

results predict initial rapid spread to the south west (as

confirmed by the data), but then there is a sparsely

wooded area that is relatively difficult for OPM to

cross. Our results confirm that a key concern is

preventing OPM from crossing this region and reach-

ing the high density of larger woodland patches in

Surrey (south and west of the existing distribution)

because once there, there will be little resistance to

Fig. 6 a The assessment, using F1 score (the mean of precision

and sensitivity), of how well patches with a selected value of

voltage (V; ‘effective distance’ from source) fit the distribution

of oak processionary moth (OPM) each year and b the value of

voltage that best fits the recorded distribution of OPM for each

year, i.e. at which the F1 score is maximised
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further spread (Fig. 3). The model also reveals that

there is a high potential for OPM to spread north-east

through London to reach the well-wooded area to the

north-east. So, based on this model, we would

recommend that surveillance and management effort

is especially focused on the two areas in which there

are patches with high current (Fig. 4), because flow is

predicted to be concentrated through these patches and

so they are of high importance in the further spread of

OPM. These areas comprise (1) the patches acting as

stepping stones to the Surrey woodlands to the south-

west and (2) the leading edge of the block of small, but

numerous and well-connected, woodlands to the north

east.

Although the database of woodland patches serves

as a reasonable approximation for the extent of the

OPM distribution, we found that it did not well

approximate the fine structure within the currently

recorded OPM distribution (i.e. only half of records up

to 2012, inclusive, are within woodland patches).

There were four particular limitations of the habitat

data, which may have impacted our work. Firstly, the

monitoring of OPM was established reactively for the

rapid assessment of its spread rather than to produce an

accurate population distribution map, so survey effort

was focused at the edge of its range. As a result, the

distribution of OPM in the core of its range was less

well-recorded, thus reducing the observed ‘precision’

of our model (Fig. 6) by inflating the number of false

positives i.e. patches in the core range of OPM

predicted to contain OPM but where none had been

recorded. Secondly, we expected that it was easier to

detect OPM on single standing trees than to detect

OPM on trees within woodland because observation of

the whole crown is easier from the ground level when

the view is not obscured. Also some surveyors

recorded OPM per ‘stand’ of trees rather than counting

individual occupied trees. These recorder biases will

have under-estimated how well the total OPM distri-

bution can be approximated from the woodland data

set. Thirdly, recording was undertaken in order to

conduct local eradication procedures (although the

location of eradication attempts was not known to us).

Therefore, if eradication was successful, then the

recorded OPM larval nest would not have been a

source of dispersers. This bias would be important in

mechanistic models of the spread of OPM to predict

time of arrival at a location (e.g. Hodgson et al. 2012).

However, detection and eradication of OPM is

difficult in practice, so it seems quite likely that

OPM may have spread from locations near the

eradication attempts, as confirmed by the reasonable

fit of our models to the data (Fig. 4). Finally, there is

no database of oak trees in our area of interest. We

used a dataset of woodland patches and it is likely that

most, if not all, would have contained oak trees.

However, we have no knowledge of the locations of

individual oak trees away from deciduous woodland

e.g. in gardens, parks, cemeteries or golf courses,

which would facilitate dispersal across the landscape

by providing stepping-stones for population spread.

This would be especially influential if the distribution

of lone oaks is regionally auto-correlated.

Ultimately, better maps of green infrastructure (in

this case, the distribution of oak trees) would assist in

accurate modelling and contribute to effective conser-

vation decision making. This would complement the

development of urban tree maps for assessing ecosys-

tem service provision, e.g. citizen science approaches

(e.g. Opentreemap: https://www.opentreemap.org/ and

Treezilla: http://www.treezilla.org/) or remote sensing

by combining methods to delineate individual trees

(Wulder et al. 2004; Chang et al. 2013) with those to

remotely identify tree species (Xiao et al. 2002; Carleer

and Wolff 2004).

The electric network model in ecology

We found that species spread is dramatically influenced

by landscape characteristics. We used electric network

theory to model species spread across a fragmented

habitat network. This approach models complex frag-

mented habitat in a relatively straightforward way and

includes the effects of multiple pathways across the

landscape. It provides a suite of metrics for both

individual patches and whole landscapes, which have

useful and intuitive ecological interpretations. This

model can be used more generally in the analysis of

fragmented habitat networks in light of changing global

conditions to inform conservation management in

landscape-scale conservation initiatives.

Our method for identifying the most important

patches is particularly useful when conservation

resources are limited and effective action is urgently

required. This applies when seeking to impede the

spread of invasive species (as we have demonstrated)

but also when facilitating the movement of native

species in the face of anthropogenic climate change,
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e.g. from the distribution of currently occupied sites to

the distribution of sites predicted to be suitable at some

time in the future (Parmesan 2006; Lawler et al. 2013).

Indeed, these two competing priorities may need to be

addressed simultaneously in any one landscape. It is a

big challenge to balance the efforts to protect native

species against the requirement to restrict local

dispersal of invasive species. One approach would

be to model target species (e.g. from current range to

predicted future range for native species, and from

introduction point to vulnerable habitat for invasive

species). Then monitoring and management efforts

could be focused on the ‘pinch points’ identified from

the models (i.e. patches with particularly high current)

in order to seek to facilitate or impede (as appropriate)

the species under consideration.

Our approach could be developed in order to improve

its application. One of the key assumptions underlying

our simple application of this model is that the matrix is

homogeneous but in reality the traversability of the

matrix will vary, often in a way that is spatially auto-

correlated. This could be incorporated into the model by

varying the dispersal kernel per inter-patch link, by

weighting each link by the relative traversability of the

matrix or using the least cost pathway distance (Watts

et al. 2010). Least cost pathways are likely to become

prohibitively time-consuming as the number of patches

increases because the number of links scales by the

square of the number of patches (in our woodland

network with 1.6 9 103 patches there were 1.28 9 108

links), but with the increasing computational power of

computers, this may be feasible in the future.

Using ‘current’ as a metric to identify the patches

with high flow could be applied to other types of

weighted networks as an alternative to more com-

monly used metrics of node importance, for example

centrality metrics (Barthélemy 2011), and need not be

restricted to spatial networks (Barrat et al. 2004). The

model applies to flow across any type of network, e.g.

flow of information in social networks or flow of

resources in food webs, especially where there are

defined ‘sources’ and ‘sinks’.

It would also be informative to compare our mod-

elling method with other similar models of species

movement, for example Circuitscape (McRae et al.

2008) or Rangeshifter (Bocedi et al. 2014). Each of these

different models makes different assumptions about the

dispersing organism. They differ in terms of their

flexibility, simplicity, usability and computational

efficiency but qualitative comparisons between the

results are lacking. Although a simulation comparison

of these models would be instructive, it would be far

more informative to test the real world applicability of

these models with high quality empirical data of the

population spread for a species across a fragmented

landscape.

The networks considered here are all undirected,

which means the dispersal probabilities between pairs

of patches are symmetric, but for case studies into the

dispersal of other species these probabilities could be

anisotropic, e.g. seeds dispersed by wind (Howe and

Smallwood 1982; Nathan 2001) or marine larvae

dispersed by prevailing water currents (Cowen and

Sponaugle 2009). Anisotropic dispersal could be

represented by a directed network with two directed

links between each pair of patches. Then the mod-

elling framework (Eqs. 1–4) would need to be altered

so that ‘dispersal in’ equals ‘dispersal out’ for each

patch, preserving the conservation of current in Ohm’s

law (Eq. 2). The matrix (M; Eq. 5) derived from the

inter-patch conductance matrix would then not be

symmetric, reflecting the asymmetry of the dispersal

probability.

In conclusion, this study acts as a case study

demonstrating the value of the electric network model.

Models have an important role in developing our

understanding of how habitat networks affect species

movement, especially in a rapidly changing world.

However, obtaining accurate data with which to

validate and parameterise these models will be vital

to ensure conservation policies can be informed by

sound theoretical work.
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Fortuna MA, Gómez-Rodrı́guez C, Bascompte J (2006) Spatial

network structure and amphibian persistence in stochastic

environments. Proc Biol Sci R Soc 273:1429–1434

Galpern P, Manseau M, Fall A (2011) Patch-based graphs of

landscape connectivity: a guide to construction, analysis

and application for conservation. Biol Conserv 144:44–55

Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applica-

tions of graph theory to landscape genetics. Evol Appl

1:620–630

Groenen F, Meurisse N (2012) Historical distribution of the oak

processionary moth Thaumetopoea processionea in Eur-

ope suggests recolonization instead of expansion. Agric

For Entomol 14:147–155

Hanski I (1999) Habitat connectivity, habitat continuity, and

metapopulations in dynamic landscapes. Oikos 87:209

Heller NE, Zavaleta ES (2009) Biodiversity management in the

face of climate change: a review of 22 years of recom-

mendations. Biol Conserv 142:14–32

Hodgson JA, Thomas CD, Dytham C, Travis JMJ, Cornell SJ

(2012) The speed of range shifts in fragmented landscapes.

PLoS One 7:e47141

Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu

Rev Ecol Syst 13:201–228

Kinezaki N, Kawasaki K, Shigesada N (2010) The effect of the

spatial configuration of habitat fragmentation on invasive

spread. Theor Popul Biol 78:298–308

Kirchhoff G (1847) Ueber die Auflösung der Gleichungen, auf

welche man bei der Untersuchung der linearen Vertheilung
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