View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NERC Open Research Archive

PropBase “Warehouse” Architecture

PropBase is a “data warehouse” system that extracts, transforms and loads data into a simplified
data model from across BGS’s heterogeneous property data sources into a single view so that the
data is compatible and accessible from a single interface. The system consists of: data tables that
form the core of a simplified data structure; coding routines that are run at regular intervals for the
extraction, transformation and load of data into the simplified data structures, a second tier
partitioned denormalized data access layer that serves as the data access point by applications.

The system also includes a suite of java coded search utilities that facilitate easy data discovery and
download to allow for the complex synthesis of many data types simultaneously. ; There is also a
web service to allow for machine-to-machine interaction, enabling other software systems to
directly interrogate the datasets to visualise and manipulate them.

This system will have a significant impact by allowing multiple datasets to be rapidly integrated for
scientific understanding whilst ensuring that data is properly managed and available for future use.

The component parts are:

e Core Data Model

e Extraction, transformation and loading routines
e Data Access Layer

e Web services

e Data discovery and download tools

Core Data Model

The core data model is based around the concept of a summary layer to present complex data in a
simple but often denormnalized set of tables and other programmable units within a relational
database system. The data layer brings together 3D (x, y, z) property information from various
databases each with their own relational structure into a generalised structure so that there's a
single consistent point of access of the data for any applications that may require the data. The data
model is implemented within an oracle relational database system where the source databases also
reside or are re-engineered into to facilitate easy loading of the data. The denormalization
techniques used are not unique to oracle and can be implemented in other RDBMS.

The data structure contains a main table PRB_DATA with the following key attribution:

a unique identifier

the data source

the unique identifier from the parent database for traceability
the 3D location (x, v, z)

e the property type

e the property value

e the units

e necessary qualifiers

e precision information and an audit trail

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

https://core.ac.uk/display/33451817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The data model also incorporates a series of dictionaries to constrain some of the attributes to
include: the data sources, property types, units of measure and co-ordinate referencing systems. The
dictionaries in some cases have been collated from the existing terms used in the different
databases from which data has been extracted to populate the propbase layer. The property
dictionary is a key component of the structure as this defines what properties and inherited
hierarchies are to be coded and also guides the process as to what and how these are to extracted
from the structure.

The data model is a spatially aware data structure incorporating oracle spatial functionality to

represent the various geometries recorded for easy access, integration and visualisation of those
geometries in various applications.

PropBase Datasets

Borchole Geclogy Propecty
Sensornet Measuremernits —
Teamporal data
PropBASE Portal
SOBIL _— — Data Explorer
Geochemizry DB
GeophysicS DB Wellmasrer DB Aquifer Properties DB

Extraction, Transformation and Loading (ETL) Routines

Given the many heterogeneous data sources, property types with different data extraction and
transformation requirements, the need for a full audit trail, linkages to source records and regular
updates whilst maintaining the richness and integrity of the data, it's important that there's a co-
ordinated technical approach to keep the “warehouse” synchronised. The PropBase layer uses a
number oracle functions/procedures/packages written in PL/SQL containing the necessary logic to
carry out the data extraction, transformation and loading processes (data manipulation) to keep the
contents of layer synchronised with those of the underlying databases. These procedures and/or
packages are then run as scheduled jobs at regular intervals (e.g. weekly) or can be invoked on
demand.

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

Data Access Layer

The Propbase warehouse architecture includes a highly optimised table as the data access layer for
applications and other. The layer is an extra denormalized table on the core propbase data model,
optimised as the main point of call for the PropBase Webservice. The tables in the core data model
are never accessed directly but only used to collate and harmonise the data from the heterogeneous
data sources to populate the data access layer. It's was created by pre-joining the data tables that
make up the core data model, with decoded dictionary values and also spatially enabled to provide a
single access object for propbase data.

The layer is indexed appropriately and also partitioned to optimise query access by applications and
other. Also provides greater flexibility in further optimising, adding or removing data attributes/data
and the presentation/extraction of data in different spatial transformations and other.

Optimised single table Data Ascess Layer

for query access

PropBase Data____M_O_d_.@.l________

- .

| vartations of the Optimised single table ™ e
| Data Access Layer in different spatial ~. 7
| Aransfornations (e g. BNG and WGSB4) .

Webserver Web Service

The Propbase web service component is created in Java using RESTful principles. It is developed
using a number of BGS and open source class libraries, the most important in terms of interfacing
design is the Restlet library, which provides the HTTP interactions required by the service, including
but not limited to HTTP standard content negotiation and internally URL to controller routing and

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

setting of appropriate HTTP headers, including enabling the setting of sensible cache headers, to
allow clients to perform their own caching.

This Application contains interactions with the database using a series of classes and queries that
have been optimised alongside the data access objects. These provide a number of caches in
memory on the Java server of the various core dictionary objects and various queries against the
data warehouse layer.

Server side caches of dictionaries are currently maintained for a little under a day, as the dictionaries
are pretty stable it is not envisioned that this latency should cause many issues. Additionally paging
operations are set and available via our library on all of the core queries. To provide data to users as
fast as possible and to prevent server overload of massive datasets, in addition to the page of data
the total available results for each unpaged search are lazily calculated and stored for up to a day to
reduce database load through constant recalculation by the Oracle database. The number of
threads available to make these lazy requests has been set to avoid using the entirety of the
database connection pool, allowing new data requests to continue to be made. Totals are therefore
provided to the client if and only if they are already available, to reduce wait times on the data, as
users will often request, several pages based upon the same base query. It is envisioned that this
should be available in a reasonable number of requests.

Data is made available in a number of different formats to clients. Individual Item data is available in
JSON, RDF, KML and HTML formats while lists of items can be obtained in JSON, CSV, TSV, KML,
Atom, and Shapefile as both bases and vertical line segments. Information about datatypes and
measurement types are only available in JSON and HTML at the moment.

The application is largely discoverable from the Root URL which provides an HTML and JavaScript
search implementation that can be converted into other languages, although this may be missing a
couple of the more recent features. The html headers should also contain links to alternate
representations. To access these, you are encouraged to try various requests to see what is
returned. Content negotiation can be done either by using the HTTP accepts header or by specifying
a file extension at the end of the last URL segment.

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

Architecture Diagram

JawvaScript Client

Complex Media Types

Optimized Propbase Query Layer

PL/SCL and Oracle Internals

Propbase Core Tables
N

Aggregation Routines

w E - - -
£E2 E£2 EZ [E=
DataSource 1 DataSource 2 DataSource 3 DataSource M

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

Appendix

PropBase Server Internals

-
in=nt *EDI

Class

HTTP Response To Client

HTTP RequestliSET) Propbase Java Serser Application

i shapefieRepresentation KmiRepressntaticn JeonRepresentation
Rzm a,..JTme

Fass Calegorised Reguest
ko Resowoe Condroller

Corfmler lyer

Ciekain and Retum Dala

;

Caiabase Tables and Suery Layer

Available URL patters are composed of ([] indicates optional components - | indicates an either or
option, / or : are literals that will need to be included in the URL)

<root> = ‘http://bgsintranet/JavaApps/propbase/’ — Root URL for service (You should be able to
discover stuff from here)

<q> String variable — Free text filter.

<start> Integer variable number for first record to return (default = 0)

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

<size> Integer variable number of records to return (default = 10)
<item> = items

<items> = <item>[?q=<qg>][(&| ?)start=<start>[&size=<size>]] — Filter to return propbase
measurement item(s).

<dataSource> = datasources

<dataSources> = <dataSource>[?start=<start>[&size=<size>]] — Filter to return propbase
dataSource(s)

<type> = types

<types> = <types>[?start=<start>[&size=<size>]] — Filter to return propbase measurement type(s)
<itemld> = integer variable - |d of a propbase measurement item.

<dataSourceld> = String variable - Id of a datasource.

<typeld> = String variable - Id of a propbase measurement type.

<dataSourceSet> = <dataSource> / <dataSourceld> [:<dataSourceld>[:<dataSourceld>]] (not limited
to 3) — Filter by multiple datasources.

<typeSet> = <type> / <typeld> [:<typeld>[:<typeld>]] (not limited to 3) — Filter by multiple
measurement types.

<x> <y> <z> = double variables — coordinates in three dimensions.

<crs> = integer variable — coordinate reference system the associated coordinates are in, currently
limited to 27700 (BNG — default) and 4236 (WGS-84)

<location> = [<crs>::]<x>,<y>[,<z>]:<x>,<y>[,<z>] — Filter spatially using a bounding box or volume

Home Page and HTML Search Form = <root>

All features in category = <root> (<items> | <dataSources> | <types>)

Martin Nayembil, Anne Richardson, Graham Smith, Simon Burden, 06/03/2014

