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 Zusammenfassung 

Zusammenfassung 

 

Chorea Acanthocytosis (ChAc) ist eine autosomal rezessive neurodegenerative Erkrankung 

mit Chorea, Dystonie, Epilepsie und Akanthozytose. Die Patienten haben eine verminderte 

Lebenserwartung von nur rund 60 Jahren. Die Störung wird durch eine 

Funktionsverlustmutation des VPS13A Gens (Vacuolar Protein Sortierung - assoziiertes 

Protein A) verursacht, welches das kodierende Gen für Chorein ist. Normalerweise stimuliert 

Chorein die Phosphoinositid-3-Kinase (PI3K), die an der Regulation des Ca2+ Einstrom 

beteiligt ist. Veränderungen der intrazellulären Ca2+-Konzentration regulieren unter anderem 

Proliferation, Differenzierung und Apoptose. Entleerung intrazellulärer Ca2+-Speicher 

aktiviert den Store-operated Ca2+ Entry (SOCE), der durch die Interaktion zwischen dem 

Ca2+-Sensorprotein, dem Stromal Interacting Molecule 1 (STIM1) und dem porenbildenden 

Orai1-Kanal zu einer Konformationsänderung und Öffnung des Kanals führt. Der Ca2+ Kanal 

wird auch Ca2+ release activated channel (CRAC) genannt. SOCE wird durch Lithium über 

Stimulation der Serum & Glukokortikoid-induzierbaren Kinase (SGK1) gesteigert. SGK1 ist 

in Zellen dafür verantwortlich, die Expression von Orai1 und STIM1 zu stimulieren und 

ebenfalls den Transkriptionsfaktor Nuclear factor 'kappa-light-chain-enhancer' von 

aktivierten B-Zellen (NFкB) zu regulieren. Lithium wird unter anderem zur Behandlung von 

bipolaren Erkrankungen eingesetzt und ist fähig die Bluthirnschranke zu passieren. In dieser 

Arbeit wurde gezeigt, dass Fibroblasten und Neurone von ChAc-Patienten einen 

verminderten SOCE und eine erhöhte Apoptoserate besitzen. Fibroblasten wurden von sechs 

ChAc-Patienten und sechs gesunden Spendern isoliert. Darüber hinaus wurden aus drei 

weiteren Patienten Fibroblasten entnommen und daraus induzierte pluripotente Stammzellen 

(iPSCs) erzeugt, um daraus Neurone zu differenzieren. Western Blotting und Calcium-

Imaging zeigten eine signifikante Verminderung der Orai1-Proteinmenge bzw. des SOCE in 

Fibroblasten und iPSC-basierten Neuronen von ChAc-Patienten im Vergleich zu gesunden 

Spendern. Die RT-PCR zeigte eine signifikante Verminderung der mRNA-Level von Orai1 

und STIM1 in iPSC-basierten Neuronen von ChAc-Patienten. Die Apoptose wurde durch 

Annexin-V/Propidiumjodid-Färbung mittels Durchflusszytometrie nachgewiesen und war bei 

Fibroblasten und iPSC-basierten Neuronen bei ChAc-Patienten signifikant höher als bei 

gesunden Spendern. 

In dieser Arbeit konnte gezeigt werden, dass die Behandlung der Fibroblasten und Neurone 

von ChAc-Patienten mit Lithium Calciumsignalwege positiv beeinflusst, während der Orai1-
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 Zusammenfassung 

Blocker, 2-Aminoethoxydiphenylborat (2-APB) den Effekt signifikant reduzierte. Lithium 

induzierte einen signifikanten Rückgang der Apoptose, der durch 2-APB aufgehoben wurde.  

Die mRNA- und Proteinexpression von Orai1 und STIM1 wurde durch Lithium erhöht, aber 

die Hemmung der SGK1 oder NFкB hat diesen Effekt umgekehrt.  

Zusammenfassend lässt sich sagen, dass die apoptotische Wirkung des Choreinmangels bei 

Fibroblasten und Neuronen von ChAc-Patienten zum Teil auf die verminderte Expression 

von Orai1, STIM1 und SOCE zurückzuführen war. Die Behandlung mit Lithium konnte 

diesen Effekt über den SGK1/NFкB Signalweg umkehren, weshalb Lithium eine neue 

Behandlung der ChAc darstellen könnte. 
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 Abstract 

Abstract 

 

Chorea Acanthocytosis (ChAc) is an autosomal recessive neurodegenerative disease 

characterized by limb chorea, dystonia, epilepsy and acanthocytosis. The patients have a 

reduced life expectancy of only around 60 years. This disorder is caused by a loss-of-function 

mutation of the VPS13A (vacuolar protein sorting-associated protein A) gene, which is the 

encoding gene of chorein. Normally, chorein stimulates phosphoinositide 3-kinase (PI3K), 

which is involved in the regulation of Ca2+ influx. Oscillations of intracellular Ca2+ 

concentration regulate, among other cell components, proliferation, differentiation and 

apoptosis. Emptying of intracellular Ca2+ stores activates the Store-operated Ca2+ entry 

(SOCE), which leads to a conformational change and opening of the channel through the 

interaction between the Ca2+ concentration sensor protein, the Stromal Interacting Molecule 1 

(STIM1), and the pore-forming channel, Orai1. The Ca2+ channel is known also as Ca2+ 

release-activated channel (CRAC). 

SOCE is increased by lithium via stimulation of serum & glucocorticoid-inducible kinase 

(SGK1), which is responsible in cells for stimulating the expression of Orai1 and STIM1 as 

well regulating the transcription factor: Nuclear Factor 'kappa-light-chain-enhancer' of 

activated B-cells (NFкB). Lithium is used in the treatment of bipolar disorders and can cross 

the blood-brain barrier (BBB). 

In this study, fibroblasts and neurons of ChAc patients have been shown to have decreased 

SOCE and an increased rate of apoptosis. Fibroblasts were isolated from six ChAc patients 

and six healthy donors. In addition, fibroblasts were obtained from three additional patients 

and healthy donors and induced pluripotent stem cells (iPSCs) were generated in order to 

differentiate them into neurons. Western blotting and calcium imaging showed a significant 

reduction in the amount of Orai1 protein and SOCE, respectively, in fibroblasts and iPSC-

differentiated neurons of ChAc patients compared to healthy donors. RT-PCR showed a 

significant decrease in the mRNA levels of Orai1 and STIM1 in iPSC-differentiated neurons 

of ChAc patients. Apoptosis was detected by annexin-V / propidium iodide staining via flow 

cytometry and was in fibroblasts and iPSC-differentiated neurons of ChAc patients 

significantly higher than in those of healthy donors. 

In this study, it could be shown that the treatment of fibroblasts and neurons of ChAc patients 

with lithium positively influenced SOCE, an effect significantly reduced by the Orai1 
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 Abstract 

blocker, 2-aminoethoxy diphenyl borate (2-APB). Lithium induced a significant decrease in 

apoptosis, an effect again abrogated by 2-APB. 

The mRNA and protein expression of Orai1 and STIM1 were increased by lithium, an effect 

reversed by inhibition of SGK1 and NFкB. 

In conclusion, the apoptotic effect of chorein deficiency in fibroblasts and neurons of ChAc 

patients is in part due to the decreased expression of Orai1, STIM1 and SOCE. Treatment 

with lithium could reverse this effect, via the SGK1/NFкB signaling pathway, which shows 

that lithium could be a new treatment for Chorea Acanthocytosis. 
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 Introduction 

1. Introduction 

 

1.1 Chorea Acanthocytosis (ChAc) 

 

1.1.1 Background, diagnosis and therapy 

 

Chorea Acanthocytosis (ChAc) is a fatal neurodegenerative disease characterized by red 

blood cell acanthocytosis and loss of striatal neurons as a hallmark like other 

neurodegenerative diseases (Jung et al., 2011). It progresses to cause premature death of the 

patient (Jung et al., 2011). Autosomal-recessive ChAc is caused by a loss-of-function 

mutation in the vacuolar protein sorting 13 homolog A (VPS13A) gene leading to a lack of 

the functional respective encoded protein chorein (Velayos-Baeza et al., 2004, Dobson-Stone 

et al., 2004). 

This disease could be diagnosed by several procedures. The first diagnostic step for ChAc is 

to evaluate the levels of muscle creatine kinase (CK), as well the serum concentrations of 

liver enzymes lactate dehydrogenase (LDH), alanine transaminase (ALT) and aspartate 

transaminase (AST) which have shown to be increased in ChAc patients (Velayos Baeza et 

al., 1993). The molecular genetic diagnosis of the disorder will be by sequencing the gene 

VPS13A. This gene is located on the long (q) arm of chromosome 9 at the position 21.2 

(9q21,2) and it is relatively a big gene of 73 exons which has two main splice forms or 

transcripts: transcript A (exons 1-68 and 70-73), and transcript B (exons 1-69) (Rampoldi et 

al., 2001, Dobson-Stone et al., 2004). Expression of transcript A in full exons is required for a 

full-length chorein (Dobson-Stone et al., 2004). The big size of the VPS13A gene makes the 

screening for mutations is a hefty and time-consuming procedure to reach the right diagnosis 

of Chorea Acanthocytosis, therefore an easier diagnostic method could be the cellular 

detection of chorein by western blot analysis of patient erythrocytes, which shows a missed 

chorein protein band in patients samples and thus gives an early indication of the disorder, a 

differential diagnosis that will not be found in patients of Huntington’s disease or McLeod 

syndrome (Dobson-Stone et al., 2004) (Figure 1).  
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 Introduction 

 

Figure 1: Absence of chorein 

protein. 

Western blot demonstrating the 

absence of chorein protein band 

in a sample from ChAc patient. 

The figure is used after 

permission from (Walker, 2015). 

 

 

 

 

 

 

The blood of most ChAc patients will contain a highly variable percentage of acanthocytes, 

between 5%-50% of the red blood cell population (Rampoldi et al., 2002) (Figure 2). 

 

Figure 2: Acanthocytosis in the blood of ChAc patient. 

Scanning electron microscopy of erythrocytes from ChAc patient’s peripheral blood that shows the 

presence of acanthocytosis (scale bar in A: 1 µm; in B: 10 µm). The figure is used after permission 

from (Zhang et al., 2013). 

 

On the other hand, the clinical characteristics could give also a certain diagnose of the 

disorder; which include dystonia that will affect the oral region and tongue especially, as 

tongue and lip biting that, in turn, leads to dysarthria and dysphagia and ends with weight loss 

(Bader et al., 2010). Other clinical diagnostic features include seizures and epilepsy (Scheid 

et al., 2009), myopathy, characterized by distal muscle wasting and weakness and 
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amyotrophy, subtle eye movement abnormalities and movement disorder as limb chorea  

(Velayos Baeza et al., 1993). 

The current treatment of Chorea Acanthocytosis is only symptomatic and supportive, as 

Botulinum toxin injections for relaxing the muscles and to control the oro-lingual dystonia 

(Schneider et al., 2006) and other drugs to relieve the psychiatric and movement symptoms 

(Velayos Baeza et al., 1993). 

 

1.1.2 Chorein and its role 

 

Chorein is a large protein, more than 3000 amino acids with a predicted molecular weight of 

360 kDa (Ueno et al., 2001, Dobson-Stone et al., 2004), expressed highly in tissues like testis, 

kidney, spleen and brain and less in lungs, liver and placenta (Kurano et al., 2007, Ueno et 

al., 2001) as well in many cell types including vascular endothelial cells (Alesutan et al., 

2013), neuronal cells (Hayashi et al., 2012), platelets (Schmidt et al., 2013), erythrocytes and 

skin fibroblasts (Dobson-Stone et al., 2004).  

It has essential roles in the cell, and many cellular functions are chorein-sensitive such as, 

dopamine release (Honisch et al., 2015a), endothelial cell stiffness (Alesutan et al., 2013), 

cytoskeletal architecture (Honisch et al., 2015b) and survival of tumor cells, neurons and 

skeletal muscle cells (Velayos Baeza et al., 1993, Saiki et al., 2007, Honisch et al., 2015c). 

Furthermore, chorein has a function on regulation the secretion and aggregation of blood 

platelets according to a previous study which showed that lack of chorein in platelets of 

ChAc patients leads to significantly reducing the expression of vesicle-associated membrane 

protein 8 (VAMP8), an important protein for secretion of platelets granules (Polgar et al., 

2002, Schmidt et al., 2013). 

In a previous study, erythrocytes of ChAc patients showed a decreased level of 

phosphorylation of the p21 protein-activated kinase 1 (PAK1) and depolymerization of 

cortical actin, which reflects the role of chorein on regulation cytoskeletal architecture (Foller 

et al., 2012, Honisch et al., 2015b). Moreover, chorein silencing resulted in decreasing the 

phosphorylation of Bcl-2-associated death protein (Bad) and this led to prompt apoptosis by 

causing the mitochondrial depolarization as well DNA fragmentation and exposure of 

phosphatidylserine at the cell surface, all hallmarks for apoptosis, which confirm the effect of 

chorein in cell survival (Foller et al., 2012). 
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According to proteome analysis, there was found a binary protein-protein interaction between 

chorein and phosphoinositide-3-kinase (PI3K) (Wu et al., 2007, European Molecular Biology 

Laboratory, 2011), moreover, lack of chorein leads to decreased level of the activation and 

phosphorylation of p85 subunit of phosphoinositide-3-kinase (PI3K) (Foller et al., 2012).  

The PI3K plays a crucial role in many critical pathways for cell survival and cell growth 

which are both sensitive to Ca2+ signaling (Orrenius et al., 2003, Burgoyne, 2007, 

Vanhaesebroeck et al., 2012). The next parts will describe the mechanism of this crucial 

signaling pathway, its role and how does this kinase affect Ca2+ signals. 

 

1.2 Calcium signaling 

 

1.2.1 Importance and basics 

 

Intracellular calcium is known as one of the most important cellular signals in many 

mechanisms such as fertilization, cell motility, gene transcription, secretion, apoptosis and 

necrosis (Berridge, 1993, Carafoli, 2002, Berridge et al., 2003). In neuronal functions as 

particular, Ca2+ signaling has a dominant role in gene expression, neuronal growth, 

neurotransmission, survival and death (Orrenius et al., 2003, Burgoyne, 2007). 

The system of Ca2+-signaling has a basic common component in all cell types, that to perform 

brief pulses between external medium and intracellular store using a pack of molecules that 

work together to achieve the signal (Berridge et al., 2000, Berridge et al., 2003).  

Ca2+ could be released from its intracellular stores, the endoplasmic reticulum (ER) or the 

sarcoplasmic reticulum (SR), as a reaction to many stimulants (Koch, 1990, Berridge, 1993). 

These stimulants, such as insulin or growth factors, when interacting with cell surface 

receptors, for example, G protein-coupled receptors (GPCRs) or receptor of tyrosine kinases 

(RTKs), induce the activation of two important players in the process of Ca2+ release, 

phospholipase Cγ (PLCγ) and PI3K (Rhee and Bae, 1997, Katan, 1998, Bootman et al., 2002, 

Putney and Tomita, 2012, Vanhaesebroeck et al., 2012). After activation, PLCγ and PI3K 

work in related pathways: On the one hand, activation of PLCγ leads to hydrolysis the 

signaling lipid phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) (PIP2) to form 

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (In3P) (Clapham, 1995). In3P then 

binds to its receptor, inositol-1,4,5-triphosphate receptors (In3PR), on ER and triggers the 

release of calcium (Clapham, 1995). On the other hand, when PI3K is activated, it 
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phosphorylates (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) (PIP3) 

which in turn feeds back to enhance again the PLCγ to catalyze the breakdown of PIP2 to 

In3P and DAG (Scharenberg and Kinet, 1998). 

Calcium enters into the cell by a capacitative mechanism, i.e. when the intracellular stores of 

calcium are empty, this sends a signal to the membrane of the cell and activates calcium 

influx in order to refill the stores (Putney, 1986, Takemura et al., 1989). This signal was 

understood after the finding of Stromal Interacting Molecule 1 (STIM1) which was described 

as the sensor of calcium in the ER (Roos et al., 2005, Liou et al., 2005), and the other player 

to complete the mechanism was Orai1-3, the pore-forming subunit of calcium channels in the 

cellular membrane (Feske et al., 2006, Vig et al., 2006b, Zhang et al., 2006). Capacitative 

calcium entry and Store-operated calcium entry (SOCE) are two names of one mechanism. 

Hoth and Penner also explained that depletion of calcium stores leads to an 

electrophysiological inward current, highly selective to calcium, and caused by activation of 

Ca2+ channels, which they called calcium release-activated calcium current (ICRAC) (Hoth and 

Penner, 1992). 

 

1.2.2 STIM1 

 

STIM1 was known and described at first as a tumor suppressor gene (Parker et al., 1996), 

until the demonstration of Roos et al., and Liou et al. at 2005 that STIM1 is a component of 

homeostasis for Ca2+ signals (Roos et al., 2005, Liou et al., 2005). In Drosophila S2 cells 

there was found a single Stim gene (dstim) (Roos et al., 2005), but in mammalian HeLa cells 

were two human homologs found for dstim, STIM1 and STIM2 (Liou et al., 2005). The 

physiological function of STIM2 is controversial as it didn’t show the same effect on ICRAC in 

all cell lines (Putney, 2007). 

STIM1 is composed of 685 amino acids and is located in the membrane of the ER via a 

transmembrane domain, that when Ca2+ concentration is low, a conformational change acts 

on the domains and causes the ICRAC activation (Roos et al., 2005, Liou et al., 2005, Zhang et 

al., 2005b). 

STIM1 molecule has three coiled-coil domains: the intracellular C terminal contains the 

second and third coiled-coil domains which make together the so-called; CRAC activating 

domain (CAD) as it is responsible to activate the Orai1 channel (Park et al., 2009), while the 

domain in the luminal of ER is at the N-terminal and contains a signal peptide that senses the 
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concentration of Ca2+ in the ER store leading to a change in the structure of STIM1 domains, 

and results in oligomerization of several STIM1 molecules followed by activation of SOCE 

(Liou et al., 2005, Zhang et al., 2005b, Soboloff et al., 2006, Stathopulos et al., 2006, Mercer 

et al., 2006, Wu et al., 2006) (Figure 3). 

The C-terminus has also the CRAC modulatory domain (CMD) that senses the negative 

response to Ca2+ influx and leads to stopping the activation of Orai1 channel and inactivation 

of ICRAC (Park et al., 2009). 

 

1.2.3 Orai1 

 

Feske et al described Orai1 as a crucial Ca2+ channel for ICRAC (Feske et al., 2006). This was 

proved by the genetic mapping of severe combined immunodeficiency (SCID) patients whose 

ICRAC was defective, which showed a mutation in the Orai1 protein that caused the 

hydrophobicity of the channel, and led to the defective ICRAC (Feske et al., 2006). On the 

other hand, knockdown of dstim and dorai in Drosophila induced complete inhibition of 

ICRAC (Feske et al., 2006).  

In Drosophila, dorai was identified and had three human homologs, Orai1, Orai2 and Orai3, 

or CRACM1, CRACM2, CRACM3 as they were also named (Feske et al., 2006, Vig et al., 

2006b, Zhang et al., 2006). Orai2 and Orai3 function like Orai1 but their Ca2+ currents are 

smaller and sometimes undetectable (Mercer et al., 2006). This was noticed after 

overexpression of STIM1 with Orai2 or Orai3 which resulted in either a slight increase or no 

effect on ICRAC (Mercer et al., 2006).  

The Ca2+ channel is made up of Orai1 tetramer (Ji et al., 2008, Mignen et al., 2008, Penna et 

al., 2008). Orai1 is a protein of 301 amino acids consists of four transmembrane domains 

(TM) located in the plasma membrane and connected by one intracellular and two 

extracellular loops with its N and C terminus are in the cytoplasm (Hou et al., 2012). The N- 

and C- terminus of Orai1 are both important for the activity of the channel and they both have 

the functional binding sites for activated STIM1 (Muik et al., 2008, Palty et al., 2015). Never 

the less, the C-terminus of Orai1 binds to STIM1 stronger than N-terminus, and deleting the 

C-terminus will barrier Orai1 from interacting with STIM1 (Muik et al., 2008). The N-

terminus contains a calmodulin binding domain (CBD) (Mullins et al., 2009) which is 

important for the mechanism calcium-dependent inactivation (CDI) to keep cytosolic Ca2+ 

concentration low when the cell is at the resting situation (Roos et al., 2005) (Figure 3). 
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Figure 3: Model of Orai1 and STIM1. 

Orai1 has four transmembrane domains (TM), with its N- and C- terminus localized in the cytoplasm 

and involves two extracellular loops and one intracellular loop; the TM1 has the glutamic acid 106 

(E106) which is identified as the Ca2+-binding amino acid and the selectivity filter of the CRAC 

channel (Prakriya et al., 2006, Vig et al., 2006a, Gwack et al., 2007, McNally et al., 2009, Zhou et al., 

2010). The intracellular C-terminus includes the coiled-coil (CC) domain, which binds to STIM (Li et 

al., 2007, Muik et al., 2008, Yuan et al., 2009). STIM1 has one transmembrane domain in the ER 

membrane. The N-terminus has Ca2+ binding EF-hand domain that represents the sensor of 

Ca2+ concentration in the ER and interacts with the SAM (sterile alpha motif) domain to result in the 

oligomerization of several STIM1 molecules (Stathopulos et al., 2006, Luik et al., 2008, Muik et al., 

2011). The C-terminus contains the CRAC activation domain (CAD) that interacts with Orai1and 

activates the CRAC channel, and the end of the C-terminus has lysine (K) -rich domain which allows 

the interaction with plasma membrane lipids (PIP2) and (PIP3) (Liou et al., 2007, Feske et al., 2012). 

Figure adapted from (Feske et al., 2012), changed. 
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1.2.4 Formation of ICRAC 

 

When STIM1 senses the depletion of Ca2+ in the ER by its N-terminal luminal domain, this 

results in the conformational change of STIM1 into oligomers (dimers, tetramers…) followed 

by its migration to be near the plasmatic membrane and binding to the C terminus of Orai1. 

Then Orai is pulled to form the puncta between ER and plasma membrane, which ends with 

opening Orai1 channel by its N-terminus followed by Ca2+ entry into the ER (Liou et al., 

2005, Hogan et al., 2010) (Figure 4). 

 

Figure 4: Steps of store-operated Ca2+ entry.  

(A) Resting state where STIM1 is a monomer, Orai1 as an oligomer (probably a tetramer) and ER 

Ca2+ stores are filled with Ca2+, (B) ER Ca2+ stores are depleted and STIM1 oligomerization starts and 

forms oligomers (dimers for example), (C) migration of STIM1 to ER-plasma membrane appositions 

and binding the STIM1 lysin (K)-rich regions to lipids in the plasma membrane, as well, STIM1 

oligomers bind to the C-terminal of Orai1 and recruit it to the ER-plasma membrane junctions, (D) 

Orai1 channel is opened and Ca2+ enters the cell (Li et al., 2007, Muik et al., 2008, Park et al., 2009, 

Yuan et al., 2009, Kawasaki et al., 2009, Muik et al., 2009, Hogan et al., 2010). Figure adapted from 

(Hogan et al., 2010), changed.  
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1.3 Effect of lithium on cell survival and neurodegenerative diseases 

 

Lithium is one of the oldest psychiatric treatments since the 19th and till now, and its benefits 

were known for reducing the risk of suicide and mortality in mood disorders as mania (Cade, 

1949), aggressive behavior (Sheard et al., 1976, Muller-Oerlinghausen and Lewitzka, 2010) 

depression (Crossley and Bauer, 2007) and bipolar disorder (BD) (Alda, 2015). 

It also batters neurodegeneration in many diseases such as Huntington’s disease, Parkinson’s 

disease, Alzheimer’s disease, amyotrophic lateral sclerosis (Alvarez et al., 2002, Lazzara and 

Kim, 2015, Bauer et al., 2003) and spinocerebellar ataxias type 1 and 3 (Watase et al., 2007).  

The plasma levels that were needed for a full clinical effect of lithium is between 0.6 and 

1 mmol/L (Alda, 2015). 

The importance of lithium comes from its beneficial effects on basic characters of mood and 

neurodegenerative disorders reducing neuronal excitability and neuronal death. 

On the one hand, lithium ions reduce the resting membrane potential and neuronal 

excitability, which increases during the episodes of the illness, by reducing intracellular 

sodium and calcium via voltage-gated sodium channels (Schou, 1957, Huang et al., 2007, 

Gao et al., 2010). 

On the other hand, it has a neuroprotective effect achieved by many mechanisms: Lithium 

can inhibit glycogen synthase kinase-3 (GSK-3) at concentrations 1-2 mM either directly, by 

competition for a magnesium-binding site with GSK-3, or indirectly by Akt (serine/threonine 

kinase or protein kinase B as also known) activation which leads to further inhibiting the 

proapoptotic forkhead box class O transcription factor (Foxo3a), Bcl-2-associated death 

protein (Bad) and murine double minute (MDM) (Jope, 1999, Beaulieu et al., 2004, Avila et 

al., 2012, Lazzara and Kim, 2015). Another mechanism is by regulating pro-apoptotic 

proteins as Blc-2-associated X protein (Bax), which binds and antagonizes Bcl-2 protein to 

prompts apoptosis, and the tumor suppressor protein p53 which targets both Bcl-2 and Bax 

and promotes cell death (Lazzara and Kim, 2015, Basu and Haldar, 1998). Lithium also 

activates the up-regulation of brain-derived neurotrophic factor (BDNF) which boosts the 

survival and plasticity of neurons (McAllister et al., 1999, Lazzara and Kim, 2015), in 

addition, it increases the levels of Bcl-2 protein which provide the anti-apoptotic activity 

(Youdim and Arraf, 2004). Moreover, lithium is able to be an anti-oxidant as it increases the 

levels of GSH in neurons, the glutathione that decreases when oxidative stress occurs in the 
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neurons and leads to increase the cellular levels of hydrogen peroxidase and thus induces cell 

death (de Vasconcellos et al., 2006, Kim et al., 2011). 

 

1.4 Aim of the study 

 

The aim of this study is to understand the pathophysiology of Chorea Acanthocytosis (ChAc) 

and to test if it is paralleled with neuronal regulation of Ca2+ release-activated Ca2+ channels 

Orai1, and/or its regulator STIM1 in order to identify potential therapeutic targets for the 

treatment of ChAc. 

After the success that lithium has shown on neuroprotection and reducing mortality in bipolar 

disease, Alzheimer’s disease and Parkinson’s disease, the hypothesis was if lithium will have 

the same protecting effect on Chorea Acanthocytosis and could be a therapy for these 

patients. 

The experiments were performed on fibroblasts and iPSC-differentiated neurons from ChAc 

patients and were compared with samples from healthy donors to: 

 Understand the pathophysiology of Chorea Acanthocytosis  

 As SOCE is an important player in cell protection, would it be affected or play a role in 

Chorea Acanthocytosis? 

 Would lithium be a possible therapy to protect neuronal and cell death in 

Chorea Acanthocytosis?  
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2. Materials 

 

2.1 Chemicals 

Name  Company name and country of origin 

30% Acrylamide Mix Carl Roth, Karlsruhe, Germany 

Ammonium persulfate Carl Roth, Karlsruhe, Germany 

Bio-Rad Protein Assay Dye Reagent Bio-Rad, München, Germany 

Calcium chloride (CaCl2) Sigma Aldrich, St. Louis, USA 

Chloroform Carl Roth, Karlsruhe, Germany 

Developer and Replenisher Kodak, USA 

DMEM (1X) + GlutaMax™ -1 Gibco, Paisley, UK 

DMSO  Carl Roth, Karlsruhe, Germany 

Dulbecco’s Phosphate Buffered Saline (DPBS) Sigma-Aldrich, St. Louis, USA 

EGTA Roth, Karlsruhe, Germany 

Ethanol 99% Carl Roth, Karlsruhe, Germany 

Fetal calf serum (FCS) Thermo Fisher Scientific, Waltham, 

Massachusetts 

Fixer and Replenisher Kodak, USA 

Fura-2/AM Invitrogen, Goettingen, Germany 

Glucose Sigma Aldrich, St. Louis, USA 

Glycine Carl Roth, Karlsruhe, Germany 

GSK-650394 Sigma-Aldrich, St. Louis, USA 

Isopropyl alcohol Carl Roth, Karlsruhe, Germany 

Lithium chloride Sigma-Aldrich, St. Louis, USA 

Magnesium sulfate (MgSO4) Sigma Aldrich, St. Louis, USA 

Methanol Sigma-Aldrich, St. Louis, USA 

Non-fat milk powder Carl Roth, Karlsruhe, Germany 

Penicillin/Streptomycin Invitrogen, Karlsruhe, Germany 

PeqGold protein marker PeqLab, Erlangen, Germany 

PeqGold TriFast PeqLab, Erlangen, Germany 

PMSF Sigma-Aldrich, St. Louis, USA 

Potassium chloride (KCl) Carl Roth, Karlsruhe, Germany 
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RIPA lysis buffer Cell Signaling Technology, USA 

Roti®-Load 1 (4x) Carl Roth, Karlsruhe, Germany 

SDS Carl Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Carl Roth, Karlsruhe, Germany 

Sodium hydrogen phosphate (Na2HPO4) Roth, Karlsruhe, Germany 

Roti®-Free Stripping Buffer Carl Roth, Karlsruhe, Germany 

TEMED Carl Roth, Karlsruhe, Germany 

Thapsigargin Invitrogen, Darmstadt, Germany 

Tris-base Carl Roth, Karlsruhe, Germany 

Trypsin-EDTA Gibco, Paisley, UK 

Tween 20 Carl Roth, Karlsruhe, Germany 

Wogonin hydrate Sigma-Aldrich, St. Louis, USA 

 

2.2 Antibodies 

Antibody Source Manufacturer 

Anti-GAPDH antibody Rabbit Cell Signaling Technology, USA 

Anti-Orai1 antibody Rabbit Cell Signaling Technology, USA 

Anti-STIM1 antibody Rabbit Cell Signaling Technology, USA 

Anti-rabbit HRP-conjugated antibody Cell Signaling Technology, USA 

 

2.3 Primers 

Gene Sequence 

Orai1 – fwd CGTATCTAGAATGCATCCGGAGCC 

Orai1 – rev CAGCCACTATGCCTAGGTCGACTAGC 

STIM1 – fwd CCTCGGTACCATCCATGTTGTAGCA 

STIM1 – rev GCGAAAGCTTACGCTAAAATGGTGTCT 

GAPDH – fwd TGAGTACGTCGTGGAGTCCAC 

GAPDH – rev GTGCTAAGCAGTTGGTGGTG 

 

2.4 Kits 

GoScript™ Reverse Transcription System Promega, Hilden, Germany 

GoTaq® qPCR Master Mix Promega, Hilden, Germany 
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ECL detecting reagents Amersham, Freiburg, Germany 

eBioscience™ Annexin V Apoptosis Detection 

Kit FITC 

Thermofisher Scientific, San Diego, USA 

2.5 Solutions and Buffers 

 

Table 1. Resolving gel (10%) 

Component volumes (ml) per 5 ml gel mold volume 

H2O 1.9 

30% Acrylamide Mix 1.7 

1.5 M Tris (pH 8.8) 1.3 

10% SDS 0.05 

10% ammonium persulfate 0.05 

TEMED 0.002 

 

Table 2. Stacking gel (5%) 

Component volumes (ml) per 1ml gel mold volume 

H2O 0.68 

30% Acrylamide Mix 0.17 

1.0 M Tris (pH 6.8) 0.13 

10% SDS 0.01 

10% ammonium persulfate 0.01 

TEMED 0.004 

 

Table 3. Running buffer (10X) 

Tris base 250 mM 

Glycine 1.9 M 

SDS 1% 

dH2O Up to 1 liter 
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Table 4. Transfer buffer 

Tris base 198 mM 

Glycine 1.5 M 

dH2O Up to 1 liter 

 

Table 5. TBS (10X) 

Tris base 200 mM 

NaCl 1.3 M 

dH2O Up to 1 liter, pH 7.6 

TBS 1X was prepared using dH2O and 1% Tween 20 was added to get at the end TBST 1X. 

 

Table 6. Standard Ringer solution (pH 7.4) 

Components in mM: 

NaCl 125  

KCl 5  

MgSO4 1.2  

CaCl2 2  

Na2HPO4 2  

HEPES 32  

Glucose 5  

d.H2O To reach 1 liter 

 

Table 7. Ca2+-free Ringer solution (pH 7.4) 

Components in mM: 

NaCl 125 

KCl 5 

MgSO4 1.2 

Na2HPO4 2 

HEPES 32 

EGTA 0.5 

Glucose 5 

d.H2O To reach 1 liter 
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2.6 Equipment 

Name Company name and country origin 

Amersham hyper film GE Healthcare, München, Germany 

Agarose gel electrophoresis chamber BioRad, München, Germany 

Axiorvert 100  Carl Zeiss, Oberkochen, Germany 

BioPhotometer Eppendorf, Hamburg, Germany 

Borosilicate glass pipettes Harvard Apparatus, UK 

CFX96 real-time system Bio-Rad Laboratories, Germany 

Cuvettes, Uvette Eppendorf AG, Germany 

DMZ puller Zeitz, Augsburg, Germany 

Electrophoresis and blotting system Bio-Rad Laboratories, Germany 

EPC 9 amplifier Heka, Lambrecht, Germany 

Pipette 0,5/10, 10/100, 100/1000 LABMATE Optima, Germany 

Flow cytometry machine, FACS Calibur™ BD Biosciences, USA 

Heraeus cell culture hood Thermo Fisher Scientific, USA 

Heraeus cell culture incubator Thermo Fisher Scientific, USA 

Amersham Hyperfilm™ ECL  GE Healthcare Limited, UK 

MS31 electrical micromanipulator MW, Märzhäuser, Wetzlar, Germany 

Vortex Scientific Industries, USA 

Pipette man, pipetus®  Hirshmann Laborgerate, Germany 

pH meter Sartorius, Göttingen, Germany 

Corning® Costar® Stripette® serological 

pipettes 5, 10, 25 ml 

Corning Incorporated, Corning NY, USA 

SterileTubes 15, 50 ml Greiner bio-one, Germany  

Sterile Tips 10, 100, 200, 1000 µl Biozyme, USA 

Cell Culture plate 6, 12, 24, 96 well Costar, USA 

Tissue Culture Flask 75ml SARSTEDT, Germany 

qPCR 96 well plate Peqlab, Erlangen, Germany 
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3. Methods  

 

3.1 Cells 

 

The study has been approved by the Ethical Commission of the University of Tübingen 

(598/2011) and by the Institutional Review Board of the Technische Universität Dresden 

(EK45022009). Informed consent was obtained from all participants and/or their legal 

guardian/s. 

 

3.1.1 Isolation of fibroblast from skin biopsies 

 

Skin biopsies were isolated from ChAc patients (n=6) and healthy donors (n=6). The biopsies 

were minced by sterile techniques, washed twice in PBS supplemented with antibiotics (100 

U/ml penicillin and 100 mg/ml streptomycin) and cultivated in fibroblast medium DMEM 

(Biochrom, Berlin, Germany) supplemented with 10% FCS and antibiotics (100 U/ml 

penicillin and 100 mg/ml streptomycin) and maintained at 37°C in a humidified atmosphere 

of 5% CO2 and 95% air until fibroblast grew out of the biopsy. To detach the established 

fibroblasts, trypsin 0.25% and 0.05% EDTA were used for 5 min and the separated cells were 

aliquoted and the aliquots were cultured again with the same previously described medium. 

Cells between passage three and twelve were used for the study. 

 

3.1.2 Generation of induced pluripotent stem cells (iPSCs) 

 

The generation of iPSCs was according to the published protocol (Okita et al., 2011). 

Fibroblasts were obtained from additional patients (n=3) and healthy donors (n=3) (see 

3.1.1). 1x105 of fibroblasts were electroporated using (Nucleofector 2D, Lonza) with a total 

of 1 µg per plasmid which carries the sequences for hOCT4, hSOX2, hKLF4, hL-MYC, and 

hLIN28. After electroporation, fibroblasts were cultivated in fibroblast medium DMEM + 

10% FBS for 1 day, and then the medium was supplemented with 2 ng/ml fibroblast growth 

factor FGF-2 (Peprotech). From day 3 on, cells were cultivated in Essential 8 (E8) medium 

containing 100 µM Na-butyrate (NaB) (Sigma-Aldrich). After 3 – 4 weeks, the iPSC colonies 

were picked manually and expanded in Matrigel-coated 6-well plates. At passage 7 – 10, 
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iPSCs were characterized and frozen in E8 medium supplemented with 40% KOSR (Thermo 

Fisher Scientific), 10% DMSO (Sigma-Aldrich) and 1 µM Y-27632 (Selleckchem, Munich, 

Germany). 

A careful characterization of the generated iPSCs and the establishment of a robust and 

reliable protocol to generate neurons is important to provide consistent phenotypes. For this 

purpose, genomic and functional validation was applied to the generated cells. The genomic 

validation was done using the exclusion of plasmid-integration, SNP array analysis for 

genetic integrity and resequencing of mutation site, and the functional validation was applied 

via confirmation of expression of pluripotency marker and verification of the in vitro 

differentiation potential using a protocol yielding ß-III-tubulin/CTIP-2 positive neurons as 

described in (Hauser et al., 2016). 

 

3.1.3 Neuronal differentiation and treatment of iPSCs 

 

To generate cortical neurons, the previously described protocol was used (Shi et al., 2012). 

To achieve the neural conduction of iPSCs, dual SMAD inhibitors (10 µM SB431542 

(Sigma-Aldrich) and 500 nM LDN-193189 (Sigma-Aldrich)) were added to the 3N medium. 

After 10 days, cells were collected and expanded by cultivation in 3N medium supplemented 

with 20 ng/ml FGF-2 for 2 days. From day 12 on, cells were cultivated in 3N medium with a 

medium change every other day. Cell culture was passaged on day 27 and re-plated 

appropriately for the specific assay. (RNA/Protein isolation & Flowcytometry: 5x105 cells 

per cm2; Ca2+ measurements: 5x104 cells per cm2; Patch clamp: 2.5x105 cells per cm2).  

 

3.2 Treatments 

 

Where indicated, treatment with lithium was done by LiCl solution and cells were treated 

with 2mM. Wogonin and GSK650394 were solved in DMSO and cells were treated with 

(50 µM) and (10 µM) respectively. The solvent did not influence the effects that were 

studied. 
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3.3 Quantification of mRNA expression 

 

3.3.1 RNA isolation 

 

Cells were lysed in 500 µl TriFast reagent. 200 µl chloroform was added, heavily mixed and 

incubated in RT for 3 min, then centrifuged at 12000 x g for 15 min at 4°C. The upper layer 

was transferred into a new eppendorf tube and mixed with 250 µl ice-cold Isopropanol and 

incubated for 10 min in RT. The mixture was centrifuged at 12000 x g for 10 min at 4°C. 

After this step the RNA pellet becomes visible and the supernatant was carefully removed. 

500 µl of 70% ice-cold Ethanol was added to wash the pellet then centrifuged at 7000 x g for 

5 min at 4°C. The supernatant was carefully removed, and the pellet was left to air dry for 30 

min in RT then resuspended in 15 µl of RNase-free water for 15 min at 55°C. 

The concentration of the RNA samples was measured using BioPhotometer at λ260 and λ280 

after dilution 1:69 in RNase-free water. 

 

3.3.2 cDNA synthesis 

 

The synthesis was performed using the GoScript™ Reverse Transcription System (Promega) 

according to the manufacturer protocol. After DNase digestion, the volume of 2 µg RNA was 

completed with RNase-free water to reach the volume 10 µl, then 1 µl random primers and 1 

µl oligonucleotides where added and the mix was incubated at 70°C for 5 min, chilled 

directly in 4°C and 4 µl GoScript™ 5X Reaction Buffer, 2 µl of MgCl2, 1 µl PCR Nucleotide 

Mix and 1 µl GoScript™ Reverse Transcriptase was added, mixed and incubated at 25°C for 

5 min, 42°C for 60 min and followed with 70°C for 15 min to inactivate the reverse 

transcriptase. Samples were then either saved at - 20°C or proceeding to the next step. 
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3.3.3 Quantitative PCR 

 

Real-time polymerase chain reaction (RT-PCR) was performed to determine the transcript 

levels of the respective genes. The total reaction mix volume was 15 µl and contained: 1.5 µl 

of cDNA, 7.5 µl of 2x GoTaq® qPCR Master Mix (Promega), 1.5 µl forward and reverse 

primer mix and 4.5 µl nuclease-free water. Then amplification was performed in 96 well 

plates on a CFX96 Real-Time System (Bio-Rad) as the following program: 

1- 95°C for 5 min 

2- 95°C for 10 sec. 

3- 58°C for 20 sec. 

4- 72°C for 25 sec + Plate read 

5- GOTO 2, 40 more times  

6- 95°C for 10 sec. 

7- Melt curve: 60°C to 95°C, increment 0,2°C for 5 sec + Plate read  

 

The Data were analyzed using the ΔΔCT method and the house-keeping gene GAPDH was 

used as an internal control to standardize the mRNA levels of the sample. 

 

3.4 Protein abundance quantification 

 

3.4.1 Protein lysate 

 

The cells were cultured in 6 well plates and treated for the right time accordingly, then 

200 µl/well Trypsin (incubated in 37°C water bath for 15 min) was added to cells and 

incubated in 37°C for 5 min. Then 500 µl/well PBS was added, and the cells were collected 

in eppendorf 1.5 ml tubes, centrifuged (1000 rpm, 5min, Rt) and the pellet was washed twice 

in PBS and then re-suspended in 40 µl ice-cold RIPA lysis buffer containing 1 mM PMSF 

(Sigma Aldrich) and kept in ice for 30 min, This protein lysate was stored in - 80°C or 

proceeded with the next steps.  
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3.4.2 Protein concentration determination 

 

The protein concentration was measured using the Bradford assay (Bio-Rad). For this 

purpose, 2 µl from the protein lysate was mixed with 1 ml of diluted Bradford buffer (the 

Bradford buffer was diluted with distilled H2O 1:5), then the concentration was measured at 

λ595 by the Photometer. The Photometer was calibrated to measure absorbance till 1, and so 

if any sample gave an absorbance over this range, it was diluted with RIPA lysis buffer 

containing 1 M PMSF. 

 

3.4.3 SDS polyacrylamide gel electrophoresis 

 

With the usage of SDS-PAGE, the proteins could be separated according to their molecular 

weight (Laemmli, 1970). And for this result, 100 µg protein were solubilized in Laemmli 

sample buffer (Roti Loading Dye) and cooked at 95°C for 5 min. The gels were prepared (as 

described in Tables 1 and 2) in the gel cassettes (Electrophoresis and blotting system, Bio-

Rad) and the samples were loaded in the wells of the gel. To allocate the right protein size, 

Protein-Marker VI (Peqlab) was loaded in the gel also. The samples were separated by using 

a running buffer (see Table 3) at a voltage of 80 V, and when the proteins were concentrated, 

the voltage was raised to 100 V. 

 

3.4.4 Blotting and protein detection 

 

The proteins were electro-transferred by 100 V onto nitrocellulose membranes for 90 min in 

transfer buffer (see Table 4), and this step was chilled using ice blocks located in the transfer 

tank (Electrophoresis and blotting system, Bio-Rad). The membranes were washed with 

TBST 1X (see Table 5) and then blocked with 5% fat-free milk (Carl Roth) solved in TBST 

for 1 h at RT, then incubated with primary antibody (1:1000 in 1% fat-free milk solved in 

TBST) at 4°C overnight. After incubation, the blots were washed with TBST for 5 min, 3 

times at RT, then incubated with the anti-rabbit HRP-conjugated secondary antibody (1:2000, 

in 1% fat-free milk solved in TBST) for 1 h at RT. Additional washes with TBST were 

applied on the blots for 5 min, 3 times at RT, then the protein bands were detected using ECL 

detection reagents and quantified with Quantity One Software (BioRad, München, Germany) 

or ImageJ. 
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In some cases, the same blot was used to check more than one antibody, and for that purpose, 

the blot was washed, after the first detection, with Roti®-Free Stripping Buffer (Carl Roth) at 

57°C for 30 min, then washed and then incubated with the other wanted primary antibody 

and the same previous protocol was followed. 

 

3.5 Ca2+ measurements 

 

To measure the cytosolic Ca2+ concentration ([Ca2+]i), Fura-2 fluorescence was used. 

Cells were loaded with 2 µM of Fura-2/AM (Invitrogen) for 20-45 min at 37°C. Second, a 

Ringer standard solution (see Table 6) was added to the cells for 3 min and the cells were 

excited at λ340 and λ380 through an objective (Fluor 40x/1.30 oil) related to an inverted 

fluorescence microscope (Axiovert 100). Emitted fluorescence intensity was recorded at λ505, 

and data were acquired every 10 seconds using specialized computer software (Metafluor, 

Universal Imaging, Downingtown, USA). Then to determine SOCE; a Ca2+-free Ringer 

solution (see Table 7) was added to achieve Ca2+-free conditions for 3 min, following comes 

a depletion of intracellular Ca2+-stores using 1 µM of sarco-endoplasmic reticulum Ca2+-

ATPase inhibitor, thapsigargin (Bird et al., 2008), then Ca2+ was added again using the 

Ringer standard solution. 

To quantify Ca2+ entry, the slope (delta ratio/s) and peak (delta ratio) were calculated after 

Ca2+ re-addition. 

 

3.6 Cell death estimation 

 

A normal cell has a phosphatidylserine (PS) layer located in the inner layer of the cell 

membrane, and in apoptosis, the cell membrane becomes ruptured, which enables Annexin to 

enter and bind to PS (Reutelingsperger and van Heerde, 1997, Elmore, 2007). On the other 

hand, in necrotic cell death, the plasma membrane becomes permeable as the nucleic 

membrane, this makes it possible that nucleic acid dyes, such like propidium iodide (PI) to 

bind to the DNA and gives its red fluorescence giving a quantification of necrotic or late 

apoptotic cells (Darzynkiewicz et al., 1997). 

We used a combination of the PS marker, annexin, with the nuclear dye, PI, to detect 

apoptotic and necrotic cells by flow cytometry, and the chemicals of the experiment were 
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from the kit eBioscience™ Annexin V Apoptosis Detection Kit FITC (Thermofisher 

Scientific).  

For this purpose, cells were incubated and treated in 12 well plates, then washed from the 

medium with 200 µl PBS, centrifuged at 1000 rpm for 5 min, then washed with 200 µl of 1X 

annexin washing buffer (AWB), centrifuged and the supernatant trashed. Staining was done 

using 50 µl of AWB containing 1 µl of Annexin V-FITC (Immunotools, Friesoythe, 

Germany) and incubated in dark in 37°C for 15 min. Then 150 µl of AWB was added to the 

cells, the plate was centrifuged, and the supernatant was discarded. After that, the PI staining 

was applied using 200 µl of (AWB) containing 2 µl of PI (Bioscience, Germany) and then 

incubated in dark and 37°C for 8-10 min. After incubation, 200 µl of AWB was added and 

annexin V-FITC, as well as PI fluorescence, was determined by flow cytometry using FACS 

Caliber (BD, Heidelberg, Germany). 

 

Statistics 

Data are expressed as arithmetic means ± SEM. Statistical analysis was done by unpaired t-

test or ANOVA, and results with p < 0.05 were considered as statistically significant. 
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4. Results 

 

4.1 Effect of ChAc on Orai1 abundance 

 

To start the work, Orai1 abundance was compared between fibroblasts of healthy and ChAc 

patients. Thus, after isolating and preparation of fibroblasts from both healthy donors and 

ChAc patients starting from skin biopsies isolation and reaching the step when fibroblasts 

were ready to use, the protein abundance of Orai1 was quantified using western blotting (see 

3.4). Protein was isolated from fibroblasts, separated using SDS-PAGE, and transferred onto 

nitrocellulose membrane and incubated with Orai1 antibody. GAPDH was used as a control 

to uniform the loading of the samples on the gel. And then the membrane was incubated with 

a secondary HRP-conjugated antibody. The results showed that Orai1 protein abundance in 

fibroblasts isolated from ChAc patients was significantly lower than in fibroblasts isolated 

from healthy donors (Figure 5). 

 

Figure 5: Orai1 protein abundance in 

fibroblasts isolated from healthy 

donors and ChAc patients. 

(a) Original western blot of Orai1 protein 

abundance in Fibroblasts isolated from 

healthy donors and ChAc patients. 

(b) Arithmetic means (±SEM, n=5 

healthy donors and 5 patients) of Orai1 

protein abundance in isolated fibroblasts 

from healthy donors (white bar) and 

ChAc patients (black bar). 

** p<0.01 indicates a statistically 

significant difference compared to the 

respective value in fibroblasts isolated 

from healthy donors. Figure adapted 

from (Pelzl et al., 2017a), changed. 
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4.2 Influence of chorein deficiency on intracellular Ca2+ release and 

store-operated calcium entry (SOCE) 

 

Lack of functional Orai1 will affect SOCE (Feske et al., 2006). For checking, Fura-2 

fluorescence was used to measure the cytosolic Ca2+ activity ([Ca2+]i) (see 3.5). First, Ca2+-

free solution was applied to the cells, then to deplete intracellular Ca2+ stores, a Ca2+-free 

solution containing (1µM) thapsigargin, which is a sarco-endoplasmic reticulum Ca2+ 

ATPase (SERCA) inhibitor, was added, and this led to a rapid transient increase in 

intracellular Ca2+ activity [Ca2+]i similar in both control fibroblasts and healthy fibroblasts 

(Figure 6). Following was the re-addition of extracellular Ca2+ during the maintained 

presence of thapsigargin, and this resulted in a rapid increase of Fura-2 fluorescence in both, 

healthy control and ChAc fibroblasts referring to store-operated Ca2+ entry (SOCE) 

(Figure 6). As shown in (Figure 6), the peak of SOCE in fibroblasts isolated from ChAc 

patients was significantly lower than in fibroblasts isolated from healthy donors. 
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Figure 6: Difference of intracellular Ca2+ release and store-operated Ca2+ entry in fibroblasts 

isolated from healthy donors and ChAc patients.  

 (a) Representative tracings of Fura-2 fluorescence-ratio in fluorescence spectrometry during Ca2+-

free conditions with the presence of thapsigargin (1 µM), and then after re-addition of extracellular 

Ca2+ in fibroblasts isolated from healthy donors and ChAc patients. (b,c) Arithmetic means (±SEM, 

n=48-61 cells from 4-5 individuals) of peak (b) and slope (c) increase of Fura-2 fluorescence-ratio 

after the addition of thapsigargin into Ca2+-free conditions in fibroblasts isolated from healthy donors 

and ChAc patients. (d,e) Arithmetic means (±SEM, n=48-61 cells from 4-5 individuals) of peak (b) 

and slope (c) increase of Fura-2 fluorescence-ratio after the re-addition of extracellular Ca2+ in 

fibroblasts isolated from healthy donors and ChAc patients. ** p<0.001 indicates a statistically 

significant difference compared to the respective value in fibroblasts isolated from healthy donors. 

Figure adapted from (Pelzl et al., 2017a), changed. 
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4.3 Lithium treatment restores SOCE in fibroblasts isolated from ChAc 

patients 

 

To explore the validity of the hypothesis about lithium, fibroblasts isolated from ChAc 

patients were treated with lithium (24 hours, 2 mM) and then Fura-2 fluorescence-ratio was 

employed to check if there will be any difference on intracellular Ca2+ activity or store-

operated Ca2+ entry (SOCE) (see 3.5). Exposure of the cell to Ca2+-free solution containing 

thapsigargin (1 µM), the sarco-endoplasmic reticulum Ca2+/ATPase (SERCA) inhibitor, was 

used to deplete intracellular Ca2+ stores. This leads to an increase of intracellular Ca2+ activity 

which was significantly higher in ChAc patients-isolated fibroblasts treated with lithium 

(24 hours, 2 mM) than untreated ChAc fibroblasts (Figure 7). Then re-addition of 

extracellular Ca2+ in the continued presence of thapsigargin gave a rapid increase of Fura-2 

fluorescence reflecting SOCE, which was in fibroblasts treated with lithium (24 hours, 

2 mM) again significantly higher than untreated ChAc fibroblasts (Figure 7). 

To go deeper, fibroblasts were treated with Orai1 blocker 2-Aminotheoxydiphenyl Borat (2-

APB) (50 µM) together with lithium (2 mM) for 24 hours and the results showed that both 

slope and peak of SOCE in fibroblasts isolated from ChAc patients were significantly 

decreased by 2-APB treatment (Figure 7). 
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Figure 7: Effect of lithium treatment on fibroblasts isolated from ChAc patients without and 

with additional treatment with Orai1 blocker 2-APB. 

 (a) Representative tracings of Fura-2 fluorescence-ratio in fluorescence spectrometry before and after 

removal of extracellular Ca2+ and depletion of intracellular Ca2+ stores by thapsigargin (1 µM) and 

then followed by re-addition of extracellular Ca2+ in the continued presence of thapsigargin in 

fibroblasts isolated from ChAc patients untreated or treated with lithium (24 hours, 2 mM) alone or 

treated with both lithium (2 mM) and 2-APB (50 µM) together for 24 hours. (b,c) Arithmetic means 

(±SEM, n=23-73 cells from 4-5 individuals) of peak (b) and slope (c) increase of Fura-2 fluorescence-

ratio after the addition of thapsigargin (1µM) in fibroblasts isolated from ChAc patients without 

treatment or treated with lithium (24 hours, 2 mM) alone or treated with both lithium (2 mM) and 

2-APB (50 µM) together for 24 hours. (d,e) Arithmetic means (±SEM, n=23-73 cells from 4-5 

individuals) of peak (d) and slope (e) increase of Fura-2 fluorescence-ratio after the re-addition of 

extracellular Ca2+ in fibroblasts isolated from ChAc patients without treatment or treated with lithium 

(24 hours, 2 mM) alone or treated with both lithium (2 mM) and 2-APB (50 µM) together for 

24 hours. * P<0.05, ** p<0.01 indicates a statistically significant difference compared to the 

respective value of untreated ChAc fibroblasts. §§ p<0.01 indicates a statistically significant 

difference compared to the respective value of ChAc fibroblasts treated with lithium alone. Figure 

adapted from (Pelzl et al., 2017a), changed. 



 

43 
 

 Results 

4.4 Effect of chorein deficiency on the survival of fibroblasts isolated 

from healthy donors and ChAc patients 

 

To test if the difference in Ca2+ signaling between healthy and ChAc fibroblasts is paralleled 

by differences in apoptosis also, flow cytometry quantification was used (see 3.6). 

To identify phosphatidyl exposing cells, annexin-V-binding was utilized, while propidium 

iodide was used to identify cells with the permeable cell membrane. The results showed that 

the percentage of annexin-v-binding fibroblasts that are isolated from ChAc patients was 

significantly higher than the percentage of annexin-V-binding fibroblasts that are isolated 

from healthy donors (Figure 8). Furthermore, the percentage of propidium iodide-stained 

cells changed between healthy and ChAc fibroblasts, and this percentage was in fibroblasts 

isolated from ChAc patients significantly higher than healthy donors’ fibroblasts (Figure 8). 
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Figure 8: difference in phosphatidylserine translocation and propidium iodide uptake between 

fibroblasts isolated from healthy donors and fibroblasts isolated from ChAc patients. 

 (a,b) Representative dot blots of propidium iodide harboring versus annexin-V- binding in fibroblasts 

isolated from healthy donors and ChAc patients. (c) Arithmetic means (± SEM, n=4-5 individuals) of 

annexin-V-binding fibroblasts isolated from healthy donors and from ChAc patients and both 

expressed in the percentage of the value in healthy donors. (d) Arithmetic means (± SEM, n=4-5 

individuals) of propidium iodide harboring fibroblasts isolated from healthy donors and from ChAc 

patients and both expressed in the percentage of the value in healthy donors. * p<0.05, ** p<0.01 

indicates a statistically significant difference compared to the respective value in fibroblasts isolated 

from healthy donors. Figure adapted from (Pelzl et al., 2017a), changed. 

 

4.5 Lithium treatment leads to survival of fibroblasts isolated from ChAc 

patients  

 

To explore if the lithium treatment will make any difference in isolated fibroblasts apoptosis, 

again phosphatidylserine translocation utilizing annexin-V-binding and propidium iodide 

uptake was measured. As a result, after lithium (24 hours, 2mM) treatment on fibroblasts 

isolated from ChAc patients, the percentage of annexin-V-binding fibroblasts as well 

propidium iodide harboring fibroblasts decreased significantly compared to untreated 
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fibroblasts. Treatment of fibroblasts isolated from ChAc patients with Orai1 blocker 

2-APB (50µM), increased significantly the percentage of both, annexin-V-binding and 

propidium iodide staining. Treatment with both lithium and 2-APB didn’t result in a 

significant decrease in annexin-V-binding or propidium iodide staining fibroblasts (Figure 9). 

 

Figure 9: Effect of lithium on phosphatidylserine translocation and propidium iodide uptake in 

fibroblasts isolated from healthy donors and ChAc patients without and with Orai1 blocker 

2-APB. 

(a-e) Representative dot blots of propidium iodide staining versus annexin-V-binding fibroblasts 

isolated from healthy donors, untreated ChAc patients or treated with lithium (24 hours, 2mM) alone, 

or treated with Orai1 blocker 2-APB (24 hours, 50 µM) alone, or treated with both, lithium (2 mM) 

and 2-APB (50 µM) together for 24 hours. (f) Arithmetic means (±SEM, n=4-5 individuals) of 

percentage of annexin-V-binding fibroblasts isolated from healthy donors, or from ChAc patients 

untreated, or treated with lithium (24 hours, 2mM) alone, or treated with Orai1 blocker 2-APB 

(24 hours, 50 µM) alone, or treated with both, lithium (2 mM) and 2-APB (50 µM) together for 

24 hours. All values were expressed in percent of the value in untreated fibroblasts isolated from 

ChAc patients. (g) Arithmetic means (±SEM, n=4-5 individuals) of the percentage of propidium 

iodide staining fibroblasts isolated from healthy donors, or from ChAc patients untreated, or treated 

with lithium (24 hours, 2mM) alone, or treated with Orai1 blocker 2-APB (24 hours, 50 µM) alone, 

or treated with both, lithium (2 mM) and 2-APB (50 µM) together for 24 hours. All values were 
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expressed in percent of the value in untreated fibroblasts isolated from ChAc patients. * p<0.05, 

*** p<0.001 indicates a statistically significant difference compared to the respective value in 

untreated ChAc fibroblasts. §§ p<0.01, §§§ p<0.001 indicates a statistically significant difference 

compared to the respective value in the absence of 2-APB. Figure adapted from (Pelzl et al., 2017a), 

changed. 

 

4.6 Orai1 and STIM1 transcript and protein levels in neurons 

differentiated from ChAc patients 

 

qRT-PCR was performed to quantify the mRNA expression of Orai1 and STIM1 in both 

healthy and ChAc iPSC-differentiated neurons, and the result showed that the transcript 

levels of Orai1 and STIM1 in ChAc neurons were significantly low compared with healthy 

neurons (Figure 10). 

 

Figure 10: Orai1 and STIM1 transcript levels comparison between iPSCs-differentiated 

neurons from healthy donors and ChAc patients 

Arithmetic means (±SEM, n=4) of (a) Orai1 and (b) STIM1 transcript levels in neurons isolated from 

healthy donors and ChAc patients. * p<0.05, ** p<0.01 indicates a statistically significant difference 

compared to the respective value in iPSC-differentiated neurons from healthy donors. Figure adapted 

from (Pelzl et al., 2017b), changed. 
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The difference in transcript levels reflected on protein abundance and made it in iPSC-

differentiated neurons from ChAc patients significantly lower than those from healthy donors 

(Figure 11). 

 

Figure 11: Orai1 and STIM1 protein abundance in iPSC-differentiated neurons from healthy 

donors and ChAc patients. 

Original western blot of (a) Orai1 and (c) STIM1 protein abundance in iPSCs-differentiated neurons 

from healthy donors (Healthy) compared with neurons differentiated from ChAc patients (ChAc). 

(b) Arithmetic means (±SEM, n=4) of Orai1 protein levels in neurons isolated from healthy donors 

and ChAc patients. (d) Arithmetic means (±SEM, n=3) of STIM1 protein levels in neurons 

differentiated from healthy donors and ChAc patients.  

** p<0.01, *** p<0.001 indicates a statistically significant difference compared to the respective 

value in iPSC-differentiated neurons from healthy donors. Figure adapted from (Pelzl et al., 2017b), 

changed. 
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4.7 Lithium treatment upregulates Orai1 and STIM1 mRNA expression 

and protein abundance in iPSC-differentiated ChAc neurons 

 

To check the effect of lithium treatment on the transcript levels in iPSCs-differentiated ChAc 

neurons, neurons were treated with lithium (2 mM) for 24 hours and then qRT-PCR was 

applied (see 3.3). The results showed a significant increase in the transcript levels of Orai1 

and STIM1 in lithium-treated neurons than untreated ones (Figure 12). To study the possible 

pathway of the effect that lithium does on the transcription of Orai1 and STIM1, the role of 

the serum & glucocorticoid-inducible kinase (SGK1) was checked as it regulates the 

transcription of Orai1 and STIM1 (Eylenstein et al., 2011). For this purpose, neurons were 

treated additionally with (10 µM) GSK650394, SGK1 inhibitor, which reversed the effect of 

lithium. The transcript levels of Orai1 and STIM1 were in neurons treated with lithium and 

GSK650394 together significantly lower than lithium just treated neurons, and even lower 

than untreated ChAc neurons (Figure 12). 

 

Figure 12: Transcription levels of Orai1 and STIM1 after lithium treatment with and without 

SGK1 inhibitor GSK650394 in iPSC-differentiated neurons from ChAc patients. 

Arithmetic means of (a) Orai1 and (b) STIM1 mRNA abundance in untreated (Ø) iPSCs-

differentiated ChAc neurons and after 24 h of lithium (2 mM) treatment without (Li+) and with 

(Li++GSK) presence of SGK1 inhibitor GSK650394 (10 µM). ## p<0.01, ### p<0.001 indicates 

statistically significant difference compared to untreated neurons. §§ p<0.01, §§§p<0.001 indicates a 

statistically significant difference compared to the respective value of lithium alone treated neurons. 

Figure adapted from (Pelzl et al., 2017b), changed. 
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Western blotting was used to check if the effect of lithium treatment was the same on protein 

abundance as mRNA abundance. 

Again, neurons were treated with (2 mM) lithium for 24 hours and that resulted in a 

significant increase of Orai1 and STIM1 protein abundance (Figure 13). Additional treatment 

with (10 µM) of SGK1 inhibitor GSK650394 reversed the effect of lithium and decreased the 

levels of Orai1 and STIM1 protein abundance (Figure 13). 

 

Figure 13: Protein abundance of Orai1 and STIM1 after lithium treatment without and with 

SGK1 inhibitor GSK650394 in iPSC-differentiated neurons from ChAc patients. 

Original western blot of (a) Orai1 and (c) STIM1 protein abundance in untreated iPSCs-differentiated 

ChAc neurons (Ø) compared with neurons after (2 mM) lithium treatment for 24 hours without (+Li) 

and with (+Li+GSK) presence of (10 µM) SGK1 inhibitor GSK650394. (b) Arithmetic means 

(±SEM, n=4) of Orai1 protein levels in iPSCs-differentiated ChAc neurons without and with (2 mM) 

lithium treatment for 24 hours without or with addition of (10 µM) SGK1 inhibitor GSK650394. 

(d) Arithmetic means (±SEM, n=3) of STIM1 protein levels in iPSCs-generated ChAc neurons 

without and with (2 mM) lithium treatment for 24 hours without or with addition of (10 µM) SGK1 

inhibitor GSK650394. # p<0.05, ## p<0.01 indicates statistically significant to respective value in 

untreated samples. § p<0.05, §§ p<0.01 indicates statistically significant to respective value in lithium 

alone treatment. Figure adapted from (Pelzl et al., 2017b), changed. 
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4.8 Lithium treatment up-regulates SOCE in iPSC-differentiated ChAc 

neurons 

To check if the decreased expression of Orai1 and STIM1 in ChAc generated neurons is 

paralleled by impairment of store-operated Ca2+ entry (SOCE), the calcium measurement 

method was processed using Fura2 fluorescence (see 3.5). Starting is cells exposure to the 

sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM) in the 

absence of extracellular Ca2+, which empties the intracellular Ca2+ stores and causes an 

increase of [Ca2+]i in healthy neurons similar to ChAc neurons (Figure 14 a-c). Then 

subsequent extracellular Ca2+ was added again in the presence of thapsigargin which caused a 

sharp increase of [Ca2+]i referring to SOCE, and this effect was in ChAc neurons significantly 

less than healthy neurons, and this effect was significant in both the slope and the peak of 

[Ca2+]i (Figure 14 a,d,e). 

SOCE was measured also after treatment with (2 mM) lithium for 24 hours to check if this 

has an effect, and it resulted in a significant increase of both peak and slope of SOCE in 

lithium-treated samples in comparison to untreated ChAc neurons and resulted that SOCE in 

ChAc neurons treated with lithium was similar to untreated healthy neurons (Figure 14 d,e). 
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Figure 14: Effect of lithium treatment on intracellular Ca2+ release and SOCE in neurons 

differentiated from healthy donors and ChAc patients. 

(a) Representative tracings of Fura-2 fluorescence-ratio in fluorescence spectrometry before and after 

extracellular Ca2+ removal (0 Ca2+) and in the presence of thapsigargin (1 µM) and then re-addition of 

extracellular Ca2+ in iPSCs- differentiated neurons from healthy donors and from ChAc patients 

without and with (24 hours, 2 mM) lithium treatment. (b,c) Arithmetic means (±SEM, n=37-74 cells 

from 4 individuals) of peak (b) and slope (c) increase of Fura-2-fluorescence-ratio after addition of 

thapsigargin (1 µM) in iPSCs-differentiated neurons from healthy donors and in iPSCs- differentiated 

neurons from ChAc patients without and with lithium (24 hours, 2 mM) treatment. (d,e) Arithmetic 

means (±SEM, n=37-74 cells from 4 individuals) of peak (d) and slope (e) increase of Fura-2-

fluorescence-ratio which follows the re-addition of extracellular Ca2+ in iPSC-generated neurons from 

healthy donors and in iPSCs-differentiated neurons from ChAc patients without and with lithium 

(24 hours, 2 mM) treatment. * p<0.05 indicates a statistically significant difference compared to 

respective value in neurons from healthy donors, # p<0.05 indicates a statistically significant 

difference compared to respective value in neurons from ChAc patients untreated with lithium. Figure 

adapted from (Pelzl et al., 2017b), changed. 

[d
e
lt

a
 r

a
ti

o
] 

p
e

a
k

 

 

b 

[d
e
lt

a
 r

a
ti

o
/s

] 
s
lo

p
e
 c 

[d
e
lt

a
 r

a
ti

o
/s

] 
s
lo

p
e
 

 
e 

[d
e
lt

a
 r

a
ti

o
] 

p
e

a
k

 

 

d 



 

52 
 

 Results 

4.9 Lithium supports the survival of ChAc iPSC-differentiated neurons 

 

To check if the difference that was found in SOCE between healthy and ChAc neurons is 

paralleled with a difference in neuronal apoptosis, annexin-V binding and propidium iodide 

uptake were measured to identify the apoptotic neurons by flow cytometry (see 3.6). The 

results showed that the percentage of annexin-V-binding and propidium iodide uptake in 

iPSCs-differentiated neurons from ChAc patients was significantly higher than in iPSCs-

differentiated neurons from healthy donors (Figure 15 a,b,f,g). Treatment with 2 µM lithium 

for 24 hours changed the results and showed that the percentage of annexin-V-binding and 

propidium iodide uptake in treated ChAc neurons was significantly lower than the percentage 

in untreated ChAc neurons (Figure 15 b,c,f,g). To check if the effect of lithium treatment on 

Orai1 has a further effect on apoptosis, ChAc neurons were treated with Orai1 blocker 2-APB 

(50 µM) with and without the addition of (2 mM) lithium. This exposure resulted in a 

significant increase in the percentage of annexin-V-binding and propidium iodide uptake and 

reversed the effect of lithium treatment on this percentage in ChAc neurons (Figure 15 

d,e,f,g). 
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Figure 15: Effect of lithium and Orai1 blocking on phosphatidylserine translocation and 

propidium iodide uptake in iPSC-differentiated neurons from healthy donors and ChAc 

patients. 

(a,e) Representative dot blots of annexin-V-binding versus propidium iodide staining in 

iPSCs-differentiated neurons from healthy donors and from ChAc patients without and with treatment 

with lithium (24 hours, 2 mM), and with 2-APB (50 µM) alone or with lithium treatment (2 mM) 

together. (f,g) Arithmetic means (±SEM, n=4-5 individuals) of normalized annexin-V-binding (f) or 

propidium iodide (g) stained iPSCs-differentiated neurons from healthy donors, ChAc patients 

without and with lithium (24 hours, 2 mM) treatment, with Orai1 blocker 2-APB (50 µM) alone or 

with lithium together. ** p<0.01 indicates a statistically significant difference compared to the 

respective value in neurons from healthy donors. ## p<0.01 indicates a statistically significant 

difference compared to the respective value in ChAc neurons without treatment. § p<0.05, §§ p<0.01 

indicates a statistically significant difference compared to the respective value in ChAc neurons 

without 2-APB treatment. Figure adapted from (Pelzl et al., 2017b). 
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4.10 Inhibition of NFкB abrogates the effect of lithium on Orai1 and 

STIM1 mRNA and protein abundance in iPSC-differentiated ChAc 

neurons 

To have a wider physiological insight of the pathway that makes lithium effective on the 

expression of Orai1 and STIM1, the role of NFкB, as a transcriptional activator of Orai1 and 

STIM1 (Eylenstein et al., 2012, Lang and Hoffmann, 2012), was checked. For this reason, 

iPSC-differentiated neurons from ChAc patients were treated with NFкB inhibitor wogonin. 

Wogonin is a known inhibitor of NFкB by inhibition of the phosphorylation of IкB and this 

prevents the translocation of NFкB into the nucleus (Zhao et al., 2010). To check if this is the 

effect also in ChAc neurons, we treated neurons with (50 µM) of NFкB inhibitor wogonin for 

24 hours. Neurons were then treated with both lithium (2 mM) and wogonin (50 µM) for 

24 hours. The results showed that wogonin alone treatment decreased significantly the 

transcript levels of Orai1 (Figure 16 a) and STIM1 (Figure 16 b). Treatment of neurons with 

lithium (24 hours, 2 mM) together with NFкB inhibitor wogonin (50 µM) resulted in 

abrogating the effect of lithium and a significant decrease in Orai1 and STIM1 transcript 

levels compared even with untreated ChAc neurons (Figure 16). 

 

Figure 16: Effect of lithium treatment with and without NFкB inhibition by wogonin on Orai1 

and STIM1 transcript levels in ChAc neurons. 

Arithmetic means of (a) Orai1 and (b) STIM1 transcript levels in iPSCs-differentiated neurons from 

ChAc patients untreated, treated with lithium (24 hours, 2 mM) alone, treated with NFкB inhibitor 

wogonin (24 hours, 50 µM) alone or treatment with both lithium (2 mM) and wogonin (50 µM) for 

24 hours. ## p<0.01, ### p<0.001 indicates statistically significant difference compared to respective 

value in untreated ChAc neurons. §§ p<0.01, §§§ p<0.001 indicates a statistically significant 

difference compared to the respective value in ChAc neurons treated with lithium alone. Figure 

adapted from (Sukkar et al., 2018), changed. 
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To check if the effect of NFкB inhibition with wogonin on the transcript levels of Orai1 and 

STIM1 is paralleled with the same effect on protein abundance, iPSC-differentiated neurons 

from ChAc patients were treated with lithium (2 mM) with and without wogonin (50 µM). 

Then western blotting was employed to check the protein abundance (see 3.4). The results 

showed that treatment with NFкB inhibitor wogonin (50 µM) together with lithium (2 mM), 

abrogated the effect of lithium and led to a significant decrease in the protein abundance 

Orai1 and STIM1 comparing to treatment with lithium (2 mM) alone (Figure 17). 

 

Figure 17: Influence of NFкB inhibitor wogonin on lithium treatment on the protein abundance 

of Orai1 and STIM1. 

 (a,b) Original western blot of Orai1 (a) and STIM1(b) protein abundance in iPSCs-differentiated 

ChAc neurons untreated or with lithium (24 hours,2 mM) treatment alone or together with NFкB 

inhibitor wogonin (50 µM). (c,d) Arithmetic means (±SEM, n=5) of Orai1 (c) and STIM1 (d) protein 

abundance in iPSCs-generated neurons from ChAc patients untreated, treated with lithium (24 hours, 

2 mM) or treated with both lithium (2 mM) and NFкB inhibitor wogonin (50 µM) for 24 hours. 

# p<0.05, ## p<0.01 indicates statistically significant difference compared to respective value in 

untreated ChAc neurons. § p<0.05, §§§ p<0.001 indicates a statistically significant difference 

compared to the respective value in ChAc neurons treated with lithium alone. Figure adapted from 

(Sukkar et al., 2018), changed. 
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4.11 Inhibition of NFкB abrogates the effect of lithium treatment on 

SOCE in iPSC-differentiated ChAc neurons 

 

Fura-2 fluorescence was employed to check if the altered expression of Orai1 and STIM1 is 

also paralleled by changes in store-operated Ca2+ entry (SOCE) (see 3.5). After emptying the 

intracellular Ca2+ stores, a transient increase in [Ca2+]i happened and this increase was in 

samples treated with lithium alone higher than those untreated ChAc neurons (Figure 18). 

Re-addition of extracellular Ca2+ in the presence of thapsigargin resulted in an increase of 

[Ca2+]i significantly higher in samples treated with lithium (2mM) alone compared to 

untreated samples (Figure 18 d,e). SOCE was significantly decreased in ChAc neurons 

treated with NFкB inhibitor wogonin (50 µM) compared with untreated ChAc neurons and 

also with when lithium treatment was given with wogonin (Figure 18 d,e). 
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Figure 18: Intracellular Ca2+ release and store-operated Ca2+ entry (SOCE) after treatment with 

lithium without or with NFкB inhibitor wogonin in iPSC-differentiated neurons from ChAc 

patients. 

(a) Representative tracings of Fura-2 fluorescence-ratio in fluorescence spectrometry before and 

following extracellular Ca2+ removal (0 Ca2+) and then the addition of SERCA inhibitor thapsigargin 

(1 µM), followed by re-addition of extracellular Ca2+ in neurons generated from ChAc patients 

untreated and treated with lithium (24 hours, 2 mM) alone, with NFкB inhibitor wogonin 

(24  hours, 50 µM) alone, or both lithium and wogonin treatment. (b,c) Arithmetic means (±SEM, 

n=30-40 cells from 3 individuals) of (b) slope and (c) peak increase of Fura-2 fluorescence-ratio after 

the addition of (1 µM) thapsigargin in neurons generated from ChAc patients untreated and treated 

with lithium (24 hours, 2 mM) alone, with NFкB inhibitor wogonin (24 hours, 50 µM) alone, or both 

lithium and wogonin treatment. (d,e) Arithmetic means of (d) slope and (e) peak increase of Fura-2 

fluorescence-ratio after re-addition of extracellular Ca2+ indicating SOCE in neurons generated from 

ChAc patients untreated and treated with lithium (24 hours, 2 mM) alone, with NFкB inhibitor 

wogonin (24 hours, 50 µM) alone, or both lithium and wogonin treatment. # p<0.05, ## p<0.01 

indicates statistically significant difference compared to respective value in untreated ChAc neurons. 

§§ p<0.01 indicates a statistically significant difference to the respective value in ChAc neurons 

treated with lithium alone. Figure adapted from (Sukkar et al., 2018), changed. 
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4.12 Wogonin abrogates the effect of lithium on the survival of iPSC-

differentiated neurons from ChAc patients 

To explore if the inhibition of NFкB will influence the effect of lithium on the survival of 

ChAc neurons, again phosphatidylserine translocation utilizing annexin-V-binding and 

propidium iodide uptake was measured (see 3.6). The results showed that NFкB inhibitor 

wogonin treatment (50 µM) abrogated and reversed the effect of lithium when treated 

together and decreased both the annexin V binding percentage and propidium iodide uptake 

(Figure 21). 

 

Figure 19: Influence of wogonin on the lithium effect on survival of iPSC-differentiated neurons 

from ChAc patients.  

(a-d) Representative dot blots of annexin-V-binding versus propidium iodide staining in 

iPSCs-generated neurons from ChAc patients without and with treatment with lithium (24 hours, 2 

mM), and with NFкB inhibitor wogonin (50 µM) alone or with lithium treatment (2 mM) together.  

(e,f) Arithmetic means (±SEM, n=3 individuals) of normalized annexin-V-binding (e) or propidium 

iodide (f) stained iPSCs-generated neurons from ChAc patients without and with lithium (24 hours, 2 

mM) treatment, with NFкB inhibitor wogonin (50 µM) alone or with lithium together. # p<0.05, ## 

p<0.01, ### p<0.001 indicates a statistically significant difference compared to the respective value in 

untreated ChAc neurons.  

§§§ p<0.001 indicates a statistically significant difference compared to the respective value in neurons 

treated with lithium alone.  
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5. Discussion  

 

This study is done to gain a pathophysiological insight into the effect of 

Chorea Acanthocytosis (ChAc), i.e. chorein deficiency, on cell survival and defective 

regulation of Orai1 and STIM1 expression with subsequent impairment of store-operated 

Ca2+ entry (SOCE). SOCE is responsible to trigger oscillations of cytosolic Ca2+ activity 

([Ca2+]i) and thus affects cell survival and growth (Taylor et al., 2008, Heise et al., 2010, 

Parkash and Asotra, 2010). These oscillations appear when the increase of intracellular Ca2+ 

concentration occurs as repetitive short pulses, which has a role in the activation of Ca2+-

dependent transcription factors and the reorganization of actin filament network (Lang et al., 

2006b, Lang and Stournaras, 2014), but when the increase of cytosolic Ca2+ activity is 

sustained, it leads to apoptosis in a variety of cell types (Green and Reed, 1998, Berridge et 

al., 2000, Lang and Hoffmann, 2012).  

In this study, it is shown that SOCE was significantly down-regulated in fibroblasts and 

iPSC-differentiated neurons of ChAc patients compared with samples from healthy donors 

(Pelzl et al., 2017a, Pelzl et al., 2017b). The decrease of SOCE was synchronized by 

increased levels of apoptosis in ChAc fibroblasts and iPSC-differentiated neurons (Pelzl et 

al., 2017a, Pelzl et al., 2017b). 

On the other hand, Orai isoforms and their regulators STIM 1 or 2 play a part in the Ca2+ 

oscillations and contribute to the survival and proliferation of tumor cells as well as neural 

stem/progenitor cells (Peinelt et al., 2006, Putney, 2007, Qu et al., 2011, Prevarskaya et al., 

2011, Bergmeier et al., 2013, Prevarskaya et al., 2014, Somasundaram et al., 2014). The 

protein and mRNA abundance of Orai1 and STIM1 were significantly downregulated in 

ChAc iPSC-differentiated neurons compared to healthy donors (Pelzl et al., 2017b). 

As ChAc disease has no clear cure so far (Velayos Baeza et al., 1993, Schneider et al., 2006), 

this study investigated the effect of the well-known psychiatric medicine, lithium, on the 

pathological variance in fibroblasts and iPSC-differentiated neurons of ChAc patients. 

Lithium proved a protective effect in this study by reducing apoptosis and upregulating 

SOCE in fibroblasts and iPSC-differentiated neurons from ChAc patients (Pelzl et al., 2017a, 

Pelzl et al., 2017b). 

The present study observes the signaling link between chorein deficiency and Orai1/STIM1. 

Accordingly, Orai1 and STIM1 transcript and protein levels were elevated by lithium 

treatment in ChAc, while the protective effect of lithium was abrogated by Orai1 inhibition 
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(Pelzl et al., 2017a, Pelzl et al., 2017b, Sukkar et al., 2018). These observations could 

speculate that lithium may modify the pathophysiology of neurodegeneration in partly by up-

regulation of neuronal Orai1 and STIM1 expression as well as SOCE, which will lead to 

stimulate proliferation of neuronal progenitor cells and inhibit neuronal apoptosis 

(Somasundaram et al., 2014). 

Previously was shown that Orai1 expression is regulated by the PI3K pathway (Raimondi and 

Falasca, 2011). This pathway includes activation of serum and glucocorticoid-inducible 

kinase (SGK1), which in turn phosphorylates the IKK complex and thus activates it (Lang et 

al., 2006a). The active IKK phosphorylates IкB proteins that are bounded to NFкB, and when 

the latter is free, it migrates into the nucleus causing the transcriptional activation of Orai1 

and STIM1 and subsequently activating SOCE (Zhang et al., 2005a, Lang et al., 2012, 

Eylenstein et al., 2012) (Figure 20). Moreover, SGK1 is effective by the inhibition of 

Nedd4-2 induced degradation of Orai1 protein (Lang et al., 2012, Schmidt et al., 2014). 

Based on these observations, inhibition of SGK1 by GSK650394 in this study resulted in 

reversing the effect of lithium on SOCE and cell survival which highlights the impact of 

SGK1 on the protective role of lithium (Pelzl et al., 2017b). 

The mechanisms that reflect the neuroprotective effect of lithium are several. It activates Akt 

which in turn phosphorylates BAD protein resulting in suppressing cell death (Chalecka-

Franaszek and Chuang, 1999, Datta et al., 1997). Furthermore, lithium ions can also inhibit 

GSK-3 (Stambolic et al., 1996). This protective effect linking to many studies which showed 

that overexpression of GSK3-β caused apoptosis of neuronal PC12 cells (Pap and Cooper, 

1998), and GSK3, showed to elevate apoptosis of neuronal SH-SY5Y cells (Bijur et al., 

1999). In another study, cell death of sympathetic neurons that was mediated by loss of PI3K 

signaling was reduced by inhibition of GSK3 (Crowder and Freeman, 1998). These 

observations support the idea that GSK3 has a pro-apoptotic role in neuronal cells, and 

inhibition of GSK3 in these cells, which lithium does, improves the pro-survival PI3K 

signaling pathway (Maurer et al., 2014, Cross et al., 1995). 

Along these lines, NFкB could be also activated in two ways; either by Akt activation or by 

partial inactivation of GSK-3: on the one hand, when Akt is active, it leads to IKK 

stimulation which in turn phosphorylates the IкB protein and p65/RelA subunit to end with 

enhanced activation of NFкB (Bai et al., 2009). On the other hand, GSK3 can phosphorylate 

the NFкB inhibitory protein NFкB2/ p100 and thus prevents its IкB-like role in 
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suppressing NFкB, which enables NFкB to complete its pro-survival and transcriptional role 

(Siebenlist et al., 1994, Ghosh and Karin, 2002, Busino et al., 2012, Fukushima et al., 2012). 

Depending on these important observations, and as lithium is able to activate Akt and inhibit 

GSK3 as well, this could mean that the effect of lithium on the expression of Orai1 and 

STIM1 showed in this study, might be achieved through NFкB activation (Stambolic et al., 

1996, Chalecka-Franaszek and Chuang, 1999). 

As for experimental evidence, inhibition of NFкB by wogonin in this study decreased 

significantly Orai1 and STIM1 transcript levels as well as SOCE and induced apoptosis in 

fibroblasts and iPSC-differentiated neurons of ChAc patients (Sukkar et al., 2018). Moreover, 

it abrogated the stimulating effect of lithium, which reflects the stimulating effect of NFкB in 

neurons in both, the presence and absence of lithium, and highlights the potential role that 

NFкB may play in the effect of lithium (Sukkar et al., 2018). However, these observations are 

not evidencing whether NFкB has an inhibitory effect on neurodegeneration or not which is 

still to be investigated. 

This study does not address the signaling linking for cell apoptosis. It is more probable that 

this signaling will contain a role of the PI3K pathway, which includes the kinase SGK1 

(Raimondi and Falasca, 2011) and which are known for the upregulation of Orai1 (Lang et 

al., 2012). In view of the present study, the pathological suicidal death of neurons in ChAc 

patients, which is the decisive pathophysiological mechanism that leads to this devastating 

disease (Jung et al., 2011), could be delayed or even held by lithium treatment. 

A good and also critical feature of lithium ions is their water-solubility and the ability to 

distribute throughout all of the body water in the same way as sodium ions (Na+) (Sproule et 

al., 2000). Lithium can cross the blood-brain barrier (BBB) (Platman and Fieve, 1968). 

However, there are age-related changes in BBB as it becomes weaker by age which alters the 

uptake of lithium into the brain and thus affects the pharmacokinetics of lithium in the older 

adults (Mooradian, 1994, Sproule et al., 2000). Furthermore, the volume of distribution and 

renal clearance decreases with age also, and this emphasizes reducing the dose of lithium for 

older individuals (Hewick et al., 1977). Anyway, the onset age average of 

Chorea Acanthocytosis is 35 years old, which is early for the complications of lithium (Zhang 

et al., 2013). Studies showed neurotoxicity of lithium including prolonged recovery from 

lithium-induced delirium and adverse consequences on memory and speed of cognitive and 

psychomotor execution, but anyway, like the complications of weak BBB, these cases were 
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concerned in older individuals more compared with younger patients with bipolar disorder 

(Nambudiri et al., 1991, Pachet and Wisniewski, 2003, Zhang et al., 2013). 

Limitations of the study include the sensitivity of iPSC-differentiated neurons as they were 

transferred from the institute where they were generated to the further experiments institute, 

and they many times were not usable when they arrived, as well the lack number of patients 

with ChAc.  

 

 

Figure 20: Postulated regulation of PI3K pathway via chorein. 

Chorein interacts with PI3K and stimulates it (Wu et al., 2007, Foller et al., 2012, Honisch et al., 

2015c). Activation of PI3K leads to the formation of phosphatidylinositol 3,4,5-triphosphate (PIP3) 

from phosphatidylinositol 4,5-bisphosphate (PIP2) (Scharenberg and Kinet, 1998). 

3-phosphoinositide-dependent kinase (PDK1), which binds to PIP3, leads to phosphorylation and thus 

the activation of SGK1 (Lang and Cohen, 2001). In turn, SGK1 leads to phosphorylation of IкB and 

the translocation of NFкB into the nucleus where it works on the upregulation of Orai1 and STIM1 

(Lang et al., 2006a, Eylenstein et al., 2012). Accordingly, when chorein is nonfunctional, i.e. 

Chorea Acanthocytosis, this pathway will be inactive which leads to downregulation of Orai1 and 

STIM1 and thus SOCE, as well increases apoptosis levels (Velayos Baeza et al., 1993, Pelzl et al., 

2017a, Pelzl et al., 2017b, Sukkar et al., 2018, Foller et al., 2012, Honisch et al., 2015c).  
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6. Conclusion 

 

The present observations reveal that Chorea Acanthocytosis leads to the downregulation of 

Orai1 and STIM1 expressions, as well as store-operated Ca2+ entry which leads to 

compromising neuronal cell survival. On the contrary, lithium up-regulates store-operated 

Ca2+ entry and reduces neuronal apoptosis, beneficial effects abrogated by the pharmaceutical 

inhibitions of Orai1 or its regulators SGK1 and NFкB. 
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