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Abstract

This cumulative thesis is concerned with theoretical quantum metrology, the theory of

measurement and estimation using quantum resources [23, 60]. Possible applications of

quantum-enhanced sensors include the measurement of magnetic fields [62, 57], gravi-

tational wave detection [25, 1], navigation [21], remote sensing [2], or the improvement

of frequency standards [35].

Many proposals for quantum-enhanced sensors rely on the preparation of non-

classical initial states and integrable dynamics [51]. However, such non-classical states

are generally difficult to prepare and to protect against decoherence [38, 13]. As an

alternative, in this thesis, we propose so-called quantum-chaotic sensors [16] which

make use of classical initial states that are easy to prepare while quantum enhancements

are applied to the dynamics. This approach is motivated by the insight that quantum

chaos and quantum metrology are both characterized by the sensitivity to small changes

of the dynamics [26, 41]. At the example of the quantum kicked top model [31], where

nonlinear control pulses render the dynamics quantum-chaotic, we explore different

dynamical regimes for quantum sensors. Further, we demonstrate that quantum chaos

is able to alleviate the detrimental effects of decoherence [16]. In particular, we present

a proposal for a quantum-chaotic cesium-vapor magnetometer [8, 17].

With the help of reinforcement learning, we further optimize timing and strength

of the nonlinear control pulses for the kicked top model with superradiant damping.

In this case, the optimized control policy is identified as a dynamical form of spin

squeezing [55].

Another part of this thesis deals with Bayesian quantum estimation [36] and, in

particular, with the problem of experiment design heuristics. We train neural networks

with a combination of supervised and reinforcement learning to become fast and strong

experiment design heuristics [19]. We demonstrate the versatility of this method using

examples of single and multi-parameter estimation where the trained neural networks

surpass the performance of well-established heuristics [14, 64].

Finally, this thesis deals with a long-time outstanding conjecture in quantum

metrology [45]: we prove this conjecture and find an expression for the maximal

quantum Fisher information for any mixed initial state and any unitary dynamics,

provide conditions for optimal state preparation and optimal control of the dynamics,

and utilize these results to prove that Heisenberg scaling can be achieved even with

thermal states of arbitrary (finite) temperature [18].
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Chapter 1

Introduction

In this chapter we introduce several selected basic concepts of quantum metrology

which are essential for the understanding of this work. Note that the publications and

manuscripts, and only the publications and manuscripts, provide a precise formulation

of all results of this thesis and provide an overview of the related literature. Therefore,

I would like to refer to the corresponding publications [16–18, 55, 19] (see Appendix)

for a precise formulation of results and a summary of the relevant literature.

Quantum metrology is a sub-discipline of quantum information and as such is part

of theoretical quantum physics. The objective of quantum metrology is to estimate

a parameter or multiple parameters of interest (magnetic fields, temperature, . . . )

with the help of quantum experiments. Quantum metrology provides the theoretical

framework which relates properties of experiments with the estimation of parameters.

With the objective of quantum metrology in mind, it is clear that we aim to design

quantum experiments which allow us to perform parameter estimation in the best

possible way. Therefore, it is important to introduce a figure of merit for the estimation

of parameters. To this end, we first introduce a model of a paradigmatic quantum

experiment in the context of quantum metrology, see Figure 1.1. We distinguish

between four steps: (i) state preparation, (ii) dynamics, (iii) measurement, and (iv)

processing of the measurement outcomes [23].

The motivation for such a model comes from the insight that parameter estimation

based on measurement outcomes requires knowledge about the experiment. Imagine

(i) state preparation (ii) dynamics (iv) estimation(iii) measurement

quantum experiment

Figure 1.1 Model for a quantum sensor. It consists of a quantum experiment with
state preparation, dynamics, and measurement [steps (i) to (iii)] and a post processing
of the measurement outcomes [step (iv)].
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Figure 1.2 Example of a quantum sensor. An alkali-vapor magnetometer with two
lasers (depicted as one) for state preparation and readout. State preparation consists
of polarizing the spins of the alkali atoms. Readout consists of measuring the (Faraday-
rotated) polarization of transmitted (linearly polarized, off-resonant) light. Figure
adapted from Ref. [17].

there are unknown, possibly time-dependent influences on the quantum system under

consideration. Generally, such influences can have an unknown effect on the (statistic

of) measurement outcomes. Then, it will be impossible or at least problematic to infer

the parameters of interest from the measurement outcomes because changes in the

measurement outcomes may either originate from changes in the parameters of interest

or from the unknown influences. This is the reason why we aim to design experiments

where the only unknown influences on the statistic of measurement outcomes is given

by the parameters of interest.

In step (i), a quantum system is prepared in an initial state. For example, consider

the problem of magnetic field estimation with the spins of atoms at room temperature

[3, 54, 11, 56], see Figure 1.2. Given a bunch of atoms with non-zero atomic spin in a

vapor cell, we want to prepare the collective spin of these atoms in a polarized state,

i.e., ideally all the individual spins are oriented equally. This can, for instance, be

achieved with a laser pulse. In this way we avoid that the measurement outcomes will

be determined by the otherwise random orientation of the atomic spins. However, there

are effects competing with the optical polarization process, for instance, originating

from interactions between the atoms [4]. In such cases, the process of state preparation

itself requires an appropriate model such that we know the resulting prepared state.

Let us denote the initial state by ρ, which is a density matrix that characterizes the

initial state.

In step (ii), the quantum system is subjected to a dynamics. The purpose of

this step is to encode the parameters of interest in the state of the quantum system.

Information is transferred from an environment to the quantum system. This means

that the resulting state, after the dynamics, depends on these parameters (unless an
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eigenstate of the dynamics was prepared in step (i); obviously, it does not make much

sense to do this). Let us denote the parameters that we want to estimate by a vector

θ = (θ1, θ2, . . . ) where θj is the jth parameter of interest. In case of single-parameter

estimation, θ is replaced by a scalar θ. The dynamics can be described by a quantum

channel, a completely positive and trace-preserving map from density matrices to

density matrices. Unitary dynamics is a special case that is often considered for

idealized models of quantum sensors. Let us denote the state after the dynamics as

ρ(θ).

Returning to our example of magnetic field estimation with atomic spins, let us

assume that we know the orientation of a given external magnetic field and that we

would like to estimate its amplitude. To do so, we let the atomic spins precess in the

magnetic field for a given time (this is a unitary evolution of the quantum system). This

process is well known as Larmor precession: the precession frequency of the atomic

spins is proportional to the magnetic field amplitude, with known proportionality

constant gµB, where g is the Landé g factor and µB is the Bohr magneton. Thus, for a

given precession time, the resulting state, i.e., the orientation of the spins, depends

on the magnetic field amplitude. Under realistic conditions, the interactions between

atoms or interactions of the atoms with the walls of the vapor cell contribute to the

dynamics. Such processes are summarized as decoherence processes or, in case of

energy exchange with an environment (such as the walls), as dissipative processes.

However, even such complicated processes can be taken into account (for instance, by

numerically solving the corresponding master equations) and one obtains an effective

dynamics for each atomic spin [4].

In step (iii), the state ρ(θ) is measured. This is when information is transferred from

the quantum system to a classical processing unit for post processing the measurement

outcomes. The physical processes involved during the measurement process may be

very complicated. Nevertheless, quantum metrology provides a concise framework to

characterize the relevant properties of the measurement process: with the help of a

so-called positive operator-valued measure (POVM) we can calculate the expected

probabilities for a measurement outcome for a given state ρ(θ) [32, 46]. A POVM

consists of N positive semidefinite operators {Πj}Nj=1, Πj ≥ 0, which satisfy
∑N

j=1 Πj =

1 and correspond to N different measurement outcomes (a generalization to a continuous

range of measurement outcomes is possible). Then, the probability px of obtaining the

xth measurement outcome is obtained according to the Born rule, px = tr [Πxρ(θ)].

POVMs represent the most general way to characterize measurements and include the

well-known von Neumann measurement as a special case. Also weak and continuous

measurements can be described based on POVMs [37].

Returning once again to our example of magnetic field estimation with polarized

atoms, one way to measure the spin state relies on the Faraday effect. Shooting with

a linearly polarized laser beam at the polarized atoms, the polarization of the laser

pulse is rotated depending on the polarization of the atoms. Then, information about

the magnetic field amplitude is encoded in the polarization of the transmitted laser
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pulse, which, in turn, can be measured easily using a polarization beam splitter and

photodetectors, see Figure 1.2.

Step (iv) consists of the post processing the collected data in order to estimate θ.

From a mathematical perspective, this is a problem of statistical inference [33]. We

can distinguish two important approaches to statistical inference: the frequentist and

the Bayesian one, which both will be discussed in the following.

1.1 The Frequentist Approach

to Quantum Parameter Estimation

In the frequentist approach, we collect data, i.e., measurement outcomes, typically

by repeating the experiment [steps (i) to (iii)] many times or by at least performing

experiments in a predefined way (collecting all the measurement outcomes). Then, we

estimate θ using an estimator function. Intuitively, we would like to pick an estimate

θ̂ which is most likely given by the observed measurement outcomes. This notion can

be formulated mathematically and is well known as maximum likelihood estimation

(MLE) [33]. MLE provides us with a strong estimate and as a figure of merit for the

goodness of the estimation we typically consider the variance of the estimator θ̂MLE.

For the sake of simplicity, let us assume for the moment that we repeat an experiment

M times. Then, the problem of experiment design, i.e., how to design steps (i) to

(iii), is reduced to how to design one experiment (that is repeated M times). This

problem can be tackled a priori, i.e., before the measurements are performed. Clearly,

a solution of this problem will generally depend on many factors such as properties of

the estimator function of our choice, the number of repetitions M , our prior knowledge

about θ, and even the true value of θ.

While the general problem of experiment design is very challenging, there exists a

very powerful framework which deals with an interesting limiting case, and experiments

are often designed according to this framework even if the conditions, which we will

shortly introduce, are not exactly fulfilled. It is about the framework of quantum

Cramér–Rao bound and quantum Fisher information which represents an extension

of the corresponding classical framework well known in estimation theory. Let D be

the collected data, i.e., the measurement outcomes {xj}Mj=1 from M measurements.

The Cramér–Rao bound holds for unbiased estimators. An estimator is unbiased if

ED|θ(θ̂) = θ for all θ, where ED|θ is the expectation value with respect to all possible

data D for a given θ. This means that the estimator returns on average (with respect

to all possible data) the true value θ. The Cramér–Rao bound is a special case of the

Cramér–Rao inequality which considers not just the estimation of θ but more generally

the estimation of a function g(θ). For the sake of simplicity, we limit ourselves here to

the case where we directly estimate a single parameter θ.

Further, as a figure of merit for the goodness of an estimator θ̂, we will consider its
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variance,

VarD|θ(θ̂) = ED|θ

[(
θ̂ − ED|θ

[
θ̂
])2]

. (1.1)

A smaller variance corresponds to a more trustworthy, a more precise estimate. Then,

provided that some technical regularity conditions hold, the Cramér–Rao bound

provides a lower bound for the variance of the estimator,

VarD|θ(θ̂) ≥ 1

MIFisher(θ)
, (1.2)

where IFisher(θ) denotes the Fisher information, which is defined as

IFisher(θ) = ED|θ

[(
∂

∂θ
ln[p(D|θ)]

)2
]
, (1.3)

and p(D|θ) is the probability of obtaining measurement outcomes D = {xj}Mj=1 given

that the parameter is θ. p(D|θ) can be calculated with the Born rule and reads

p(D|θ) =

M∏

j=1

tr
[
Πxjρj(θ)

]
, (1.4)

where Πxj is the POVM element corresponding to the outcome xj of the jth mea-

surement of ρj(θ), the resulting state of the jth experiment. This shows that p(D|θ)

and, thus, the Fisher information depend not only on the true value of θ but also

via Πxj and ρj(θ) on steps (i) to (iii), i.e., on the experiment design. Therefore, a

possible policy for experiment design would be to design experiments which maximize

the Fisher information (and thus minimize the lower bound (1.2) on the variance of

the estimator). The only problem is that minimizing a lower bound [see the inequality

(1.2)] does not guarantee that the variance is minimized as well.

However, in case of single-parameter estimation, the Cramér–Rao bound exhibits a

very remarkable property. In the limit of many measurements, M → ∞, the Cramér–

Rao bound (1.2) becomes tight [23]. Note that this does not hold for multi-parameter

estimation in general. The convergence of Var(θ̂) to the lower bound (1.2) was tested

numerically for various examples and it was found that the number of measurements

needed to reach the threshold depends on the initial state [9, 52]; often, M ≳ 100

measurement are enough, but for some non-classical states M ≳ 103 measurements are

required. Nevertheless, the Fisher information is an important and convenient figure

of merit for experiment design.

Maximizing the Fisher information by optimizing with respect to different aspects of

the experiment design is an important branch of quantum metrology. The optimization

with respect to possible measurements [step (iii)] is particularly straightforward from

a theoretical point of view. Using the Cauchy–Schwarz inequality, we can maximize

the Fisher information in full generality with respect to the set of all possible POVMs.
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This yields another lower bound on the variance of the estimator which no longer

depends on the POVM: The quantum Cramér–Rao bound (QCRB) reads

VarD|θ(θ̂) ≥ 1

MI(θ)
. (1.5)

I(θ) is the so-called quantum Fisher information (QFI) which is defined as

I(θ) = tr
[
L2
ρ(θ)ρ(θ)

]
, (1.6)

where we used the symmetric logarithmic derivative Lρ(θ) which is defined implicitly

via ∂θρ(θ) = (Lρ(θ)ρ(θ)+ρ(θ)Lρ(θ))/2. Explicit expressions for the QFI can be obtained

by expanding ρ(θ) with respect to a basis.

Being independent of the POVM, the QFI is often more convenient for analytic

calculations than the Fisher information. In particular, given a certain parameter

estimation problem and a model for steps (i) and (ii), the scaling with important

resources such as the number of probes (atoms, photons) or the consumed time can be

established with the help of the QFI.

In terms of resources, time is special if it is possible to arbitrarily change the time for

an experiment (we assume here that preparation and measurement are instantaneous

compared to the dynamics, and that there is no waiting time between the repetitions of

experiments). For example, instead of one experiment we can do two experiments with

half of the time. This leads to a tradeoff between time and the number of measurements

(the latter enters as 1/M in the QCRB). This tradeoff can be taken into account by

considering a rescaled QFI instead, I(θ)/t, where t is the total time of all experiments.

With the help of the rescaled QFI it is then possible to compare different estimation

strategies which consume different amounts of time [16, 17].

Also note that the QCRB framework is useful in the context of the frequentist

approach but is not limited to it. More importantly, the QCRB framework falls into

the category of local parameter estimation: the QCRB generally depends on the true

value of the parameter θ. Further, if experiments are designed according to the QCRB

framework, we usually need to know θ and the experiments might be suboptimal for

other values of the parameter. Thus, it is a local optimization of experiment design

tailored to a particular value of θ. In practice this does not pose a problem. For

example, the parameter θ can be often estimated in a “warming-up phase” consuming

a small fraction of the available resources [9, 52]. Then, when we already have a good

estimate of θ at hand, we can apply the QCRB framework in order to find (close

to) optimal experiment designs with the remaining resources. Independent of such

practical considerations, the QCRB is very useful as an ultimate lower bound on the

achievable measurement precision.

An important discovery was that quantum metrology, in principle, allows for the so-

called Heisenberg scaling of the QFI [22, 34, 65]. Heisenberg scaling means I(θ) ∝ N2

where N is the number of probes. In our example of magnetic field estimation with
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polarized atoms, N would be the number of atoms. Heisenberg scaling of the QFI

corresponds to a standard deviation

√
Var(θ̂) that scales as N−1 (when the QCRB is

saturated). Classically, we would expect that N probes allow us in principle to perform

N experiments, each consuming one probe. Then, the central limit theorem dictates

only a N−1/2 scaling of the standard deviation. This discrepancy between classical and

quantum limits is an ongoing driving force for research in quantum metrology [7, 51].

Roughly speaking, the quantum supremacy results from non-classical correlations

which can be established in quantum states but are classically impossible. For example,

a non-classical state of atomic spins could be obtained by introducing entanglement

between the atoms [59]. Doing this in the right way, i.e., by maximizing the QFI,

Heisenberg scaling is in principle possible (ignoring decoherence).

In practice, there are several obstacles on the path towards Heisenberg scaling.

While some of these obstacles depend on the actual system under consideration, the

following points apply to many cases. First of all, due to various sources of noise,

it is often difficult to merely reach the standard quantum limit (

√
Var(θ̂) ∝ N−1/2)

which should be achievable without “quantum resources” such as entanglement. Once

this problem is solved, preparing non-classical states and protecting them against

decoherence is a challenge. In particular the creation of non-classical correlations over

a large number of probes is often very difficult but necessary in order to outperform

quantum sensors which use classical states with many probes. Finally, theoretical

results show that in the presence of decoherence, Heisenberg scaling is often lost

completely. Concerning the last point, it is important to note that this does not mean

that quantum enhancements are not possible. It is still possible to increase the QFI

with quantum enhancements (increasing the “prefactor” instead of the “scaling”)[13].

1.2 The Bayesian Approach

to Quantum Parameter Estimation

In the Bayesian framework, data collection (the acquisition of measurement outcomes)

is seen as a process spread over time. The idea is to update our knowledge (or “beliefs”,

as it is often called in the context of Bayesian inference) about θ every time we obtain

new measurement outcomes. Let Dk = {xj}kj=1 be the collected measurement outcomes

up to the kth experiment. To begin with, this requires that we write down our initial

knowledge about θ. For example, imagine the only prior knowledge about θ is that θ

is restricted to some domain Θ. For the sake of simplicity, let us assume that each θj

is restricted to an interval. Then, we represent our prior knowledge by a probability

distribution p(θ) on Θ which is constant, a so-called uniform prior. Once we obtain the

first measurement outcome x1, we update our knowledge, i.e., p(θ) to p(θ|D1), where

p(θ|Dk) denotes the probability distribution on Θ which represents our knowledge

about θ after the kth experiment, and p(θ|D0) = p(θ). The update is given by Bayes
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law [33, 28],

p(θ|Dk) =
p(xk|θ)p(θ|Dk−1)

p(xk)
, (1.7)

where p(θ|Dk) is our updated knowledge (posterior), p(θ|Dk−1) is our prior knowledge

(prior), and p(xk) is a normalization, p(xk) = Eθ [p(xk|θ)]. Given a model for the

experiment [according to steps (i) to (iii)], p(xk|θ) can be calculated with the Born rule.

Using Bayes law, we are in principle able to take into account every new measurement

outcome increasing our knowledge about θ step by step if the measurements are

informative.

Compared to the frequentist approach which relies on post processing the data

after all measurement are done, the Bayesian one requires data processing (calculating

the Bayes update) between the measurements. On the other hand, we do not have to

store the measurement outcomes in the Bayesian approach; the only object we need to

store after j experiments is p(θ|Dj), i.e., our current knowledge about θ.

When it comes to estimating θ, the expected value of θ over p(θ|Dj),

θ̂j = Eθ|Dj
(θ) , (1.8)

immediately suggests itself for estimating θ. The index j for the estimator is necessary

because the estimator corresponds to the estimation after j experiments.

In the context of Bayesian inference, one usually defines a figure of merit for the

estimator θ̂j by starting with a loss function. Let us consider the quadratic loss

L(θ̂j |θ) =
∣∣∣
∣∣∣θ̂j − θ

∣∣∣
∣∣∣
2

(1.9)

as a loss function, where ||•||2 denotes the L2-norm. The risk of the estimator is then

given by

R(θ̂j) = ED|θ

[∣∣∣
∣∣∣θ̂j − θ

∣∣∣
∣∣∣
2
]
, (1.10)

and the Bayes risk is obtained by averaging the risk with respect to parameters,

r
[
θ̂j , p(θ)

]
= Eθ

[
R(θ̂j)

]
. (1.11)

This defines the Bayes risk r of the estimator θ̂j with respect to some prior p(θ). In the

Bayesian setting, we aim to minimize the Bayes risk, i.e., we try to design experiments

accordingly.

The optimization of adaptive experiment design is usually analytically intractable

and numerically too expensive (in terms of run time) for practical applications. Only

in a few idealized simple cases, solutions for adaptive experiment designs are known

[12, 15]. In practice, one has to rely on heuristics for experiment design. These
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heuristics are rather simple rules which are fast to compute and usually motivated by

analytic insights from simplified models.





Chapter 2

Summary

A precise formulation of the results and the methods used to obtain them can be

found in the publications [16–18, 55, 19]. Further, a quantum-chaotic cesium-vapor

magnetometer is subject of a published patent publication [8]. In this chapter, the

results of the publications will be summarized.

2.1 Dynamics of Quantum Sensors:

Quantum Chaos and Reinforcement Learning

Publication [16] and a corresponding conference proceedings [17] deal with so-called

quantum-chaotic sensors. The idea is to improve the dynamics of quantum sensors

by rendering the dynamics quantum-chaotic. At the same time we avoid obstacles

regarding the preparation of non-classical initial states by using classical initial states

which are easy to prepare.

The motivation for improving the (usually integrable) dynamics of quantum sensors

by rendering the dynamics quantum-chaotic, deserves an explanation: First of all,

quantum chaos is not chaotic in the classical sense [30]. In particular, the unpredictabil-

ity, which is characteristic for chaos and would be detrimental for quantum sensors, is

not present in quantum chaos. Instead, quantum chaos is concerned with dynamical

quantum systems which become chaotic in the classical limit. Furthermore, there

Figure 2.1 Schematic illustration of the Loschmidt echo, which is defined as the fidelity
between the states ρ and ρ(θ, ϵ).
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is a well-known fundamental relation between two quantities: the quantum Fisher

information (QFI) and the Loschmidt echo [26, 42, 10]. While we introduced the QFI

in Chapter 1 as important figure of merit of quantum metrology, the Loschmidt echo

is an important quantity in quantum chaos where it is used to study the sensitivity to

changes of the dynamics of quantum chaotic systems.

As discussed in Chapter 1, the QFI for single-parameter estimation depends

on a parameter-dependent state ρ(θ). Let us assume that ρ(θ) is the result of a

unitary dynamics U(θ) [step (ii)] which is applied to an initial state ρ [step (i)]. The

Loschmidt echo for ρ and U(θ) is defined as the fidelity between ρ and ρ(θ, ϵ) =

U †(θ + ϵ)U(θ)ρ[U †(θ + ϵ)U(θ)]†, i.e., the same state propagated forward with U(θ) and

propagated backward with U †(θ + ϵ). The fidelity for two states ρ and σ is given by

||√ρ
√
σ||2tr, with the trace norm ||A||tr = tr

(√
A†A

)
[44]. Hence, the Loschmidt echo

for a state ρ and dynamics Uθ with perturbation ϵ in the parameter θ is defined by

[26, 39]

F (θ, ϵ) = ||√ρ
√

ρ(θ, ϵ)||2tr. (2.1)

By rewriting the QFI with the Bures distance (see publication [16]) and expressing the

Bures distance with the fidelity, we obtain for the QFI I(θ) [10],

I(θ) = lim
ϵ→0

4
1 − F (θ, ϵ)

ϵ2
. (2.2)

From Eq. (2.2) it is clear that the QFI is directly related to the Loschmidt echo in the

limit of small ϵ, i.e., small perturbations of the parameter θ. This limiting case of small

ϵ is referred to as the perturbative regime of the Loschmidt echo, and linear response

expressions for the Loschmidt echo correspond to exact expressions for the quantum

Fisher information. The insight that this regime of quantum chaos has favorable

metrological properties represents the main motivation for this work.

Now, that we have recapitulated the motivation, let us summarize the results. The

latter are all based on the kicked top model [31] (see also Eq. (1) in publication [16] or

Eq. (3) in publication [55]) in its pure form with unitary dynamics, in combination

with decoherence models such as superradiant damping and phase damping, or by

simulating experiments which implement the kicked top model. The results include:

(i) Results for the linear response regime of the Loschmidt echo are transferred to

the QFI in order to understand and characterize the behavior of the QFI in the

fully chaotic regime. In particular, we identify different time regimes separated

by the Ehrenfest and Heisenberg times.

(ii) Different dynamical regimes such as mixed phase spaces and the different regions

in mixed phase spaces (islands of stability, chaotic sea, and the border between

them) are explored numerically by calculating the QFI for spin-coherent initial

states centered around points in phase space corresponding to respective regions.
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The QFI proves to be a good signature of chaos in the sense that it is generally

larger for chaotic phase space regions than for those with regular dynamics.

(iii) We demonstrate that quantum chaos is able to fight the detrimental effects of

decoherence at the example of superradiant damping. In particular, we find that

the non-linear kicks (being part of the kicked top model), are particularly well-

suited to fight the dissipative effects of superradiant damping: a further numerical

optimization of the timing of the kicks reveals a new dynamical control strategy

(see publication [55]). The numerical optimization relies on reinforcement learning

where we use the QFI as a reward function. The control strategy discovered with

reinforcement learning brings us away from quantum chaos but leads to a kind of

adaptive spin squeezing (as can be seen by plotting the Wigner function of the

state). The spin squeezing is renewed during the dynamics when otherwise the

superradiant damping would destroy the squeezed state quickly. While even this

optimized strategy is not able to fully defeat decoherence, it nevertheless makes

the QFI increase for a much longer time than it would be the case without the

non-linear kicks.

(iv) The robustness against fluctuations in the strength of the control pulses (non-

linear kicks) is verified numerically.

(v) A quantum-chaotic cesium-vapor magnetometer is proposed and part of a patent

application (published patent application [8]). The conference proceedings [17]

focuses on the details. The idea is to add non-linear kicks to a standard spin-

precession magnetometer (as described in Chapter 1). The magnetometer operates

in the spin-exchange relaxation-free regime, and the kicks are implemented

optically with a linearly polarized, off-resonant laser beam exploiting the AC-Stark

effect. The numerical simulation takes into account all relevant decoherence effects

(spin-exchange and spin-destruction relaxation), imperfect state preparation by

describing the state as a spin-temperature distribution, Doppler broadening (the

sensor operates at room temperature), a finite length of the kicks (in contrast

to the infinitesimal short kicks of the kicked top model), and jump processes

induced by the optical implementation of the kicks.

2.2 Maximal Quantum Fisher Information

for Mixed States

Publication [18] provides analytic results concerning the maximal quantum Fisher

information for mixed states. We assume unitary sensor dynamics [for step (ii), as

described in Chapter 1] and unitary state preparation [step (i)] from a given (generally

mixed) state. If pure states are available, then the maximal QFI and the corresponding

optimal state preparation are well known for any unitary sensor dynamics [23, 6]. In

this work, we extend this general result to the case when only mixed states are available
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- this is typically the case in experiments due to imperfect state preparation. Note

that the initial purity (or more precisely, the spectrum) of an available mixed state

remains invariant because state preparation and dynamics are assumed to be unitary.

We provide the maximum QFI and the corresponding optimal state preparation for any

available mixed state and any unitary sensor dynamics. These results allow us to give

tighter bounds on the measurement precision if only mixed states are available. Further,

optimal states for quantum metrology are of high interest also in other theoretical

branches of quantum information such as the characterization of quantumness [47, 24]

or in the context of resource theories [58]. This result proves a conjecture by Modi,

Vedral et al. [45].

Publication [18] also provides for the same unitary model an analytic solution

for the maximal QFI when we optimize with respect to both, the initial state and

the dynamical control. The dynamical control is given by an additional control

Hamiltonian such that the dynamics is the unitary transformation which corresponds

to the original (parameter-dependent) Hamiltonian plus the control Hamiltonian. The

optimal solution holds again in full generality, i.e., for any available mixed state and

for any (parameter-dependent) Hamiltonian of the dynamics. Previously, only the case

for pure initial states was known [50]. The concept of Hamiltonian control during the

dynamics can be seen as a possibility to keep the state in the most sensitive state for

any time. In experiments, Hamiltonian control will typically accomplish the task of

compensating unwanted interactions between probes and guiding the state such that it

is always most sensitive [20, 50]. As regards theoretical perspectives, it would be an

important improvement to further generalize our results to non-unitary dynamics.

The kicked top model used in the previously discussed publications can actually

be seen as well in the context of Hamiltonian control: the precession corresponds to

the parameter-dependent dynamics and the kicks are control pulses applied to the

dynamics. However, while the bounds that we found in publication [18] are valid, they

are not tight and the optimal Hamiltonian control does not apply because we do not

study the kicked top model with optimal initial states. The bounds can be saturated

only if both, the initial state and the Hamiltonian control, are optimized.

2.3 Neural-Network Heuristics

for Adaptive Bayesian Quantum Estimation

Finally, in publication [18], we demonstrate the usefulness of the new bounds for mixed

states by considering the case that thermal states are available and that the dynamics

is given by a phase-shift (precession) Hamiltonian (along the lines of the magnetometer

discussed in Chapter 1). We find that using the optimal unitary state preparation

Heisenberg scaling can be reached even with thermal states. A proof is given for

Heisenberg scaling with respect to the size of the individual probes as well as the

number of probes. The Heisenberg scaling prevails for any finite temperature (of the

thermal state); the QFI is damped with increasing temperatures only polynomially.
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The last manuscript [19] included in this thesis deals with adaptive Bayesian

quantum estimation (for an introduction see Chapter 1). Building on a powerful

framework for numerically approximating the Bayesian update [40, 36, 29, 27] based

on particle filtering and the sequential Monte-Carlo method, we provide a versatile

numerical solution for generating fast and strong experiment-design heuristics (EDHs).

The motivation is to find a general receipt for creating EDHs. So far, heuristics have

been found manually with the help of analytic arguments derived under idealized

conditions. This approach is cumbersome because what distinguishes a good heuristic

depends on the estimation problem and the available resources. Our approach can

instead utilize such analytical insights but does not have to rely on them. Further, it

promises EDHs which are tailored to the specific constraints of the estimation problem

and the available resources. Our method is based on a combination of supervised and

reinforcement learning. Supervised learning is used to train a neural network to imitate

the behavior of an already existing heuristic. This is also known as behavior cloning or

imitation learning. In a second step we use reinforcement learning to further improve

the heuristic. One advantage of reinforcement learning is that there is no teacher, no

other heuristic, which the neural network is supposed to imitate. This means, that

the success of reinforcement learning is not limited by our “expert” knowledge and

the performance of the heuristics can surpass any previously known heuristic. We

also show that the first step of imitation learning is useful if strong heuristics are

already known but not necessary: we provide a receipt for creating heuristics using

only reinforcement learning.

We demonstrate our neural network approach to experiment design at the to date

best explored (in the context of adaptive Bayesian quantum estimation) example of

frequency estimation with a qubit, e.g., estimating a magnetic field with a spin-1/2

particle [14, 64, 63, 53, 61, 49, 43]. The experiment design consists of choosing the

precession time. The model is studied with and without decoherence (T2 relaxation).

For this model, several strong heuristics are known such that reliable benchmarks are

available. We find that the neural-network heuristics surpass the performance of the

best known heuristics. In addition, for a two-parameter estimation problem (frequency

and relaxation rate), the neural-network heuristics outperform all other benchmark

heuristics.

Our approach to experiment design works well together with the numerical frame-

work for Bayesian updates. This framework also allows for a simple computation

of confidence regions [5, 28]. We use this tool for visualizing the performance of

different experiment-design heuristics. The success of the joint framework of Bayesian

update and experiment design in practice depends in many cases on the run time.

Long run times will easily ruin the overall performance of the sensor because time is

usually a limited resource if not even the most important resource. The run time (for

one call) of our neural networks is comparable with one numerical Bayesian update

(single core computation). As a matter of fact, the practical success of the numerical

framework depends on the properties of the sensor such as insensitive intervals [53],
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transmission times of data, the implementation of the numerical framework (e.g., on a

field-programmable gate array [48]) and, of course, on the estimation problem under

consideration.

As regards theoretical perspectives, the training of neural networks for experiment

design could be made more efficient in terms of run time, for instance, by using other

reinforcement learning algorithms. Furthermore, the run time of the neural networks

could be reduced by using smaller neural networks. Alternatively, the number of

calls could be reduced, i.e., the neural-network heuristic is would not be called after

every experiment but, for instance, only after every nth experiment. Then, the neural-

network heuristic would have to choose experiment designs for the next n experiments.

Hence, the total run time of the heuristic would be reduced at the cost of adaptivity

after each experiment.

In conclusion, this thesis deals with various topics related to quantum metrology.

Full-fledged machine learning techniques are used to tackle problems of dynamical

control and experiment design. The results are relevant for both theory and experiment.

We are confident that future experimental work will demonstrate the feasibility of

quantum-chaotic sensors and the usefulness of neural-network heuristics for adaptive

Bayesian quantum estimation.
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Quantum metrology with quantum-chaotic sensors
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Quantum metrology promises high-precision measurements of classical parameters with far

reaching implications for science and technology. So far, research has concentrated almost

exclusively on quantum-enhancements in integrable systems, such as precessing spins or

harmonic oscillators prepared in non-classical states. Here we show that large benefits can be

drawn from rendering integrable quantum sensors chaotic, both in terms of achievable

sensitivity as well as robustness to noise, while avoiding the challenge of preparing and

protecting large-scale entanglement. We apply the method to spin-precession magnetometry

and show in particular that the sensitivity of state-of-the-art magnetometers can be further

enhanced by subjecting the spin-precession to non-linear kicks that renders the dynamics

chaotic.
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Quantum-enhanced measurements (QEM) use quantum
effects in order to measure physical quantities with larger
precision than what is possible classically with compar-

able resources. QEMs are therefore expected to have large impact
in many areas, such as improvement of frequency standards1–5,
gravitational wave detection6,7, navigation8, remote sensing9, or
measurement of very small magnetic fields10. A well-known
example is the use of so-called NOON states in an interferometer,
where a state with N photons in one arm of the interferometer
and zero in the other is superposed with the opposite situation11.
It was shown that the smallest phase shift that such an inter-
ferometer could measure scales as 1/N, a large improvement over
the standard 1=

ffiffiffiffi
N

p
behavior that one obtains from ordinary laser

light. The latter scaling is known as the standard quantum limit
(SQL), and the 1/N scaling as the Heisenberg limit (HL). So far
the SQL has been beaten only in few experiments, and only for
small N (see e.g., 3,12,13), as the required non-classical states are
difficult to prepare and stabilize and are prone to decoherence.

Sensing devices used in quantum metrology so far have been
based almost exclusively on integrable systems, such as precessing
spins (e.g., nuclear spins, NV centers, etc.) or harmonic oscillators
(e.g., modes of an electro-magnetic field or mechanical oscilla-
tors), prepared in non-classical states (see ref. 14 for a recent
review). The idea of the present work is to achieve enhanced
measurement precision with readily accessible input states by
disrupting the parameter coding by a sequence of controlled
pulses that renders the dynamics chaotic. At first sight this may
appear a bad idea, as measuring something precisely requires
well-defined, reproducible behavior, whereas classical chaos is
associated with unpredictible long-term behavior. However, the
extreme sensitivity to initial conditions underlying classically
chaotic behavior is absent in the quantum world with its unitary
dynamics in Hilbert space that preserves distances between states.
In turn, quantum-chaotic dynamics can lead to exponential
sensitivity with respect to parameters of the system15.

The sensitivity to changes of a parameter of quantum-chaotic
systems has been studied in great detail with the technique of
Loschmidt echo16, which measures the overlap between a state
propagated forward with a unitary operator and propagated
backward with a slightly perturbed unitary operator. In the limit
of infinitesimally small perturbation, the Loschmidt echo turns
out to be directly related to the quantum Fisher information
(QFI) that determines the smallest uncertainty with which a
parameter can be estimated. Hence, a wealth of known results
from quantum chaos can be immediately translated to study the
ultimate sensitivity of quantum-chaotic sensors. In particular,
linear response expressions for fidelity can be directly transfered
to the exact expressions for the QFI.

Ideas of replacing entanglement creation by dynamics were
proposed previously17–21, but focussed on initial state prepara-
tion, or robustness of the readout22,23, without introducing or
exploiting chaotic dynamics during the parameter encoding. They
are hence comparable to spin-squeezing of the input state24.
Quantum chaos is also favorable for state tomography of random
initial states with weak continuous time measurement25,26, but no
attempt was made to use this for precision measurements of a
parameter. A recent review of other approaches to quantum-
enhanced metrology that avoid initial entanglement can be found
in ref. 27.

We study quantum-chaotic enhancement of sensitivity at the
example of the measurement of a classical magnetic field with a
spin-precession magnetometer. In these devices that count
amongst the most sensitive magnetometers currently available28–
32, the magnetic field is coded in a precession frequency of atomic
spins that act as the sensor. We show that the precision of the
magnetic-field measurement can be substantially enhanced by

non-linearly kicking the spin during the precession phase and
driving it into a chaotic regime. The initial state can be chosen as
an essentially classical state, in particular a state without initial
entanglement. The enhancement is robust with respect to
decoherence or dissipation. We demonstrate this by modeling the
magnetometer on two different levels: firstly as a kicked top, a
well-known system in quantum chaos to which we add
dissipation through superradiant damping; and secondly with a
detailed realistic model of a spin-exchange-relaxation-free
atom-vapor magnetometer including all relevant decoherence
mechanisms28,33, to which we add non-linear kicks.

Results
Physical model of a quantum-chaotic sensor. As a sensor we
consider a kicked top (KT), a well-studied quantum-chaotic
system34–36 described by the time-dependent Hamiltonian

HKTðtÞ ¼ αJz þ k
2J

J2y
X1

n¼�1
τδðt � nτÞ; ð1Þ

where Ji (i= x, y, z) are components of the (pseudo-)angular
momentum operator, J≡ j+ 1/2, and we set ħ= 1. Jz generates a
precession of the (pseudo-)angular momentum vector about the
z-axis with precession angle α which is the parameter we want to
estimate. “Pseudo” refers to the fact that the physical system need
not be an actual physical spin, but can be any system with 2j+ 1
basis states on which the Ji act accordingly. For a physical spin-j
in a magnetic field B in z-direction, α is directly proportional to B.
The J2y -term is the non-linearity, assumed to act instantaneously
compared to the precession, controlled by the kicking strength k
and applied periodically with a period τ that leads to chaotic
behavior. The system can be described stroboscopically with
discrete time t in units of τ (set to τ= 1 in the following),

ψðtÞj i ¼ UαðkÞ ψðt � 1Þj i ¼ Ut
αðkÞ ψð0Þj i ð2Þ

with the unitary Floquet-operator

UαðkÞ ¼ T exp �i
Z tþ1

t
dt′HKTðt′Þ

� �
¼ e�ik

J2y
2J e�iαJz ð3Þ

that propagates the state of the system from right after a kick to
right after the next kick34–36. T denotes time-ordering. The total
spin is conserved, and 1/J can be identified with an effective ħ,
such that the limit j →∞ corresponds to the classical limit, where
X= Jx/J, Y= Jy/J, Z= Jz/J become classical variables confined to
the unit sphere. (Z, ϕ) can be identified with classical phase space
variables, where ϕ is the azimuthal angle of X= (X, Y, Z)36. For
k= 0, the dynamics is integrable, as the precession conserves Z
and increases ϕ by α for each application of Uα(0). Phase space
portraits of the corresponding classical map show that for k≲ 2.5,
the dynamics remains close to integrable with large visible
Kolmogorov–Arnold–Moser tori, whereas for k≳ 3.0 the chaotic
dynamics dominates36.

States that correspond most closely to classical phase space
points located at (θ, ϕ) are SU(2)-coherent states (“spin-coherent
states”, or “coherent states” for short), defined as

j; θ; ϕj i ¼
Xj
m¼�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

j�m

� �s
sinðθ=2Þj�mcosðθ=2Þjþmeiðj�mÞϕ jmj i

ð4Þ
in the usual notation of angular momentum states jmj i
(eigenbasis of J2 and Jz with eigenvalues j(j+ 1) and m, 2j 2 N,
m=−j, −j+ 1, …, j). They are localized at polar and azimuthal
angles θ, ϕ with smallest possible uncertainty of all spin-j states
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(associated circular area ~1/j in phase space). They remain
coherent states under the action of Uα(0), i.e., just get rotated,
ϕ7!ϕþ α. For the KT, the parameter encoding of α in the
quantum state breaks with the standard encoding scheme (initial
state preparation, parameter-dependent precession, measure-
ment) by periodically disrupting the coding evolution with
parameter-independent kicks that generate chaotic behavior
(see Fig. 1).

An experimental realization of the kicked top was proposed in
ref. 37, including superradiant dissipation. It has been realized
experimentally38 in cold cesium vapor using optical pulses (see
Supplementary Note 1 for details).

Quantum parameter estimation theory. Quantum measure-
ments are most conveniently described by a positive-operator
valued measure (POVM) {Πξ} with positive operators Πξ (POVM
elements) that fulfill ∫dξΠξ= 1. Measuring a quantum state
described by a density operator ρα yields for a given POVM and a
given parameter α encoded in the quantum state a probability
distribution pα(ξ)= tr(Πξρα) of measurement results ξ. The Fisher
information IFisher,α is then defined by

IFisher;α :¼
Z

dξ
dpαðξÞ=dαð Þ2

pαðξÞ : ð5Þ

The minimal achievable uncertainty, i.e., the variance of the
estimator Var(αest), with which a parameter α of a state ρα can be
estimated for a given POVM with M independent measurements
is given by the Cramér–Rao bound, Var(αest) ≥ 1/(MIFisher,α).
Further optimization over all possible (POVM-)measurements
leads to the quantum-Cramér–Rao bound (QCRB),

Var αestð Þ � 1
MIα

; ð6Þ

which presents an ultimate bound on the minimal achievable
uncertainty, where Iα is the quantum Fisher information (QFI),
and M the number of independent measurements39.

The QFI is related to the Bures distance ds2Bures between the
states ρα and ρα+dα, separated by an infinitesimal change of the
parameter α, ds2Buresðρ; σÞ≡ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ρ; σð Þp� �
. The fidelity F(ρ, σ)

is defined as Fðρ; σÞ ¼ ρ1=2σ1=2
�� ��2

1
, and Ak k1� tr

ffiffiffiffiffiffiffiffiffi
AAyp

denotes
the trace norm40. With this41,

Iα ¼ 4ds2Bures ρα; ραþdα

� �
=dα2: ð7Þ

For pure states ρ ¼ ψj i ψh j, σ ¼ ϕj i ϕh j, the fidelity is simply
given by Fðρ; σÞ ¼ ψjϕh ij j2. A parameter coded in a pure state via
the unitary transformation ψα

�� 	 ¼ e�iαG ψð0Þj i with hermitian
generator G gives the QFI42

Iα ¼ 4VarðGÞ � 4 G2

 	� Gh i2� �

; ð8Þ

which holds for all α, and where �h i � ψαj � jψα


 	
.

Loschmidt echo. The sensitivity to changes of a parameter
of quantum-chaotic systems has been studied in great detail
with the technique of Loschmidt echo16, which measures the
overlap Fϵ(t) between a state propagated forward with a unitary
operator Uα(t) and propagated backward with a slightly perturbed

unitary operator Uαþϵð�tÞ ¼ Uy
αþϵðtÞ, where UαðtÞ ¼

T exp � i
�h

R t
0dt′Hαðt′Þ

� �
with the time ordering operator T, the

Hamiltonian, Hαþϵ(t)=Hα(t)+ ϵV(t) and the perturbation V(t),

FϵðtÞ ¼ ψð0ÞjUαðtÞUαþϵð�tÞψð0Þh ij j2: ð9Þ

Fϵ is exactly the fidelity that enters via the Bures distance in the
definition Eq. (7) of the QFI for pure states, such that
IαðtÞ ¼ limϵ!04

1�FϵðtÞ
ϵ2 .

Benchmarks. In order to assess the influence of the kicking on
the QFI, we calculate as benchmarks the QFI for the (integrable)
top with Floquet operator Uα(0) without kicking, both for an
initial coherent state and for a Greenberger–Horne–Zeilinger
(GHZ) state ψGHZ

�� 	 ¼ j; jj i þ j;�jj ið Þ= ffiffiffi
2

p
. The latter is the

equivalent of a NOON state written in terms of (pseudo-)angular
momentum states. The QFI for the time evolution Eq. (2) of a top
with Floquet operator Uα(0) is given by Eq. (8) with G= Jz. For
an initial coherent state located at θ, ϕ it results in a QFI

IαðtÞ ¼ 2t2jsin2 θ: ð10Þ

As expected, Iα(t)= 0 for θ= 0 where the coherent state is an
eigenstate of Uα(0). The scaling ∝ t2 is typical of quantum
coherence, and Iα(t)∝ j signifies a SQL-type scaling with N= 2j,
when the spin-j is composed of N spin−1

2 particles in a state
invariant under permutations of particles. For the benchmark, we
use the optimal value θ= π/2 in Eq. (10), i.e., Itop,CS≡ 2t2j. For a
GHZ state, the QFI becomes

IαðtÞ ¼ 4t2j2 � Itop;GHZ ; ð11Þ

which clearly displays the HL-type scaling ∝ (2j)2≡N2.

Results for the kicked top without dissipation. In the fully
chaotic case, known results for the Loschmidt echo suggest a QFI
of the KT ∝ tj2 for times t with tE < t < tH, where tE ¼ 1

λ ln
ΩV
hd

� �
is

the Ehrenfest time, and tH= ħ/Δ the Heisenberg time; λ is the
Lyapunov exponent, ΩV the volume of phase-space, hd with d the
number of degrees of freedom the volume of a Planck cell, and Δ
the mean energy level spacing16,36,43. For the kicked top,
hd ’ ΩV=ð2JÞ. More precisely, we find for t ’ tE a QFI Iα∝ tj2

and for t � tH (see Methods)

IðtÞ ¼ 8sσclt
2J ; ð12Þ

where s denotes the number of invariant subspaces s of the Hil-
bert space (s= 3 for the kicked top with α= π/2, see page 359 in
ref. 15), and σcl is a transport coefficient that can be calculated
numerically. The infinitesimally small perturbation relevant for
the QFI makes that one is always in the perturbative regime44,45.
The Gaussian decay of Loschmidt echo characteristic of that
regime becomes the slower the smaller the perturbation and goes
over into a power law in the limit of infinitesimally small
perturbation16.

The numerical results for the QFI in Fig. 2 illustrate a cross-
over of power-law scalings in the fully chaotic case (k= 30) for an
initial coherent state located on the equator (θ, ϕ)= (π/2, π/2).
The analytical Loschmidt echo results are nicely reproduced: a
smooth transition in scaling from tj2 → t2j for t= tE → t≳ tH can
be observed and confirms Eqs. (15) and (16) in the Methods for

� Rz (�) Rz (�) Rz (�)

Fig. 1 Schematic representation of the parameter encoding: propagation
starts on the left with an initial state ρ and ends on the right with a
measurement (semi-circle symbol). The encoding through linear
precession Rz(α) about the z-axis by an angle α is periodically disrupted
through parameter independent, non-linear, controlled kicks (blue
triangles) that can render the system chaotic
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t > tE= ln(2J)/λ, with the numerically determined Lyapunov
exponent λ ’ 2:4733, and Eq. (12) for t≳ tH≃ J/316. We find for
relatively large j (j≳ 102) a scaling Iα∝ j1.08 in good agreement with
Eq. (12) predicting a linear j-dependence for large t≳ tH. During the
transient time t < tE, when the state is spread over the phase space,
QFI shows a rapid growth that can be attributed to the generation
of coherences that are particularly sensitive to the precession.

The comparison of the KT’s QFI Iα,KT with the benchmark Itop,
CS of the integrable top in Fig. 2c shows that a gain of more than
two orders of magnitude for j= 4000 can be found at t≲ tE.
Around tE the state has spread over the phase space and has
developed coherences while for larger times t > tE the top catches
up due to its superior time scaling (t2 vs. t). The long-time
behavior yields a constant gain <1, which means that the top
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achieves a higher QFI than the KT in this regime. The gain
becomes constant as both top and KT exhibit a t2 scaling of the
QFI.

Whereas in the fully chaotic regime the memory of the initial
state is rapidly forgotten, and the initial state can therefore be
chosen anywhere in the chaotic sea without changing much the
QFI, the situation is very different in the case of a mixed phase
space, in which stability islands are still present. Figure 3 shows
phase space distributions for k= 3 of QFI and gain Γ= Iα,KT/Itop,
CS exemplarily for large t and j (t= 215, j= 4000) in comparison
with the classical Lyapunov exponent, where ϕ, Z signify the
position of the initial coherent state.

The QFI nicely reproduces the essential structure in classical
phase space for the Lyapunov exponent λ (see Methods for the
calculation of λ). Outside the regions of classically regular motion,
the KT clearly outperforms the top by more than two orders of
magnitude. Remarkably, the QFI is highest at the boundary of
non-equatorial islands of classically regular motion. Coherent
states located on that boundary will be called edge states.

The diverse dynamics for different phase space regions calls for
dedicated analyses. Figure 4 depicts the QFI with respect to j and
t. The blue area is lower and upper bounded by the benchmarks
Itop,CS and Itop,GHZ, Eq. (11), respectively.

We find that initial states in the chaotic sea perform best for
small times while for larger times (t≳ 300 for j= 4000) edge
states perform best. Note that this is numerically confirmed up to
very high QFI values (>1014). The superiority of edge states holds
for j≳ 10 for large times (t≳ 103, see Fig. 4a). Large values of j
allow one to localize states essentially within a stability island. A
coherent state localized within a non-equatorial stability island
shows a quadratic t-scaling analog to the regular top. For a state

jψeqi localized around a point within an equatorial island of
stability the QFI drastically decays with increasing j (brown
triangles). The scaling with t for j= 4000 reveals that QFI does
not increase with t in this case, it freezes. One can understand the
phenomenon as arising from a freeze of fidelity due to a vanishing
time averaged perturbation16,46: the dynamics restricts the states
to the equatorial stability island with time average

hψeqjðUt
αÞyðkÞJzUt

αðkÞjψeqi= 0. This can be verified numerically,
and contrasted with the dynamics when initial states are localized
in the chaotic sea or on a non-equatorial island.

Results for the dissipative kicked top. For any quantum-
enhanced measurement, it is important to assess the influence of
dissipation and decoherence. We first study superradiant damp-
ing47–51 as this enables a proof-of-principle demonstration with
an analytically accessible propagator for the master equation with
spins up to j≃ 200 and correspondingly large gains. Then, in the
next subsection, we show by detailed and realistic modeling
including all the relevant decoherence mechanisms that sensi-
tivity of existing state-of-the-art alkali-vapor-based spin-
precession magnetometers in the spin-exchange-relaxation-free
(SERF) regime can be enhanced by non-linear kicks.

At sufficiently low temperatures (kBT � �hω, where ħω is the
level spacing between adjacent states jmj i) superradiance is
described by the Markovian master equation for the spin-density
matrix ρ(t) with continuous time,

d
dt

ρðtÞ ¼ γ J�; ρðtÞJþ½ � þ J�ρðtÞ; Jþ½ �ð Þ � ρðtÞ ; ð13Þ
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where J±≡ Jx ± iJy, with the commutator [A, B]= AB− BA, and
γ is the dissipation rate, with the formal solution ρ(t)= exp(Λt)
ρ(0)≡D(t)ρ(0). The full evolution is governed by dρ(t)/dt=
Λρ(t)− iħ[HKT(t), ρ(t)]. Dissipation and precession about the
z-axis commute, Λ(JzρJz)= Jz(Λρ)Jz. Λ can therefore act perma-
nently, leading to the propagator P of ρ from discrete time
t to t+ τ for the dissipative kicked top (DKT)36,52

ρðt þ τÞ ¼ PρðtÞ ¼ UαðkÞ DðτÞρðtÞð ÞUy
αðkÞ: ð14Þ

For the sake of simplicity, we again set the period τ= 1, and t is
taken again as discrete time in units of τ. Then, γτ≡ γ controls
the effective dissipation between two unitary propagations.
Classically, the DKT shows a strange attractor in phase space
with a fractal dimension that reduces from d= 2 at γ= 0 to d= 0
for large γ, when the attractor shrinks to a point attractor and
migrates towards the ground state j;�jj i52. Quantum mechani-
cally, one finds a Wigner function with support on a smeared out
version of the strange attractor that describes a non-equilibrium
steady state reached after many iterations. Such a non-trivial state
is only possible through the periodic addition of energy due to the
kicking. Because of the filigrane structure of the strange attractor,
one might hope for relatively large QFI, whereas without kicking
the system would decay to the ground state, where the QFI
vanishes. Creation of steady non-equilibrium states may therefore
offer a way out of the decoherence problem in quantum
metrology, see also section V.C in ref. 27 for similar ideas.

Vanishing kicking strength, i.e., the dissipative top (DT)
obtained from the DKT by setting k= 0, will serve again as
benchmark. While in the dissipation-free regime, we took the
top’s QFI and with it its SQL-scaling (∝ jt2) as reference, SQL-
scaling no longer represents a proper benchmark, because
damping typically corrupts QFI with increasing time. To illustrate
the typical behavior of QFI, we exemplarily choose certain spin
sizes j and damping constants γ here and in the following, such as
j= 40 and γ= 0.5 × 10−3 in Fig. 5a, while computational
limitations restrict us to j≲ 200.

Figure 5 shows the typical overall behavior of the QFI of
the DT and DKT as function of time: after a steep initial rise ∝ t2,
the QFI reaches a maximum whose value is the larger the
smaller the dissipation. Then the QFI decays again, dropping to
zero for the DT, and a plateau value for the DKT. The time at
which the maximum value is reached decays roughly as 1/(jγ) for
the DT, and as 1/j0.95 and 1/γ1.94 for the DKT. The plateau itself
is in general relatively small for the limited values of j that could
be investigated numerically, but it should be kept in mind that (i)
for the DT the plateau does not even exist (QFI always decays to
zero for large time, as dissipation drives the system to the ground
state j;�jj i which is an eigenstate of Jz and hence insensitive to
precession); and (ii) there are exceptionally large plateau values
even for small j, see e.g., the case of j= 2 in Fig. 5b. There, for γ=
1.58 × 10−3, the plateau value is larger by a factor 2.35 than the
DT’s QFI optimized over all initial coherent states for all times.
Note that since Λ(JzρJz)= Jz(Λρ)Jz, for the DT an initial
precession about the z-axis that is part of the state preparation
can be moved to the end of the evolution and does not influence
the QFI of the DT. Optimizing over the initial coherent state can
thus be restricted to optimizing over θ.

When considering dynamics, it is natural also to include time
as a resource. Indeed, experimental sensitivities are normally
given as uncertainties per square root of Hertz: longer (classical)
averaging reduces the uncertainty as 1=

ffiffiffiffiffiffiffi
Tav

p
with averaging time

t= Tav. For fair comparisons, one multiplies the achieved
uncertainty with

ffiffiffiffiffiffiffi
Tav

p
. Correspondingly, we now compare

rescaled QFI and Fisher information, namely IðtÞα � Iα=Tav,

IðtÞFisher;α � IFisher;α=Tav. A protocol that reaches a given level of
QFI more rapidly has then an advantage, and best precision
corresponds to the maximum rescaled QFI or Fisher information,
ÎðtÞα � maxtI

ðtÞ
α or ÎðtÞFisher;α � maxt I

ðtÞ
Fisher;α.

Figure 6 shows that in a broad range of dampings that are
sufficiently strong for the QFI to decay early, the maximum
rescaled QFI of the DKT beats that quantity of the DT by up to an
order of magnitude. Both quantities were optimized over the
location of the initial coherent states.

Figure 7 shows ÎðtÞα and the gain in that quantity compared to
the non-kicked case as function of both the damping and the
kicking strength. One sees that in the intermediate damping
regime (γ≃ 10−3) the gain increases with kicking strength, i.e.,
increasingly chaotic dynamics.

For exploiting the enhanced sensitivity shown to exist through
the large QFI, one needs also to specify the actual measurement of
the probe. In principle, the QCRB formalism allows one to
identify the optimal POVM measurement if the parameter is
known, but these may not always be realistic. In Fig. 8, we
investigate Jy as a feasible example for a measurement for a spin
size j= 200 after t= 2 time steps. We find that there exists a
broad range of kicking strengths where the reference (state-
optimized but k= 0) is outperformed in both cases, with and
without dissipation. In a realistic experiment, control parameters
such as the kicking strength are subjected to variations. A 5%
variance in k, which was reported in ref. 38, reduces the Fisher
information only marginally and does not challenge the
advantage of kicking. This can be calculated by rewriting the
probability that enters in the Fisher information in Eq. (5)
according to the law of total probability, pα(ξ)= ∫dkp(k)pα(ξ|k)
where p(k) is an assumed Gaussian distribution of k values with
5% variance and pα(ξ|k)= tr[Πξ ρα(k)] with Πξ a POVM element
and ρα(k) the state for a given k value. The advantage from
kicking remains when investigating a rescaled and time-
optimized Fisher information (not shown in Fig. 8).

Improving a SERF magnetometer. We finally show that
quantum-chaotically enhanced sensitivity can be achieved in
state-of-the-art magnetometers by investigating a rather realistic
and detailed model of an alkali-vapor-based spin-precession
magnetometer acting in the SERF regime. SERF magentometers
count amongst the most sensitive magnetometers for detecting

105

104

103

102

10–1

10–5 10–4

Damping constant �

^
R

es
ca

le
d 

Q
F

T
 I

(t
)

10–3 10–2

10

1

Fig. 6 Enhancement in measurement precision through kicking (blue
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small quasi-static magnetic fields28–32. We consider a cesium-
vapor magnetometer at room temperature in the SERF regime
similar to experiments with rubidium in ref. 53. Kicks on the
single cesium-atom spins can be realized as in ref. 38 by exploiting
the spin-dependent rank-2 (ac Stark) light-shift generated with
the help of an off-resonant laser pulse. Typical SERF magnet-
ometers working at higher temperatures with high buffer-gas
pressures exhibit an unresolved excited state hyperfine splitting
due to pressure broadening, which makes kicks based on rank-2

light-shifts ineffective. Dynamics are modeled in the electronic
ground state 62S1/2 of 133Cs that splits into total spins of f= 3 and
f= 4, where kicks predominantly act on the f= 3 manifold.

The model is quite different from the foregoing superradiance
model because of a different decoherence mechanism originating
from collisions of Cs atoms in the vapor cell: We include spin-
exchange and spin-destruction relaxation, as well as additional
decoherence induced by the optical implementation of the kicks.
With this implementation of kicks one is confined to a small spin
size f= 3 of single atoms, such that the large improvements in
sensitivity found for the large spins discussed above cannot be
expected. Nevertheless, we still find a clear gain in the sensitivity
and an improved robustness to decoherence due to kicking.
Details of the model described with a master equation33,54 can be
found in the Supplementary Note 2.

Spins of cesium atoms are initially pumped into a state spin-
polarized in z-direction orthogonal to the magnetic field B= Bŷ
in y-direction, whose strength B is the parameter α to be
measured. We let spins precess in the magnetic field, and, by
incorporating small kicks about the x-axis, we find an improve-
ment over the reference (without kicks) in terms of rescaled QFI
and the precision based on the measurement of the electron-spin
component Sz orthogonal to the magnetic field. The best possible
measurement precision ΔB in units of T/

ffiffiffiffiffiffi
Hz

p
per 1 cm3 vapor

volume is ΔB ¼ 1=
ffiffiffiffiffiffiffiffiffi
nIðtÞB

q
where n≃ 2 × 1010 is the number of

cesium atoms in 1 cm3. For a specific measurement, IðtÞB must be
replaced by the corresponding rescaled Fisher information

IðtÞFisher;B. We compare the models with and without kicks directly
on the basis of the Fisher information rather than modeling in
addition the specific optical implementation and the correspond-
ing noise of the measurement of Sz. Neglecting this additional
read-out-specific noise leads to slightly better precision bounds
than given in the literature, but does not distort the comparison.

The magnetic field was set to B= 4 × 10−14 T in y-direction,
such that the condition for the SERF regime is fulfilled, i.e., the
Larmor frequency is much smaller than the spin-exchange rate,
and the period is set to τ= 1 ms. Since kicks induce decoherence
in the atomic spin system, we have to choose a very small effective
kicking strength of k≃ 6.5 × 10−4 for the kicks around the x-axis
(with respect to the f= 3 ground-state manifold), generated with
an off-resonant 2 μs light pulse with intensity Ikick= 0.1 mW/cm2

linearly polarized in x-direction, to find an advantage over the
reference.
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superradiance damping. Fisher information IFisher,α related to measuring the
y-component of the spin, Jy, after t= 2 time steps without dissipation (blue
line) as well as in the presence of dissipation (bright red line, damping
constant γ= 0.5 × 10−3), upper bounded by corresponding quantum Fisher
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The example of Fig. 9 shows about 31% improvement in
measurement precision ΔB for an optimal measurement (QFI,
upper right inset) and 68% improvement in a comparison of Sz
measurements (inset), which is impressive in view of the small
system size. The achievable measurement precision of the kicked
dynamics exhibits an improved robostness to decoherence:
rescaled QFI for the kicked dynamics continues to increase and
sets itself apart from the reference around the coherence time
associated with spin-destruction relaxation. The laser light for
these pulses can be provided by the laser used for the read out,
which is typically performed with an off-resonant laser. A further
improvement in precision is expected from additionally measur-
ing kick pulses for readout or by applying kicks not only to the
f= 3 but also to the f= 4 ground-state manifold of 133Cs.
Further, it might be possible to dramatically increase the relevant
spin-size by applying the kicks to the joint spin of the cesium
atoms, for instance, through a double-pass Faraday effect55.

Discussion
Rendering the dynamics of quantum sensors chaotic allows one
to harvest a quantum enhancement for quantum metrology
without having to rely on the preparation or stabilization of
highly entangled states. Our results imply that existing magnetic
field sensors31,56 based on the precession of a spin can be ren-
dered more sensitive by disrupting the time-evolution by non-
linear kicks. The enhancement persists in rather broad parameter
regimes even when including the effects of dissipation and
decoherence. Besides a thorough investigation of superradiance
damping over large ranges of parameters, we studied a cesium-
vapor-based atomic magnetomter in the SERF regime based on a
detailed and realistic model28–31,53. Although the implementation
of the non-linearity via a rank-2 light shift introduces additional
decoherence and despite the rather small atomic spin size f ≤ 4, a
considerable improvement in measurement sensitivity is found
(68% for a read-out scheme based on the measurement of the
electronic spin-component Sz). The required non-linearity that

can be modulated as function of time has been demonstrated
experimentally in ref. 38 in cold cesium vapor.

Even higher gains in sensitivity are to be expected if an effective
interaction can be created between the atoms, as this opens access
to larger values of total spin size for the kicks. This may be
achieved e.g., via a cavity as suggested for pseudo-spins in ref. 57,
or the interaction with a propagating light field as demonstrated
experimentally in refs. 55,58 with about 1012 cesium atoms. More
generally, our scheme will profit from the accumulated knowledge
of spin-squeezing, which is also based on the creation of an
effective interaction between atoms. Finally, we expect that
improved precision can be found in other quantum sensors that
can be rendered chaotic as well, as the underlying sensitivity to
change of parameters is a basic property of quantum-chaotic
systems.

Methods
QFI for kicked time-evolution of a pure state. The QFI in the chaotic
regime with large system dimension 2J and times larger than the Ehrenfest
time, t > tE, is given in linear-response theory by an auto-correlation function
CðtÞ � ~VðtÞ~Vð0Þ
 	� ~VðtÞ
 	

~Vð0Þ
 	
of the perturbation of the Hamiltonian in the

interaction picture, Hαþϵ(t)=Hα(t)+ ϵV(t), ~VðtÞ ¼ Uαð�tÞVðtÞUαðtÞ:

IαðtÞ ¼ 4 tCð0Þ þ 2
Xt�1

t′¼0

t � t′
� �

C t′
� � !

: ð15Þ

In our case, the perturbation V(t)= Jz is proportional to the parameter-encoding
precession Hamiltonian, and the first summand in Eq. (15) can be calculated for an
initial coherent state,

Cð0Þ ¼ 1
3
jðjþ 1Þ; ð16Þ

giving a tj2-scaling starting from tE. Due to the finite Hilbert-space dimension of
the kicked top, the auto-correlation function decays for large times to a finite value
C, leading to a term quadratic in t from the sum in Eq. (15) that simplifies to
Iα ¼ 4Ct2 for t � tH. If one rescales Jz → Jz/J such that it has a well defined classical
limit, random matrix theory allows one to estimate the average value of C(t) for
large times: C ¼ 2Jsσcl , and σcl is a transport coefficient that can be calculated
numerically16. This yields Eq. (12).

Lyapunov exponent. A data point located at (Z, ϕ) for the Lyapunov exponent in
Fig. 2c was obtained numerically by averaging over 100 initial conditions equally
distributed within a circular area of size 1/j (corresponding to the coherent state)
centered around (Z, ϕ).

Data availability. Numerical simulation data from this work have been submitted
to figshare.com with DOI 10.6084/m9.figshare.5901640. Relevant data are also
available from the authors upon request.
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Supplementary Information

Supplementary Note 1. Realization of the kicked top

The kicked top (KT) has been realized experimentally by Chaudhury et al. [1] using the

atomic spin of a 133Cs atom in the f = 3 hyperfine ground state. Linear precession of the

spin was implemented through magnetic pulses, and the torsion through an off-resonant

laser field that exploited a spin-dependent rank-2 (ac Stark) light shift.

An implementation of the KT using microwave superradiance was proposed by Haake

[2]: The top is represented by the collective pseudo-spin of N two-level atoms coupled with

the same coupling constant to a single mode of an electromagnetic field in a cavity, with

a controlled detuning between mode and atomic frequencies. Large detuning compared to

the Rabi frequency Ω = g
√
N with coupling strength g allows one to adiabatically eliminate

the cavity mode and leads to an effective interaction of the type J2
z [3] (replacing our J2

y ),

while superradiant damping as described by the master equation (13) in the main text for

the reduced density operator of the atoms can still prevail [2]. Finally, a linear rotation

about the x-axis can be achieved through resonant microwave pulses, replacing the linear

precession about the z-axis of the KT. The parameter α is now proportional to the Rabi

frequency of the microwave pulse.

Supplementary Note 2. Spin-exchange-relaxation-free Cs-vapor magnetometer

Adapting standard notation in atomic physics, atomic spin operators will be denoted

in the following by F = (Fx, Fy, Fz) with spin size f , Fz|fm〉 = m|fm〉, and total elec-

tronic angular momentum J = L + S with quantum number j, composed of orbital angular

momentum L and electron spin S. We model a room-temperature spin-exchange-relaxation-

free (SERF) Cs-vapor magnetometer similar to the experiments with Rb-vapor of Balabas et

al. [4]. The Cs spin sensitive to the magnetic field B is composed of a nuclear spin K = 7/2

and one valence electron with an electronic spin s = 1/2 which splits the ground state 62S1/2

into two energy levels with total spin f1 = 3 and f2 = 4. This results in an effective Hilbert

space of dimension 2(2K + 1) = 16 for our model of a kicked SERF magnetometer.

The dominant damping mechanisms are related to collisions of cesium atoms with each

2



other and with the walls of the vapor cell.

In the SERF regime the spin-exchange rate is much greater than the rate of Larmor

precession, typically realized by very small magnetic fields, a high alkali-atom density (1013

atoms per cm3), high buffer-gas pressure, and heating of the vapor cell. Then, spin-exchange

relaxation is so strong, that the population of hyperfine ground levels (fi = 3, 4) is well

described by a spin-temperature distribution. Here, we model a SERF magnetmeter with a

lower alkali-atom density of 2× 1010 atoms per cm3 without buffer gas at room temperature

T = 294.13 K. Modern alkene-based vapor-cell coatings support up to 106 collisions before

atoms become depolarized [4]. For a spherical vapor-cell with a 1.5 cm radius it follows that

collisions with walls limit the lifetime of spin polarization to Twall ' 92 s. Since the effect

of collisions among Cs atoms leads to stronger depolarization we neglect collisions with the

walls in our model.

While the typical treatment proceeds by eliminating the nuclear-spin component we are

interested in a dynamics that exploits the larger Hilbert space of the Cs spin. Therefore

the evolution of the spin density matrix ρ is described by a master equation that includes

damping originating from collisions of Cs atoms [5] and an interaction with an off-resonant

light field in the low-saturation limit [6] modeling the kicks:

dρ

dt
= Rse [ϕ(1 + 4 〈S〉 · S)− ρ] +Rsd [ϕ− ρ] + ahf

[K · S, ρ]

i~
+
Heff

A ρ− ρHeff†
A

i~

+ γnat

1∑

q=−1

(∑

f,f1

W ff1
q ρf1f1

(
W ff1
q

)†
+
∑

f1 6=f2
W f2f2
q ρf2f1

(
W f1f1
q

)†
)

(1)

The first two summands describe spin-exchange relaxation and spin-destruction relaxation,

respectively, where Rse denotes the spin-exchange rate and Rsd the spin-destruction rate, and

ϕ = ρ/4 + S · ρS is called the purely nuclear part of the density matrix, where the electron-

spin operator S only acts on the electron-spin component with expectation value 〈S〉 =

tr[Sρ]. The third summand is the hyperfine coupling of nuclear spin K and electronic spin

S with hyperfine structure constant ahf, and the fourth summand drives the dynamic with

an effective non-hermitian Hamiltonian on both ground-state hyperfine manifolds Heff
A =

Heff
A,f=3 +Heff

A,f=4, with

Heff
A,f = ~ΩLarFy +

∑

f ′

~Ω2C
(2)
j′f ′f

4(∆ff ′ + iγnat/2)
|εL · F|2 (2)

that includes Larmor precession with frequency ΩLar = gfµBB/~ (with the Landé g-factor gf
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and the Bohr magneton µB) of the atomic spin in the external magnetic field B = Bŷ, and

the rank-2 light-shift induced by a light pulse that is linearly polarized with unit polarization

vector εL of the light field and off-resonant with detuning ∆ff ′ from the D1-line transition

with f → f ′. Further, we have the characteristic Rabi frequency Ω = γnat

√
Ikick/(2Isat) of

the D1 line, the natural line width γnat, kick-laser intensity Ikick, saturation intensity Isat,

and the coefficient

C
(2)
j′f ′f = (−1)3f−f ′

√
30(2f ′ + 1)√

f(f + 1)(2f + 1)(2f − 1)(2f + 3)




f 1 f ′

1 f 2




∣∣∣oj′f ′1/2f

∣∣∣
2

, (3)

where the curly braces denote the Wigner 6j symbol and

oj
′f ′

jf = (−1)f
′+1+j′+K

√
(2j′ + 1)(2f + 1)




f K j′

j 1 f



 , (4)

where total angular momentum of ground and excited levels of the D1 line are j = j′ =

1/2. Photon scattering is taken into account by the imaginary shift of ∆ff ′ in the effective

Hamiltonian and by the remaining parts of the master equation that correspond to optical

pumping which leads to cycles of excitation to the 6P1/2 manifold and spontaneous emission

to the ground-electronic manifold 6S1/2. When the laser is switched off the master equation

solely involves the first four summands where Heff
A reduces to the Larmor precession term.

The jump operators are given as

W fbfa
q =

4∑

f ′=3

Ω/2

∆faf ′ + iγnat/2

(
e∗q ·Dfbf ′

) (
εL ·D†faf ′

)
, (5)

with the spherical basis e1 = −(x̂ + iŷ)/
√

2, e0 = ẑ, e−1 = (x̂ − iŷ)/
√

2 in the Cartesian

basis x̂, ŷ, ẑ, and the raising operator D†ff ′ =
∑

q,m,m′ e∗qo
j′f ′

jf 〈f ′m′|fm; 1q〉 |f ′m′〉〈fm| with

Clebsch-Gordan coefficients 〈f ′m′|fm; 1q〉 and magnetic quantum numbers m, m′.

Excited state hyperfine levels are Doppler and pressure broadened, but we neglect pres-

sure broadening which is much smaller than Doppler broadening due to the very low vapor

pressure. Doppler broadening is taken into account by numerically averaging the righthand

side of the master equation (Supplementary Equation 1) over the Maxwell-Boltzmann dis-

tribution of velocities of an alkali atom. This translates into an average over detunings ∆ff ′ .

Since ∆ � Ω must hold within the description of this master equation, we limit averaging

over detunings to a 3σ interval.
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By numerically solving the non-linear trace-preserving master equation (Supplementary

Equation 1) with the Euler method (analog to Ref. [7] we take hyperfine coupling into

account by setting off-diagonal blocks of the density matrix in the coupled |fm〉-basis after

each Euler step to zero, because they oscillate very quickly with ahf), we simulate dynamics

similar to the dissipative kicked top described above with the difference that kicks are not

assumed to be arbitrarily short, i.e. kicks and precession coexist during a light pulse. Kicks

and corresponding dissipation are factored in by applying a superoperator to the state in

each Euler step during a kick.

Spin-exchange and spin-destruction rates are estimated to Rse ' 12 Hz and Rsd ' 0.12 Hz

from the known cross sections of Cs-Cs collisions, the mean relative thermal velocity of Cs

atoms and their density.

For the concrete example of Fig. 7 we calculate with 2× 1010 Cs atoms per 1 cm3 vapor

volume, and kick laser pulses linearly polarized in x-direction, εL = x̂, with intensity Ikick =

0.1 mW/cm2 and detuning halfway between the two components of the D1 line, and ∆34 '
−584 MHz. The period is τ = 1 ms where during the last 2µs of each period the laser

pulse is applied (effective kicking strength for the lower hyperfine level of the ground state

is k ' 6.5× 10−4). We choose a small magnetic field B = 40 fT in y-direction so that we are

well within the SERF regime, Rse � ΩLar.

With a circular polarized pump beam in z-direction resonant with the D1 line the initial

spin-state is polarized which in the presence of spin-relaxation leads to an effective thermal

state

ρ =
eβKzeβSz

ZKZS
, (6)

with the partition sum Zj =
∑j

m=−j e
βm and β = ln 1+q

1−q , with polarization q = 0.95. The

readout is accomplished typically with the help of an off-resonant probe beam by measuring

its polarization after it experienced a Faraday rotation when interacting with the atomic

spin ensemble.
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A quantum-chaotic cesium-vapor magnetometer
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ABSTRACT

Quantum-enhanced measurements represent the path towards the best measurement precision allowed by the
laws of quantum mechanics. Known protocols usually rely on the preparation of entangled states and promise
high or even optimal precision, but fall short in real-word applications because of the difficulty to generate
entangled states and to protect them against decoherence. Here, we refrain from the preparation of entangled
states but supplement the integrable parameter-encoding dynamics by non-linear kicks driving the system in the
dynamical regime of quantum chaos. We show that large improvements in measurement precision are possible
by modeling a spin-exchange relaxation-free alkali-vapor magnetometer where the non-linear kicks are realized
by exploiting the ac Stark effect.

Keywords: magnetometer, atomic vapor, cesium, SERF, quantum chaos, kicked top, quantum Fisher informa-
tion, non-linear, decoherence, master equation

1. INTRODUCTION

High-precision sensors are based more and more often on quantum systems such as NV centers,1 photons in
an interferometer,2 or clouds of atoms.3 Optimizing such sensors allows measurement precision to reach the
standard quantum limit. To overcome this limit, it is necessary to exploit genuine quantum properties such
as entanglement of the quantum systems under consideration. Such quantum-enhanced measurements were
proposed to improve frequency standards,4–8 navigation,9 remote sensing,10 measurement of magnetic fields,11

or gravitational wave detection.12,13

Common features of many propositions are the preparation of non-classical, entangled states and integrable
dynamics of the quantum sensor.14 Although the preparation of entangled states is a theoretically well-established
resource that in principle allows one to reach optimal measurement precision, in practice, it represents a huge
challenge to generate entanglement over large systems that is necessary to achieve large improvements in mea-
surement precisions. Further, entangled states are prone to decoherence which leads, for instance, to a severe
decrease of squeezing in interferometers that operate with squeezed vacuum. In particular, it has been shown
that in most cases decoherence prevents reaching the desirable Heisenberg scaling of precision such that the
quantum improvement reduces to a constant factor over the standard quantum limit.15,16

Decoherence in quantum systems and experimental difficulties in generating entanglement call for quantum-
enhanced protocols that perform well under decoherence without requiring the preparation of large-scale entan-
glement. The idea, we proposed in our work about quantum-chaotic sensors,17 is the following: Prepare the
quantum sensor in a coherent state, i.e., the most classical state, that is typically easy to prepare. Then, the
dynamics that encodes the parameter to be measured is supplemented with non-linear kicks, corresponding to
some non-linear Hamiltonian that does not commute with the Hamiltonian of the parameter-encoding dynamics.
This can create quantum chaos, i.e., dynamics that becomes chaotic in the classical limit. The unpredictability
of classical chaos originating from its exponential sensitivity to a change of initial conditions is absent in the
quantum case; instead quantum chaos is characterized by its sensitivity to a change of the dynamics which
can be quantified by the Loschmidt echo. The Loschmidt echo, however, is in the limit of small changes of
the dynamics related to the quantum Fisher information which quantifies the achievable measurement precision
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L.J.F.: E-mail: lukas.fiderer@uni-tuebingen.de
D.B.: E-mail: daniel.braun@uni-tuebingen.de
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(a more precise description is given in section 4.1), hinting at an underlying connection of quantum chaos and
achievable measurement precision. At the example of the kicked top model, this correspondence has been studied
numerically in the decoherence-free regime as well as under decoherence.17

Here we simulate a spin-exchange relaxation-free cesium-vapor magnetometer that is turned into a quantum-
chaotic sensor by periodically applying nonlinear, short kicks to the cesium spins that precess in the magnetic
field which has to be measured. Comparing the measurement performance with the same sensor in the absence
of kicks, we find an improvement in measurement precision.

In section 2, we introduce the kicked top model, a standard model to study quantum chaos. In section 3, it
is discussed how to turn an alkali-vapor magnetometer into a quantum-chaotic sensor based on the kicked top
model. The master equation for such a quantum-chaotic magnetometer is given in section 3.2. Finally, in section
4, we introduce the framework of quantum Fisher information which is then used to quantify and compare the
measurement precision of the quantum-chaotic magnetometer.

2. THE KICKED TOP MODEL

Consider an atomic spin of size f with spin operator F = (Fx, Fy, Fz), Fz|fm〉 = ~m|fm〉 and F2|fm〉 =
~2f(f + 1)|fm〉, where f and m are atomic angular momentum quantum numbers. For such an atomic spin,
or actually for any quantum system fulfilling the angular momentum algebra, we can set up the kicked top
model18–20 with time-dependent Hamiltonian

HKT(t) = αFy +
k

(2f + 1)~
F 2
x

∞∑

n=−∞
τδ(t− nτ) . (1)

Setting the period τ = 1, the Floquet operator

Uα(k) = e
−ik F2

x
(2f+1)~2 e−iα

Fy
~ (2)

describes the unitary dynamics from time t to t+ τ . The first term αFy of the Hamiltonian generates a rotation
or precession of the angular momentum around the y-axis by an angle α. The second term contains the non-
linearity F 2

x generating an instantaneous kick only if time t equals nτ where n can be any integer. k is the kicking
strength. In total, the dynamics consist of continuous spin precession periodically disrupted by instantaneous
nonlinear kicks. Figure 1 (c) shows the kicked top dynamics integrated in a measurement protocol measuring
the precession angle α.

The kicked top is a standard model in quantum chaos because its dynamics is non-integrable for k ≥ 0 and its
classical limit shows a transition from regular to chaotic dynamics when k is increased. The kicked top has been
realized with single-atom spins in a cold gas21 as well as with a pair of spin-1/2 nuclei using NMR techniques.22

3. A KICKED CESIUM-VAPOR MAGNETOMETER

Alkali-vapor magnetometers in the spin-exchange relaxation-free (SERF) regime23–27 typically consist of a glass
cell filled with the alkali vapor with a density of about 1013 atoms per cm3. The optically polarized spins of the
alkali atoms are the quantum system of the magnetometer that reacts to a magnetic field with precession around
the axis of orientation of the magnetic field. The dominant damping mechanisms originate from collisions of
alkali atoms among each other and with the walls of the glass cell. Therefore, buffer gas is added to the cell and
the inside walls are coated with an anti-relaxation coating. The SERF regime is determined by a spin-exchange
rate that is much higher than the Larmor precession of the spins induced by the magnetic field to be measured;
it is realized by small magnetic fields (10−13 T), high gas pressure in the cell, and heating of the atomic vapor.



335.116 THz

f = 4

f = 3

f = 4

f = 3

1167 MHz1167 MHz1167 MHz

9193 MHz62S1/2

62P1/2

lasers
- readout
- state preparation
- kicks

vapor cell

B field

shielding

polarization
measurement

z

x

y

(b)

ρ Ry(α) Ry(α) Ry(α)

(a) (c)

Figure 1: Panel (a): Hyperfine structure of the D1 line of 133Cs (not to scale). Panel (b): Schematic setup
of a kicked cesium-vapor magnetometer. State preparation consists of polarizing the atomic spins optically;
non-linear kicks and readout are realized optically as well, where a polarization measurement is performed for
the transmitted readout beam. Panel (c): Schematic procedure of a quantum chaotic measurement. A state ρ is
prepared, precession Ry(α) encodes the parameter α to the system, non-linear kicks (blue wedges) are applied
periodically, and final readout (semicircle) allows to estimate α.

3.1 Finding a proper parameter regime

In the following, we show how to implement the kicked top model in an alkali-vapor magnetometer in the spin-
exchange relaxation-free (SERF) regime.23–27 We model a cesium-vapor magnetometer at room temperature
similar to the experiments with rubidium vapor of Balabas et al.28

The Cs spin is composed of a nuclear spin K = 7/2 and an electronic spin s = 1/2 of a single valence electron
which splits the ground state 62S1/2 into two energy levels with total spin f1 = 3 and f2 = 4. This results in an
effective Hilbert space of dimension 2(2K+1) = 16 for our model of a kicked SERF magnetometer. Consider the
D1 line of 133Cs as depicted in figure 1 (a). The kicks will be realized exploiting the ac Stark effect, a rank-2 light
shift generated by linearly-polarized, off-resonant light pulse. More precisely, with respect to the 62S1/2, f1 = 3
ground state, the light pulse is tuned halfway between the two hyperfine components of 62P1/2 because the light
shift is strongest there.29,30 The ac Stark effect is present only if the hyperfine splitting of 62P1/2 is resolved
which is not the case under conditions typical for SERF magnetometers due to pressure broadening. Therefore,
we choose a density of only 2× 1010 cesium atoms per cm3 and no buffer gas. It was shown by Balabas et al.28

that thanks to an alkene-based anti-relaxation coating of the walls of the glass cell it is still possible to reach the
SERF regime. Then, pressure broadening is negligible compared to 357 MHz (FWHM) of Doppler broadening of
the hyperfine levels of 62P1/2, which is obtained from the temperature (294 K, room temperature) and the mass
of a cesium atom. Then, the relatively large hyperfine splitting of cesium (1167 MHz, figure 1 (a)) is large enough
to be well resolved. Note that heating of the glass cell is counterproductive as it increases Doppler broadening.

This represents a parameter regime where magnetic precession of the cesium spins corresponds to the linear
precession Hamiltonian in the kicked top model, and short off-resonant light pulses induce the ac Stark effect
corresponding to the non-linear kicks. In the next section we give a master equation taking into account all
relevant decoherence mechanisms including decoherence due to the off-resonant light pulses as well as the finite
length of the light pulses in contrast to the idealized delta-shaped kicks of the kicked top model.



3.2 Master equation

Collisions of cesium atoms lead to spin-exchange and spin-destruction processes with rates Rse ' 12 Hz and
Rsd ' 0.12 Hz, respectively. These decay rates can be estimated from the cross sections of Cs-Cs collisions,31

the mean relative thermal velocity of cesium atoms and their density.32 The Larmor frequency is given by
ΩLar = gfµBB/~ with the Landé g-factor gf and the Bohr magneton µB, and we set the magnetic field strength
to B = 4 × 10−14. In the electronic ground state 62S1/2, we have ΩLar ' 0.44 mHz such that Rse � ΩLar, i.e.,
we are in the SERF regime. Then, the effective, joint dynamics of both hyperfine ground states of 62S1/2 is
unaffected by spin-exchange collisions. The alkene-based anti-relaxation coating from Balabas et al.28 supports
up to 106 collisions before the atomic spins become depolarized. For a spherical vapor-cell with 3 cm diameter,
this leads to a damping rate due to collisions with the wall of Rwall ' 11 mHz. Since Rsd � Rwall, spin destruction
is the dominant damping mechanism, and we neglect damping due to collisions with the wall.

In order to model non-integrable dynamics, the theoretical description must take into account the full Hilbert
space of the electronic ground state in contrast to the standard modeling of SERF magnetometers where the
nuclear-spin component is eliminated. We use the following notation: the atomic spin F = K + J can be
decomposed in nuclear spin K and electronic angular momentum J = L + S, where L is the orbital angular
momentum and S the electron spin. The evolution of the spin density matrix ρ is described by a master equation
that includes damping originating from collisions of cesium atoms33 and an interaction with an off-resonant light
field in the low-saturation limit29 modeling the non-linear kicks:

dρ

dt
= Rse [ϕ(1 + 4 〈S〉 · S)− ρ] +Rsd [ϕ− ρ] + ahf

[K · S, ρ]

i~
+
Heff

A ρ− ρHeff†
A

i~

+ γnat

1∑

q=−1


∑

f,f1

W ff1
q ρf1f1

(
W ff1
q

)†
+
∑

f1 6=f2
W f2f2
q ρf2f1

(
W f1f1
q

)†

 . (3)

The first summand describes spin-exchange relaxation, and ϕ = ρ/4 + S · ρS is called the purely nuclear part of
the density matrix, where the electron-spin operator S only acts on the electron-spin component with expectation
value 〈S〉 = tr[Sρ]. Spin-destruction relaxation is given by the second summand. The third summand describes
the hyperfine coupling of nuclear spin K and electronic spin S with hyperfine structure constant ahf, and the
fourth summand drives the dynamics with an effective non-hermitian Hamiltonian on both ground-state hyperfine
manifolds Heff

A = Heff
A,f=3 +Heff

A,f=4, with

Heff
A,f = ~ΩLarFy +

∑

f ′

~Ω2C
(2)
j′f ′f

4(∆ff ′ + iγnat/2)
(εL · F)

2
. (4)

The effective Hamiltonian includes Larmor precession with frequency ΩLar of the atomic spin in the external
magnetic field B = Bŷ and the rank-2 light-shift induced by a linearly polarized light pulse with unit polarization
vector εL of the light field and off-resonant with detuning ∆ff ′ from the D1-line transition with f → f ′.
We take kick pulses to be polarized in x-direction, εL = x̂, while the pulse beam propagates in z-direction,
as indicated in figure 1 (b). Further, the prefactor of the non-linearity consists of the characteristic Rabi
frequency Ω = γnat

√
Ikick/(2Isat) of the D1 line, with saturation intensity of off-resonant linearly polarized

light34 Isat ' 2.5 mW cm−2, natural line width γnat, kick-laser intensity Ikick, and coefficients

C
(2)
j′f ′f = (−1)3f−f ′

√
30(2f ′ + 1)√

f(f + 1)(2f + 1)(2f − 1)(2f + 3)

{
f 1 f ′

1 f 2

} ∣∣∣oj
′f ′

1/2f

∣∣∣
2

. (5)

The curly braces denote the Wigner 6j symbol and oj
′f ′

jf is defined as

oj
′f ′

jf = (−1)f
′+1+j′+K

√
(2j′ + 1)(2f + 1)

{
f K j′

j 1 f

}
, (6)

where the total angular momenta of ground and excited levels of the D1 line are j = j′ = 1/2. Photon scattering
is taken into account by the imaginary shift iγnat/2 of the detuning ∆ff ′ in the effective Hamiltonian and by the



remaining parts of the master equation that correspond to optical pumping which leads to cycles of excitation to
the 6P1/2 manifold followed by spontaneous emission to the ground-electronic manifold 6S1/2. When the laser
is switched off, the master equation solely involves the first four summands (spin exchange, spin destruction,
hyperfine coupling, effective Hamiltonian) and the effective Hamiltonian reduces to the Larmor precession term.

The jump operators are given as29

W fbfa
q =

4∑

f ′=3

Ω/2

∆faf ′ + iγnat/2

(
e∗q ·Dfbf ′

) (
εL ·D†faf ′

)
, (7)

with the spherical basis e1 = −(x̂+iŷ)/
√

2, e0 = ẑ, e−1 = (x̂−iŷ)/
√

2, where x̂, ŷ, ẑ denotes the Cartesian basis,

and D†ff ′ =
∑
q,m,m′ e∗qo

j′f ′

jf 〈f ′m′|fm; 1q〉 |f ′m′〉〈fm| is the raising operator with Clebsch-Gordan coefficients
〈f ′m′|fm; 1q〉.

The Euler method is used to solve the non-linear trace-preserving master equation and hyperfine coupling
is taken into account by setting off-diagonal blocks of the density matrix in the coupled |fm〉-basis after each
Euler step to zero,25 because they oscillate very quickly with frequency ahf. In distinction from the kicked top
model, kicks are not assumed to be arbitrarily short, i.e., kicks and precession coexist during a light pulse. In
each Euler step during a kick, the non-linearity and the corresponding dissipation is factored in by calculating a
superoperator and applying it to the state.

The period between pulses, and the duration and intensity of light pulses must be chosen such that the
favorable effect of kicking outweighs the detrimental effect of induced decoherence. The intensity of the light
pulses inducing the non-linear kicks is set to Ikick = 0.1 mW/cm

2
and light pulses are detuned halfway between

the hyperfine splitting of 62P1/2, ∆34 ' −584 MHz. The period is τ = 1 ms where during the last 2µs of each
period the light pulse is applied which corresponds to a very low effective kicking strength of k ' 6.5× 10−4 for
the lower hyperfine level of the ground state.

Doppler broadening is taken into account by numerically averaging the righthand side of the master equation
over the Maxwell-Boltzmann distribution of velocities of an cesium atom. This translates into an average over
detunings ∆ff ′ . We limit averaging over detunings to a 3σ interval because ∆ � Ω must hold within the
description of the master equation.29

The initial spin-state is polarized with a circularly polarized pump beam in z-direction orthogonal to the
magnetic field (see figure 1 (b)) resonant with the D1 line which in the presence of spin-relaxation leads to an
effective thermal state33

ρ =
eβKzeβSz

ZKZS
, (8)

where β = ln 1+q
1−q , with polarization q = 0.95, and Zj =

∑j
m=−j e

βm is the partition function. The readout
is accomplished typically with the help of an off-resonant probe beam by measuring its polarization which
experienced a Faraday rotation during the interaction with the atomic spin ensemble, see figure 1 (b). Since we
are interested only in a comparison of measurement strategies, with kicks and without kicks, we do not model
readout noise which is the same for both strategies.

4. MEASUREMENT PRECISION

We will first introduce Fisher information and quantum Fisher information and show the connection of the latter
to fidelity establishing a fundamental relation between achievable measurement precision and quantum chaos.
Then, we will compare measurement strategies (kicks versus no kicks) by means of these quantities.

4.1 Quantum Fisher information and fidelity

If the probability distribution of measurement outcomes depends on a parameter α, we can estimate α from the
measurement outcomes. High measurement precision corresponds to a low variance (or standard deviation) of
our estimate αest of α which is lower bounded by the Cramér–Rao bound,

Var(αest) ≥
1

MIFisher,α
, (9)



where M denotes the number of measurements and IFisher,α is the Fisher information.35 It is given by

IFisher,α :=

∫
dξ

(dpα(ξ)/dα)2

pα(ξ)
, (10)

where pα(ξ) denotes the probability of observing the measurement outcome ξ. Describing the parameter-
dependent quantum state of the quantum sensor by a density operator ρα and the measurement by a positive
operator-valued measure (POVM) {Πξ} with positive operators Πξ that correspond to observing the measure-
ment outcome ξ, the probability for observing ξ is given by the Born rule, pα(ξ) = tr [Πξρα]. Minimizing
Var(αest) with respect to the choice of measurement, yields the quantum Cramér–Rao bound,

Var(αest) ≥
1

MIα
, (11)

where Iα is the quantum Fisher information36 (QFI),

Iα = lim
ε→0

4
1− Fε
ε2

, (12)

with Fε the fidelity between the state ρα and the perturbed state ρα+ε,

Fε =
∥∥√ρα

√
ρα+ε

∥∥2

2
, (13)

where ‖A‖1 = tr
√
AA† is the trace norm.

In the field of quantum chaos, fidelity, usually evaluated for pure states and unitary dynamics, is called
Loschmidt echo and represents an important quantity to study the sensitivity to changes of a parameter of
the dynamics.37 As can be seen from equation (12), only in the limit of small perturbations, known as the
perturbative regime,38,39 QFI is given by the fidelity.

Comparing two measurement strategies by comparing the maximal QFI or Fisher information of both strate-
gies is not fair in terms of resources if the maxima are reached at different times, i.e., if the two strategies
consume different amounts of time. In principle, the faster measurement strategy could be followed up with
another measurement until the other strategy is finished, or it might be better to not even wait until QFI is
maximal but instead perform a series of shorter measurements∗. This means that there is a tradeoff between
measurement time and repetitions of a measurement which gives a prefactor M for the QFI (equation 11) for M
repetitions. Therefore, we consider the rescaled QFI and rescaled Fisher information,

I(t)
α =

Iα
t
, (14)

I
(t)
Fisher,α =

IFisher,α

t
, (15)

with measurement time t. Rescaled QFI (or rescaled Fisher information) decays if QFI (Fisher information) is
∝ tx with x < 1 indicating that it is better to stop the measurement and start a new one; linear M scaling
is then better than ∝ tx scaling. Classical averaging over long times typically leads to a x = 1 scaling which
motivates giving sensitivity (standard deviation of the estimator) in units of 1/

√
Hz which is well established in

experimental physics. On the other hand, quantum coherence typically leads to an x = 2 scaling. Rescaled QFI
allows us to compare measurement strategies that use different amounts of time; best precision corresponds to
the maximum rescaled QFI or Fisher information.

4.2 Comparison of a cesium-vapor magnetometer with and without kicks

We compare now the kicked cesium-vapor magnetometer in the SERF regime as described above (section 3.2)
with exactly the same magnetometer in the absence of kicks, denoted as reference in the following. Figure

∗The underlying assumption is that it is always possible to interrupt and repeat a measurement and that preparation
and readout times of single measurements can be neglected.
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Figure 2: Performance of a magnetic-field measurement with a kicked cesium-vapor magnetometer. The gray

dashed line shows the rescaled quantum Fisher information I
(t)
B for measuring the magnetic field B, the blue line

is obtained by periodically adding short optical kicks every τ = 1 ms. The inset shows precision ∆B in units of
T/
√

Hz for an optimal measurement (gray dashed line and blue line without and with kicks, respectively) and
for measuring the z-component of the electronic spin Sz (gray dash-dotted and red line without and with kicks,
respectively).

2 shows rescaled QFI for both measurement strategies: It is remarkable that the rescaled QFI for the kicked
magnetometer continues to increase when the reference already starts to decay due to decoherence although kicks
introduce additional decoherence. The inset shows the measurement precision ∆B in units of T/

√
Hz per 1 cm3

vapor volume. It is defined by ∆B = 1/

√
nI

(t)
B , where n ' 2× 1010 is the number of cesium atoms in 1 cm3, and

for a specific measurement I
(t)
B must be replaced by the corresponding rescaled Fisher information I

(t)
Fisher, B. We

find about 31% improvement in measurement precision ∆B for an optimal measurement and 68% improvement
in a comparison of measurements of the electronic spin component Sz. Such an Sz measurement is easily realized
by measuring the Faraday rotation of an off-resonant readout beam with a polarization measurement as indicated
in figure 1 (b).

5. DISCUSSION

We propose a method to improve sensitivity of a cesium-vapor magnetometer in the spin-exchange relaxation-free
regime. We do not need to prepare an initial entangled states but supplement the spin-precession dynamics of the
magnetometer with nonlinear kicks generated with off-resonant light pulses via the ac Stark effect. The interplay
of precession in the magnetic field and non-linear kicks put the dynamics in the regime of quantum chaos.
A simulation of the magnetometer based on a master equation including all relevant decoherence mechanisms
reveals improved robustness with respect to decoherence by including non-linear kicks to the dynamics even
though kicks induce additional decoherence.17 In our concrete example we find up to 68% improvement in
measurement precision over a the same magnetometer in the absence of kicks. We expect a further improvement
in precision if the transmission of the off-resonant kick pulses is measured. Large improvements can be expected
by increasing the system size, which is restricted to single cesium spins in our case because the non-linear kicks
act only on single atom spins. Applying the non-linear kicks to the joint spin of cesium atoms in the vapor
cell could be realized by exploiting effective interactions between the atoms in a cavity as suggested in40 or
by using the interaction with a propagating light field as demonstrated experimentally in41,42 with about 1012

cesium atoms. Finally, the idea of a quantum-chaotic sensor17 is very general and we expect improvements in
many other quantum sensors that can be rendered chaotic as well; candidates are BECs or arrays of NV centers
exploiting interactions leading to an effective non-linearity.
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We study quantum metrology for unitary dynamics. Analytic solutions are given for both the optimal
unitary state preparation starting from an arbitrary mixed state and the corresponding optimal measurement
precision. This represents a rigorous generalization of known results for optimal initial states and upper
bounds on measurement precision which can only be saturated if pure states are available. In particular, we
provide a generalization to mixed states of an upper bound on measurement precision for time-dependent
Hamiltonians that can be saturated with optimal Hamiltonian control. These results make precise and reveal
the full potential of mixed states for quantum metrology.
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The standard paradigm of quantum metrology involves
the preparation of an initial state, a parameter-dependent
dynamics, and a consecutive quantum measurement of
the evolved state. From the measurement outcomes the
parameter can be estimated [1–3]. Naturally, it is the goal
to estimate the parameter as precisely as possible, i.e.,
to reduce the uncertainty Δα̂ ¼ Varðα̂Þ1=2 of the estimator
α̂ of the parameter α that we want to estimate. We consider
single parameter estimation in the local regime where
one already has a good estimate α̂ at hand (typically from
prior measurements) such that this prior knowledge can be
used to prepare and control consecutive measurements.
Quantum coherence and nonclassical correlations in quan-
tum sensors help to reduce the uncertainty Δα̂ compared to
what is possible with comparable classical resources [4,5].
The ultimate precision limit for unbiased estimators is given
by the quantumCramér-Rao boundΔα̂ ≥ ðMIαÞ−1=2, which
depends on the number of measurements M and the
quantum Fisher information (QFI) Iα which is a function
of the state [6,7]. When the number of measurements is
fixed, as they correspond to a limited resource, precision is
optimal when the QFI is maximal which involves an
optimization with respect to the state.
In this Letter, we consider a freely available state ρ,

unitary freedom to prepare an initial state from ρ, and
unitary parameter-dependent dynamics of the quantum
system (see Fig. 1). The parameter-dependent dynamics
will be called sensor dynamics in the following in order to
distinguish it from the state preparation dynamics. For
instance, in a spin system the unitary freedom can be used
to squeeze the spin before it is subjected to the sensor
dynamics, as it is the case in many quantum-enhanced
measurements [8–11]. In the worst-case scenario, only the
maximally mixed state is available, which does not change
under unitary state preparation or unitary sensor dynamics

and, thus, no information about the parameter can be
gained. In the best-case scenario, the available state is
pure, and the maximal QFI as well as the optimal state to be
prepared are well known [12,13].
The appeal and advantage of the theoretical study of

unitary sensor dynamics lies in the analytic solutions that
can be found that allow fundamental insights in the limits
of quantum metrology and the role of resources such as
measurement time and system size. The QFI maximized
with respect to initial states, also known as channel QFI,
can be reached only with pure initial states. If only mixed
states are available, as it is usually the case under realistic
conditions, this upper bound cannot be saturated and
therefore has limited significance. In fact, if pure states
are not available, the question for the maximal QFI and
optimal state to be prepared is an important open problem
[14,15]. The main result of this Letter, Theorem 1 below, is
the complete solution of this problem.
The solution is relevant for practically all quantum

sensors, as perfect initialization to a pure state can only
be achieved to a certain degree that varies with the quantum
system and the available technology. For example, nitro-
gen-vacancy (NV) center arrays [16,17] or atomic-vapor
magnetometers [18,19] operate with mixed initial states due
to imperfect polarization and competing depolarization
effects [20,21]. Particularly relevant is the example of
sensors based on nuclear spin ensembles that typically

FIG. 1. Schematic representation of the metrology protocol.
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operate with nuclear spins in thermal equilibrium, such that
at room temperature the available state is strongly mixed
[22]. Hence, the full potential of quantum metrology is
exploited only when the mixedness of initial states is taken
into account [14,23–25].
We consider arbitrary, possibly time-dependent

Hamiltonians HαðtÞ for the sensor dynamics. The corre-
sponding unitary evolution operator is Uα ≔ T ðexp½−i=ℏR
T
0 HαðtÞdt�Þ, where T denotes time ordering, T is the total
time of the sensor dynamics, and we set ℏ ¼ 1 in the
following. In the simplest case, dynamics is generated by
a “phase-shift” or “precession” Hamiltonian proportional
to the parameter α, Hα ¼ αG, with some parameter-
independent operator G. The parameter dependence of
the sensor dynamics is characterized by the generator hα ≔
iU†

αð∂Uα=∂αÞ, which simplifies to G for phase-shift
Hamiltonians [12,26–28].
By introducing the eigendecomposition of the prepared

initial state ρ ¼ P
d
k¼1 pkjψkihψkj, where d is the dimension

of the Hilbert space, the QFI can be expressed as [7], [14]

IαðρÞ ≔ 2
Xd
k;l¼1

pk;ljhψkjhαjψlij2; ð1Þ

with coefficients

pk;l ≔
� 0 if pk ¼ pl ¼ 0;

ðpk−plÞ2
pkþpl

else:
ð2Þ

Also, let UðdÞ denote the set of d × d unitary matrices.
Theorem 1: For any state ρ and any generator hα with

ordered eigenvalues p1 ≥ � � � ≥ pd and h1 ≥ � � � ≥ hd,
respectively, the maximal QFI with respect to all unitary
state preparations UρU†, U ∈ UðdÞ, is given by

I�α ≔ max
U

IαðUρU†Þ ¼ 1

2

Xd
k¼1

pk;d−kþ1ðhk − hd−kþ1Þ2: ð3Þ

Let jhki be the eigenvectors of the generator, hαjhki ¼
hkjhki. The maximum I�α is obtained by preparing the initial
state

ρ� ¼
Xd
k¼1

pkjϕkihϕkj; ð4Þ

with [29]

jϕki ¼

8>>><
>>>:

jhkiþjhd−kþ1iffiffi
2

p if 2k < dþ 1;

jhki if 2k ¼ dþ 1;
jhki−jhd−kþ1iffiffi

2
p if 2k > dþ 1:

ð5Þ

The proof is based on the Bloomfield-Watson inequality
on the Hilbert-Schmidt norm of off-diagonal blocks of a
Hermitian matrix [30,31] and is given in the Supplemental
Material [32]. The idea of the proof is to construct an upper
bound for the QFI in Eq. (3) that exhibits a simpler
dependence on the coefficients pk;l. Then we maximize
the upper bound by exploiting the Bloomfield-Watson
inequality. The proof is concluded by showing that at its
maximum the upper bound equals the QFI.
It is important to notice that the rank r of the state ρ plays

a crucial role both for the maximal QFI and for the optimal
state: in order to reach the maximal QFI I�α, the choice
of the jϕki corresponding to vanishing pk, i.e., for k > r,
is irrelevant. This is best exemplified by considering the
well-known case of pure states, characterized by p1 ¼ 1
and r ¼ 1 [12,26,27,33,34]. Then, the maximal QFI in
Eq. (3) simply becomes ðh1 − hdÞ2 and is obtained by
preparing an equal superposition ðjh1i þ jhdiÞ=

ffiffiffi
2

p
of the

eigenvectors corresponding to the minimal and maximal
eigenvalues of hα. When the rank is increased but remains
less than or equal to ðdþ 1Þ=2, the optimal QFI is equal toP

r
i¼1 piðhi − hd−iþ1Þ2. This can be seen as a convex sum

of pure-state QFIs [35].
The situation changes when the rank is increased even

further. For example with r ¼ 4 and d ¼ 5, the maximal
QFI is equal to p1ðh1 − h5Þ2 þ ½ðp2 − p4Þ2=ðp2 þ p4Þ�
ðh2 − h4Þ2. Further, for a Hilbert space of odd dimension,
the vector jϕðdþ1Þ=2i ¼ jhðdþ1Þ=2i is an eigenstate of the
generator: it remains invariant under the dynamics and
does not contribute to the QFI. For example for both r ¼ 2
and r ¼ 3 with d ¼ 5, the optimal QFI is given by
p1ðh1 − h5Þ2 þ p2ðh2 − h4Þ2.
We obtained I�α by optimizing with respect to unitary

state preparation while keeping the sensor dynamics fixed
(see Fig. 1). However, in practice it is often possible not
only to manipulate the available state but also the sensor
dynamics by adding a parameter-independent control
Hamiltonian HcðtÞ to the original Hamiltonian HαðtÞ.
While Theorem 1 holds for any HαðtÞ, it is an interesting
question to what extent the maximal QFI in Eq. (3) can be
increased by adding a time-dependent control Hamiltonian.
Again, the answer is only known for pure states [34]. The
question, how this generalizes if the available state is
mixed, brings us to
Theorem 2: For any state ρ with ordered eigenvalues

p1 ≥ � � � ≥ pd and any time-dependent HamiltonianHαðtÞ,
where μ1ðtÞ ≥ � � � ≥ μdðtÞ are the ordered eigenvalues of
∂αHαðtÞ ≔ ∂HαðtÞ=∂α, an upper bound for the QFI is
given by

Kα ¼
1

2

Xd
k¼1

pk;d−kþ1

�Z
T

0

½μkðtÞ − μd−kþ1ðtÞ�dt
�

2

: ð6Þ

Let jμkðtÞi be the time-dependent eigenvectors of ∂αHαðtÞ,∂αHαðtÞjμkðtÞi ¼ μkðtÞjμkðtÞi. The upper bound Kα is
reached by preparing the initial state
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ρ� ¼
Xd
k¼1

pkjϕkihϕkj; ð7Þ

with

jϕki ¼

8>>><
>>>:

jμkð0Þiþjμd−kþ1ð0Þiffiffi
2

p if 2k < dþ 1;

jμkð0Þi if 2k ¼ dþ 1;
jμkð0Þi−jμd−kþ1ð0Þiffiffi

2
p if 2k > dþ 1;

ð8Þ

and choosing the Hamiltonian control HcðtÞ such that

UαðtÞjμkð0Þi ¼ jμkðtÞi ∀ k ¼ 1;…; d ∀ t; ð9Þ

where

UαðtÞ ¼ T
�
exp

�
−i

Z
t

0

½HαðτÞ þHcðτÞ�dτ
��

: ð10Þ

The proof (see the Supplemental Material [32]) starts by
rewriting hα as in Ref. [[34] Eq. (6)] and shows that Eq. (6)
is an upper bound for Eq. (3). We use the Schur convexity
[38] of Eq. (3) and the inequalities from K. Fan [39,40] for
eigenvalues of the sum of two Hermitian matrices.
One of the strengths of the bound Kα is that it is given by

the eigenvalues of ∂αHαðtÞ and does not depend on the full
unitary operator of the sensor dynamics which is hard to
calculate for time-dependent Hamiltonians. The optimal
initial state with Hamiltonian control in Theorem 2 differs
from the optimal initial state without Hamiltonian control in
Theorem 1 by the fact that the eigenvectors of the generator
hα in Eq. (5) are replaced by those of ∂αHαð0Þ in Eq. (8).
The reason for this is that the optimal initial state of
Theorem 1 is the most sensitive state with respect to the
sensor dynamics Uα. However, if the Hamiltonian is time
dependent, the state which is most sensitive to the sensor
dynamics at time t will also be time dependent in general.
Since the Hamiltonian control is allowed to be time
dependent, we can take this into account and ensure that
the optimal initial state evolves such that it is most sensitive
to the sensor dynamics for all times t. This corresponds to
the condition in Eq. (9). Only in special cases, such as
phase-shift Hamiltonians Hα ¼ αG, we have hα ¼ ∂αHα

and, thus, the optimal initial states of Theorems 1 and 2 are
the same. If they are not the same, a HamiltonianHα can be
seen as suboptimal and requires correction by means of
the Hamiltonian control in order to reach the upper bound
of Theorem 2.
Formally, the optimal control Hamiltonian from

Theorem 2 depends on the (unknown) parameter α. Since
we are in the local parameter estimation regime, we have
knowledge (from prior measurements) about α such that α
can be replaced by the estimate α̂. It was shown that replacing
α by α̂ in the optimal control Hamiltonian does not ruin the

benefits from introducing Hamiltonian control [34], and
Hamiltonian control was applied experimentally with
great success in Ref. [41]. For a more detailed discussion
of control Hamiltonians we refer to the work of Pang et al.
[34,42].
As applications of our theorems we consider two exam-

ples: the estimation of a magnetic field amplitude and the
estimation of the frequency of an oscillating magnetic field.
Both cases can be described with the general Hamiltonian of
a systemofN spin-j particles subjected to a (time-dependent)
magnetic field

HðtÞ ¼
XN
k¼1

BfðtÞSðkÞz þHint; ð11Þ

with the magnetic field amplitude B, some time-dependent

real-valued modulation function fðtÞ, and spin operator SðkÞz

in the z direction of the kth spin. We use the standard

angular momentum algebra, SðkÞz jj; mi ¼ mjj;mi with
m ¼ −j;…; j. Hint is independent of B and takes into
account possible interactions between spins. This rather
general Hamiltonian can be seen as an idealization of
quantum sensors based on arrays of NV centers
[16,17,43], nuclear spin ensembles [44], or vapor of alkali
atoms [19]. Due to imperfect polarization and competing
depolarization effects [20,21,45,46], the available states
are mixed.
Here, we consider the available state of each of the N

spins to be described by a spin-temperature distribution
[independent of the Hamiltonian in Eq. (11)]

ρth ¼
eβSz

Z
; ð12Þ

with partition function Z ¼ Pj
m¼−j e

βm, and inverse (effec-
tive) temperature β. Equation (12) was derived for optically
polarized alkali vapors in [[20] Eq. (112)], and we assume
that it is also a good approximation for the other spin-based
magnetometers mentioned. β is related to the degree of
polarization P ∈ ½0; 1� by β ¼ ln½1þ P=ð1 − PÞ�; P ¼ 1
corresponds to a perfectly polarized spin in z direction,
described by a pure state, and P ¼ 0 corresponds to an
unpolarized spin, i.e., a maximally mixed state. The
available state of the total system is a tensor product of
spin-temperature distributions, ρ ¼ ρ⊗N

th .
For the estimation of the amplitude Bwe assume that the

modulation fðtÞ is known [the case of unknown fðtÞ would
correspond to waveform estimation [47,48] ]. This is
naturally the case for (quasi)constant magnetic fields,
periodic fields of known frequency, or, for example, when
the modulation originates from a relative movement of
sensor and environment (the source of B) that is tracked
separately with another sensor. The maximal QFI obtained
by using control Hamiltonians (cf. Theorem 2) for estimat-
ing the amplitude B is found to be
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KB ¼ g2ðTÞ
XNj

k¼−Nj

qðkÞ sinh2ðβkÞ
ZN coshðβkÞ ð2kÞ

2; ð13Þ

where qðkÞ takes into account the degeneracy of eigenval-
ues of ρ and ∂BHðtÞ ≔ ∂HðtÞ=∂B. It follows from the
definition of the tensor product that the degeneracy of the
kth eigenvalue of both, ρ and ∂BHðtÞ, where eigenvalues
are in weakly decreasing order, equals the number of
possibilities qðkÞ of getting a sum k when rolling N fair
dice, each having 2jþ 1 sides corresponding to values
f−j;…; jg (see the Supplemental Material [32]) [[49]
p. 23–24]:

qðkÞ ≔
XN
l¼0

ð−1Þl
�
N
l

��
kþ Nðjþ 1Þ − 1 − lð2jþ 1Þ

N − 1

�
;

ð14Þ

where the binomial coefficient ðabÞ is set to zero if one or
both of its coefficients are negative. The dependence on
measurement time T is given by gðTÞ ¼ R

T
0 jfðtÞjdt.

The QFI in Eq. (13) exhibits a complicated dependence
on the number of thermal states N and their spin size j.
However, by deriving a lower bound for Eq. (13), we prove
that the QFI scales ∝ N2 for any j as well as ∝ j2 for any N.
In particular, we find KB ¼ 4N2hSzi2 þOðNÞ where
hSzi ¼ tr½ρthSz�, and OðNÞ denotes terms of order N and

lower order. In the limit of large temperatures, hSzi2 decays
as β2 (see the Supplemental Material [32]).
This means that Heisenberg scaling [1,50,51], i.e., the

quadratic scaling with the system size j or the number of
particles N, is obtained for the optimal unitary state
preparation even if only thermal states are available.
Note that this also holds in the context of Theorem 1 if
the generator equals Sz. Importantly, Heisenberg scaling
is found for any finite temperature of the thermal state;
only in the limit of infinite temperature, the available state
is fully mixed and the QFI vanishes.
In order to attain the QFI (13), the conditions (9) must be

fulfilled. In particular the Hamiltonian control must cancel
interactions between the spins; i.e., Hint must be compen-
sated. Also, every time the modulation function fðtÞ
changes its sign, we must apply a transformation which
interchanges the eigenstates corresponding to a (degener-
ate) eigenvalue eβk=ZN of ρ with the eigenstates corre-
sponding to the (degenerate) eigenvalue e−βk=ZN for all
k ¼ 1;…; Nj. This is realized, for instance, with a local π
pulse about the x axis, which interchanges jj; mi and
jj;−mi for every single spin. The π pulses ensure optimal
phase accumulation of the optimal state given by Eq. (7)
(cf. Fig. 2).
The degeneracy of eigenvalues of ρ and ∂BHðtÞ leads to

a freedom in preparing the optimal initial state. The special
case of qubits, j ¼ 1=2, constant magnetic field, fðtÞ ¼ 1,
and no interactions, Hint ¼ 0, was studied by Modi et al.
[14]. In this case, no Hamiltonian control is required, which
brings us back to Theorem 1. They conjectured that a
unitary state preparation consisting of a mixture of GHZ
states is optimal in their case and calculated the QFI.
Theorem 1 confirms their conjecture.
If, instead of the amplitude, we want to estimate the

frequency ω of a periodic magnetic field with known
amplitude B, fðtÞ ¼ cosðωtÞ, the eigenvalues of ∂HðtÞ=
∂ω are modulated not with fðtÞ but with ∂fðtÞ=∂ω ¼
−t sinðωtÞ, see Fig. 2. The maximal QFI Kω equals Eq. (13)

FIG. 2. Exemplary sketch of time-dependent eigenvalues μ1 ≥
� � � ≥ μ6 of ∂HðtÞ=∂ω corresponding to fðtÞ ¼ cosðωtÞ. Vertical
black lines indicate the position of single-spin π pulses about the
x axis in order to interchange eigenvectors jj; mi ↔ jj;−mi.

(a) (b) (c)

FIG. 3. Eigenvalues p1 ≥ � � � ≥ p4 of initial two-qubit states that maximize the QFI for different values of purity γ. For each value of
purity, eigenvalues pi are found numerically by maximizing the expression for maximal QFI from Theorem 1 in Eq. (3) under the
constraints of fixed purity and conservation of probability,

P
k pk ¼ 1. Different panels correspond to different spectra of the generator

with eigenvalues h1 ≥ � � � ≥ h4 as indicated in the insets. The generator used in panel (a) has two degeneracies, the one in panel (b) has
an equidistant spectrum, and the one in panel (c) has one degeneracy. In panel (c), the line corresponding to p3 overlays the line of p2.
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with the only difference that gðTÞ is replaced by gωðTÞ ¼R
T
0 Btj sinðωtÞjdt ≃ BT2=π, corresponding to a T4 scaling of
QFI, similar to what was reported in Ref. [34]. The optimal
control is similar to the estimation of B: interactions must be
canceled and local π pulses about the x axis must be applied
whenever ∂fðtÞ=∂ω crosses zero.
Theorem 1 also allows us to study the problem of

optimal initial states of given purity γ ¼ trρ2. Fixing only
γ amounts to an additional optimization over the spectrum
of the initial state, which we solve numerically. As an
example, we consider a two-qubit system with eigenvalues
p1 ≥ � � � ≥ p4, see Fig. 3. We observe that different levels
of degeneracy of the spectrum of the generator results in
distinct solutions for the optimal eigenvalues pk.
In conclusion, Theorems 1 and 2 give an answer to the

question of optimal unitary state preparation and optimal
Hamiltonian control for an available mixed state and given
unitary sensor dynamics that encodes the parameter to be
measured in the quantum state. In comparison, distilling
pure from mixed states at the cost of reducing the number
of available probes would be an alternative. However,
probes are typically a valuable resource that is utilized most
efficiently along the lines of Theorem 1 and 2. The two
theorems allow one to study quantum metrology with
mixed states with the same analytical rigor as for pure
states, and the well-known results about optimal pure states
are recovered as special cases. We find that Heisenberg
scaling of the QFI can be reached with thermal states: initial
mixedness is not as detrimental as Markovian decoherence
during or after the sensor dynamics, which is known to
generally destroy the Heisenberg scaling of theQFI [52–54].
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FIG. 1. Schematic sketch of the mechanism used to prove theorem 1 from the Letter. First an

upper bound Jα(ρ) (red dash-dotted line) for the quantum Fisher information Iα(ρ) (black solid

line) is constructed. This upper bound is shown to be maximal for ρ = ρ∗ (gray dashed line). Then,

it is shown that Iα(ρ∗) = Jα(ρ∗) from which it follows that Iα(ρ∗) must be the maximum of Iα(ρ).
The idea of the proof of theorem 1 from the Letter is the following, see also Fig. 1: We

carefully construct an upper bound Jα(ρ) ≥ Iα(ρ) for the QFI Iα(ρ). Then, we show that

(i) Jα(ρ) is maximized by setting ρ = ρ∗ and (ii) Jα(ρ∗) = Iα(ρ∗). It follows that Iα(ρ∗) is

the maximum of Iα(ρ).
We first give a technical lemma which introduces inequalities for the pi,j coefficients which

are defined as

pi,j ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if pi = pj = 0,

(pi−pj)2
pi+pj else.

(1)

These inequalities will be used to prove proposition I.1 about the existence of coefficients qi,j

which fulfill specific conditions. Proposition I.1 enables us to find the desired upper bound

Jα(ρ) for the QFI Iα(ρ). This is then used in the proof of theorem I.1 which corresponds

to theorem 1 from the Letter.

To facilitate the understanding of the following lemma and proposition, we introduce a

schematic arrangement of a set of coefficients pi,j, see Fig. 2. We consider only coefficients

with 1 ≤ i < j ≤ d because of the symmetry pi,j = pj,i and because pi,i = 0.

2



FIG. 2. Scheme of pi,j for 1 ≤ i < j ≤ d = 7. Coefficients inside the red squared boxes are denoted

as central coefficients.

Lemma I.1. Let p1 ≥ ⋯ ≥ pd ≥ 0. Then, the following inequalities hold:

(i) pi,l ≥ pi,j + pj,l for 1 ≤ i < j < l ≤ d,
(ii) pi,l − pi+1,l ≥ pi,k − pi+1,k for 1 < i + 1 < k < l ≤ d,
(iii) pi,l − pi,l−1 ≥ pj,l − pj,l−1 for 1 ≤ i < j < l − 1 < d.

Proof. First we prove that

pi,l + pj,k ≥ pi,k + pj,l for 1 ≤ i < j < k < l ≤ d. (2)

If pi ≥ pj = pk = pl = 0, inequality (2) holds trivially. Otherwise, we find

pi,l + pj,k − pi,k − pj,l = 4(pi − pj)(pk − pl)(pipjpk + pjpkpl + pi(pj + pk)pl)(pi + pk)(pj + pk)(pi + pl)(pj + pl) , (3)

which is clearly nonnegative because all factors in the denominator are positive and all

factors in the numerator are nonnegative. This proves inequality (2).

Inequalities (i), (ii), and (iii) from the lemma are special cases of inequality (2): If

pj = pk, inequality (2) holds also for j = k and it follows inequality (i). Further, from

inequality (2) we find pi,l − pj,l ≥ pi,k − pj,k which for j = i + 1 gives inequality (ii), and we

find pi,l − pi,k ≥ pj,l − pj,k which for k = l − 1 gives inequality (iii).
In analogy to the coefficients pi,j, we introduce another set of coefficients defined by

qi,j ∶= j−1∑
k=i qk,k+1, (4)

for i < j. This means that the set of coefficients {qi,j} is fully defined by the coefficients qi,i+1
with i = 1, . . . , d − 1.
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Proposition I.1. For any dimension d ≥ 2 and for any p1 ≥ ⋯ ≥ pd ≥ 0, there exist coeffi-

cients qk,k+1 ≥ 0 with 1 ≤ k ≤ d − 1 such that for 1 ≤ i < j ≤ d:

qi,j = pi,j if j = d − i + 1 (central coefficients), (5)

qi,j ≥ pi,j else, (6)

where coefficients pi,j and qi,j are defined in Eqs. (1) and (4), respectively.

Proof. The proof works by induction in dimension d, once for even d and once for odd d.

Even dimension d

Base case d = 2: There is only one coefficient pi,j with 1 ≤ i < j ≤ 2, which is p1,2. The

proposition for d = 2 holds because q1,2 ∶= p1,2 fulfills conditions (5) and (6) trivially.

Inductive step: Suppose the proposition holds for d = n. We will prove the proposition

for d = n + 2.

First, the induction hypothesis is applied to n coefficients p2, . . . , pn+1: For any p2 ≥ ⋯ ≥
pn+1 ≥ 0, there exist coefficients qk,k+1 ≥ 0 for 2 ≤ k ≤ n such that for 2 ≤ i < j ≤ n + 1:

qi,j = pi,j if j = n − i + 3 (central coefficients), (7)

qi,j ≥ pi,j else. (8)

Second, we show that for any p1 and pn+2 with p1 ≥ p2 and pn+1 ≥ pn+2 ≥ 0 there exist two

further coefficients q1,2 and qn+1,n+2 such that

q1,n+2 = p1,n+2 (central coefficients), (9)

q1,j ≥ p1,j for j = 2, . . . , n + 1 (left flank), (10)

qi,n+2 ≥ pi,n+2 for i = 2, . . . , n + 1 (right flank). (11)

A graphical visualization of the inductive step is shown in Fig. 3 which explains the terms

left flank and right flank used to designate the inequalities above. The existence of q1,2 and

qn+1,n+2 such that conditions (9),(10), and (11) hold is shown explicitly by setting

q1,2 ∶= p1,n+2 − p2,n+2, (12)

qn+1,n+2 ∶= p2,n+2 − p2,n+1, (13)
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FIG. 3. Recursion steps from d = 5 to d = 7 (left) and from d = 4 to d = 6 (right). In the green

squares are the two new elements we need to choose. In the blue (resp. red) rectangles are the

new left (resp. right) flanks that need to fulfill conditions (6) ; in the magenta squares are the new

central coefficients that need to fulfill condition (5).

and checking conditions (9),(10), and (11): We find

q1,n+2 = q1,2 + q2,n+1 + qn+1,n+2 [Eq. (4)]

= p1,n+2 − p2,n+2 + p2,n+1 + p2,n+2 − p2,n+1 [Eqs. (12),(13), and Eq. (7) for i = 2]

= p1,n+2
which fulfills the condition for central coefficients [condition (9)]. Further, for j = 3, . . . , n+1:

q1,j = q1,2 + q2,j [Eq. (4)]

≥ p1,n+2 − p2,n+2 + p2,j [Eq. (12) and inequality (8)]

≥ p1,j − p2,j + p2,j [lemma I.1 (ii)]
= p1,j,

and

q1,2 = p1,n+2 − p2,n+2 [Eq. (12)]

≥ p1,2 + p2,n+2 − p2,n+2 [lemma I.1 (i)]
= p1,2,

which fulfill the conditions for the left flank [condition (10)]. The proof for the right flank

5



is similar: For i = 2, . . . , n:

qi,n+2 = qi,n+1 + qn+1,n+2 [Eq. (4)]

≥ pi,n+1 + p2,n+2 − p2,n+1 [Eq. (13) and inequality (8)]

≥ pi,n+1 + pi,n+2 − pi,n+1 [lemma I.1 (iii)]
= pi,n+2,

and

qn+1,n+2 = p2,n+2 − p2,n+1 [Eq. (13)]

≥ p2,n+1 + pn+1,n+2 − p2,n+1 [lemma I.1 (i)]
= pn+1,n+2,

which fulfill the conditions for the right flank [condition (11)]. This proves the proposition

for d = n + 2, concluding the proof by induction for even dimensions.

Odd dimension d

Base case d=3: There are only three coefficients pi,j with 1 ≤ i < j ≤ 3, which are

p1,2, p2,3, and p1,3. The proposition for d = 3 holds because q1,2 ∶= p1,3 − p2,3, q2,3 ∶= p2,3, and

q1,3 = q1,2 + q2,3 fulfill the conditions (5) and (6): q1,2 = p1,3 −p2,3 ≥ p1,2 +p2,3 −p2,3 = p1,2 where

inequality (i) from lemma I.1 was used, while the other conditions hold trivially.

Inductive step: Analog to the inductive step for even d.

Equipped with proposition I.1 we can prove theorem 1 from the Letter:

Theorem I.1. For any state ρ and any generator hα with ordered eigenvalues p1 ≥ ⋯ ≥ pd
and h1 ≥ ⋯ ≥ hd, respectively, the maximal QFI with respect to all unitary state preparations

UρU †, U ∈ U(d), is given by

I∗α ∶= max
U

Iα(UρU †) = 1

2

d∑
k=1pk,d−k+1(hk − hd−k+1)2. (14)

Let ∣hk⟩ be the eigenvectors of the generator, hα ∣hk⟩ = hk ∣hk⟩. The maximum I∗α is obtained

by preparing the initial state

ρ∗ ∶= d∑
k=1pk ∣φk⟩ ⟨φk∣ (15)
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with

∣φk⟩ ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣hk⟩+eiχk ∣hd−k+1⟩√
2

if 2k < d + 1,

∣hk⟩ if 2k = d + 1,

∣hk⟩−eiχk ∣hd−k+1⟩√
2

if 2k > d + 1.

(16)

where χk are arbitrary real phases (the theorem as formulated in the Letter is recovered by

setting χk = 0).

Proof. First we reformulate the optimization problem in a more convenient way:

The unitary state preparation UρU † has invariant eigenvalues for all U ∈ U(d). However,

the unitary freedom U ∈ U(d) allows one to change the basis from the ordered orthonormal

basis of eigenvectors (∣ψi⟩)di=1 of ρ, where ρ ∣ψi⟩ = pi ∣ψi⟩, to any other ordered orthonormal

basis. Therefore, the optimization problem with respect to unitary transformations U ∈ U(d)
on the state ρ is equivalent to optimizing over ordered bases B ∈ S where

S ∶= {(∣ξi⟩)di=1 ∶ ⟨ξi∣ξj⟩ = δi,j ∀i, j ∈ {1, . . . , d}}. (17)

Note that the ordering of eigenvectors corresponds to the ordering of eigenvalues pi which

plays a crucial role in the theorem. The basis corresponding to ρ∗ is given by B∗ = (∣φi⟩)di=1,
and the maximization in Eq. (14) is equivalent to

I∗α ∶= max
B∈S Iα(B), (18)

where the QFI was redefined as a function of B:

Iα(B) = 2
d∑

i,j=1pi,j ∣ [hα(B)]i,j ∣2. (19)

The coefficients pi,j are defined in Eq. (1) with respect to the eigenvalues pi and [hα(B)]i,j =⟨ξi∣hα ∣ξj⟩ are the coefficients of hα with respect to B = (∣ξi⟩)di=1.
In order to prove that the maximum is reached byB∗, we introduce an upper bound for the

QFI. We start by rewriting the QFI, exploiting the symmetries pi,j = pj,i and ∣[hα(B)]i,j ∣2 =∣[hα(B)]j,i∣2:
Iα(B) = 2

d∑
i,j=1pi,j ∣[hα(B)]i,j ∣2 (20)

= 4
d−1∑
i=1

d∑
j=i+1pi,j ∣[hα(B)]i,j ∣2 . (21)
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Then, an upper bound for Iα(B) is obtained by replacing coefficients pi,j in Eq. (21) with

new coefficients qi,j ≥ pi,j for all 1 ≤ i < j ≤ d:

Iα(B) ≤ Jα(B) ∶= 4
d−1∑
i=1

d∑
j=i+1 qi,j ∣[hα(B)]i,j ∣2 , (22)

where Jα(B) denotes the upper bound. We choose coefficients qi,j according to proposition

I.1, i.e., besides qi,j ≥ pi,j they fulfill pi,j = qi,j for j = d − i + 1 and qi,j = ∑j−1k=i qk,k+1 for all

1 ≤ i < j ≤ d. We rewrite the upper bound Jα(B):
Jα(B) = 4

d−1∑
i=1

d∑
j=i+1 qi,j ∣[hα(B)]i,j ∣2 (23)

= 4
d−1∑
i=1

d∑
j=i+1

j−1∑
k=i qk,k+1 ∣[hα(B)]i,j ∣2 (24)

= 4
d−1∑
k=1 qk,k+1

k∑
i=1

d∑
j=k+1 ∣[hα(B)]i,j ∣2 (25)

= 4
d−1∑
k=1 qk,k+1 ∥hα(B,k)∥22 , (26)

where hα(B,k) denotes the subblock of hα(B) with coefficients from the 1st to the kth row

and from the (k+1)th to the dth column, and ∥⋅∥22 denotes the Hilbert–Schmidt norm which

is defined for a m × n matrix A as ∥A∥22 ∶= tr [A†A] = ∑m,ni,j=1 ∣Ai,j ∣2. Since hα(B) is Hermitian

it divides in subblocks as

hα(B) = ⎛⎜⎝
● hα(B,k)

h†
α(B,k) ●

⎞⎟⎠ , (27)

where the quadratic subblocks on the diagonal are not further specified.

Next, we maximize the upper bound Jα(B) and show that it equals the QFI at its

maximum. In order to maximize Jα(B), we use the Bloomfield–Watson inequality [1] on

the Hilbert–Schmidt norm of off-diagonal blocks such as hα(B,k). We take a convenient

formulation of the inequality from Ref.[2, Eqs. (1.14) and (4.3)] and apply it to hα(B,k):
∥hα(B,k)∥22 ≤ 1

4

m(k)∑
i=1 (hi − hd−i+1)2, (28)

where m(k) = min(k, d − k). We evaluate the left-hand side of the Bloomfield–Watson
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inequality (28) for B = B∗, where B∗ is the eigenbasis of ρ∗, defined above Eq. (18):

∥hα(B∗, k)∥22 = k∑
i=1

d∑
j=k+1 ∣[hα(B∗)]i,j ∣2 (29)

= k∑
i=1

d∑
j=k+1 ∣⟨φi∣hα ∣φj⟩∣2 (30)

= k∑
i=1

d∑
j=k+1(δi,j

hi + hd−i+1
2

+ δi,d−j+1 ∣hi − hd−i+1∣
2

)2 (31)

= 1

4

m(k)∑
i=1 (hi − hd−i+1)2, (32)

where we used the definition of ∣φi⟩ [Eq. (16)] to get from Eq. (30) to (31). In Eq. (31), the

first summand (within the brackets) evaluates always to zero while the second summand is

nonzero in m(k) cases as given in Eq. (32). Note, that Eq. (32) equals the right-hand side of

inequality (28). Therefore, the Bloomfield–Watson inequality (28) is saturated for B = B∗
and, in particular, ∥hα(B,k)∥22 ≤ ∥hα(B∗, k)∥22 for all B ∈ S.

This implies Jα(B) ≤ Jα(B∗) for allB ∈ S which can be seen from Eq. (26) and by realizing

that the coefficients qi,j in Jα(B) are nonnegative, which follows from the nonnegativity of

pi,j. Thus, Jα(B∗) is the maximum of Jα(B) with respect to B.

Now, we show that Jα(B∗) = Iα(B∗) starting from the definition of Jα(B) in Eq. (22):

Jα(B∗) = 4
d−1∑
i=1

d∑
j=i+1 qi,j (δi,j

hi + hd−i+1
2

+ δi,d−j+1hi − hd−i+1
2

)2 (33)

= d−1∑
i=1

d∑
j=i+1 qi,jδi,d−j+1(hi − hd−i+1)2 (34)

= 1

2

d∑
i=1 pi,i−d+1(hi − hd−i+1)2 = Iα(B∗), (35)

where we used qi,i−d+1 = pi,i−d+1 and, to get from Eq. (34) to (35), we first came back to a

summation over all 1 ≤ i, j ≤ d before evaluating δi,d−j+1 which explains the factor 1/2 in

Eq. (35).

It follows from Jα(B) ≥ Iα(B) ∀B ∈ S that max
B∈S Jα(B) ≥ max

B∈S Iα(B), and, then, it follows

from max
B∈S Jα(B) = Iα(B∗) that Iα(B∗) is the maximum of Iα(B) with respect to B ∈ S.

II. PROOF OF THEOREM 2

Let us first introduce some notation. The real, nonnegative coordinate space of d dimen-

sions is denoted by Rd+. For two vectors x,y ∈ Rd+, the element-wise vector ordering xi ≤ yi
9



for all i ∈ {1, . . . , d} is denoted as x ≤ y. For any x ∈ Rd+, let x[1], . . . , x[d] be the components

of x in decreasing order, and let

x↓ ∶= (x[1], . . . , x[d]) (36)

denote the decreasing rearrangement of x. Let

Dd+ ∶= {(x1, . . . , xd) ∶ x1 ≥ ⋯ ≥ xd ≥ 0} (37)

be the set of decreasing rearrangements of elements from Rd+.

Definition II.1. For a hermitian matrix X with eigenvalues x1 ≥ x2 ≥ ⋯ ≥ xd define

d(X) ∶= (x1 − xd, x2 − xd−1 . . . , x⌈d/2⌉ − xd−⌈d/2⌉+1), (38)

where ⌈d/2⌉ denotes the smallest integer j with j ≥ d/2.

Note that the entries of d(X) are nonnegative and in decreasing order, i.e., d(X) ∈ D⌈d/2⌉+ .

Definition II.2. Let x,y ∈ Rd+. We say that x is weakly majorized by y, denoted by x ≺w y,

if

k∑
i=1 x[i] ≤ k∑

i=1 y[i] ∀k = 1, . . . , d. (39)

Lemma II.1. Let A, B, and C = A+B be hermitian matrices with eigenvalues a1 ≥ ⋯ ≥ ad,
b1 ≥ ⋯ ≥ bd, and c1 ≥ ⋯ ≥ cd, respectively. Then, d(C) ≺w d(A) + d(B).

Proof. The inequalities of K. Fan (see for instance [3, eq.3]) for the eigenvalues of A, B, and

C = A +B are

r∑
i=1 ci ≤

r∑
i=1 ai + bi ∀r = 1, . . . , d − 1. (40)

Subtracting them from the trace condition

d∑
i=1 ci =

d∑
i=1 ai + bi (41)

and rearranging the indices gives

r∑
i=1 cd−i+1 ≥

r∑
i=1 ad−i+1 + bd−i+1 ∀r = 1, . . . , d − 1. (42)

Subtracting inequality (42) from inequality (40) gives

r∑
i=1 ci − cd−i+1 ≤

r∑
i=1 ai − ad−i+1 + bi − bd−i+1 ∀r = 1, . . . , d − 1, (43)

which are for r = 1, . . . , ⌈d/2⌉ the weak majorization conditions for d(C) ≺w d(A)+d(B).
10



Definition II.3. For any p ∈ Dd+ define

φp ∶ Rd+ → R, φp(x) ∶= d∑
i=1 pix

2[i]. (44)

Lemma II.2. For any p ∈ Dd+, φp is increasing and Schur convex on Rd+, i.e., the following

conditions hold [4, part I,ch.3,A.4]:

(i) x ≤ y⇒ φp(x) ≤ φp(y) (increasing),

(ii) φp(x) is invariant under permutation of coefficients of x for any x ∈ Rd+ (symmetric),

(iii) (xi − xj) (∂φp(x)
∂xi

− ∂φp(x)
∂xj

) ≥ 0 ∀x ∈ Rd+ and ∀i ≠ j (Schur’s condition).

Proof. From x ≤ y it follows that x[i] ≤ y[i] ∀i, which implies pix2[i] ≤ piy2[i] ∀i for any pi ≥ 0.

Finally it follows ∑i pix2[i] ≤ ∑i piy2[i] which proves condition (i). Condition (ii) follows

directly from the definition of φp. Finally, we have

(xi − xj)(∂φp(x)
∂xi

− ∂φp(x)
∂xj

) = (xi − xj)2(qxi − rxj), (45)

where q, r are some components of p with q ≥ r if xi ≥ xj and q ≤ r if xi ≤ xj due to the

definition of φp. It follows condition (iii).
Lemma II.3. Let A, B, and C = A +B be Hermitian matrices. For any p ∈ Dd+,

d(C) ≺w d(A) + d(B) ⇒ φp(d(C)) ≤ φp(d(A) + d(B)). (46)

Proof. The proof follows from a theorem given in Ref. [4, part I,ch.3,A.8] about weak ma-

jorization and lemma II.2.

We are now ready to prove the following inequality:

Lemma II.4. Let p ∈ Dd+, and let pi,j be defined as in Eq. (1) for the components of p. Let

A, B, and C = A +B be Hermitian matrices with eigenvalues a1 ≥ ⋯ ≥ ad, b1 ≥ ⋯ ≥ bd, and

c1 ≥ ⋯ ≥ cd, respectively. Then,

d∑
i=1 pi,d−i+1(ci − cd−i+1)2 ≤

d∑
i=1 pi,d−i+1 (ai − ad−i+1 + bi − bd−i+1)2 . (47)
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Proof. Let us first show that coefficients pi,d−i+1 satisfy

(pi,d−i+1)⌈d/2⌉i=1 ∈ D⌈d/2⌉+ . (48)

For 1 ≤ i < ⌊d/2⌋, where ⌊d/2⌋ denotes the largest integer j with j ≤ d/2, we have

pi,d−i+1 ≥ pi,i+1 + pi+1,d−i+1 ≥ pi,i+1 + pi+1,d−i + pd−i,d−i+1, (49)

where inequality (i) from lemma I.1 was applied twice, and it follows pi,d−i+1 ≥ pi+1,d−i. For

even d it follows Eq. (48). For odd d, we further have p⌊d/2⌋,d−⌊d/2⌋+1 ≥ p⌈d/2⌉,d−⌈d/2⌉+1 because

p⌈d/2⌉,d−⌈d/2⌉+1 = p⌈d/2⌉,⌈d/2⌉ = 0 by definition of pi,j. This proves Eq. (48).

Together with lemmata II.1 and II.3 it follows that

⌈d/2⌉∑
i=1 pi,d−i+1(ci − cd−i+1)2 ≤

⌈d/2⌉∑
i=1 pi,d−i+1 (ai − ad−i+1 + bi − bd−i+1)2 , (50)

which, due to the symmetries pi,d−i+1 = pd−i+1,i and (ci − cj)2 = (cj − ci)2, is equivalent to

d∑
i=d−⌈d/2⌉+1pi,d−i+1(ci − cd−i+1)2 ≤

d∑
i=d−⌈d/2⌉+1pi,d−i+1 (ai − ad−i+1 + bi − bd−i+1)2 . (51)

Adding inequalities (50) and (51) proves the lemma since, in case of odd d, p⌈d/2⌉,⌈d/2⌉ = 0.

We are now in the position to prove theorem 2 from the Letter:

Theorem II.1. For any state ρ with ordered eigenvalues p1 ≥ ⋯ ≥ pd and any time-dependent

Hamiltonian Hα(t), where µ1(t) ≥ ⋯ ≥ µd(t) are the ordered eigenvalues of ∂αHα(t) ∶=
∂Hα(t)/∂α, an upper bound for the QFI is given by

Kα = 1

2

d∑
k=1pk,d−k+1 (∫

T

0
[µk(t) − µd−k+1(t)]dt)2 . (52)

Let ∣µk(t)⟩ be the time-dependent eigenvectors of ∂αHα(t), ∂αHα(t) ∣µk(t)⟩ = µk(t) ∣µk(t)⟩.
The upper bound Kα is reached by preparing the initial state

ρ∗ = d∑
k=1pk ∣φk⟩ ⟨φk∣ , (53)

with

∣φk⟩ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣µk(0)⟩+eiχk ∣µd−k+1(0)⟩√
2

if 2k < d + 1,

∣µk(0)⟩ if 2k = d + 1,

∣µk(0)⟩−eiχk ∣µd−k+1(0)⟩√
2

if 2k > d + 1,

(54)
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where χk are arbitrary real phases (the theorem as formulated in the Letter is recovered by

setting χk = 0), and by choosing the Hamiltonian control Hc(t) such that

Uα(t) ∣µk(0)⟩ = ∣µk(t)⟩ ∀k = 1, . . . , d ∀t, (55)

where

Uα(t) = T [exp(−i ∫ t

0
[Hα(τ) +Hc(τ)]dτ)] . (56)

Proof. From theorem I.1 we have that for any state ρ and any generator hα with ordered

eigenvalues p1 ≥ ⋯ ≥ pd and h1 ≥ ⋯ ≥ hd, respectively, the maximal QFI with respect to all

unitary state preparations UρU †, U ∈ U(d), is given by

I∗α ∶= max
U

Iα(UρU †) = 1

2

d∑
j=1pj,d−j+1(hj − hd−j+1)2. (57)

Further, the generator can be written as [5, Eq. 6]

hα = ∫ T

0
U †
α(t)∂αHα(t)Uα(t)dt, (58)

Writing the integral as an infinite sum,

hα = lim
n→∞

n∑
l=0U

†
α(lT /n)∂αHα(lT /n)Uα(lT /n)T /n, (59)

repeated application of lemma II.4 to bipartitions of the sum yields in the limit of infinite

many applications of lemma II.4

I∗α = 1

2

d∑
j=1pj,d−j+1(hj − hd−j+1)2 ≤

1

2

d∑
j=1pj,d−j+1 (∫

T

0
[µj(t) − µd−j+1(t)]dt)2 =Kα. (60)

It remains to show that Eq. (52) can be saturated. In order to show this it suffices to

calculate the QFI for the initial state as defined in Eqs. (53) and (54) and a generator as

given in Eq. (59) with the unitary transformation fulfilling Eq. (56):

Iα(ρ∗) = 2
d∑

i,j=1pi,j ∣⟨φi∣hα ∣φj⟩∣2 (61)

where ∣φj⟩ are defined in Eq. (54). More explicitly, in

⟨φi∣hα ∣φj⟩ = lim
n→∞

n∑
l=0 ⟨φi∣U †

α(lT /n)∂αHα(lT /n)Uα(lT /n) ∣φj⟩T /n (62)
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we use the definition of ∣φj⟩ and Eq. (55) which gives, due to

⟨µi(lT /n)∣∂αHα(lT /n) ∣µj(lT /n)⟩ = δi,jµi(lT /n), (63)

the following expression for the matrix coefficients in Eq. (62):

⟨φi∣U †
α(lT /n)∂αHα(lT /n)Uα(lT /n) ∣φj⟩

= δi,j µi(lT /n) + µd−i+1(lT /n)
2

+ δi,d−j+1 ∣µi(lT /n) − µd−i+1(lT /n)∣
2

. (64)

Due to pi,i = 0 one obtains

Iα(ρ∗) = 2
d∑
j=1pj,d−j+1 ∣ lim

n→∞
n∑
l=0
µj(lT /n) − µd−j+1(lT /n)

2
T /n∣2 (65)

= 1

2

d∑
j=1pj,d−j+1 (∫

T

0
[µj(t) − µd−j+1(t)]dt)2 =Kα. (66)

III. PROOF OF HEISENBERG SCALING FOR THERMAL STATES

In this section we will prove that if a product of N thermal spin-j states (at arbitrary

finite temperature) is available and sensor dynamics is unitary, one can reach Heisenberg

scaling of the QFI Iα for unitary dynamics in N and j by preparing the optimal initial state

according theorem 1 in the Letter (or theorem 2, in case of Hamiltonian control). Heisenberg

scaling in N and j means Iα ∝ N2 for any j = 1
2 ,1,

3
2 , . . . and Iα ∝ j2 for any N = 1,2,3, . . . .

According to the pinching theorem (also known as squeeze theorem) a function scales

with N2 (j2) if there are upper and lower bounds scaling as N2 (j2). Clearly, the QFI of a

product of N thermal spin-j states is upper bounded by the pure-state case obtained in the

limiting case of zero temperature. For pure states, it is well known that the QFI, optimized

over unitary state preparations, scales as N2 (j2). We will find lower bounds for the QFI of

a product of N thermal spin-j states that scale as N2 (j2).

Let the QFI be given by (compared to Eq. (14) in the Letter, we set g(T ) = 1 because

we are only interested in the scaling with N and j in the following)

KB = 4

ZN
β

Nj∑
k=−Nj q(k)

sinh2(βk)
cosh(βk) k2, (67)
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with q(k) the number of possibilities of getting a sum k when rolling N fair dice, each having

2j + 1 sides corresponding to values {−j, . . . , j}, and with Zβ the partition function

Zβ = j∑
m=−j eβm = cosh(βj) + sinh(βj)

tanh(β/2) , (68)

which was rewritten (for β > 0) making use of the geometric series. First, we find a lower

bound LB for KB:

KB = 4

ZN
β

Nj∑
k=−Nj q(k)

sinh2(βk)
cosh(βk) k2 = 4

ZN
β

Nj∑
k=−Nj q(k)(cosh(βk) − 1

cosh(βk))k2 (69)

≥ 4

ZN
β

Nj∑
k=−Nj q(k) (cosh(βk) − 1)k2 =∶ LB, (70)

where we used that each summand is nonnegative and

sinh2(βk)
cosh(βk) = cosh2(βk) − 1

cosh(βk) = cosh(βk) − 1

cosh(βk) ≥ cosh(βk) − 1, (71)

which follows from the trigonometric identity sinh2(x)−cosh2(x) = 1 and cosh(x) ≥ 1. Next,

we rewrite LB as

LB = 4

ZN
β

Nj∑
k=−Nj q(k) (eβk − 1)k2, (72)

where we used that cosh(x) = (ex+e−x)/2 and ∑Njk=−Nj q(k)eβkk2 = ∑Njk=−Nj q(k)e−βkk2 because

q(k)k2 is symmetric around k = 0.

Then, we make use of the generating function of q(k) [6]:

(x−j + x−j+1 +⋯ + xj)N = Nj∑
k=−Nj q(k)xk. (73)

By setting x = eβ, we find ZN
β = ∑Njk=−Nj q(k)eβk. Taking the second derivative with respect

to β yields

∂ZN
β

∂β2
= Nj∑
k=−Nj q(k)eβkk2. (74)

With this, we rewrite LB as

LB = ⎛⎝
∂2ZN

β

∂β2
− ∂2ZN

β

∂β2
∣
β=0

⎞⎠ 4

ZN
β

, (75)
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where the second term is evaluated for β = 0 and corresponds the negative part of LB in

Eq. (72). Since Zβ ≥ Zβ=0, we find the lower bound

− ∂2ZN
β

∂β2
∣
β=0

4

ZN
β

≥ − ∂2ZN
β

∂β2
∣
β=0

4

ZN
0

, (76)

which is readily evaluated:

− ∂2ZN
β

∂β2
∣
β=0

4

ZN
0

= −4

⎡⎢⎢⎢⎢⎣N(N − 1)(∂Zβ/∂β∣β=0
Z0

)2 +N ∂2Zβ/∂β2∣β=0
Z0

⎤⎥⎥⎥⎥⎦ , (77)

and with ∂Zβ/∂β∣β=0 = ∑jm=−jm = 0 we find

− ∂2ZN
β

∂β2
∣
β=0

4

ZN
0

= −4N
j∑

m=−jm
2/(2j + 1) = −4

3
Nj(j + 1), (78)

again using the geometric series. Together with

∂2ZN
β

∂β2

4

ZN
β

= 4N(N − 1)(∂Zβ/∂β
Zβ

)2 + 4N
∂2Zβ/∂β2

Zβ
, (79)

this brings us to another lower bound:

LB ≥MB ∶= 4

⎡⎢⎢⎢⎢⎣N(N − 1)(∂Zβ/∂β
Zβ

)2 +N ∂2Zβ/∂β2

Zβ
− 1

3
Nj(j + 1)⎤⎥⎥⎥⎥⎦ (80)

Neglecting terms proportional to N we find after trivial algebraic transformations

MB ∝ 4N2 (∂Zβ/∂β
Zβ

)2

(81)

= N2{(1 + j) sinh(βj) − j sinh[β(1 + j)]}2
sinh2 (β

2
) sinh2 [β(j + 1

2)] , (82)

which is clearly nonnegative for finite temperatures (β > 0). In order to become zero,

sinh[βj]
βj

= sinh[β(j + 1)]
β(j + 1) (83)

would have to be fulfilled. However, since sinh(x)
x = 1+ x2

3! + x4

5! +⋯ is an increasing function on

x ∈ [0,∞), Eq. (83) leads to a contradiction for β > 0. Therefore, the expression in Eq. (82)

is positive for finite temperatures which proves the N2 scaling for all j = 1
2 ,1,

3
2 , . . . .

There are two remarks in order:
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(i) In summary the lower bound MB was obtained from QFI KB by finding a lower bound

for the negative term of the QFI in Eq. (69),

− 4

ZN
β

Nj∑
k=−Nj q(k)

k2

cosh(βk) ≥ −4

3
Nj(j + 1). (84)

Since the right-hand side scales linearly in N , the left-hand side scales at most linearly

in N and, in particular, cannot scale quadratically. Thus, the N2-scaling of the QFI

solely comes from the positive term in Eq. (69). Therefore, in leading order of N we

find for the QFI exactly Eq. (81), i.e.,

KB = 4N2 (∂Zβ/∂β
Zβ

)2 +O(N) = 4N2 (∂ lnZβ
∂β

)2 +O(N), (85)

where O(N) denotes terms ∝ N and lower-order terms. With the operator Sz of a spin

j in z-direction and corresponding thermal state ρth = eβSz/Zβ, we rewrite Zβ = tr [eβSz]
and

4N2 (∂ lnZβ
∂β

)2 = 4N2 ⟨Sz⟩2 , (86)

where ⟨Sz⟩ = tr [ρthSz].
(ii) Let us identify β = 1/χ with a temperature χ. A Taylor expansion of the prefactor

Q(β) ∶= 4 (∂ lnZβ∂β )2 in Eq. (86) around β = 0 yields

Q(β) = 4

9
[j(j + 1)]2 β2 +O(β4), (87)

where O(β4) denotes terms ∝ β4 and higher-order terms which can be neglected for

small β. This shows that for small β, i.e., for large temperatures χ, the prefactor

decays quadratically, ∝ χ−2. Also, in this regime of high temperatures, the QFI scales

with j4. However, if the product jβ is of order one (or larger), we are no longer in the

range of validity of the second-order Taylor expansion in Eq. (87). As we will see in

the next section, the QFI scales ∝ j2 in the limit of large j.

In order to prove j2 scaling, we first consider

MB(N) −NMB(N = 1) = N(N − 1)(∂Zβ/∂β
Zβ

)2 ≥ 0 (88)
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for any N ≥ 1. It follows that MB(N) ≥ NMB(N = 1). We find after some simple algebraic

transformations using the partition function as given in Eq. (68),

NMB(1) = 4N [∂2Zβ/∂β2

Zβ
− j(j + 1)

3
] (89)

= N [j28

3
− j 10 cosh(βj) + 2 cosh[β(j + 1)]

3 sinh(β/2) sinh[β(j + 1/2)] + sinh(β) sinh(βj)
sinh3(β/2) sinh[β(j + 1/2)]] , (90)

which is well defined for finite temperatures, and the third summand as well as the prefactor

of j in the second summand clearly converge to a constant in the limit of large j. This

proves the j2 scaling for finite temperatures for any N = 1,2, . . . .
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Abstract

Recently proposed quantum-chaotic sensors achieve quantum enhancements in measurement

precision by applying nonlinear control pulses to the dynamics of the quantum sensor while us-

ing classical initial states that are easy to prepare. Here, we use the cross entropy method of

reinforcement learning to optimize the strength and position of control pulses. Compared to the

quantum-chaotic sensors in the presence of superradiant damping, we find that decoherence can be

fought even better and measurement precision can be enhanced further by optimizing the control.

In some examples, we find enhancements in sensitivity by more than an order of magnitude. By

visualizing the evolution of the quantum state, the mechanism exploited by the reinforcement learn-

ing method is identified as a kind of spin-squeezing strategy that is adapted to the superradiant

damping.
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I. INTRODUCTION

The rise of machine learning [1] has led to intense interest in using machine learning in

physics, and in particular in combining it with quantum information technology [2, 3]. Re-

cent success stories include discriminating phases of matter [4–6] and efficient representation

of many-body quantum states [7–9].

In physics, many problems can be described within control theory which is concerned

with finding a way to steer a system to achieve a goal [10]. The search for optimal control

can naturally be formulated as reinforcement learning (RL) [11–19], a discipline of machine

learning. Reinforcement learning (RL) has been used in the context of quantum control [17],

to design experiments in quantum optics [20], and to automatically generate sequences of

gates and measurements for quantum error correction [16, 21, 22].

RL has also been applied to control problems in quantum metrology [2]: In the context

of global parameter estimation, i.e., when the parameter is a priori unknown, the problem

of optimizing single-photon adaptive phase-estimation was investigated [23–25]. There, the

goal is to estimate an unknown phase difference between the two arms of a Mach–Zehnder

interferometer. After each measurement, an additional controllable phase in the interfer-

ometer can be adjusted dependent on the already acquired measurement outcomes. The

optimization with respect to policies, i.e., mappings from measurement outcomes to con-

trolled phase shifts, can be formulated as a RL problem and tackled with particle swarm

[23, 24, 26, 27] or differential evolution [25, 28] algorithms, where the results of the former

were recently applied in an experiment [29].

Also in the regime of local parameter estimation, where the parameter is already known

to high precision (typically from previous measurements), actor-critic and proximal-policy-

optimization RL algorithms were used to find policies to control the dynamics of quantum

sensors [30–32]. There, the estimation of the precession frequency of a dissipative spin-1
2

particle was improved by adding a linear control to the dynamics in form of an additional

controlled magnetic field [32].

Recently it was shown theoretically that the sensitivity (in the regime of local param-

eter estimation) of existing quantum sensors based on precession dynamics, such as spin-

precession magnetometers, can be increased by adding nonlinear control to their dynamics

in such a way that the dynamics becomes non-regular or (quantum-)chaotic [33, 34]. The
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nonlinear kicks (described by a “nonlinear” Hamiltonian ∝ J2
y compared to the “linear”

precession Hamiltonian ∝ Jz where Jx, Jy, Jz are the spin angular momentum operators)

lead to a torsion, a precession with rotation angle depending on the state of the spins.

Adding nonlinear kicks to the otherwise regular dynamics comes along with a large num-

ber of new degrees of freedom that remained so far unexplored: Rather than kicking the

system periodically with always the same strength and with the same preferred axis as in

Ref. [33], one can try to optimize each kick individually, i.e., vary its timing, strength, or

rotation axis. The number of parameters increases linearly with the total measurement time

(assuming a fixed upper bound of kicks per unit time), and becomes rapidly too large for

brute-force optimization.

In this work, we use cross-entropy RL to optimize the kicking strengths and times in order

to maximize the quantum Fisher information, whose inverse constitutes a lower bound on

the measurement precision. The cross-entropy method is used to train a neural network that

takes the current state as input and gives an action on the current state (the nonlinear kicks)

as output. In this way, the neural network generates a sequence of kicks that represents the

policy for steering the dynamics.

This represents an offline, model-free approach which is aimed at long-term performance,

i.e., the optimization is done based on numerical simulations, without being restricted to a

specific class of policies, and with the goal of maximizing the quantum Fisher information

only after a given time and not, as it would be the case for greedy algorithms, for each

time step. We show that this can lead to largely enhanced sensitivity even compared to

the already enhanced sensitivity of the quantum-chaotic sensor with constant periodic kicks

[33].

II. QUANTUM METROLOGY

The standard tool for evaluating the sensitivity with which a parameter can be measured

is the quantum Cramér-Rao bound [35–37]. It gives the smallest uncertainty with which a

parameter ω encoded in a quantum state (density matrix) ρω can be estimated. The bound

is optimized over all possible (POVM=positive operator valued measure) measurements

(including but not limited to standard projective von-Neumann measurements of quantum

observables), and all possible data-analysis schemes in the sense of using arbitrary unbiased
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estimator functions ω̂ of the obtained measurement results. It can be saturated in the limit

of a large number M of measurements, and hence gives the ultimate sensitivity that can be

reached once technical noise has been eliminated and only the intrinsic fluctuations due to

the quantum state itself remain.

initial 
state 𝜌

dynamics 
encode	ω estimate	ωmeasurements(a)

𝜌 𝑅%(ω)(b) ⋯

𝑘

𝑅%(ω)

𝑘

𝑅%(ω)

𝑘

𝜌 𝑅%(ω𝑡+)(c) ⋯

𝑘+

𝑅%[ω 𝑡- − 𝑡+ ]

𝑘-

𝑅%[ω 𝑡0 − 𝑡01+ ]

𝑘0𝑘01+

FIG. 1. Schematic representation of parameter encoding in quantum metrology. Panel (a) shows

the standard protocol: the parameter ω is encoded in the initial state ρ through the dynamics,

the resulting state is measured, and the parameter is inferred by (classical) post processing of the

measurement outcomes. In panel (b), the dynamics is given by the kicked top model: the encoding

of the parameter ω through linear precession Rz(ω) about the z-axis is periodically disrupted

through parameter-independent, nonlinear, controlled kicks (green triangles) with kicking strength

k that can render the dynamics chaotic. In panel (c), the dynamics is given by a generalized kicked

top model: the kicking strengths k` and times t` between kicks are optimized in order to maximize

the sensitivity with which ω can be inferred (varying k` are indicated by different sizes of the green

triangles). Variation of the kicking axis is possible but beyond the scope of this work.

The quantum Cramér-Rao bound for the smallest possible variance of the estimate ω̂

reads

Var(ω̂) ≥ 1

MIω
. (1)

For a state given in diagonalized form, ρω ∶= ∑d`=1 p` ∣ψ`⟩ ⟨ψ`∣, where d is the dimension of the

Hilbert space, the quantum Fisher information (QFI) is given by [38]

Iω = 2
d∑

`,m=1
∣⟨ψ`∣∂ωρω ∣ψm⟩∣2(p` + pm)2

, (2)
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where the sum runs over all `,m such that p` + pm ≠ 0, and ∂ωρω ∶= ∂ρω
∂ω .

III. THE SYSTEM

We consider a spin model based on the angular momentum algebra, with spin operators

J = (Jx, Jy, Jz), Jz ∣jm⟩ = h̵j ∣jm⟩ and J2 ∣j,m⟩ = h̵2j(j + 1) ∣j,m⟩, where j and m are angular

momentum quantum numbers. Note that the model can be implemented not only with

physical spins but with any physical system with quantum mechanical operators that fulfill

the angular momentum algebra. The Hamiltonian of our model is given by

HKT(t) = ωJz + J2
y(2j + 1)h̵

∞∑
`=−∞κ`τδ(t − t`) . (3)

The first summand describes a precession about the z-axis with precession frequency ω. The

second summand describes the nonlinear kicks, i.e., a torsion about the y-axis, see Fig. 1.

This corresponds to a precession about the y-axis with a precession angle proportional to

the y-component. The time τ defines a time scale such that t and t` measure time in units

of τ . The `th kick is applied at time t` where κ` quantifies its kicking strength (in units of

a frequency).

In an atomic spin-precession magnetometer, as discussed in Ref. [33], the first summand

corresponds to a Larmor precession characterized by the Larmor frequency ω = gµBB/h̵ with

Landé g-factor g, Bohr magneton µB, and magnetic field strength B, which is the parameter

that one wants to estimate. The nonlinear kicks can, for example, be generated with off-

resonant light pulses exploiting the ac Stark effect. We introduce a dimensionless kicking

strength as kl ∶= κ`τ and, for the sake of simplicity, we set τ = 1 and h̵ = 1.

For a pure state, the unitary time evolution of the system between kicks at time t`−1 and

t` is given by

∣ψω(t`)⟩ = Uω(k`) ∣ψ(t`−1)⟩ , (4)

where the unitary transformation Uω(k`) propagates the state according to the Hamiltonian

(3), from time t`−1 [directly after the (` − 1)th kick] to t` [directly after the `th kick], as

indicated by the index ` [in order to simplify notation, the index ` of k not only labels the

kicking strength at time t` but also refers to the propagation from t`−1 to t` of Uω(k`)]. We

have

Uω(k`) = T exp [−i ∫ t`

t`−1
dt′HKT(t′)], (5)
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where T denotes time-ordering. Since the kicks are assumed to be instantaneous, this leads

to

Uω(k`) = exp [−ik`
J2
y(2j + 1)] exp [−iω(t` − t`−1)Jz] , (6)

i.e., a precession for time t` − t`−1 followed by a kick of strength k`. The kick occurs at the

end of the time interval [t`−1, t`].
For the standard kicked top (KT), , see Fig. 1, the kicking strengths are constant, k` = k,

and kicking times are given by t` = `τ = `, with ` ∈ N. Dynamics of the standard KT is non-

integrable for k > 0 and has a well defined classical limit that shows a transition from regular

to chaotic dynamics when k is increased. In Ref. [33] the behavior of the QFI for regular

and chaotic dynamics was studied in this transition regime (for k = 3 and ω = π/2) which

manifests itself by a mixed classical phase space between regular and chaotic dynamics.

Quantum chaos is defined as quantum dynamics that becomes chaotic in the classical limit.

In contrast to classical chaos, quantum chaos does not exhibit exponential sensitivity to

changes of initial conditions due to the properties of unitary quantum evolution, but can

be very sensitive to parameters of the evolution [39]. The kicked top has been realized with

atomic spins in a cold gas [40] and with a pair of spin-1/2 nuclei using NMR techniques [41].

Here, we generalize the standard KT to kicks of strength k` at arbitrary times t` as given in

Eq. (6), see also Fig. 1.

Any new quantum metrology method needs to demonstrate its viability in the presence

of noise and decoherence. We study two different versions of the KT which differ in the

decoherence model used: phase damping and superradiant damping. Both can be described

by Markovian master equations and are well studied models for open quantum systems

[42–45]. While phase damping conserves the energy and only leads to decoherence in the

∣j,m⟩ basis, superradiant damping leads in addition to a relaxation to the ground state

∣j,−j⟩. Its combination with periodic kicking in the chaotic regimes is known to give rise to

a non-equilibrium steady state in the form of a smeared-out strange attractor [45] that still

conserves information about the parameter ω, whereas without the kicking the system in

presence of superradiant damping simply decays to the ground state. The master equations

for both processes have the Kossakowski–Lindblad form [46, 47], with

ρ̇(t) = γpd([Jz, ρ(t)Jz] + h.c.) (7)
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for phase damping, where ρ̇(t) = d
dtρ(t), and

ρ̇(t) = γsr([J−, ρ(t)J+] + h.c.) (8)

for superradiant damping, where J± ∶= Jx±iJy are the ladder operators, and γpd and γsr denote

the decoherence rates. With the generator Λ, defined by ρ̇(t) = Λρ(t), one has in both cases

the formal solution ρ(tn) =D (tn − tn−1)ρ(tn−1) with the continuous-time propagator D (t) ∶=
eΛt. The solution of Eq. (7) in the ∣j,m⟩ basis, where ρ(t) = ∑jm,m′=−j ρm,m′(t) ∣j,m⟩ ⟨j,m′∣,
is immediate,

ρm,m′(t) = ρm,m′(0) exp [−γpdt(m −m′)2] . (9)

Also for Eq. (8) a formally exact solution has been found [48] and efficient semiclassical (for

large j) expressions are available [49, 50]. For our purposes it was the simplest to solve

Eq. (8) numerically by diagonalization of Λ. Combining these decoherence mechanisms with

the unitary evolution the transformation ρ(t`−1) → ρ(t`) reads

ρ(t`) = Uω(k`) [D (t` − t`−1)ρ(t`−1)]Uω(k`)†
, (10)

because in both cases the dissipative generator Λ commutes with the precession.

As initial state we use an SU(2) coherent state, which can be seen as the most classical

state of a spin [51, 52], and is usually easy to prepare (for instance by optically polarizing

the atomic spins in a SERF magnetometer). Also, it is equivalent to a symmetric state of

2j spin-1
2 pointing all in the same direction. With respect to the ∣j,m⟩ basis it reads

∣j, θ, φ⟩ = j∑
m=−j

√( 2j

j −m) sin(θ
2
)j−m cos(θ

2
)j+m ei(j−m)φ ∣j,m⟩ . (11)

We choose θ = π
2 , φ = π

2 .

IV. THE KICKED TOP AS A CONTROL PROBLEM AND REINFORCEMENT

LEARNING

We consider the kicked top as a control problem and discretize the kicking strengths k`

and times t`. The precise parameters of the discretized control problem vary between the

following examples and are summarized in Appendix A. In the following, tstep denotes a
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discrete time step (measured in units of τ = 1), kstep is a discrete step of kicking strength,

the RL agent optimizes the QFI at time Topt, and we bound the total accumulated kicking

strength ∑` k` < 15000 which is never reached in optimized policies though. The frequency

ω, that we want to estimate, is set to induce a rotation of the state by tπ/2 (t is measured

in units of τ = 1).

Possible control policies are simply given by a vector of kicking strengths k = (k1, . . . , kN) ∈
RN with k` ∈ {qkstep ∶ q = 0,1,2, . . .}. To each policy corresponds a QFI value, calculated

from the resulting state ρ(Topt), which quantifies how well the policy performs. To tackle this

type of problem, various numerical algorithms are available, each with its own advantages

and drawbacks [2, 3, 15]. We pursue the relatively unexplored (in the context of physics)

route of cross-entropy RL.

The system, the kicked top, will be called “environment”, and we imagine an “RL agent”

interacting with the environment by applying nonlinear kicks (“actions”) and getting in

response information about the current state of the environment (“observation”, which is in

our case the full density matrix of the current state), see Fig. 2. The RL agent repeatedly

has to take the decision whether to increase the kicking strength (by kstep) or to go on from

the current position in time `tstep to (`+1)tstep. After each decision, it obtains an observation

and, only after the total time Topt, a “reward” (the quantum Fisher information of ρ(Topt)),
that it seeks to maximize. This concludes one “episode” after which the environment is reset

[i.e., the spin is reinitialized in the coherent state at θ = π
2 , φ = π

2 , see Eq. (11)] and the next

episode starts.

In our case, a neural network represents the RL agent: The observation is given to the

neural network’s input neurons while each output neuron represents one possible action, i.e.,

we have two output neurons for “kick” and “go on”. The activation of these output neurons

determines the probability of executing that action. The policy, however, is not given by

the neural network directly. Since the environment is deterministic (i.e., the state evolves

deterministically for a given policy k of kicking strengths) there is no point in choosing a

stochastic policy such as a neural network. Instead, a single choice of kicking strengths k

represents the policy which is obtained by first generating a few episodes with several trained

neural networks and then picking the episode with the largest QFI. The kicking strengths

applied in that episode represent the policy (see Appendix B)1.

1 In comparison, Sanders et al. [23–25] restricted their policy search for adaptive single-photon interferom-
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agent: neural network environment: 
kicked top

action: kicking strength

observation: density matrix
reward: QFI (only at the end)

FIG. 2. Typical setup in reinforcement learning: the RL agent acts upon the environment which

in return gives the RL agent an observation and a reward. In our case the RL agent is a neural

network and the environment is the generalized kicked top.

The RL cross-entropy method [53] we use works as follows: We produce a set of episodes

with the neural network, and then we reinforce the actions of the episodes with the highest

reward. This is done by choosing the best 10% of episodes and we use the pairs of observa-

tions and actions of these episodes to train the neural network with the stochastic gradient

descent method called Adam (see Appendix for details) [54]. As a result of this training the

weights of the neural network are adjusted, i.e., the agent learns from its experience. Future

actions taken by the agent are then influenced not only by randomness but also by this

experience. The whole process of generating episodes and training the network is iterated.

For the parameters of the training process see Appendix B. In Appendix C we study the

learning success for different numbers of episodes and iterations.

V. RESULTS

We compare the QFI for different models: (i) the top (simple precession without kicks),

(ii) the standard kicked top, as studied in Ref. [33], with periodic kicks (period τ = 1, i.e., a

precession angle of π/2 for one period, and kicking strength k = 30), and (iii) the generalized

kicked top optimized with RL. In case of superradiance damping (phase damping) we denote

the top by SR-T (PD-T), the standard kicked top by SR-KT (PD-KT) and the RL-optimized

etry in such a way that their search space corresponds to points in RN , making it similar to our problem.

However, in their case the observations from the environment are probabilistic measurement outcomes

while in our case the observation is the deterministic state ρ.
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(b) j=3, γ =0.01
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(c) j=2, γ =0.1
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FIG. 3. Examples for the policy adopted by the RL agent for superradiant damping. We plot

the accumulated kicking strength on the left axes as red dots and on the right axes in blue the

quantum Fisher information for the top (solid line), the periodically kicked top with k = 30 chosen

as in Ref. [33] (dashed line) and the QFI that corresponds to the policy of the RL agent (crosses).

We additionally plot red vertical lines in the places, where the RL agent decides to set a kick. The

height of the lines correspond to the kicking strength in arbitrary units and are not on the scale of

the left axis. There is a regime where the RL agent manages to increase the QFI with each time

step [panel (a) and (b)], and a regime where the RL agent makes the QFI oscillate [panel (c) and

(d)].

generalized kicked top by SR-GKT (PD-GKT). Details on the training and the optimization

of the RL results are provided in Appendix B.

Let us first consider superradiant damping with results presented in Fig. 3. The QFI for

the SR-T exhibits a characteristic growth quadratic in time. However, due to decoherence,

the QFI does not maintain this growth but starts to decay rapidly towards zero. The time

when the QFI reaches its maximum was found to decay roughly as 1/(γsrj) with spin size j

and damping rate γsr [33].
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The situation changes with the introduction of nonlinear kicks. There, the QFI for the

SR-KT shows the interesting behavior of not decaying to zero for large times. Instead it

reaches a plateau value which was found to take surprisingly high values for specific choices

of j and dissipation rates [33], in particular, for j = 2. The system looses energy through

superradiant damping while the nonlinear kicks add energy. This prevents the state from

decaying to the ground state, which is an eigenstate of the precession and would lead to

a vanishing QFI. From this perspective, the plateau results from a dynamical equilibrium

established by the interplay of superradiant damping and kicks.

However, the full potential of exploiting such effects and increasing the QFI with the help

of nonlinear kicks is not achieved with constant periodic kicks. Instead, the RL agent2 finds

policies to make the QFI of the SR-GKT increase further even when the QFI of the SR-T

decayed already to zero and the QFI of the SR-KT reached its plateau value.

Examples for j = 2 and j = 3 are presented in Fig. 3. The QFI of the SR-GKT is optimized

for a total time Topt which is the largest time plotted in each example. At Topt, the plateau

value of the SR-KT for j = 3 is relatively low and the RL-optimized policy achieves an

improvement in sensitivity (associated with 1/√Iω) of more than an order of magnitude.

Panels (a) and (b) show continuous growth of the QFI through an optimized kicking policy.

Only if the time Topt (the QFI is optimized to be maximal at Topt) is increased further, the

impressive growth of the QFI finally breaks down. Instead of increasing Topt, we choose

to increase superradiant damping while keeping Topt constant, which has a similar effect.

In that case, see panels (c) and (d), the RL agent chooses a policy which makes the QFI

oscillate at a relatively high level before the time Topt is reached.

The superiority of the policies found by the RL agent can be understood by taking a look

at the evolution of the quantum state, see Fig. 4: We represent the quantum state in the

space of r = (x, y, z) = (⟨Jx⟩ , ⟨Jy⟩ , ⟨Jz⟩) where ⟨J`⟩ ∶= tr(ρJ`) and, due to the conservation of

angular momentum, ∣r∣ = 1 which restricts the space to a sphere. This is represented in Fig. 4

with either a sphere parametrized with x, y, and z, or in a plane (the phase space) spanned

by the z-coordinate and the azimuthal angle φ ∈ (−π,π] such that φ = z = 0 corresponds to

the positive x-axis, φ = π/2, z = 0 to the positive y-axis, and z = ±1 with arbitrary φ to the

positive (negative) z-axis.

The quantum state can be represented in the phase space with the help of the Husimi

2 The training of one RL agent takes about eight hours on a desktop computer.
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FIG. 4. Illustration of kicked superradiant dynamics with Wigner functions and its classical limit.

The spin size is j = 3 and the dissipation rate is γsr = 0.01. Panels in the left column (a) corresponds

to the initial spin coherent state at θ = φ = π/2. The middle and right columns correspond to the

state at time Topt generated with periodic kicks (middle column (b), k = 30) and with kicks

optimized with reinforcement learning [right column (c), the corresponding QFI is shown in panel

(b) of Fig. 3]. The top two rows show the Wigner functions of the density matrix, the bottom

two rows show the classical phase space, populated by 106 points initially distributed according

to the Husimi distribution of the initial spin coherent state and then propagated according to the

classical equations of motion.
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or the Wigner distributions which are quasi probability distributions of the quantum state.

The first two rows of panels in Fig. 4 depict the Wigner distribution of the initial quantum

state (left column) and the quantum states of the SR-KT (middle column, with kicking

strength k = 30) and SR-GKT (right column) evolved for a time Topt with damping rate

γsr = 0.01. The plotted cases for the SR-KT and SR-GKT correspond to the QFI given in

panel (b) of Fig. 3, where one can also see the corresponding RL-optimized distribution of

kicks.

Due to the small spin size of j = 3, we are deep in the quantum mechanical regime which

manifests itself in an uncertainty of the initial spin coherent state that is relatively large

compared to total size of the phase space. The distribution of the states evolved under

dissipative dynamics exhibit remarkable differences for periodic and RL-optimized kicks:

In case of periodic kicks, we find that the initially localized distribution gets distributed

over the phase space. It exhibits a maximum on the negative z-axis, see panels (b1) and

(b2)in Fig. 4. This is reminiscent of the dissipative evolution in the absence of kicks, where

the state is driven towards the ground state ∣j,−j⟩ which is centered around z = −1. The

ground state ∣j,−j⟩ is an eigenstate of the precession and, thus, insensitive to changes in the

frequency ω we want to estimate. Similarly, we interpret the part of the state distribution of

the SR-KT that is centered around negative z-axis as insensitive. However, the distribution

also exhibits non-vanishing parts distributed over the remainder of the phase space that can

be understood as being sensitive to changes of ω and therefore explain the non-zero QFI of

the SR-KT.

The state corresponding to RL-optimized kicks looks like a strongly squeezed state that

almost encircles the whole sphere. Similar to spin squeezing, which is typically applied to

the initial state as a part of the state preparation, we interpret the squeezed distribution as

particularly sensitive with respect to the precession dynamics. This is due to the reduced

uncertainty along the precession trajectories, i.e., with respect to the φ coordinate. In the

Supplemental Material 3, we provide clips of the evolution over time of the state distributions

that illustrate how the RL agent generates the squeezed state. In particular, the squeezed

state distribution can be seen as a feature the RL agent is aiming for with its policy. The

distribution of RL-optimized kicks is shown in Fig. 3 (in Appendix E, we provide a finer

resolution of the distribution of kicks): It is roughly periodic with period corresponding to a

3 The clips are available at https://doi.org/10.6084/m9.figshare.c.4640051.v3.
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precession angle of π. Also note that for the SR-GKT the Wigner distribution has negative

contributions which is associated with non-classicality of the quantum state [55].

An advantage of the superradiant dynamics lies in its well-defined simple classical limit

[45], see also Appendix D. The lower two rows of panels in Fig. 4 depict the corresponding

classical limit where the quantum state is represented by a cloud of phase space points

(distributed according to the Husimi distribution of the initial spin coherent state) that

are propagated according to the classical equations of motion. One of the reasons why

the evolved classical distributions differ from the Wigner distributions is the absence of

quantum uncertainty in the classical dynamics; in principle, over the course of the dynamics

all classical phase space points can be concentrated to an arbitrarily small region of the phase

space. In case of the SR-KT, the phase space points are distributed over the whole phase

space, reminiscent of classical chaos. However, the distribution is not completely uniform

but it exhibits a spiral density inhomogeneity. The plots as in Fig. 4 but for j = 2 are shown

in the Appendix E.

Fig. 5 shows the gains of the RL-optimized SR-GKT over the SR-T. The gain is defined

as the ratio of the RL-optimized QFI at time Topt and the maximum QFI for the SR-T.

A broad damping regime is found where gains can be achieved: In the regime of small

decoherence rates γsr, the RL agent can fight decoherence in such a way that the QFI

exhibits a continuous growth over the total time Topt [see panels (a) and (b) in Fig. 3]. In

comparison with the SR-T, the RL agent benefits of stronger damping in this regime and,

therefore, the gain increases with the dissipation rate γsr. For larger decoherence rates, the

RL agent can no longer fight decoherence in the same manner [see panels (c) and (d) in

Fig. 3], which manifests itself in a reduction of gains for large decoherence rates. In panel

(b) of Fig. 5, we can see the (even larger) gain in QFI compared to the plateau value reached

by the SR-KT.

The RL-optimized QFI is associated with a lower bound on the sensitivity (see Eq. 1) for

a given measurement time Topt. If measurement time can be chosen arbitrarily, sensitivity is

associated with maxt Iω(t)/t [33]. This sensitivity represents the standard quantity reported

for experimental parameter estimation because it takes time into account as a valuable

resource; sensitivity is given in units of the parameter to be estimated per square root of

Hertz. With RL we try to maximize maxt Iω(t)/t with respect to policies.

Fig. 6 compares the SR-T with the SR-GKT where the latter was optimized with RL in
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FIG. 5. Improvement in the quantum Fisher information due to reinforcement learning for super-

radiant damping. The improvement in panel (a) is the ratio of quantum Fisher information at time

Topt (100 discretized time steps) optimized with reinforcement learning and the maximum QFI of

the top (no kicks). In panel (b) we plot the ratio of the QFI optimized with reinforcement learning

and the plateau values achieved by periodic kicking for spin size j = 2 and kicking strength k = 30.

In panel (b), the case of j = 3 is omitted due to the very small plateau values in that case. The

discretization is coarser than in previous examples: tstep = 1 (i.e., a precession angle of π/2 per

time step) and kstep = 0.1.

order to maximize the rescaled QFI. Note, that the initial spin coherent state is centered

around the positive y-axis, which means it is an eigenstate of the nonlinear kicks; kicks

cannot induce spin squeezing at the very beginning of the dynamics. This changes when the

spin precesses away from the y axis. Therefore, it makes sense that the RL agent applies the

strongest kick only after a precession by about π/2. The actions that the RL agent takes

after the rescaled QFI reached its maximum are irrelevant and can be attributed to random

noise generated by the RL algorithm.

As we have seen, the interplay of nonlinear kicks and superradiant damping is very

special. However, also for other decoherence models the QFI can be increased significantly,

for instance in case of a alkali-vapor magnetometer [33]. To demonstrate the performance
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FIG. 6. Examples for the policy adopted by the RL agent for maximizing the rescaled quantum

Fisher information with superradiant damping. We plot the accumulated kicking strength on the

left axis as red dots and on the right axis the rescaled quantum Fisher information for the top (blue

solid line) and for the generalized kicked top optimized with reinforcement learning (blue crosses).

In case of j = 2 (j = 3) the strongest kick is applied after an initial rotation angle of 13π/20 (9π/20).

of the RL agent in connection with another decoherence model, we take a look at phase

damping, see Fig. 7. The behavior of the QFI of the PD-T is qualitatively similar to

superradiant damping. The introduction of kicks, however, has a qualitatively different

effect on the QFI. The RL agent can achieve improvements of the QFI for the PD-GKT at

time Topt (the highest time plotted in each panel of Fig. 7) compared with the QFI of the

PD-T at the same time. Compared to the superradiant case, improvements are rather small.

Notably, the policies applied by the RL agent are also different from superradiant damping;

for instance, the RL agent avoids kicks for large parts of the dynamics.
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FIG. 7. Examples for the strategy adopted by the RL agent for phase damping. All data is for spin

j = 2 with increasing damping rates γpd from panel (a) to (d). We plot the accumulated kicking

strength on the left axis as red dots and on the right axis the quantum Fisher information for the

top (blue solid line) and for the generalized kicked top optimized with reinforcement learning (blue

crosses). We additionally plot red vertical lines at times when the RL agent sets a kick. The length

of the lines corresponds to the kicking strength in arbitrary units (independent of the scale of the

left axis). Note that the RL agent aims to maximize the QFI for Topt = 100 and outperforms the

top in all examples.

VI. DISCUSSION

This work builds on recent results on quantum-chaotic sensors [33]. We find that rein-

forcement learning (RL) techniques can be used to optimize the dynamical control that was

used in Ref. [33] to render the sensor dynamics chaotic. The control policies found with RL

are tailored to boundary conditions such as the initial state, the targeted measurement time,

and the decoherence model under consideration. At the example of superradiant damping

we demonstrate improvements in measurement precision and an improved robustness with

respect to decoherence. A drawback of RL often lies in the expensive hyperparameter tuning
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of the algorithm. However, here we demonstrate that a basic reinforcement algorithm (the

cross entropy method) can be used for several choices of boundary conditions with practically

no hyperparameter tuning (there was no hyperparameter search necessary, solely parameters

that directly influence the computation time were chosen conveniently). Another drawback

of RL is its black box character: while the results achieve a good performance the underlying

reasons and mechanisms remain hidden. In the example of superradiant damping, we were

able to unveil the approach taken by RL by visualizing the quantum dynamics with the help

of the Wigner distribution of the quantum state. This revealed that RL favors a policy that

is reminiscent of spin squeezing. However, instead of squeezing the state only at the begin-

ning of the dynamics, the squeezing is refreshed and enhanced in roughly periodic cycles in

order to fight against the superradiant damping. In the spirit of Ref. [33], these findings

emphasize the potential that lies in the optimization of the measurement dynamics. We are

optimistic that reinforcement learning will be used in other quantum metrological settings

in order to achieve maximum measurement precision with limited quantum resources.
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Appendix A: Control problem and optimisation parameters of the examples

Table I shows the parameters of the control problem and for the optimization used in

each example. We train nagents RL agents for niterations iterations with nepisodes episodes in

each iteration. Each episode is simulated until a total time Topt is reached. Then we produce

nsamples sample episodes of each trained RL agent and choose the best episode to plot the

sample policies and gains.

TABLE I. Hyperparameters used for the examples in the main text.

Figure nagents niterations nepisodes nsamples tstep kstep Topt

Samples with superradiant damping (Fig. 3) 5 500 50 20 0.2 0.05 100

Gains of superradiant damping (Fig. 5) 20 300 40 20 1.0 0.10 100

Samples of rescaled QFI (Fig. 6) 2 500 50 20 0.1 0.10 50

Samples with phase damping (Fig. 7) 1 1,000 100 1 1.0 0.10 100

Appendix B: Cross entropy reinforcement learning

Here we give further information on the neural network, the cross entropy method, and

the pseudocode for the cross entropy method with discrete actions. The code implementation

is based on an example by Jan Schaffranek 4.

The input layer of the neural network is defined by the observation. The output layer

is determined by the number of actions (two) and we choose 300 neurons in the hidden

layer. The layers are fully connected. The hidden layer has the rectified linear unit (ReLU)

as its activation function and the output layer has the softmax function as its activation

function [56]. As a cost function we choose the categorical cross entropy [56]. The share of

best episodes σshare is always 10%. The number of iterations and number of episodes vary

for different settings, see Table I for detailed information. For training we use the Adam

optimizer [54] with learning rate 0.001.

4 https://www.udemy.com/artificial-intelligence-und-reinforcement-learning-in-python
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Algorithm: Cross entropy method

Inputs:
Number of iterations 𝑛iterations
Number of episodes 𝑛episodes
Share of best episodes 𝜎share

Other variables:
Total Reward 𝑅
Current Reward 𝑟
Observations 𝑜
Actions 𝑎
Training set 𝑆 (consists of observations as inputs and actions as labels)

for 1 to 𝑛iterations:
for 1 to 𝑛episodes:

𝑅, 𝑜, 𝑎 ← Play Game
end for
sort episodes according to 𝑅
𝑆 ← best 𝜎share episodes
train neural network with 𝑆

end for

Function Play Game():
while episode not finished do:

put observation into neural network and receive probabilities of action as output
choose action according to probability
add action and observation to 𝑎, 𝑜
tell the environment the action choice and receive a new observation 𝑜 and reward 𝑟
𝑅 ← 𝑅 + 𝑟

end while
return 𝑅, 𝑜, 𝑎

Appendix C: Learning curve and stability of the algorithm

At the example of the superradiance decoherence model, we study the learning behavior of

the cross entropy reinforcement learning algorithm for different training lengths (i.e. number

of iterations) and different numbers of episodes per iteration. The results are summarized

in Fig. 8. Spin size is j = 2 and dissipation rate is γsr = 0.02.

In order to see the influence of the number of iterations, we set the number of episodes to

100 and let 20 different RL agents (with different random seeds) train for various numbers

of iterations. The training of a single RL agent takes about one hour at most (for the higher

number of iterations) on a desktop computer. We then use each RL agent to produce 20

episodes, giving us 400 episodes for each data point in Fig. 8. We used those episodes to

calculate mean and standard deviation of the reward. The results are shown in the panel
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FIG. 8. Learning behavior of the algorithm at the example of superradiant damping with j = 2,

γsr = 0.02, kstep = 0.1, tstep = 1, and Topt = 100. Panel (a) shows how the mean QFI and its standard

deviation with respect to different runs of the algorithm behaves for various numbers of iterations

and fixed number of episodes fixed to 100. In Panel (b) the number of episodes is varied and

number of iterations fixed to 500.

(a) of Fig. 8. In order to see the influence of the number of episode in each iteration, we fix

the number of iterations to 500 and do the same procedure as before. The results are shown

in panel (b) of Fig. 8.

We can see that the standard deviation over policies decreases with the number of itera-

tions while the mean QFI increases. The same is true for the number of episodes (panel (b)),

where for 32 episodes a stable plateau of the QFI is reached such that increasing the number

of episodes does not achieve any further improvements. Overall, these results demonstrate

the stability of the algorithm if the number of episodes and iterations is chosen sufficiently

large.

Appendix D: Classical equations of motion

The kicked top with superradiant damping has a well defined classical limit. It is obtained

from the quantum equations of motion by taking the limit j →∞ where h̵ = 1 and τ = 1. The
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rescaled angular momentum operator 2J/(2j + 1) = 2(Jx, Jy, Jz)/(2j + 1) then becomes the

classical coordinate vector r = (x, y, z) and with limj→∞ ( 2J
2j+1)2 = 1 the unit sphere becomes

the classical phase space with azimuthal angle φ and z-coordinate as canonical variables.

The equations of motions r → r̃ are found to be [45]

x̃ = x cos(α) − y sin(α), (D1)

ỹ = x sin(α) + y cos(α), (D2)

z̃ = z, (D3)

for the precession about the z-axis by an angle α,

x̃ = z sin(ky) + x cos(ky), (D4)

ỹ = y, (D5)

z̃ = z cos(ky) − x sin(ky), (D6)

for the kicks about the y-axis with kicking strength k, and, with azimuthal angle φ (see

main text)

θ̃ = arccos(1 − (1−z
1+z exp(2τ))

1 + (1−z
1+z) exp(2τ)) , (D7)

x̃ = sin(θ̃) cos(φ), (D8)

ỹ = sin(θ̃) sin(φ), (D9)

z̃ = cos(θ̃), (D10)

for the superradiant damping, where

τ = (2j + 1)γsrt, (D11)

for a time t, spin size j, and superradiant decoherence rate γsr.

Appendix E: A closer look at the kicks set by the reinforcement learning agent

Here we take a closer look at the kicks chosen by the RL agent in the examples with

superradiant damping, considered in Fig. 3 in the main text.

In case of γsr = 0.01, for both, j = 2 and j = 3, we find relatively similar distribution of

kicks, see panel (a) in Fig. 9. The most striking difference between the two policies for j = 2
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and j = 3 are the comparatively strong kicks in the beginning of the sequence. By observing

the time evolution of the Wigner function (see Supplemental Material), we find that these

kicks basically rotate the state by an additional angle π/2 about the z-axis. This leads to

a phase shift of π/2 between the two policies [see panels (d3) and (d4) of Fig. 10] compared

to the initial state [see panels (a3) and (a4) of Fig. 10].

For γsr = 0.1 the policies are even more similar with several kicks increasing in strength

with a period length of π, see panel (b) in Fig. 9.

Fig. 10 is analog to Fig. 4 in the main text but for j = 2 instead of j = 3. The only

qualitative difference compared to the j = 3, is the periodically kicked top: The combination

of periodic kicks with k = 30 and j = 2 seems to be a special configuration. The classical

phase space is comparable with the j = 3 case, but there is much less structure in the Wigner

function. Instead, the state concentrates on the south pole and exhibits a slightly squeezed

shape (this is difficult to judge from Fig. 10 though). The rather high value of the QFI for

k = 30 and j = 2, is best explained by this squeezing. When choosing other kicking strength,

we observed a Wigner function similar to the case of j = 3.
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FIG. 9. Kicks set by the RL agent for the SR-GKT. Panel (a) shows the case for γsr = 0.01 and

panel (b) for γsr = 0.1. In red on the left axis are the kicking strengths for j = 2 (crosses) and j = 3

(circles). To show the precession, we plot on the right axis in grey the x component of an unkicked

spin coherent state without decoherence.
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FIG. 10. Shows the corresponding data as in Fig. 4 but for j = 2 instead of j = 3: Illustration of

kicked superradiant dynamics with Wigner functions and its classical limit. The dissipation rate is

γsr = 0.01. Panels in the left column (a) correspond to the initial spin coherent state at θ = φ = π/2.

The middle and right columns correspond to the state at time Topt generated with periodic kicks

[middle column (b), k = 30] and with kicks optimized with reinforcement learning [right column

(c), the corresponding QFI is shown in panel (b) of Fig. 3]. The top two rows show the Wigner

functions of the density matrix, the bottom two rows show the classical phase space, populated

by 106 points initially distributed according to the Husimi distribution of the initial spin coherent

state and then propagated according to the classical equations of motion.
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Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation
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Adaptive experiment design is crucial in order to exploit the benefits of Bayesian quantum estima-
tion. We propose and demonstrate a general method for creating fast and strong experiment-design
heuristics based on neural networks. Training of the neural networks relies on an evolutionary
algorithm and a combination of imitation and reinforcement learning. Based on the well-studied
example of frequency estimation with a qubit which suffers from T2 relaxation, we demonstrate that
the trained neural networks are tailored to the properties of the estimation problem and take into
account the availability of resources such as time or the number of measurements. The simulta-
neous estimation of the frequency and the relaxation rate is considered as well. We find that the
neural-network heuristics are able to outperform well-established heuristics in all examples.

In quantum metrology we aim to design quantum
experiments such that one or multiple parameters can
be estimated from the measurement outcomes. Experi-
ment design can involve the preparation of initial states,
controlling the dynamics, or choosing measurements for
readout. The estimation of parameters is a problem of
statistical inference which, broadly speaking, can be tack-
led with the frequentist or the Bayesian approach.

In the frequentist approach, the experiments are de-
signed a priori ; repeating experiments several times al-
lows one to estimate the parameters from the statistic
of measurement outcomes using, for example, maximum
likelihood estimation. The problem of experiment design
is often addressed with the Cramér–Rao bound formal-
ism [1, 2] by maximizing the quantum Fisher information
with respect to experiment designs [3].

The Bayesian approach, on the other hand, relies on
updating the current knowledge about the parameters
after each experiment using Bayes’ law. Examples for
Bayesian quantum estimation involve state and process
tomography [4–9], and Bayesian frequency estimation
[10–12] with various experimental realizations [13–20].
The Bayesian approach allows for adaptive experiment
design: experiments can be optimized depending on the
current knowledge about the parameters and the avail-
able resources.

While adaptivity can enhance the precision and save
time and other resources compared to non-adaptive (fre-
quentist) approaches [21], it involves a computational
challenge: The Bayesian update and the consecutive op-
timization of the experiment design are both analytically
intractable (with rare exceptions under idealized condi-
tions [10, 22]) and must be calculated online, i.e., af-
ter each experiment. In view of the short time scale of
quantum experiments, slow numerical computation can
drastically increase the total time consumed. In order to
approximate the Bayesian update, an efficient framework
based on a sequential Monte-Carlo (SMC) algorithm has
been developed [6, 7, 23–25]. This framework, however,
does not solve the problem of adaptive experiment de-
sign, which represents a second computational step, see

Fig. 1(a).

Usually, one has to rely on so-called experiment-design
heuristics, i.e., fast to evaluate rules for designing experi-
ments, see Fig. 1(a). So far, experiment-design heuristics
were mostly chosen manually [11, 26–29], typically mo-
tivated by analytic arguments derived for an idealized
model [22, 26]. Other approaches numerically optimize
with respect to a restricted (in order to keep the problem
numerically tractable) set of policies online (between the
experiments) [29] or offline (a priori) with particle swarm
[19, 30–32] or differential evolution algorithms [33]. For
example in Refs. [19, 30, 31, 33], the restricted search
space grows linearly with the number of measurements
N , but the run time grows as O(N6) or O(N7) (for par-
ticle swarm and differential evolution algorithms, respec-
tively) which restricts the optimization to N ≲ 100 due
to computational limitations. While for relatively sim-
ple cases strong or even close to optimal heuristics were
found manually, modifications of the experiments (e.g., a
different decoherence rate or even a different decoherence
model) or changes in the availability of resources typically
lead to a much worse performance of these heuristics.

Here, we propose a method for finding strong and fast
heuristics which builds upon and compliments the SMC
framework for approximate Bayesian updates [6, 7, 23–
25]. The idea is to use a neural network which makes de-
cisions on experiment design based on the current knowl-
edge about the parameters which we want to estimate.
The training consists of two steps, see Fig. 1 (b): imi-
tation learning followed by reinforcement learning (RL).
The idea of imitation learning is to take advantage of al-
ready existing (manually found) heuristics by training a
neural network to imitate their behavior. In the second
step, which consists of RL, we treat the problem of exper-
iment design as a game: by training the neural network
to become a better player we want to create a heuris-
tic (the trained neural network) which outperforms any
other (manually found) heuristic. Recently, RL has been
used with great success to create programs that play the
board games chess and Go better than any other pro-
gram or human [34]. RL has also been used in quantum
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FIG. 1: Panel (a) shows the setup for adaptive Bayesian quantum estimation: first, prior information (e.g., about
the prior p(θ) and the available resources) is passed to the heuristic which returns an experiment design e1. With

the measurement outcome d1, we numerically compute the Bayesian update of p(θ). Then, it continues in the same
manner and this procedure is repeated until some exit condition is fulfilled (for instance, if a given number of
experiments is reached). Panel (b) shows the framework of reinforcement learning, which consists of an agent
(depicted as neural network) interacting with a RL environment. The RL environment consists of a simulated

quantum experiment [depicted with initial state ρ and parameter-dependent quantum channel Φ(θ)] and a
numerical Bayesian update. Panel (c) depicts the training procedure of the neural networks. First, the neural

network learns to imitate the behavior of a known heuristic. Then, we use this neural network as a starting point for
reinforcement learning.

physics [35, 36] and, in particular, in quantum metrology
in the regime of local parameter estimation for improv-
ing the dynamics of quantum sensors using cross-entropy
[37], actor-critic, and proximal-policy-optimization [38]
RL algorithms [39–43].

Before we go into the details of RL, we need to define
a figure of merit. Let θ = (θ1, . . . , θd) ∈ Θ be the pa-
rameters we would like to estimate, and we assume that
Θ restricts each θj to an interval. Let Dk = (d1, . . . , dk)
denote the measurement outcomes from a sequence of
k independent experiments Ek = (e1, . . . , ek), where ej
denotes the design of the jth experiment. Let p (θ∣Dk)
(omitting the dependence on experiment designs in the
following for the sake of clarity) be a probability distribu-
tion on Θ which represents our knowledge about θ after
the kth measurement. Let θ̂k ≡ θ̂k(Dk) be an estimator
of θ after k experiments. Then, the Bayes risk r is defined

(with respect to the loss function L(θ̂k ∣θ) = [∣∣θ̂k − θ∣∣2)
as [11]

r [θ̂k, p(θ)] = Eθ (EDk ∣θ [∣∣θ̂k − θ∣∣2]) , (1)

which is the expected value Eθ[●] = ∫Θ dθ p(θ)● over the

prior p(θ) ≡ p (θ∣0) of the risk function EDk ∣θ [L(θ̂k ∣θ)].
p(θ) represents our knowledge prior to the first measure-

ment. As an estimator θ̂k after k experiments we simply
use the expected value of θ over the posterior p (θ∣Dk),
θ̂k = Eθ∣Dk

[θ]. In a Bayesian setting, we aim to minimize
the Bayes risk and, thus, we want to choose experiment
designs which minimize the Bayes risk.

Let us phrase the problem of experiment design in the
language of RL, see Fig. 1(c): In RL, training consists of
a RL agent interacting with a RL environment by taking
actions and receiving observations and rewards in return
[44]. Here, the agent is represented by a neural network,
and the RL environment consists of a simulated quantum
experiment and a numerical Bayesian update of p (θ∣Dk)
[6, 7, 23, 25]. One episode, i.e., one game, starts with the
RL environment initialized with a prior p(θ) and consists
of several steps, i.e., agent-environment interactions. It
ends if an exit condition is fulfilled, for example, if a
resource such as time is exhausted.

The agent’s action at the kth step consists of the ex-
periment design ek. The observation contains informa-
tion about the current state of the RL environment, and
could in principle include the full SMC representation
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of p (θ∣Dk). The observation may also include informa-
tion about the past, such as prior actions, and about re-
sources, such as the remaining time. The reward should
reflect the goodness of the behavior (actions) of the agent
(larger reward is better) and is used by the RL algorithm
to enforce behavior which leads to larger rewards; the RL
agent is learning from its experience.

The negative Bayes risk seems to be an obvious choice
for a reward function. However, the computation of the
Bayes risk is too time-consuming. Instead, we define the
reward after the kth experiment as the difference in the
traced covariance of θk−1 and θk,

R(Dk) = tr (Covθ∣Dk−1 [θk−1]) − tr (Covθ∣Dk
[θk]) . (2)

Further, we set tr (Covθ [θ0]) = const in the numerical
calculations in order to have a stable reward baseline.
It worth noting that averaging the accumulated reward
after k steps with respect to data Dk yields

EDk

⎡⎢⎢⎢⎣
k∑

j=1R(Dj)⎤⎥⎥⎥⎦ = const −EDk
[tr (Covθ∣Dk

[θk])] , (3)

and it turns out (see Appendix ) that the right-hand side
equals the negative Bayes risk up to a constant offset.
Thanks to this important property, maximizing the re-
wards accumulated for one episode minimizes the Bayes
risk at least on average (with respect to data Dk). The
reward (2) can be computed efficiently within the SMC
framework for Bayesian updates.

Let us demonstrate our method of creating neural-
network heuristics with an example of a qubit which
evolves under the Hamiltonian H(ω) = ω

2
σz. The qubit

is prepared in ∣+⟩ = (∣0⟩ + ∣1⟩) /2, evolves under H(ω) for
a controllable time t, and is measured in the σx basis (as-
suming a strong projective measurement). Let us further
assume that the qubit suffers from an exponential decay
of phase coherence, with characteristic time T2. Accord-
ing to the Born rule, the likelihood of finding an outcome
d ∈ {0,1} (corresponding to the σx measurement) can be
expressed as [26]

p(0∣ω, t, T2) = e
− t

T2 cos2 (ω
2
t) + 1 − e

− t
T2

2
, (4)

and p(1∣ω, t, T2) = 1−p(0∣ω, t, T2). Eq. (4) defines all rele-
vant properties of the experiment. An experiment design
consists of specifying the evolution time t. We consider
the following estimation problems: (i) the estimation of
ω without decoherence (T2 = ∞, see the top row of pan-
els in Fig. 2), (ii) the estimation of ω with known T2

relaxation (we consider this problem twice with different
values for T2, see the second and third row of panels in
Fig. 2), and (iii) the simultaneous estimation of ω and
T −1

2 (see the bottom row of panels in Fig. 2). In all cases
we consider ω ∈ (0,1) (making the problem dimension-
less). Each estimation problem defines a RL environment

which is either time-limited or experiment-limited. In the
former case, the time available to the agent is limited
(which defines the episode length), while in the latter
case the number of experiments per episode is fixed. In
practice, the first case is relevant if time is a limited re-
source while the second case is relevant if measurements
are expensive, for instance, if experiments involve prob-
ing sensitive substances such as biological tissue.

The observation after the kth experiment consists of
the mean Eθ∣Dk

[θ] and the covariance Covθ∣Dk
[θ] over

the posterior (which obviously simplifies to the variance
for single-parameter estimation), the last 30 actions and
the spent time or the number of experiments (for time-
limited or experiment-limited RL environments, respec-
tively).

We use an evolutionary algorithm, the cross entropy
method (CEM) for continuous action spaces [45, 46] (see
Appendix for pseudocode), and a reinforcement learning
algorithm, trust region policy optimization (TRPO) [47]
as implemented in the python package Stable Baselines
[48] (see Appendix for details on the training). CEM
uses a randomly initialized neural network with one hid-
den layer with 16 neurons. In case of TRPO, we initialize
the neural network, which has two hidden layers with 64
neurons each, by doing pretraining as implemented in
[48]. Pretraining consists of imitation learning, where
the neural network is trained to imitate the behavior of
a known heuristic by using episodes (actions and cor-
responding observations and rewards) created with the
known heuristic, see also Fig. 1(c).

Several heuristics have been developed for estimation
problems (i) and (ii). As an example for an offline (i.e.,
non-adaptive) strategy, we consider a heuristic which

chooses exponentially sparse times [26], tk = (9/8)k, de-
noted as exp-sparse heuristic in the following. Further,
we consider two adaptive heuristics: We define the first

one as tk = ∣∣Covθ∣Dk−1 (θ)∣∣−1/2
and we will call it σ−1

heuristic. This actually represents a generalization to
multiparameter estimation of a heuristic which was de-
rived for estimation problem (i) (ω estimation, T2 → ∞)
by Ferrie et al. [26]. For single-parameter estimation,
the σ−1 heuristic chooses the times tk as the inverse
standard deviation of θ over the posterior and is op-
timal in the asymptotic limit (number of experiments
N →∞). The second adaptive heuristic that we consider
is the particle guess heuristic (PGH) [11]. It is based
on the SMC framework where probability distributions
such as p(θ∣Dk) are represented with a particle filter [6]
(see Appendix). PGH chooses times as the inverse dis-
tance of two particles θ1 and θ2 sampled from p(θ∣Dk−1),
tk = ∥θ1 − θ2∥−1

2 . In case of single-parameter estimation,
PGH is a proxy for the σ−1 heuristic but it is faster to
calculate (given the particle filter) and introduces addi-
tional randomness (compared to the σ−1 heuristic).

We use three different heuristics for the pretraining of
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FIG. 2: Comparison of the Bayes risk for different experiment-design heuristics. The left column shows time-limited
RL environments, the right column shows RL environments with a limited number of experiments (limited to the
maximal value plotted on the x axis, respectively). We study frequency estimation without (top row) and with T2

relaxation (2nd and 3rd row, with different T2 as stated in the panel titles) as well as the simultaneous estimation of
the frequency ω and relaxation rate T −1

2 . The Bayes risk is calculated by averaging Varθ∣Dk
(θ) with respect to 104

episodes, sampling for each episode the true parameter(s) from the prior p(θ). For the time-limited RL
environment, we interpolate the data for 200 evenly spaced times. TRPO has been pretrained with the heuristic

which is specified in brackets in the legends. The lines are linear interpolants to guide the eye.

TRPO: the σ−1 heuristic, PGH, and a neural-network
heuristic obtained with CEM [49]. Clearly, in the latter
case we do not have to rely on known heuristics. The
advantage of this two-step procedure over using only one
of the RL algorithms is that we can use CEM for ex-
ploring the search space (for our RL environments, CEM
has proven to be better than TRPO in this respect) and

TRPO for optimizing the heuristic further. Note that
CEM considers only accumulated rewards for one episode
which means it optimizes only for the maximum time
or the maximal number of experiments. TRPO, on the
other hand, takes into account rewards at any step of
an episode and, therefore, is better suited to train neu-
ral networks which are supposed to perform well also for
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2 ) estimation, we plot 95% credible regions for each heuristic from the examples

depicted in the bottom row of Fig. 2. The credible regions are obtained by simulating one episode with each
heuristic (keeping the true parameter fixed). Then, the credible regions are easily computed from the posterior
within the SMC framework. For comparison, the prior is a uniform distribution on ω ∈ (0,1), T −1

2 ∈ (0.09,0.11).
smaller times or fewer measurements.

Let us turn to the results depicted in Fig. 2. In all ex-
amples we consider uniform priors for ω ∈ (0,1). TRPO
and CEM outperform the conventional heuristics in all
examples for sufficiently large times or sufficiently many
measurements.

In the presence of T2 relaxation, times which exceed
T2 tend to yield no information which explains why the
Bayes risk saturates for the exp-sparse heuristic [26]. The
largest advantage of neural-network heuristics is obtained
at the example of ω estimation with relatively strong
relaxation (T2 = 100, second row, left panel in Fig. 2).
Compared to PGH, we find an improvement in the Bayes
risk by more than a magnitude.

In case of multiparameter estimation we have T −1
2 ∈(0.09,0.11) with a corresponding uniform prior. Fur-

thermore, we modify the experiments compared to previ-
ous examples in order to facilitate the estimation of T −1

2 :
here, each experiment produces 100 outcomes at once,
and we also give the averaged outcome as an additional
observation. Again, the neural networks perform better
than the conventional heuristics.

For a single episode, we can visualize the estimation of
ω and T −1

2 by plotting credible regions corresponding to
the heuristics. Fig. 3 shows 95% credible regions obtained
with the heuristics used in the panels of the bottom row
of Fig. 2.

In conclusion, we propose and demonstrate a method
based on imitation and reinforcement learning for train-
ing neural networks to become experiment-design heuris-
tics. The practical success of adaptive Bayesian estima-

tion often depends on the run time of the post process-
ing steps. Using neural networks as experiment-design
heuristics introduces a computation overhead compared
to existing experiment-design heuristics, such as PGH.
However, the run time for one call to a neural-network
heuristic (trained with TRPO) is comparable to the run
time of a Bayesian update (with 1500 particles, single
core computation). A speed-up of data processing is ex-
pected from implementing the Bayesian update and the
neural-network heuristic on a field-programmable gate
array [50]. Further, the computational overhead can be
reduced by using smaller neural networks or by sacri-
ficing adaptivity in favor of a shorter run time, i.e., by
calling the neural-network heuristics only every mth ex-
periment when the neural network would have to return
the experiment designs for the next m experiments.

The big advantage of our method is its versatility
and adaptivity: the properties of the estimation prob-
lem and the quantum experiments, and the availability
of resources are encoded in the environment such that
the neural networks are trained accordingly. Similarly,
we expect that issues with uncertainty in the model or
with multimodal probability distributions are automat-
ically taken into account by the trained neural-network
heuristics. We provide the complete Python code [51]
used for this work in order to facilitate the application
of the presented method to other problems such as the
detection of time-dependent signals [24, 52] and adaptive
Bayesian state tomography [8, 9].

L. J. F. and D. B. acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG), Grant No. BR
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The Expected Accumulated Reward and the Bayes Risk

Here we will show that the expected (with respect to data) accumulated reward equals the negative Bayes risk up
to a constant offset. In order to simplify the notation, we will omit the dependence on experiment designs Ek.

EDk
[tr (Covθ∣Dk, [θk])] = EDk

⎛⎝∑j Varθ∣Dk
[θ(j)k ]⎞⎠ (5)

= EDk

⎛⎝∑j Eθ∣Dk
[(θ̂(j)k − θ

(j)
k )2]⎞⎠ (6)

= EDk
[Eθ∣Dk

(∣∣θ̂k − θ∣∣2)] (7)

= Eθ [EDk ∣θ (∣∣θ̂k − θ∣∣2)] (8)

= r [θ̂k, p(θ)] , (9)

where we used in line (5) that the covariance matrix has the variances of the single parameters on its diagonal, in
line (6) we used the definition of the variance and the estimator, in line (7) we interchanged the expected value with
the sum in order to rewrite the expression with a vector norm, and in line (8) we used Bayes law to rewrite the
expectation values. Line (9) follows with the definition of the Bayes risk. It follows with Eq. (3) from the main text
that

EDk

⎡⎢⎢⎢⎣
k∑

j=1R(Dj)⎤⎥⎥⎥⎦ = const − r [θ̂k, p(θ)] . (10)

Sequential Monte-Carlo Algorithm for Calculating the Bayesian Update

Bayes rule is given by

p(θ∣Dk) = p(dk ∣θ)p(θ∣Dk−1)
p(dk) , (11)

where p(θ∣Dk) is our updated knowledge (posterior), p(θ∣Dk−1) is our prior knowledge (prior), and p(dk) is a normal-
ization, p(dk) = Eθ [p(dk ∣θ)]. The exact solution for the Bayesian update is generally intractable and in particular
p(dk) is hard to calculate. Instead, we use an inference algorithm based on the sequential Monte-Carlo algorithm
[6, 7, 53]. The idea is to represent the probability distribution p(θ∣Dk) by a discrete approximation ∑n

k=1wkδ(θ −θk)
with n particles with positive weights wk and positions θk. Then, for a Bayesian update, we only need to update the
weights of each particle by calculating p(dk ∣θk), which means to simulate the experiment for θ = θk and to use the
Born rule, while the expected value in the definition of p(dk) reduces to a simple sum over the particles. The particle
locations need to be resampled if too many weights are close to zero, i.e., the particle filter of p(θ∣Dk) is impoverished.
We use Qinfer’s[25] implementation of the Liu–West resampling algorithm [23] (with default parameter a = 0.98 [25]).
We use n = 2 × 103 particles for RL environments without decoherence and for RL environments with 2-parameter
estimation. For the environments with ω estimation and finite T2 we use n = 2 × 104 particles.

Details on the Training of the Neural Networks

Our results were obtained with NumPy 1.16.4 [54], QInfer 1.0a1 [25], Gym 0.14.0 [55], Stable Baselines 2.8.0 [48],
and Tensorflow 1.14.0 [56] libraries for Python 3.6.7.

Trusted Region Policy Optimization

We use TRPO [47] with the MlpPolicy as implemented in Stable Baselines 2.8.0 [48]. Hyperparameters which differ
from their default values are γ = 1, λ = 0.92 and vf stepsize = 0.0044. Further, we choose the batch size such that the
number of episodes is approximately 1000.
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Pretraining uses 104 episodes sampled from a heuristic and runs for 104 epochs with a batch size of 100 epochs.
Training runs for 500 iterations. However, we use an exit condition which can stop the training earlier. The exit
conditions stops training if the policy entropy drops below 0.005 [48].

TRPO is pretrained once per heuristics (exp-sparse, σ−1, CEM), and then trained 5 times for each of the pretrainings,
and we plot the results in Fig. 2 only for the best neural-network heuristic.

Cross-Entropy Method

CEM is trained 5 times for each RL environment and we plot results in Fig. 2 only for the neural-network heuristic
which achieves the smallest Bayes risk after the maximum time or the maximal number of measurements. The input
layer of the neural network is defined by the observation. The output layer is determined by the number of actions
(one action: time) and we choose 16 neurons in the hidden layer. The layers are fully connected. The hidden layer
has the rectified linear unit (ReLU) as its activation function and the output layer has the softmax function as its
activation function [58]. The share of best episodes σshare is always 10%. The number of iterations is 1000. Here, we
provide pseudocode for cross-entropy method with continuous actions:

Algorithm 1: Cross Entropy Method for Continuous Actionsa

Result: weights of the neural network
for i← 1 to NumberOfIterations do

for weight ∈WeightsPopulation do
TotalReward←Play Game;

end
sort games according to TotalReward;
EliteSet ← best X% of games ;
BestWeights ← mean weights by averaging over EliteSet;
WeightsPopulation ← BestWeights + additive random noise

end
Function Play Game():

while GameUnfinished do
put observation into neural network and receive probabilities of action as output;
choose action according to probability;
tell the environment action choice and receive a new observation and reward;
TotalReward← TotalReward +Reward

end
return TotalReward;

a The implementation of this algorithm is adapted from an example code from the GitHub repository
https://github.com/udacity/deep-reinforcement-learning
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Serrano Ensastiga for fruitful discussions, and to Julien Fräısse and Daniel Stopper
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