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“Whenever we proceed from the known into the unknown we may hope to understand, but
we may have to learn at the same time a new meaning of the word understanding.”

Werner Karl Heisenberg

Physics and Philosophy: The Revolution in Modern Science





Abstract

In recent years, deep learning has revolutionized both machine learning and computer vision.
Many classical computer vision tasks (e.g. object detection and semantic segmentation),
which traditionally were very challenging, can now be solved using supervised deep learning
techniques. While supervised learning is a powerful tool when labeled data is available
and the task under consideration has a well-defined output, these conditions are not always
satisfied. One promising approach in this case is given by generative modeling. In contrast
to purely discriminative models, generative models can deal with uncertainty and learn
powerful models even when labeled training data is not available. However, while current
approaches to generative modeling achieve promising results, they suffer from two aspects
that limit their expressiveness: (i) some of the most successful approaches to modeling image
data are no longer trained using optimization algorithms, but instead employ algorithms
whose dynamics are not well understood and (ii) generative models are often limited by
the memory requirements of the output representation. We address both problems in this
thesis: in the first part we introduce a theory which enables us to better understand the
training dynamics of Generative Adversarial Networks (GANs), one of the most promising
approaches to generative modeling. We tackle this problem by introducing minimal example
problems of GAN training which can be understood analytically. Subsequently, we gradually
increase the complexity of these examples. By doing so, we gain new insights into the
training dynamics of GANs and derive new regularizers that also work well for general
GANs. Our new regularizers enable us - for the first time - to train a GAN at one megapixel
resolution without having to gradually increase the resolution of the training distribution.
In the second part of this thesis we consider output representations in 3D for generative
models and 3D reconstruction techniques. By introducing implicit representations to deep
learning, we are able to extend many techniques that work in 2D to the 3D domain without
sacrificing their expressiveness.
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Kurzfassung

In den letzten Jahren hat Deep Learning sowohl das maschinelle Lernen als auch die maschi-
nelle Bildverarbeitung revolutioniert. Viele klassische Computer Vision-Aufgaben, wie z.B.
die Objekterkennung und semantische Segmentierung, die traditionell sehr anspruchsvoll
waren, können nun mit Hilfe von überwachten Deep Learning-Techniken gelöst werden.
Überwachtes Lernen ist ein mächtiges Werkzeug, wenn annotierte Daten verfügbar sind
und die betrachtete Aufgabe eine eindeutige Lösung hat. Diese Bedingungen sind allerdings
nicht immer erfüllt. Ein vielversprechender Ansatz ist in diesem Fall die generative Model-
lierung. Im Gegensatz zu rein diskriminativen Modellen können generative Modelle mit
Unsicherheiten umgehen und leistungsfähige Modelle lernen, auch wenn keine annotierten
Trainingsdaten verfügbar sind. Obwohl aktuelle Ansätze zur generativen Modellierung
vielversprechende Ergebnisse erzielen, beeinträchtigen zwei Aspekte ihre Expressivität: (i)
Einige der erfolgreichsten Ansätze zur Modellierung von Bilddaten werden nicht mehr mit
Hilfe von Optimierungsalgorithmen trainiert, sondern mit Algorithmen, deren Dynamik bis-
her nicht gut verstanden wurde. (ii) Generative Modelle sind oft durch den Speicherbedarf
der Ausgaberepräsentation begrenzt. In dieser Arbeit gehen wir auf beide Probleme ein: Im
ersten Teil der Arbeit stellen wir eine Theorie vor, die es erlaubt, die Trainingsdynamik von
Generative Adversarial Networks (GANs), einem der vielversprechendsten Ansätze zur ge-
nerativen Modellierung, besser zu verstehen. Wir nähern uns dieser Problemstellung, indem
wir minimale Beispielprobleme des GAN-Trainings vorstellen, die analytisch verstanden
werden können. Anschließend erhöhen wir schrittweise die Komplexität dieser Beispiele.
Dadurch gewinnen wir neue Einblicke in die Trainingsdynamik von GANs und leiten neue
Regularisierer her, die auch für allgemeine GANs sehr gut funktionieren. Insbesondere
ermöglichen unsere neuen Regularisierer erstmals, ein GAN mit einer Auflösung von einem
Megapixel zu trainieren, ohne dass wir die Auflösung der Trainingsverteilung schrittweise
erhöhen müssen. Im zweiten Teil dieser Arbeit betrachten wir Ausgaberepräsentationen für
generative Modelle in 3D und für 3D-Rekonstruktionstechniken. Durch die Einführung von
impliziten Repräsentationen sind wir in der Lage, viele Techniken, die in 2D funktionieren,
auf den 3D-Bereich auszudehnen ohne ihre Expressivität einzuschränken.
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Notation

Spaces

X Output space, e.g. images or 3D meshes. Output to generative or discrim-
inative model.

Z Latent space, input to generative model.
Y Additional conditional information for generative model or input to dis-

criminative model, e.g. label, single images of 3D objects, etc.
ΩG,ΩD Space of trainable parameters for generator and discriminator of GAN.
S , V Domain and range of function space X = VS considered in Part II.
N, Z, R, R+, C Natural numbers, integers, real numbers, positive real numbers and com-

plex numbers.
[a,b] Closed interval, defined by t ∈ [a,b]⇔ a≤ t ≤ b.
(a,b) Open interval, defined by t ∈ (a,b)⇔ a < t < b.
[a,b), (a,b] Half-open intervals, defined by t ∈ [a,b)⇔ a ≤ t < b and t ∈ (a,b]⇔

a < t ≤ b
Rn1×n2 , Cn1×n2 Space of real and complex matrices of size n1×n2.

Symbols

x Element of output space X .
z Element of latent space Z , often sampled from latent distribution p0.
y Additional conditional information in Y for generative model, or input to

discriminative model, e.g. label, single image of 3D object, etc.
θ ,ψ Parameters of neural networks.
Gθ (z) Generator of GAN. Neural network from latent space Z to X .
Dψ(x) Discriminator of GAN. Neural network from X to R.
p0 Latent distribution of GAN, probability distribution on Z .
pθ Generator distribution of GAN, probability distribution on X . Can be

written as the pushforward pθ = (Gθ )# p0 of the latent distribution p0.
ϕ1,ϕ2 Final activation functions defining the loss function of GAN.
fθ Occupancy Network. Neural network from S ×Z×Y to [0,1] with S =

[0,1]3, that can generate and reconstruct 3D meshes.

xxi



Notation

Linear Algebra

AT Transposed of matrix A ∈ Cn1×n2 , defined by (AT)i, j = A j,i.
A Complex conjugate of matrix A ∈ Cn1×n2 . Also defined for complex

numbers (i.e. n1 = n2 = 1).
AH Conjugate transposed of matrix A ∈ Cn1×n2 , defined by A = AT.
A ·B Matrix product of A ∈ Cn1×n2 and B ∈ Cn2×n3 . If not ambiguous, we also

write AB.
A−1 Matrix inverse of A ∈ Cn1×n2 .
tr A Trace of matrix A ∈ Cn1×n2 .
detA Determinant of matrix A ∈ Cn1×n2 .
V⊥ Orthogonal complement of linear subspace V ⊆Rn, defined by w∈V⊥⇔

w̃T ·w = 0 for all w̃ ∈V .

Analysis

d f
d t , f ′(t) One-dimensional derivative of real valued function f (t). We use d f

d t in-
stead of f ′(t) when we want to highlight the dependence of f on t.

F ′(ω) Jacobian of function F : Rn → Rm, which is a function Rn → Rm×n.
Reduces to one-dimensional derivative if n = m = 1.

∂ F
∂ ωi

(ω1,ω2) Partial Jacobian of function F : Rn1 ×Rn2 → Rm, which is a function
Rn1 ×Rn2 → Rm×ni . Reduces to one-dimensional partial derivative if
ni = 1.

∇F(ω) Gradient of function F : Rn→ R, which is a function Rn→ Rn. Equal to
∇F(ω) = (F ′(ω))T.

∇ωiF(ω1,ω2) Partial gradient of function F : Rn1×Rn2 →R, which is a function Rn1×
Rn2 → Rni . Equal to ∇ωiF(ω1,ω2) = ( ∂ F

∂ ωi
(ω1,ω2))T.

∇2F(ω) Hessian of function F : Rn→ R, which is a function Rn→ Rn×n. Equal
to ∇2F(ω) = (∇F)′(ω)

∇2
ωi,ω j
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Rn2 → Rni×n j . Equal to ∇2

ωi,ω j
F(ω1,ω2) =

∂

∂ ω j
∇ωiF(ω1,ω2).

∂wF(ω) Directional derivative of function F : Rn→ Rm. Defined as derivative of
t→ F(ω + t w)−F(ω) at t = 0. Equal to F ′(ω)w.

∂ 2
wF(ω) Second directional derivative of function F : Rn→ R. Defined as second

derivative of t→ F(ω + t w)−F(ω) at t = 0. Equal to wT∇2F(ω)w.
f ∗(ξ ) Convex conjugate of convex function f : Rn → (−∞,∞], defined by

f ∗(ξ ) = supω∈Rn ξTω− f (ω).
dom( f ) Domain of convex function, i.e. the set of all ω ∈ Rn where f (ω)< ∞.
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Introduction

Motivation

What does it mean for a machine to understand a dataset? From the perspective of supervised
learning, this question is answered by the requirement that an algorithm should generalize to
unseen test cases. However, while this level of understanding is sufficient for most practical
use cases of machine learning, it is unsatisfactory both from a scientific and philosophical
point of view: being able to solve a repetitive task does not necessarily require any deep
understanding about the data and the algorithm can find any shortcut which makes the task
easier to solve. For example, a machine learning algorithm that can distinguish cats and
dogs might just ignore the shape of the animal and instead solely focus on low-level details,
such as the texture of fur [54].

A promising alternative approach is to require that a machine learning model should
be able to generate new data. In contrast to supervised learning, this task does not allow
the model to take shortcuts, since it has to model every relationship present in the data
distribution. Hence, a generative model has to develop a much richer understanding about
the data distribution. Moreover, unlike for supervised learning, (unconditional) generative
models are trained on unlabeled data and are hence unsupervised. While supervised learning
has been very successful for some limited tasks, unsupervised learning is often considered
the holy grail of machine learning, as it is much closer to how humans learn [105].

Besides the philosophical perspective, generative models also have a number of practical
applications.

First of all, many interesting real-world tasks in machine learning are ill-posed. A task
is called ill-posed if it does not have a unique solution or the solution is not a continuous
function of the input. This is for example the case for tasks in low-level vision like image
inpainting, image denoising or image deblurring, but also for more high-level tasks like 3D
reconstruction from sparse observations. While a model which was trained using supervised
learning will generally predict some mean output when the problem is ill-posed, conditional
generative models incorporate uncertainty and can learn to output a distribution of plausible
solutions. Indeed, in recent years this approach has been successfully applied to a number
of tasks such as image super-resolution [31, 106, 177], image inpainting [154, 203, 205]
and image-to-image translation [27, 76, 211].

A second application of generative models is to build flexible models of a dataset that
can be used for different downstream tasks. For example, it is often handy to have a low-
dimensional description of 3D data [116, 130, 150, 162, 179], that can later be used to fit
observations [13, 150, 179] or as an input to other tasks [44].

A third potential application of generative models is intelligent data augmentation for
supervised learning [3, 4] as well as domain adaptation [50, 73, 107]. It is well-known that
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Introduction

supervised learning often requires millions of labeled training examples. Unfortunately,
however, labeled training data is often costly or even impossible to obtain. One possible
way out might be to use some fixed labeled training distribution which is augmented using
generative models trained on unlabeled training data [73].

While generative modeling is a promising concept, it is a much harder problem than
supervised learning. Optimization-based approaches to generative modeling are possible [37,
39, 95, 148, 164]. However, they are often limited in the complexity of the data they can
generate [95, 164], are very slow [148] or put additional constraints on the neural network
architecture [37, 39]. Moreover, almost all optimization-based approaches to generative
modeling are based on optimizing the log-likelihood of a model which can be problematic
in higher dimensions [186], as it emphasizes recall over precision. Indeed, it can be shown
that replacing 99% of the generated data with random noise has only a negligible effect on
the normalized log-likelihood in high dimensions [186].

Generative Adversarial Networks (GANs) [62] are a recent approach to generative
modeling that rephrase the learning problem as a smooth two-player game. In contrast to
most optimization-based approaches, GANs do not optimize the log-likelihood but instead
focus on generating a distribution which is indistinguishable from the true data distribution.
While GANs are widely viewed as one of the most promising approaches to generative
modeling, they introduce a completely new style of optimization, where two neural networks
are trained in an adversarial fashion. Compared to classical optimization, this new style of
optimization raises many research questions, both from a practical and theoretical point of
view. From a practical perspective, it is well-known that GANs are extremely challenging
to train and naive optimization often does not lead to convergence. From a theoretical point
of view, it would be desirable to derive a convergence theory that can answer questions
about the existence and uniqueness of equilibrium points, about local and global stability of
the system as well as provide convergence rates depending on the learning rates of the two
networks.

In the first part of this work, we propose a theoretical approach for understanding local
convergence of GANs. Starting from a very simple example of GAN training which can
be understood analytically, we derive convergence criteria for GAN training by analyzing
the Jacobian of a certain vector field. Our analysis also results in new regularizers for GAN
training. While our focus lies on the theoretical side of GAN training, we find that our new
regularizers are very effective and enable us - for the first time - to train a GAN with output
resolution 1024×1024 without multiresolution training [88]. Indeed, our regularizers are
now commonly used for training GANs [28, 43, 71, 81, 89, 90, 103, 111, 118, 145, 155,
185, 210], including StyleGAN [89, 90], which is widely recognized as the state-of-the-art
in generative modeling.

Another important problem of generative models, but also of many discriminative models,
is the dimensionality of the output. This becomes especially apparent when we try to apply
generative models to the 3D domain. While generative models have recently achieved
remarkable successes in generating realistic high resolution images, this success has not yet
been replicated in the 3D domain. One of the main reasons is that existing representations
for 3D geometry such as voxels, point clouds and meshes are either memory inefficient,
suffer from discretization artifacts or cannot be efficiently inferred from data. In the second
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part of this work, we describe a novel approach to 3D deep learning, which is based on
directly predicting the continuous 3D Occupancy Function of an object. This approach
drastically reduces the memory footprint during training, does not require any discretization
and leads to representations that can be efficiently inferred from data. At inference time, we
can efficiently evaluate our learned representations using fast specialized algorithms. We
apply our new approach both to 3D reconstruction and generative tasks in the spatial and
spatio-temporal domains, finding that it often leads to more compelling results than current
state-of-the-art algorithms.

Outline

This thesis is divided into two parts, corresponding to the two topics discussed: the stability
and expressiveness of deep generative models.

In Part I, we present our work on the training dynamics of GANs. In Chapter 1, we first
give an introduction to GANs, both from a divergence minimization and game theoretic
point of view. Both views are equally important: while the divergence minimization point
of view is helpful for developing intuition and deriving new objectives, the game theoretic
point of view is helpful for designing training algorithms for GANs and for developing a
convergence theory. In this work we focus on the game theoretic point of view. In Chapter 2,
we describe how local convergence of smooth two-player games can be understood using
the Jacobian of the so-called gradient vector field and propose a simple alternative training
scheme that in many cases ensures local convergence [128]. In this chapter we also lay
the theoretical foundations for the convergence theory of GANs, which we develop in
later chapters. In Chapter 3, we describe a simple example of GAN training, which shows
that naive gradient-based optimization is not necessarily stable. This simple example is
interesting, as it serves as a counterexample showing that GAN training is not always
stable in the general case (unlike in the absolutely continuous case which was shown to
be locally stable [136]). Moreover, our example provides some intuition of what might go
wrong for more complex examples and it serves as a simple testbed for developing new
training algorithms. In Chapter 4, we generalize this simple example to higher dimensions,
which allows us to develop a better intuition about GAN training for high-dimensional data
distributions. After having explored simple examples of GAN training, we are ready to
develop a theory for general GANs. To this end, we first describe the convergence theory
developed by Nagarajan and Kolter [136] for a restricted family of GANs under slightly
more general conditions in Chapter 5. Unfortunately, however, one of the assumptions by
Nagarajan and Kolter [136] is that the generator distribution and the true data distribution
locally have the same support. This assumption is not true for our example problem from
Chapter 3 and 4 and probably also not true for most real-world use cases of GANs. In
Chapter 6, we therefore propose regularizers that make the training dynamics locally stable
under less restrictive conditions. In Chapter 7, we present a novel analysis of the convergence
behavior of GANs for finite learning rates which so far has not yet been published. Our
key insight in this chapter is a new analysis of the spectrum of the Jacobian of the gradient
vector field at an equilibrium point which enables us to prove eigenvalue bounds. This way,
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we can prove novel convergence rates for (deterministic) GANs depending on the learning
rates of the generator and discriminator. We believe that these results are interesting, as they
give new insights into the conditioning of GAN systems and the role of learning rates. In
Chapter 8, we apply our theory to real-world GANs. In this chapter we show that the simple
regularizers that were developed in Chapter 6 stabilize training of high-resolution GANs.
Indeed, to the best of our knowledge, we were the first who were able to train a GAN with
an output resolution as high as 1024×1024 without resorting to additional tricks such as
multiresolution training [88]. Finally, in Chapter 9, we discuss limitations of our analysis
and possible future research directions.

While the stability of training algorithms is an important problem in generative modeling,
generative models also suffer from another difficulty: when we want to build generative
models of the real world, we usually require extremely high-dimensional outputs. For
instance, when we want to build a generative model of 3D data, the dimensionality of a
simple voxel representation grows cubically with the resolution of the discretization of
3D space. In Part II, we therefore focus on output representations of deep generative and
discriminative models. To this end, we reinterpret the output space of a deep learning model
as a function space in Chapter 10. By introducing the concept of Function Space Operator,
we show how we can avoid the costly discretization of a high-dimensional space and instead
learn a function with low-dimensional output. In Chapter 11, we apply this concept to
generative models in the 3D domain as well as learning-based 3D reconstruction techniques.
This results in a type of model we call Occupancy Network [130]. In this chapter we
also discuss both training and inference for this representation. Moreover, we give further
implementation details that are largely orthogonal to the method itself. Afterwards, we
evaluate our new representation experimentally and compare Occupancy Networks to other
3D representations. In Chapter 12, we briefly discuss several extensions that we developed
in follow-up projects [141, 145], but which are not a main part of this thesis. Finally, in
Chapter 13, we discuss limitations of our representation and future research directions.

Most of the results in this work were previously published on machine learning or
computer vision conferences [128, 129, 130, 141, 145]. The published papers were the
result of collaborative projects. Please see Appendix G for credits. However, some chapters
also include new results. This is particularly true for Chapter 4, where we extend our results
for the Dirac-GAN [129] to higher dimensions, and Chapter 7, where we present a novel
analysis of convergence rates for deterministic GANs in the realizable case.

Some other contributions [3, 4, 109, 126, 127, 142] of the author are not part of this thesis.
Please see Appendix H for a complete list.
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Part I

The Training Dynamics of GANs





“Simple experiments, simple theorems are the building blocks that help us understand more
complicated systems.”

Ali Rahimi

NeurIPS 2017 Test of Time Award talk





1 The two Faces of GANs

Generative models in machine learning are models that can be trained on an unlabeled
dataset and are capable of generating new data points after training is completed. As
generating new content requires a good understanding of the training data at hand, such
models are often regarded as a key ingredient to unsupervised learning.

In recent years, generative models have become more and more powerful. While many
model classes such as PixelRNNs [148], PixelCNNs [147], real NVP [39] and Plug &
Play generative networks [138] have been introduced and studied, the two most prominent
ones are Variational Autoencoders (VAEs) [95, 164] and Generative Adversarial Networks
(GANs) [62]. Both VAEs and GANs come with their own advantages and disadvantages:
while GANs generally yield visually sharper results when applied to natural images, VAEs
are attractive because they naturally yield both a generative model and an inference model.

In the first part of this thesis, we focus on GANs, as they raise many important research
questions regarding their training dynamics. As a first step, we introduce GANs from a
divergence minimization point of view. Afterwards, we describe a second perspective, the
game theoretic point of view, which is helpful for deriving and analyzing training algorithms
for GANs.

1.1 The Divergence View

1.1.1 Learning Generative Models

When learning a generative model, we would like to train a neural network Gθ : Z →X
with parameter vector θ that takes a latent vector z ∈ Z as input and outputs an element in a
high-dimensional space X (e.g. an image). Given a generative model Gθ (·), we can sample
z∈Z from some prior distribution p0 (e.g. a Gaussian distribution) to obtain a sample Gθ (z).
This results in a probability distribution pθ on X which we call the generator distribution.
Assume that we are able to obtain independent samples from some data distribution pD
(e.g. an image distribution). Our goal is to adapt the parameter vector θ of Gθ (·) so that
pθ ≈ pD.

In supervised learning, we usually train our models by minimizing a loss function between
the predictions of our model and the supervision signal, e.g. a ground truth label. Ideally, we
would like to do a similar thing for training generative models. To do so, we need a distance
measure (loss function) between probability distributions. We call such a distance measure
a divergence between probability distributions. Let P(X ) denote the space of probability
measures on some measurable space X . Formally, we define
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1 The two Faces of GANs

Divergence ϕ1(t) ϕ2(t) F

Indicator-divergence [128] t t D : X → R
f -divergence [143] f ′(exp(t)) f ′rev(exp(t)) D : X → R

symmetric f -divergence f ′(exp(t)) f ′(exp(t)) D : X → R
Kullback-Leibler [143] 1+ t exp(t) D : X → R

reverse Kullback-Leibler [143] exp(t) 1+ t D : X → R
modified Jensen-Shannon [62] − log(1+ exp(−t)) − log(1+ exp(−t)) D : X → R

squared Hellinger [143] 1− 1
2 exp(−t/2) 1− 1

2 exp(−t/2) D : X → R
Wasserstein divergence [5] t t D : X → R, ∀x : ‖∇D(x)‖ ≤ 1

Neural Network divergence [7] ϕ1(t) ϕ2(t) Neural network Dψ : X → R

Table 1.1: Probabilistic Divergences. Overview of different divergences between probability
distributions. Here, the modified Jensen-Shannon divergence is defined as 2 JS(pD,qθ )−
log(4).

Definition 1.1. We call a function D : P(X )×P(X )→ [0,∞], such that D(p1 ‖ p2) ≥
0 and D(p1 ‖ p1) = 0 for all p1, p2 ∈ P(X ) a pseudo-divergence on X . If additionally
D(p1 ‖ p2) = 0 implies p1 = p2, we call D a divergence.

Examples of divergences on X = Rn include the Kullback-Leibler divergence and the
Wasserstein divergence.

Assume that we are given some target distribution pD from which we can draw i.i.d.
samples and a parametric family of distributions pθ that also allows us to draw i.i.d. samples.
Our goal is to find θ ∗ that minimizes the divergence D(pθ ‖ pD), i.e. we want to solve the
optimization problem

min
θ

D(pθ ‖ pD). (1.1)

Without further knowledge about D, this optimization problem is not tractable. Fortunately,
however, many divergences that are used in practice can be represented in the following
form [5, 62, 143]:

D(p1 ‖ p2) = max
D∈F

E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))] (1.2)

for some function class F ⊆ X → R and functions ϕ1,ϕ2 : R→ R. Here, the function
D ∈ F discriminates between samples from p1 and those from p2 and is therefore called
discriminator. Together with (1.1), this leads to min-max problems of the form

min
θ

max
D∈F

E x∼pθ
[ϕ1(D(x))]+E x∼pD [ϕ2(−D(x))] (1.3)

In the following sections, we discuss several of these divergences. First, we take a look
at the Indicator divergence, which is 0 if p1 = p2 and ∞ otherwise [128]. Afterwards we
discuss f -divergences [143], which include the Jensen-Shannon divergence [62]. Finally,
we briefly describe the Wasserstein divergence [5] and Neural Network divergences [7]. An
overview of the different divergences is given in Table 1.1.
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1.1 The Divergence View

1.1.2 Indicator Divergence

The simplest probabilistic divergence is arguably given by the Indicator divergence. The
Indicator divergence simply assigns 0 to a pair (p1, p2) of probability measures when
p1 = p2 and ∞ otherwise. Formally, we have

Definition 1.2. The Indicator divergence D∞ is defined as

D∞(p1 ‖ p2) =

{
0 if p1 = p2

∞ else
(1.4)

Indeed, it is easy to find a dual representation as in (1.2) for the Indicator divergence:

Lemma 1.3. The Indicator divergence can be written as

D∞(p1 ‖ p2) = sup
D:X→R

E x∼p1 [D(x)]+E x∼p2 [−D(x)] (1.5)

Here, the supremum is taken over all measurable functions D : X → R.

Proof. If p1 = p2, then the right hand side of (1.5) is obviously 0. For p1 6= p2, there exists
a measurable set A such that p1(A) 6= p2(A). Setting D = αχA where χA is the indicator
function for A, i.e. χA(x) = 1 for x ∈ A and χA(x) = 0 else, and α ∈ R we see that the
right hand side is bigger than α(p1(A)− p2(A)) for any α ∈ R. For |α| → ∞ this yields the
conclusion.

Lemma 1.3 shows that the Indicator divergence directly leads to a min-max problem as
in (1.3). When we impose additional constraints on the probability distributions p1 and p2,
Lemma 1.3 also holds when we impose restrictions on the space of representable functions
F : for example, when we assume that p1 and p2 are Radon-measures on a locally compact
Hausdorff space X , Lemma 1.3 still holds when we restrict F to the class of continuous
functions C(X ).1

1.1.3 f -Divergences

A very common family of divergences is given by f -divergences. For a convex lower
semicontinuous function f : R+→ R that satisfies f (1) = 0, we can define

D f (p1 ‖ p2) := E x∼p2

[
f
(

p1(x)
p2(x)

)]
(1.6)

for probability densities2 p1, p2. Using Jensen’s inequality [78], it is easy to see that
D f indeed defines as pseudo-divergence. Moreover, if f is strictly convex, D f defines a

1This is a direct consequence of the Riesz–Markov–Kakutani representation theorem [48, 82, 122] which
states that the dual space the space of continuous functions with compact support Cc(X ) is isomorphic to
the space of Radon-measures on X , see e.g. Rudin [170] for details.

2For simplicity, we restrict our discussion here to the case where p1 and p2 have densities and we identify the
measures with the corresponding densities. For the general case, where p1 and p2 are arbitrary probability
measures we can define D f (p1 ‖ p2) using (1.11).
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1 The two Faces of GANs

Divergence f (t) frev(t) f ′(t) f ′rev(t)

Kullback-Leibler t log(t) − log(t) log(t)+1 −1
t

Pearson χ2 (t−1)2 t
(
1− 1

t

)2 2(t−1) 1− 2
t2

Jensen-Shannon −1
2(1+ t) log

(1+t
2

)
+ 1

2 t log(t) same 1
2 log

( 2 t
1+t

)
same

Squared Hellinger (
√

t−1)2 same 1− 1
2
√

t same

Table 1.2: f -Divergences Examples of f -divergences. While the Jensen-Shannon and
Squared Hellinger divergences are symmetric, the Kullback-Leibler and the Pearson χ2

divergences are not.

divergence on X .
For every convex lower semicontinuous function f , we can define the convex conjugate

(also called Fenchel-conjugate) [15]

f ∗(τ) = sup
t∈dom( f )

τ t− f (t) (1.7)

It can be shown [15] that the convex conjugate of f is again convex lower semicontinuous
and satisfies f ∗∗(t) = f (t) for all t ∈ dom( f ).

The f -divergence is symmetric, i.e. D f (p1 ‖ p2) = D f (p2 ‖ p1), if f (t) = t f (1
t ). For the

following discussion, it is helpful to define frev(t) = t f (1
t ). We have

Lemma 1.4. For a convex lower semicontinuous function f : R+→ R with f (1) = 0 let
frev : R+→R be defined as frev(t) := t f (1

t ) for t 6= 0 and frev(0) = limt→0 t f (1
t ). Then frev

also defines a lower semicontinuous function with frev(1) = 0. Moreover, if f is continuously
differentiable, we have f ′rev(t) = − f ∗( f ′(1

t )). The f -divergence corresponding to frev is
given by D frev(p1 ‖ p2) = D f (p2 ‖ p1).

Proof. It can be shown that for f convex lower semicontinuous, the perspective f̃ (t,s) :=
s f
( t

s

)
is also convex lower semicontinuous [15].3 This directly implies that frev is convex

lower semicontinuous.4

If f is differentiable, we have

f ′rev(t) = f
(

1
t

)
− 1

t
f ′
(

1
t

)
(1.8)

Using the fact [15] that f ∗( f ′(t)) = t f ′(t)− f (t) we hence see that

f ′rev(t) =− f ∗
(

f ′
(

1
t

))
(1.9)

3This statement can be proved by using the fact that a function f is convex lower semicontinuous if and only
if the epigraph epi( f ) := {(t,s) | s≥ f (t)} is closed and convex. See Boyd and Vandenberghe [15] for a
formal proof.

4For the special case where f is twice continuously differentiable, this can also be seen by calculating
f ′′rev(t) =

1
t3 f ′′(t)≥ 0 for t > 0.
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Moreover, we have

D frev(p1 ‖ p2) = E x∼p2

[
p1(x)
p2(x)

f
(

p2(x)
p1(x)

)]
= E x∼p1

[
f
(

p2(x)
p1(x)

)]
=D f (p2 ‖ p1) (1.10)

We can use the convex conjugate to obtain a representation of an f -divergence as in
(1.2). The basic idea was described by Nguyen, Wainwright, and Jordan [137] and later
adapted to the GAN setting by Nowozin, Cseke, and Tomioka [143]. Here, we present a
slightly modified version of this result using frev. For simplicity, we now assume that f -
and therefore also frev - are continuously differentiable.

Lemma 1.5. An f -divergence with f : R+→ R continuously differentiable can be written
as

D f (p1 ‖ p2) = sup
D:X→R

E x∼p1

[
f ′
(

eD(x)
)]

+E x∼p2

[
f ′rev

(
e−D(x)

)]
(1.11)

Proof. Following Nguyen, Wainwright, and Jordan [137] and Nowozin, Cseke, and Tomioka
[143], we have

D f (p1 ‖ p2) = E x∼p2

[
f
(

p1(x)
p2(x)

)]
= E x∼p2

[
sup

τ∈dom( f ∗)

p1(x)
p2(x)

τ− f ∗(τ)

]

= sup
T :X→dom( f ∗)

E x∼p2

[
p1(x)
p2(x)

T (x)− f ∗(T (x))
]

= sup
T :X→dom( f ∗)

E x∼p1 [T (x)]+E x∼p2 [− f ∗(T (x))]

(1.12)

To simplify this expression we now use that f is differentiable. By exploiting that dom( f ) =
R+ and the range of f ′ is dense in dom( f ∗) [20], we can rewrite T as T (x) = f ′

(
eD(x)

)
with D : X → R. Using Lemma 1.4 we obtain

D f (p1 ‖ p2) = sup
D:X→R

E x∼p1

[
f ′
(

eD(x)
)]

+E x∼p2

[
f ′rev

(
e−D(x)

)]
(1.13)

For symmetric f , we directly obtain

Corollary 1.6. For symmetric f , i.e. when frev = f , we have

D f (p1 ‖ p2) = sup
D:X→R

E x∼p1

[
f ′
(

eD(x)
)]

+E x∼p2

[
f ′
(

e−D(x)
)]

(1.14)

Proof. This is a direct consequence of Lemma 1.5, since in this case we have f ′rev = f ′.
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1 The two Faces of GANs

Examples of f -divergences are given in Table 1.2. For instance, when we set f (t) =
t log(t) we obtain the Kullback-Leibler divergence and Lemma 1.5 yields

KL (p1 ‖ p2) = sup
D:X→R

E x∼p1 [1+D(x)]+E x∼p2

[
−eD(x)

]
(1.15)

Similarly, we obtain the following expression for the Jensen-Shannon divergence that was
also considered in the original GAN paper [62]: for ϕ(t) =− log(1+ exp(−t)), we have

2 JS(p1 ‖ p2)− log(4) = sup
D:X→R

E x∼p1 [ϕ(D(x))]+E x∼p2 [ϕ(−D(x))] (1.16)

1.1.4 Wasserstein Divergence

While f -divergences describe a rich family of probabilistic divergences, they do not take
the metric of the underlying space X into account. However, if the underlying space X has
a metric structure, it can be desirable to use divergences that exploit the metric of X .

We can define a divergence [59, 85, 86, 190], called Wasserstein divergence5, that takes
the metric of the underlying space into account using the theory of optimal transport.
Intuitively, we want to define DW (p1 ‖ p2) as the minimum cost of moving the mass of
p1 to p2. To this end, we introduce a transport plan π ∈ P(X ×X ), i.e. a probability
distribution on the Cartesian product X ×X . This transport plan describes what percentage
of mass is moved from one point to another. The requirement that π moves p1 to p2
then means that π is “mapped” to p1 and p2 respectively when we apply the projection
mappings proj1(x1,x2) = x1 and proj2(x1,x2) = x2 to π . To make this formal, we introduce
the pushforward φ# p of a probability distribution for a mapping φ : Ω1→Ω2: for A⊆Ω2
measurable we define

(φ# p)(A) := p({ω ∈Ω1 | φ(ω) ∈ A}) (1.17)

We are now ready to define the Wasserstein divergence.

Definition 1.7. The Wasserstein divergence is defined as the minimal cost of transporting
mass between p1 and p2, i.e.

DW (p1 ‖ p2) := inf
π∈P(X×X )
(proj1)#π=p1
(proj2)#π=p2

E x1,x2∼π [‖x1− x2‖] (1.18)

One important feature of the Wasserstein divergence is that it defines a metric for weak-
convergence [191]. As a consequence, the mapping θ → DW (pθ ‖ pD) is continuous when
pθ is defined by a neural network, i.e. pθ = (Gθ )# p0 with Gθ : Z →X a generative neural
network and p0 the prior distribution (e.g. a Gaussian distribution). It has been argued that
this is an important property to achieve stable training of GANs [5, 6].

Again, we can find a dual representation of DW :

5The Wasserstein divergence is also called Wasserstein-distance of order one [191].
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1.1 The Divergence View

Lemma 1.8. We have

DW (p1 ‖ p2) = sup
D∈C1(X )

∀x∈X :‖∇D(x)‖≤1

E x∼p1 [D(x)]+E x∼p2 [−D(x)] (1.19)

Proof. See for example Villani [191], Theorem 5.9 and Remark 6.5.

While the Wasserstein divergence leads to a meaningful training objective for the genera-
tor when the discriminator is held exactly optimal [6], this can generally not be achieved in
practice. We discuss this limitation and the arising problems in Chapter 3. Moreover, the
constraint ‖∇D(x)‖ ≤ 1 can be difficult to enforce in the context of GANs. Practitioners
therefore usually resort to techniques that make this constraint approximately true [64, 134].

1.1.5 Neural Network Divergence

So far, we have considered probabilistic divergences where the function class F in (1.3) is
extremely large, e.g. all measurable or all Lipschitz continuous functions. However, such
expressive F cannot directly be represented using a parametric model. In practice, F is
therefore approximated with a parametric family of functions, e.g. parameterized by a neural
network Dψ(x). Similarly, we represent pθ with a generator Gθ : Z →X that maps some
noise vector z ∈ Z that is sampled from some latent distribution p0 to Gθ (z) ∈ X . Formally,
pθ is the pushforward of the measure p0: pθ = (Gθ )# p0. The combination of the two neural
networks Dψ(·) and Gθ (·) is called a Generative Adversarial Network (GAN) [62].

Of course, when minimizing the divergence with respect to this approximated family, we
no longer minimize the correct divergence. However, it can be verified that taking any class
of functions in (1.3) leads to a (pseudo-)divergence for appropriate choices of ϕ1 and ϕ2.
Therefore, some authors call these divergences Neural Network divergences [7].

To make this concept formal, we first introduce the notion of a valid pair of functions:

Definition 1.9. We call a pair (ϕ1,ϕ2) of functions ϕ1,ϕ2 : R→ R valid, if

i) ϕ1(t)+ϕ2(−t)≤ 0 for all t ∈ R and ϕ1(0)+ϕ2(0) = 0

ii) ϕ ′1(0) and ϕ ′2(0) both exist and ϕ ′1(0),ϕ
′
2(0) 6= 0

We call (ϕ1,ϕ2) strictly valid if (ϕ1,ϕ2) is valid and ϕ1(t)+ϕ2(−t) = 0 implies t = 0.

As it turns out, f -divergences lead to valid activation functions:

Lemma 1.10. Let f : R+→ R be convex with f (1) = 0 and frev(t) = t f
(1

t

)
. Moreover,

assume that f is twice differentiable at 1 and that f ′′(1) 6= 0. Then (ϕ1,ϕ2) with

ϕ1(t) := f ′(exp(t)) and ϕ2(t) := f ′rev(exp(t)) (1.20)

is valid. If f is strictly convex, then (ϕ1,ϕ2) is strictly valid.
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1 The two Faces of GANs

Proof. Let s = exp(t). Then, using (1.8),

ϕ1(t)+ϕ2(−t) = f ′(s)+ f ′rev

(
1
s

)
= f ′(s)+ f (s)− s f ′(s)

=−( f (1)− f (s)− f ′(s)(1− s))

(1.21)

The negative of the last expression is known as the Bregman divergence [16] of f from s
to 1 and is always greater or equal to zero. Moreover, if f is strictly convex, the Bregman-
divergence is zero if and only if s = 1, i.e. t = 0.

Our next example shows that we can also define valid activations using concave functions:

Lemma 1.11. Let ϕ1 = ϕ2 = ϕ for a concave function ϕ : R→ R. Assume that ϕ(0) = 0
and that ϕ ′(0) exists and is non-zero. Then (ϕ1,ϕ2) is valid. If additionally ϕ is strictly
concave, then (ϕ1,ϕ2) is strictly valid.

Proof. For ϕ1 = ϕ2 = ϕ with ϕ concave we have

ϕ1(t)+ϕ2(−t) = 2
ϕ(t)+ϕ(−t)

2
≤ 2ϕ

(
t +(−t)

2

)
= 2ϕ(0) = 0 (1.22)

Moreover, the inequality is strict for t 6= 0 if ϕ is strictly concave.

Let us take a look at two examples: ϕ(t) = − log(1+ exp(−t))+ log(2) satisfies the
assumptions of Lemma 1.11. Indeed, this is the activation function considered in the
original GAN-paper [62] and corresponds (up to a factor) to the Jensen-Shannon divergence
(Table 1.2). Similarly, ϕ(t) =−(1+ t)2 also satisfies the assumptions of Lemma 1.11. This
activation function was considered in Least-Squares-GAN [121]. In both cases, (ϕ,ϕ)
therefore defines a valid pair of activation functions. Indeed, it is easy to check that (ϕ,ϕ)
is even strictly valid in both cases.

We can now prove some elementary properties of valid activation functions:

Lemma 1.12. Assume that (ϕ1,ϕ2) is valid. Then ϕ ′1(0) = ϕ ′2(0) and, if ϕ1,ϕ2 are twice
differentiable at zero, ϕ ′′1 (0)+ϕ ′′2 (0)≤ 0.

Proof. Consider the function ξ (t) := ϕ1(t)+ϕ2(−t). If (ϕ1,ϕ2) is valid, then ξ has a local
maximum at t = 0. Using elementary analysis, this implies ξ ′(0) = 0 and ξ ′′(0)≤ 0, hence
the assertion.

Under what condition do activation functions (ϕ1,ϕ2) lead to probabilistic divergences?
The next lemma shows that a pair of valid activation functions always leads to a pseudo-
divergence:
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1.2 The Game Theoretic View

Lemma 1.13. Assume that (ϕ1,ϕ2) is valid and let F denote any class of functions from X
to R. Assume that the indicator function χ0 that maps every x ∈ X to 0 is in F . Then

DF (p1 ‖ p2) := max
D∈F

E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))] (1.23)

defines a pseudo-divergence on X . If additionally for every p1 6= p2 there exists D ∈ F such
that

E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))]> 0 (1.24)

then DF is a divergence on X .

Proof. Let
η(p1, p2,D) := E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))] (1.25)

so that DF (p1 ‖ p2) = supD∈F η(p1, p2,D). First note that η(p1, p2,χ0) = 0 and hence
DF (p1 ‖ p2)≥ 0. On the other hand η(p1, p1,D)≤ 0 for all D∈F and hence DF (p1 ‖ p1)≤
0. Together, this implies DF (p1 ‖ p1) = 0, showing that DF is a pseudo-divergence.

Now assume that for every p1 6= p2 there exists D ∈ F such that

E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))]> 0 (1.26)

This means that for p1 6= p2 there is D with η(p1, p2,D)> 0 and hence DF (p1 ‖ p2)> 0.
This shows that in this case DF is a divergence.

It should be noted that the requirement that there is D with

E x∼p1 [ϕ1(D(x))]+E x∼p2 [ϕ2(−D(x))]> 0 (1.27)

for all probability distributions p1, p2 with p1 6= p2 is very strong and implies that F
is extremely expressive (cf. Arora et al. [7]). However, in practice we are usually only
interested in a restricted class of probability distributions (pD and pθ ) and it therefore
suffices if this condition is true for distributions from this class, i.e. if there is D with
E x∼pθ

[ϕ1(D(x))]+E x∼pD [ϕ2(−D(x))]> 0 for pθ 6= pD.

1.2 The Game Theoretic View

1.2.1 Training Algorithms of GANs

While elegant, the derivation of GANs from a divergence minimization point of view in
Section 1.1 has several problems. The first issue is that by approximating the discriminator
with a neural network, we only optimize a lower bound to the true divergence. While
Lemma 1.13 shows that under some circumstances this lower bound still defines a valid
(but different) divergence, it can have very different properties from the divergence we
want to optimize. Indeed, while neural networks are usually good at approximating the true
divergence in lower dimensions, it becomes more and more difficult in higher dimensions
[33]. The second, more severe issue is that the optimization problem in (1.3) requires us to
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1 The two Faces of GANs

find the optimal discriminator for every update of the generator. Since the discriminator is
itself a neural network, this is clearly intractable.

In practice, GANs are therefore usually trained using Simultaneous Gradient Descent
(SimGD) or Alternating Gradient Descent (AltGD). In SimGD we perform simultaneous
gradient updates on the parameters of the generator and discriminator, respectively. Similarly,
in AltGD we perform the gradient updates in an alternating fashion. Both algorithms can
hence be understood as training the two networks, Gθ (·) and Dψ(·), at the same time.

Unfortunately, however, by doing so we no longer solve an optimization problem and
the resulting algorithms can have very different properties from gradient-based algorithms
in optimization. Indeed, by applying SimGD and AltGD we are implicitly trying to find a
Nash equilibrium of the two-player zero-sum game where the first player (the generator
Gθ (·)) tries to minimize

L(θ ,ψ) := E x∼pθ

[
ϕ1(Dψ(x))

]
+E x∼pD

[
ϕ2(−Dψ(x))

]
(1.28)

while the second player (the discriminator Dψ(·)) tries to maximize it. This directly raises
multiple question: (i) Does a GAN always have a (pure) Nash equilibrium? (ii) Does this
equilibrium solve the original problem (1.3) and, finally, (iii) do SimGD and/or AltGD
converge to this equilibrium point?

In the next section we will see that the answer to the first two questions (under some
assumptions) is affirmative. However, the third question is much more difficult to answer
and we will dedicate most of Part I to an answer.

1.2.2 Equilibria

Let us consider the two-player zero-sum game where the two players try to minimize and
maximize

L(θ ,ψ) := E x∼pθ

[
ϕ1(Dψ(x))

]
+E x∼pD

[
ϕ2(−Dψ(x))

]
(1.29)

A (pure) Nash equilibrium is a pair (θ ∗,ψ∗) that satisfies

inf
θ
L(θ ,ψ∗) = L(θ ∗,ψ∗) = sup

ψ

L(θ ∗,ψ) (1.30)

For general two-player games, there can be zero, one or multiple pure Nash-equilibria. In
this section we consider the special case of the game defined by the objective in (1.29). Let
us assume that there is θ ∗ such that pθ ∗ = pD and ψ∗ such that Dψ∗(x) = 0 for all x ∈ X .
Under what conditions does (θ ∗,ψ∗) define a (pure) Nash equilibrium? If (θ ∗,ψ∗) defines
a Nash equilibrium, under what conditions is it the unique Nash equilibrium?

The following Lemma provides an answer to first question:

Lemma 1.14. Assume that (ϕ1,ϕ2) is valid. Moreover, assume that there is (θ ∗,ψ∗) such
that pθ ∗ = pD and Dψ∗ = χ0. Then (θ ∗,ψ∗) is a (pure) Nash equilibrium for the zero-sum
game where the ψ-player tries to maximize L(θ ,ψ) while the θ -player tries to minimize it.
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1.2 The Game Theoretic View

Proof. To show that (θ ∗,ψ∗) is a pure Nash equilibrium, we have to show that

sup
ψ

L(θ ∗,ψ) = L(θ ∗,ψ∗) = inf
θ
L(θ ,ψ∗) (1.31)

However, we have for every θ

L(θ ,ψ∗) = E x∼pθ
[ϕ1(0)]+E x∼pD [ϕ2(0)] = ϕ1(0)+ϕ2(0) = 0 (1.32)

an hence,
L(θ ∗,ψ∗) = 0 = inf

θ
L(θ ,ψ∗) (1.33)

Similarly, by Definition 1.9,

L(θ ∗,ψ) = E x∼pD
[
ϕ1(Dψ(x))

]
+E x∼pD

[
ϕ2(−Dψ(x))

]
= E x∼pD

[
ϕ1(Dψ(x))+ϕ2(−Dψ(x))

]
≤ 0

(1.34)

and hence, together with (1.32),

L(θ ∗,ψ∗) = 0 = sup
ψ

L(θ ∗,ψ) (1.35)

This shows that (θ ∗,ψ∗) is a pure Nash equilibrium.

So far, we have shown that (θ ∗,ψ∗) with pθ ∗ = pD and Dψ∗ = χ0 defines a Nash
equilibrium. However, the game might also have other pure Nash-equilibria. The following
lemma provides insight to what extent these equilibria can occur.

Lemma 1.15. Assume that (ϕ1,ϕ2) is valid. Moreover, assume that there is (θ ∗,ψ∗) with
pθ ∗ = pD, Dψ∗(x) = 0 for x ∈ supp pD and

E x∼pD

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
6= E x∼pθ

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
(1.36)

for every θ with pθ 6= pD. Then every pure Nash equilibrium (θNE ,ψNE) satisfies pθNE = pD.
If we further assume that (ϕ1,ϕ2) is strictly valid, we have DψNE (x) = 0 for almost all
x ∈ supp pD.

Proof. Assume that pθNE 6= pD. As before, let L(θ ,ψ) be defined as in (1.29). Using (1.32),
we see that L(θNE ,ψ

∗) = 0. Moreover, since ϕ ′1(0) = ϕ ′2(0) 6= 0 by Definition 1.9 and
Lemma 1.12, ∇ψL(θNE ,ψ

∗) is

E x∼pθNE

[
ϕ
′
1(0) ∇ψDψ(x)

∣∣
ψ=ψ∗

]
−E x∼pD

[
ϕ
′
2(0) ∇ψDψ(x)

∣∣
ψ=ψ∗

]
6= 0 (1.37)

This implies that there is ψ̃ in a neighborhood of ψ∗ with L(θNE , ψ̃)> 0. Since, (θNE ,ψNE)
is a Nash equilibrium this shows that

L(θNE ,ψNE) = sup
ψ

L(θNE ,ψ)≥ L(θNE , ψ̃)> 0 (1.38)
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Figure 1.1: Example Distributions. This figure visualizes the two example data distributions
pD that we consider in this chapter. In both cases, the discriminator Dψ(x) is given by a
quadratic function.

On the other hand, by (1.34) we have L(θ ∗,ψ)≤ 0 for all ψ and hence

L(θ ∗,ψNE)≤ 0 < L(θNE ,ψNE) = inf
θ
L(θ ,ψNE) (1.39)

which is a contradiction. This shows that pθNE = pD.
Now assume that (ϕ1,ϕ2) is strictly valid, i.e. ϕ1(t)+ϕ2(−t) < 0 for t 6= 0. We have

already seen that pθNE = pD. Therefore,

L(θNE ,ψNE) := E x∼pD
[
ϕ1(DψNE (x))+ϕ2(−DψNE (x))

]
≤ 0 (1.40)

We also see that L(θNE ,ψNE) < 0 if not DψNE (x) = 0 for almost all x ∈ supp pD. In this
case, using (1.32),

L(θNE ,ψ
∗) = 0 > L(θNE ,ψNE) = sup

ψ

L(θNE ,ψ) (1.41)

which is a contradiction. We hence have DψNE (x) = 0 for almost all x ∈ supp pD, which
shows the assertion.

It should be noted that Lemma 1.15 only asserts that DψNE (x) = 0 on supp pD. However,
Dψ(x) = 0 for x ∈ supp pD and pθ = pD does not necessarily imply that (θ ,ψ) is a Nash
equilibrium if supp pD 6= X , since Dψ(·) might have non-zero gradients orthogonal to
supp pD. We will have more to say on this case in Chapter 3.

Let us consider two examples, visualized in Figure 1.1:
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1.2 The Game Theoretic View

Example (Ellipse): Assume that p0 is given by a uniform distribution on [0,2π], i.e.
p0 = U [0,2π], and pD is a uniform distribution on an ellipse with width w and height h in
the two-dimensional plane (Figure 1.1a). Moreover, let

Gθ (z) =
(

θ1 cos(z)
θ2 sin(z)

)
and Dψ(x) = ψ1x2

1 +ψ2x2
2 (1.42)

We see that for θ ∗1 = w
2 and θ ∗2 = h

2 , we have pθ ∗ = pD and for ψ∗ = 0 we have Dψ∗ = χ0.
For a valid pair of activation functions (ϕ1,ϕ2), the assumptions of Lemma 1.14 are hence
satisfied. This shows that (θ ∗,ψ∗) defines a Nash equilibrium.

Is (θ ∗,ψ∗) the unique Nash equilibrium? We have

∇ψDψ(x) =
(

x2
1

x2
2

)
(1.43)

Therefore,

E x∼pθ

[
∇ψDψ(x)

]
= E z∼U [0,2π]

[(
θ 2

1 cos(z)2

θ 2
2 sin(z)2

)]
=

1
2

(
θ 2

1
θ 2

2

)
(1.44)

and similarly,

E x∼pD
[
∇ψDψ(x)

]
=

1
2

(
θ ∗1

2

θ ∗2
2

)
(1.45)

Hence, for pθ 6= pD

E x∼pD

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
6= E x∼pθ

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
(1.46)

Lemma 1.15 is hence applicable, showing that every Nash equilibrium (θNE ,ψNE) satisfies
pθNE = pD and, if (ϕ1,ϕ2) is strictly valid, DψNE (x) = 0 for x ∈ supp pD, which implies
DψNE = χ0.

Example (Four Points): We again consider the discriminator

Dψ(x) = ψ1x2
1 +ψ2x2

2 (1.47)

but define the generator by the discrete distribution

pθ =
1
4
(δ(−θ1,−θ2)+δ(−θ1,θ2)+δ(θ1,−θ2)+δ(θ1,θ2)) (1.48)

Moreover, let pD = pθ ∗ for some θ ∗ = (w
2 ,

h
2)

T ∈ R2 (Figure 1.1b). As before, for ψ∗ = 0
we have Dψ∗ = χ0. For a valid pair of activation functions (ϕ1,ϕ2), the assumptions of
Lemma 1.14 are hence again satisfied, showing that (θ ∗,ψ∗) defines a Nash equilibrium.
Moreover,

E x∼pθ

[
∇ψDψ(x)

]
=

(
θ 2

1
θ 2

2

)
(1.49)
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1 The two Faces of GANs

Hence, for pθ 6= pD

E x∼pD

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
6= E x∼pθ

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
(1.50)

Lemma 1.15 is hence again applicable, showing that every Nash equilibrium (θNE ,ψNE)
satisfies pθNE = pD. Moreover, for strictly valid (ϕ1,ϕ2), DψNE (x) = 0 for x ∈ supp pD,
which implies DψNE = χ0.

The remaining question is if SimGD or AltGD converge to the Nash equilibrium in these
two examples. Surprisingly, while the two examples are formally very similar, they behave
differently in terms of convergence. We will revisit these two examples in Chapter 5 where
we derive a convergence theory for GAN training.

1.3 Conclusion

We have seen that GANs can be analyzed from two different points of view: the divergence
and the game theoretic perspective. Interestingly, both points of view are complementary
and lead to different theoretic insights: while the divergence point of view is useful for
deriving novel training objectives, the game theoretic point of view allows to analyze the
training dynamics in a rigorous way. Adopting the later point of view, we have derived
theoretic criteria for the existence and uniqueness of Nash equilibria for GANs, some of
which were already stated informally by Goodfellow et al. [62]. While these results are
insightful, they are not sufficient to ensure stability of our training algorithms. In the next
chapters, we therefore analyze the training dynamics further to obtain a holistic picture of
the convergence of GAN training.
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2 Smooth two-player Games

In Chapter 1 we have seen how Generative Adversarial Networks (GANs) can be understood
both from a divergence minimization and game theoretical point of view. While the first
perspective is helpful for deriving novel training objectives, the second perspective is useful
for developing a convergence theory of GAN training. Since we are interested in gaining a
better understanding of the training dynamics of GANs, we focus on the game theoretical
perspective.

In this chapter we first analyze local convergence in general smooth two-player games.
By restricting our attention to local instead of global convergence, we can linearize the
non-linear system and therefore use tools from linear algebra to derive convergence criteria
and convergence rates. Our theory can be regarded as an extension of the convergence theory
for Simultaneous Gradient Descent (SimGD) in continuous games by Ratliff, Burden, and
Sastry [163] and Nowozin, Cseke, and Tomioka [143]. In particular, we extend the theory
by Ratliff, Burden, and Sastry [163] to Alternating Gradient Descent (AltGD) and analyze
the role of eigenvalues with non-zero imaginary part. This also leads to interesting results
regarding the convergence rate of SimGD. Finally, we propose Consensus Optimization
[128], an alternative optimization algorithm that has better convergence properties than
SimGD and AltGD and apply it to simple GAN problems.

In this thesis we focus on the deterministic training dynamics of GANs. While in practice
GANs are usually trained with stochastic algorithms, we believe that a thorough understand-
ing of the deterministic case is an important first step towards a complete theory. To extend
our results to the stochastic case, we would have to use tools from stochastic approximation
theory [167, 178] which requires more technical assumptions. In contrast, by focusing on
the deterministic case, we can derive a clean theory which emphasizes structural insights
over the technical details.1

2.1 Definitions

A differentiable two-player game is defined by two cost functions L1(θ ,ψ) and L2(θ ,ψ)
defined over a common space (θ ,ψ) ∈Ω1×Ω2. Here, Ω1 ⊆Rn corresponds to the possible
actions of the first player and Ω2 ⊆ Rm corresponds to the possible actions of the second
player. The goal of the first player is to minimize L1, while the second player tries to
minimize L2. In the context of GANs, Ω1 is the set of possible parameter values for the

1It is important to note that many convergence theorems from stochastic approximation theory are based
on linear convergence of the corresponding deterministic algorithm [14]. Many of our results can hence
be generalized to the stochastic case when we use some additional technical assumptions (e.g. uniformly
bounded noise). For completeness, we provide a brief discussion of some of these results in Appendix B.2.
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2 Smooth two-player Games

generator and Ω2 is the set of possible parameter values for the discriminator. In this case,
we denote Ω1 and Ω2 by ΩG and ΩD, respectively. We call a game a zero-sum game
if L2 = −L1. In this case, we define L(θ ,ψ) := L1(θ ,ψ) = −L2(θ ,ψ). Note that the
derivation of the GAN-game in Chapter 1 leads to a zero-sum game. However, in practice
people often employ a non-saturating objective for the generator [62], which leads to a game
that is not zero-sum. While we focus on the zero-sum case here for a simpler exposition,
our convergence theory can also be extended to a non-saturating objective, see Section 6.6.1
for details.

Our goal is to find a Nash equilibrium of the game, i.e. a point (θ ∗,ψ∗) given by the two
conditions

θ
∗ ∈ argmin

θ

L1(θ ,ψ
∗) and ψ

∗ ∈ argmin
ψ

L2(θ
∗,ψ) (2.1)

We call a point (θ ∗,ψ∗) a local Nash equilibrium, if (2.1) holds in a local neighborhood of
(θ ∗,ψ∗).

Every differentiable two-player game defines a vector field

v(θ ,ψ) =

(
−∇θL1(θ ,ψ)
−∇ψL2(θ ,ψ)

)
(2.2)

We call v(·) the associated gradient vector field.
Our goal is to find a Nash equilibrium of the two-player game. To this end, we first derive

a simple characterization of local Nash-equilibria, which was also considered by Ratliff,
Burden, and Sastry [163]. Recall that a stationary point of a vector field is a point where the
vector field vanishes, i.e. a point (θ ∗,ψ∗) where v(θ ∗,ψ∗) = 0.

Lemma 2.1. If (θ ∗,ψ∗) is a local Nash equilibrium, then (θ ∗,ψ∗) is a stationary point of
v(·), i.e. v(θ ∗,ψ∗) = 0, and ∇2

θ
L1(θ

∗,ψ∗), ∇2
ψL2(θ

∗,ψ∗) are both positive semi-definite.
Conversely, if (θ ∗,ψ∗) is a stationary point of v(·) and ∇2

θ
L1(θ

∗,ψ∗), ∇2
ψL2(θ

∗,ψ∗) are
both positive definite, then (θ ∗,ψ∗) is a local Nash equilibrium.

Proof. By definition, (θ ∗,ψ∗) is a local Nash equilibrium if and only if (2.1) holds in some
neighborhood of (θ ∗,ψ∗). Using basic results from analysis, any such point (θ ∗,ψ∗) satis-
fies ∇θL1(θ

∗,ψ∗) = 0, ∇ψL2(θ
∗,ψ∗) = 0 with ∇2

θ
L1(θ

∗,ψ∗) and ∇2
ψL2(θ

∗,ψ∗) positive
semi-definite.

Conversely, if (θ ∗,ψ∗) is a stationary point of v(·) with ∇2
θ
L1(θ

∗,ψ∗) and ∇2
ψL2(θ

∗,ψ∗)
positive definite, then (θ ∗,ψ∗) satisfies (2.1) and is therefore a local Nash equilibrium.

Note that Lemma 2.1 does not show that (θ ∗,ψ∗) is a Nash equilibrium if one of
∇2

θ
L1(θ

∗,ψ∗) or ∇2
ψL2(θ

∗,ψ∗) is only positive semi-definite instead of positive definite.
Indeed, we will see in the next chapters that this is a typical situation for GAN training.

For the special case of zero-sum two-player games, we have L(θ ,ψ) = L1(θ ,ψ) =
−L2(θ ,ψ) and thus

v′(θ ,ψ) =

(
−∇2

θ
L(θ ,ψ) −∇2

ψ,θL(θ ,ψ)T

∇2
ψ,θL(θ ,ψ) ∇2

ψL(θ ,ψ)

)
(2.3)
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2.2 Algorithms

Algorithm 1 Simultaneous Gradient Descent (SimGD)
1: while not converged do
2: δθ ←−∇θL1(θ ,ψ)
3: δψ ←−∇ψL2(θ ,ψ)
4: θ ← θ +h1 δθ

5: ψ ← ψ +h2 δψ

6: end while

Algorithm 2 Alternating Gradient Descent (AltGD)

1: while not converged do
2: θ ← θ −h1∇θL1(θ ,ψ)
3: ψ ← ψ−h2∇ψL2(θ ,ψ)
4: end while

Hence,

Corollary 2.2. If (θ ∗,ψ∗) is a local Nash equilibrium of a zero-sum game, then (θ ∗,ψ∗) is
a stationary point of v(·). Moreover, ∇2

θ
L(θ ∗,ψ∗) is positive semi-definite and ∇2

ψL(θ ∗,ψ∗)
is negative semi-definite. Conversely, if (θ ∗,ψ∗) is a stationary point of v(·), ∇2

θ
L(θ ∗,ψ∗)

is positive definite and ∇2
ψL2(θ

∗,ψ∗) is negative definite, then (θ ∗,ψ∗) is a local Nash
equilibrium.

Proof. This follows directly from Lemma 2.1, using L= L1 =−L2.

Example (Bilinear game) Consider the two-player zero-sum game defined by L(θ ,ψ) =
θ ·ψ with θ ,ψ ∈R. In this case, v(θ ,ψ) = (−ψ,θ)T. It is easy to see that the unique Nash
equilibrium of this game is at (θ ∗,ψ∗) = (0,0). The Jacobian v′(θ ∗,ψ∗) is given by

v′(θ ∗,ψ∗) =
(

0 −1
1 0

)
(2.4)

Hence, ∇2
θ
L(θ ∗,ψ∗) = 0 is positive semi-definite, but not positive definite. Similarly,

∇2
ψL(θ ∗,ψ∗) = 0 is negative semi-definite, but not negative definite.

This example was also described by Salimans et al. [173] as an example of a two-player
game where SimGD does not converge. Interestingly, we will see in Chapter 3 that a variant
of this game also occurs for GAN training.

2.2 Algorithms

A natural algorithm for finding Nash-equilibria of general smooth two-player games
is Simultaneous Gradient Descent (SimGD), which we briefly discussed in the context
of zero-sum games in Chapter 1. SimGD for games was described in several works, for
example by Ratliff, Burden, and Sastry [163] and, more recently also in the context of GANs,
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2 Smooth two-player Games

by Nowozin, Cseke, and Tomioka [143]. The idea is simple and is illustrated in Algorithm 1.
We iteratively update the parameters of the two players by simultaneously applying gradient
descent to the cost functions of the two players. This can also be understood as applying the
Euler-method to the ordinary differential equation

d
dt

(
θ(t)
ψ(t)

)
= v(θ(t),ψ(t)) (2.5)

where v(·) is the associated gradient vector field of the two-player game.
An alternative is given by Alternating Gradient Descent (AltGD), described in Algo-

rithm 2. AltGD was first mentioned in the context of GANs by Goodfellow et al. [62]. The
idea is similar to SimGD, but instead of performing simultaneous gradient updates on the
parameters of the two players, we update the parameters in an alternating fashion.

Both algorithms can be described as a fixed point algorithm that applies an update
operator F(θ ,ψ) to the parameter values (θ ,ψ) of the two players [129]. For example,
SimGD corresponds to the update operator

F(θ ,ψ) =

(
θ −h1 ∇θL(θ ,ψ)
ψ−h2 ∇ψL(θ ,ψ)

)
(2.6)

Similarly, AltGD can be described by an operator F = F2 ◦F1 where F1 and F2 perform an
update for the first and second player, respectively:

F1(θ ,ψ) =

(
θ −h1∇θL1(θ ,ψ)

ψ

)
F2(θ ,ψ) =

(
θ

ψ−h2∇ψL2(θ ,ψ)

)
(2.7)

To understand convergence of these algorithms, we hence have to understand the dynamics
of sequences of the form

(θ ,ψ), F(θ ,ψ), F(F(θ ,ψ)), F(F(F(θ ,ψ))), . . . (2.8)

We say that update operator F : Ω1×Ω2→Ω1×Ω2 defines a discrete dynamical system.
In the next section we analyze local convergence of such systems near equilibrium points
when F is a C1-mapping.

2.3 Convergence

In this section we apply results from the theory of discrete dynamical systems (Appendix B)
to understand the convergence properties of SimGD and AltGD. As we state formally in
Theorem B.2, linear convergence of F near a fixed point (θ ∗,ψ∗) is entirely determined
by the eigenvalues of the Jacobian F ′(θ ∗,ψ∗) at that equilibrium point: if all eigenvalues
have absolute value smaller than one, then the fixed point iteration (2.8) converges with
linear rate to (θ ∗,ψ∗) in a neighborhood of (θ ∗,ψ∗). In this case, we say that the discrete
dynamical system defined by F is exponentially stable at (θ ∗,ψ∗). Conversely, if F ′(θ ∗,ψ∗)
has one eigenvalue with absolute value greater or equal to one, the fixed point iteration (2.8)
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2.3 Convergence

stable unstable

ℜ(z)

ℑ(z)

(a) Not stable

stable unstable

ℜ(z)

ℑ(z)

(b) Stable

Figure 2.1: Convergence (Continuous). The continuous dynamical system (2.5) is expo-
nentially stable at a stationary point if and only if all eigenvalues lie in the left half-plane.
We see that the left system is not stable, since there are eigenvalues in the right half-plane.
In contrast, the system on the right is stable.

is generally not linearly convergent to (θ ∗,ψ∗), see Lemma B.3.

These results are analogues to the stability theory (Figure 2.1) for differential equations
[94] like the one in (2.5) near a stationary point (θ ∗,ψ∗): the stationary point is exponentially
stable if and only if all eigenvalues of v′(θ ∗,ψ∗) have negative real-part. The continuous
system can be interpreted as optimizing (θ ,ψ) with infinitesimal learning rates and was
considered by Nagarajan and Kolter [136] in concurrent work.

To understand convergence of SimGD and AltGD, we have to understand when the
Jacobian of the corresponding update operator F has only eigenvalues with absolute value
smaller than one. For simplicity, we consider equal learning rates for both players in
this section, i.e. h1 = h2 = h. An analysis of the influence of different learning rates on
convergence of GANs is provided in Chapter 7.

The next lemma describes the eigenvalues of F ′(θ ∗,ψ∗) for SimGD:

Lemma 2.3. The eigenvalues of the Jacobian of the update operator for SimGD with equal
learning rates h1 = h2 = h are given by 1+hλ with λ the eigenvalues of v′(θ ∗,ψ∗). Assume
that v′(θ ∗,ψ∗) has only eigenvalues with negative real part. The eigenvalues of the Jacobian
of the update operator F for SimGD are then all in the unit circle if and only if

h <
1

|ℜ(λ )|
2

1+
(

ℑ(λ )
ℜ(λ )

)2 (2.9)

for all eigenvalues λ of v′(θ ∗,ψ∗).
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2 Smooth two-player Games

stable unstable

ℜ(z)

ℑ(z)

h−1

(a) Not Stable (h = 1.0)

stable unstable

ℜ(z)

ℑ(z)

h−1

(b) Stable (h = 0.5)

Figure 2.2: Convergence (Discretized). The discretized dynamical system (i.e. SimGD) is
exponentially stable at a stationary point if and only if all eigenvalues lie in the unit circle of
radius 1/h which is tangent to the imaginary axis where h denotes the learning rate. We see
that in this example, the discretized dynamical system is not stable for h = 1.0, but is stable
for h = 0.5. In general, stability can be achieved for some h > 0 as long as all eigenvalues
lie strictly in the left half-plane.

Proof. For SimGD we have

F(θ ,ψ) = (θ ,ψ)+hv(θ ,ψ) (2.10)

and hence F ′(θ ∗,ψ∗) = I+hv′(θ ∗,ψ∗). The eigenvalues are therefore given by µ = 1+hλ

with λ the eigenvalues of v′(θ ∗,ψ∗).
To see when |µ|< 1, we write λ =−a+ ib with a,b ∈ R and a > 0. Then

|µ|2 = (1−ha)2 +h2b2 (2.11)

which is smaller than one if and only if

h <
2a

a2 +b2 (2.12)

Dividing both the numerator and denominator by a2 shows the assertion.

The results from Lemma 2.3 are visualized in Figure 2.2: to achieve convergence for
SimGD we have to choose h so that all eigenvalues of the Jacobian v′(θ ∗,ψ∗) lie in a circle
with radius h−1 that is tangent to the y-axis.

Equation 2.9 shows that there are two major factors that determine the maximum pos-
sible learning rate h: (i) the maximum value of ℜ(λ ) and (ii) the maximum value q of
|ℑ(λ )/ℜ(λ )|. Note that as q goes to infinity, we have to choose h according to O(q−2)
which can quickly become extremely small. This can also be seen in Figure 2.2: if F ′(θ ∗,ψ∗)
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2.3 Convergence

has an eigenvalue with small absolute real part but big imaginary part, h needs to be chosen
extremely small to still achieve convergence. Moreover, even if we make h small enough,
most eigenvalues of F ′(θ ∗,ψ∗) will be very close to 1, which leads to very slow convergence
of the algorithm. Note that this problem of SimGD does not arise for standard gradient
descent in optimization, where the Jacobian F ′(θ ∗,ψ∗) is symmetric and therefore has only
real eigenvalues.

Let us now consider the case of AltGD:

Lemma 2.4. Assume that v′(θ ∗,ψ∗) has only eigenvalues with negative real part. The
eigenvalues of the Jacobian of the update operator for AltGD with equal learning rates
h1 = h2 = h are all in the unit circle for h > 0 small enough.

Proof. The Jacobian of the update operator F = F2 ◦F1 at an equilibrium point (θ ∗,ψ∗) is

F ′(θ ∗,ψ∗) = F ′2(θ
∗,ψ∗) ·F ′1(θ ∗,ψ∗) (2.13)

However, we have
F ′i (θ

∗,ψ∗) = I +hv′i(θ
∗,ψ∗) (2.14)

for i ∈ {1,2} where

v1(θ ,ψ) =

(
−∇θL1(θ ,ψ)

0

)
and v2(θ ,ψ) =

(
0

−∇ψL2(θ ,ψ)

)
(2.15)

denote the components of the gradient vector field. Hence

F ′(θ ∗,ψ∗) = I +h(v′1(θ
∗,ψ∗)+ v′2(θ

∗,ψ∗))+h2 v′2(θ
∗,ψ∗)v′1(θ

∗,ψ∗)

= I +h(v′(θ ∗,ψ∗)+hv′2(θ
∗,ψ∗)v′1(θ

∗,ψ∗))
(2.16)

For h > 0 small enough, all eigenvalues of

v′(θ ∗,ψ∗)+hv′2(θ
∗,ψ∗)v′1(θ

∗,ψ∗) (2.17)

will be arbitrarily close to the eigenvalues of v′(θ ∗,ψ∗).
Because all eigenvalues of v′(θ ∗,ψ∗) have negative real-part, all eigenvalues of F ′(θ ∗,ψ∗)

will hence lie inside the unit circle for h > 0 small enough.

Lemma 2.3 and Lemma 2.4 give a simple convergence criterion for SimGD and AltGD for
isolated stationary points (θ ∗,ψ∗) of the gradient vector field. However, for neural networks
there is usually a manifold of reparameterizations [38, 136] of the network that lead to
equivalent equilibrium points. In the following, letM⊆ Ω1×Ω2 denote a C1-manifold
such thatM consists only of stationary points of v(·), i.e. v(θ ,ψ) = 0 for all (θ ,ψ) ∈M.
To also handle these equilibria, we prove Theorem 2.5. The proof is based on Theorem B.4
which states that it is sufficient to analyze the eigenvalues of BTF ′(θ ∗,ψ∗)B where

B = (b1, . . . ,bl) ∈ R(n+m)×l (2.18)
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2 Smooth two-player Games

denotes an orthogonal basis of (T(θ ∗,ψ∗)M)⊥. Here, (T(θ ∗,ψ∗)M)⊥ is the orthogonal com-
plement of the tangent space ofM at (θ ∗.ψ∗).

Theorem 2.5. Assume that M ⊆ Ω1 ×Ω2 is a C1-manifold and that v(θ ,ψ) = 0 for
(θ ,ψ) ∈ M. Let (θ ∗,ψ∗) ∈ M and let B ∈ R(n+m)×l denote an orthogonal basis of
(T(θ ∗,ψ∗)M)⊥. If all eigenvalues of BTv′(θ ∗,ψ∗)B have negative real-part, then both SimGD
and AltGD are linearly convergent toM in a neighborhood of (θ ∗,ψ∗) for small enough
learning rates h > 0.

Proof. To prove convergence, we want to apply Theorem B.4. To this end, we only have to
show that all eigenvalues of BTF ′(θ ∗,ψ∗)B have absolute value smaller than one.

However, if F denotes the updater operator of SimGD, we have

BTF ′(θ ∗,ψ∗)B = BT(I +hv′(θ ∗,ψ∗))B = I +hBTv′(θ ∗,ψ∗)B (2.19)

Here, we used that BTB = I, which holds because the columns of B are orthonormal. As
in the proof of Lemma 2.3, we therefore see that all eigenvalues of BTF ′(θ ∗,ψ∗)B have
absolute value smaller than one for h small enough if all eigenvalues of BTv′(θ ∗,ψ∗)B have
negative real-part.

Similarly, if F denotes the update operator of AltGD, we have as in the proof of
Lemma 2.4

BTF ′(θ ∗,ψ∗)B = BT
(
I +hv′(θ ∗,ψ∗)+h2 v′2(θ

∗,ψ∗)v′1(θ
∗,ψ∗)

)
B

= I +h
(
BTv′(θ ∗,ψ∗)B+hBTv′2(θ

∗,ψ∗)v′1(θ
∗,ψ∗)B

) (2.20)

with v1(·) and v2(·) as in the proof of Lemma 2.4. However, as in the proof of Lemma 2.4,
we see that for small h > 0 the eigenvalues of

BTv′(θ ∗,ψ∗)B+hBTv′2(θ
∗,ψ∗)v′1(θ

∗,ψ∗)B (2.21)

will be arbitrarily close to the eigenvalues of BTv′(θ ∗,ψ∗)B. For h > 0 small enough all
eigenvalues of BTF ′(θ ∗,ψ∗)B will therefore have absolute value smaller than one.

All in all, Theorem B.4 now implies that both SimGD and AltGD are convergent toM
with linear rate in a neighborhood of (θ ∗,ψ∗).

2.4 Consensus Optimization

In Section 2.3 we have seen that both SimGD and AltGD are locally convergent to a local
Nash equilibrium if v′(θ ∗,ψ∗) has only eigenvalues with negative real part. However, it
is easy to see that the Jacobian v′(θ ∗,ψ∗) for the bilinear game from Section 2.1 has the
eigenvalues ±i. Theorem 5.8 is hence not applicable. Indeed, it can be shown that neither
SimGD nor AltGD converge for this simple example.

In this section we describe Consensus Optimization (ConOpt) [128], a general algorithm
that can be applied to general smooth two-player zero-sum games to make the training
dynamics exponentially stable. While Consensus Optimization can introduce spurious points
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2.4 Consensus Optimization

of attraction to the training dynamics, we find that it can be successfully applied to GANs,
enabling us to train architectures that do not converge for vanilla SimGD or AltGD.

Related approaches to Consensus Optimization include the extragradient method [58,
101], optimistic mirror descent [34, 125, 161] and the prediction method [202] that lead
to local convergence in smooth two-player games. A similar regularization term as in
Consensus Optimization was also independently proposed by Nagarajan and Kolter [136].
However, Nagarajan and Kolter [136] proposed to only regularize the component ∇ψL(θ ,ψ)
of the gradient vector field corresponding to the discriminator parameters. Moreover, the
regularization term is only added to the generator objective to give the generator more
foresight.

All these related approaches and Consensus Optimization have in common that they
focus on arbitrary smooth two-player games, but do not exploit the special structure of
GANs. As a result, they may be ill-behaved far away from the equilibrium point and can
also introduce spurious points of attraction to the GAN training dynamics. In Chapter 3 we
derive a regularizer for the special case of GANs which does not suffer from these issues,
but still makes the equilibrium for GANs exponentially stable.

2.4.1 Derivation

Finding stationary points of the vector field v(·) is equivalent to solving the equation
v(θ ,ψ) = 0. In the context of two-player games this means that we have to solve

∇θL1(θ ,ψ) = 0 and ∇ψL2(θ ,ψ) = 0. (2.22)

A simple strategy for finding such stationary points is to minimize R(θ ,ψ) = 1
2‖v(θ ,ψ)‖2

for (θ ,ψ). Unfortunately, this can result in unstable stationary points of v(·) or other local
minima of 1

2‖v(θ ,ψ)‖2 and in practice it does not work well.
We therefore consider a modified vector field ṽ(·) that is as close as possible to the

original vector field v(·), but at the same time still minimizes R(θ ,ψ) (at least locally). A
sensible candidate for such a vector field is

ṽ(θ ,ψ) = v(θ ,ψ)− γ ∇R(θ ,ψ) (2.23)

for some γ > 0. A simple calculation shows that the gradient ∇R(θ ,ψ) is given by

∇R(θ ,ψ) = v′(θ ,ψ)Tv(θ ,ψ) (2.24)

This vector field is the gradient vector field associated to the modified two-player game
given by the two modified cost functions

L̃1(θ ,ψ) = L1(θ ,ψ)+ γ R(θ ,ψ) and L̃2(θ ,ψ) = L2(θ ,ψ)+ γ R(θ ,ψ) (2.25)

The regularizer R(θ ,ψ) encourages agreement between the two players. We therefore call
the resulting algorithm Consensus Optimization (Algorithm 3).2 Note that in a stochastic

2This algorithm requires backpropagation through the squared norm of the gradient with respect to the weights

31



2 Smooth two-player Games

Algorithm 3 Consensus Optimization

1: while not converged do
2: δθ ←−∇θ (L1(θ ,ψ)+ γ R(θ ,ψ))
3: δψ ←−∇ψ(L2(θ ,ψ)+ γ R(θ ,ψ))
4: θ ← θ +hδθ

5: ψ ← ψ +hδψ

6: end while

setting, we can obtain unbiased gradients of R(θ ,ψ) by evaluating v(·) on two different
batches and taking the inner product of the results.3

2.4.2 Convergence

For analyzing convergence, we consider a more general algorithm than in Section 2.4.1
which is given by iteratively applying a function F : Ω1×Ω2→Ω1×Ω2 of the form

F(θ ,ψ) = (θ ,ψ)+hW (θ ,ψ)v(θ ,ψ) (2.26)

for some learning rate h > 0 and an invertible matrix W (θ ,ψ). Consensus Optimization is a
special case of this algorithm for W (θ ,ψ) = I− γ v′(θ ,ψ)T. We assume that γ−1 is not an
eigenvalue of v′(θ ,ψ)T for any (θ ,ψ), so that W (θ ,ψ) is indeed invertible.

Lemma 2.6. Assume h > 0 and W (θ ,ψ) invertible for all (θ ,ψ) ∈Ω1×Ω2. Then (θ ∗,ψ∗)
is a fixed point of (2.26) if and only if it is a stationary point of v(·). Moreover, if (θ ∗,ψ∗)
is a stationary point of v(·), we have

F ′(θ ∗,ψ∗) = I +hW (θ ∗,ψ∗)v′(θ ∗,ψ∗) (2.27)

Proof. If v(θ ∗,ψ∗) = 0, then F(θ ∗,ψ∗) = (θ ∗,ψ∗), so (θ ∗,ψ∗) is a fixed point of F .
Conversely, if (θ ∗,ψ∗) satisfies F(θ ∗,ψ∗) = (θ ∗,ψ∗), we have W (θ ∗,ψ∗)v(θ ∗,ψ∗) = 0.
Because we assume W (θ ∗,ψ∗) to be invertible, this shows v(θ ∗,ψ∗) = 0.

Recall that Ω1 ⊆ Rn and Ω2 ⊆ Rm and consider w ∈ Rn+m. The directional derivative of
F(θ ,ψ) in the direction of w is given by

∂wF(θ ,ψ) = w+h∂wW (θ ,ψ)v(θ ,ψ)+hW (θ ,ψ)∂wv(θ ,ψ) (2.28)

For a fixed point (θ ∗,ψ∗) we have by the first part of the proof v(θ ∗,ψ∗) = 0 and therefore

F ′(θ ∗,ψ∗)w = ∂wF(θ ∗,ψ∗)

= w+hW (θ ∗,ψ∗)∂wv(θ ∗,ψ∗)

= (I +hW (θ ∗,ψ∗)v′(θ ∗,ψ∗))w

(2.29)

of the network. This is sometimes called double backpropagation [41] and is supported by modern deep
learning frameworks such as Tensorflow [1] and PyTorch [153].

3In practice, we find that Consensus Optimization also works when we evaluate R(θ ,ψ) only on one batch
and we use this simplified version in our experiments.
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Since w ∈ Rn+m was arbitrary, this shows

F ′(θ ∗,ψ∗) = I +hW (θ ∗,ψ∗)v′(θ ∗,ψ∗) (2.30)

We are now ready to state our convergence theorem. To this end, we want to apply
Theorem 2.5. We therefore again consider a manifoldM so that for all (θ ,ψ) ∈M we
have v(θ ,ψ) = 0. We further assume that for any w ∈ Rn+m which is not in T(θ ∗,ψ∗)M the
directional derivative ∂wv(θ ∗,ψ∗) is non-zero. The meaning of this assumption is that every
time we leave the manifold of equilibrium pointsM, the vector field becomes non-zero.

Theorem 2.7. Assume thatM⊆ Ω1×Ω2 is a C1-manifold and that v(θ ,ψ) = 0 for all
(θ ,ψ) ∈M. Let (θ ∗,ψ∗) ∈M be a local Nash equilibrium of the zero-sum game defined
by L(θ ,ψ). Assume that for any w ∈ Rn+m with w /∈ T(θ ∗,ψ∗)M we have ∂wv(θ ∗,ψ∗) 6= 0.
Then Consensus Optimization is linearly convergent towards M in a neighborhood of
(θ ∗,ψ∗) for small enough learning rates h > 0.

Proof. For simplicity, we first define J := v′(θ ∗,ψ∗) and J̃ := ṽ′(θ ∗,ψ∗). In order to apply
Theorem 2.5, we have to show that BTJ̃B has only eigenvalues with negative real-part where
B ∈ R(n+m)×l defines an orthogonal basis of (T(θ ∗,ψ∗)M)⊥.

Let λ ∈ C denote an eigenvalue of BTJ̃B with corresponding eigenvector w ∈ Cn+m,
‖w‖= 1, and let w̃ = Bw. Since ‖w‖= 1, we also have ‖w̃‖= 1. By Lemma 2.6 and (2.24)
we have J̃ = J− γ JTJ and therefore

λ = wH
(
BTJ̃B

)
w = w̃H J̃ w̃ = w̃H J w̃− γ ‖J w̃‖2 (2.31)

Using Corollary 2.2 and (2.3), we see that the real part of w̃HJw̃ for w̃ = (w̃T
1 , w̃

T
2 )

T with
w̃1 ∈ Cn, w̃2 ∈ Cm is

ℜ(w̃HJw̃) =
1
2

w̃H
(
J+ JT

)
w̃

=−1
2

w̃H
1 ∇

2
θL(θ ∗,ψ∗) w̃2 +

1
2

w̃H
2 ∇

2
ψL(θ ∗,ψ∗) w̃2

≤ 0

(2.32)

because we assumed (θ ∗,ψ∗) to be a local Nash equilibrium. Therefore,

ℜ(λ ) = ℜ(w̃H J w̃)− γ ‖J w̃‖2 ≤−γ ‖J w̃‖2 (2.33)

Let w̃r and w̃i denote the real and imaginary part of w̃ = Bw, respectively. Since w̃i, w̃r ∈
(T(θ ∗,ψ∗)M)⊥ and w̃ 6= 0, either w̃r or w̃i is not in T(θ ∗,ψ∗)M. As a result, by assumption,

J w̃ = J w̃r + i J w̃i = ∂w̃r v′(θ ∗,ψ∗)+ i∂w̃i v′(θ ∗,ψ∗) 6= 0 (2.34)

Together with (2.33) this yields ℜ(λ )< 0. Theorem 2.5 now shows the assertion.
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(a) Simultaneous Gradient Descent

(b) Consensus optimization

Figure 2.3: Mixture of Gaussians. Comparison of SimGD and Consensus Optimization on
a circular mixture of Gaussians. The images depict from left to right the resulting densities
of the algorithm after 0, 5000, 10000 and 20000 iterations as well as the target density (in
red).

2.4.3 Experiments

Mixture of Gaussians In our first experiment we evaluate Consensus Optimization on a
simple 2D-example where our goal is to learn a mixture of 8 Gaussian distributions with
standard deviations equal to 10−2 and modes uniformly distributed around the unit circle.
While simplistic, training algorithms for GANs often fail to converge even on such simple
examples without extensive fine-tuning of the architecture and hyperparameters [131].

For both the generator and discriminator we use fully-connected neural networks with 4
hidden layers and 16 hidden units in each layer. For all layers, we use ReLU-nonlinearities.
We use a 16-dimensional Gaussian prior for the latent code z and set up the game between
the generator and discriminator using the cost functions from [62]. To test Consensus
Optimization, we run both SimGD and Consensus Optimization with RMSProp4 and a
learning rate of 10−4 for 20000 steps. For Consensus Optimization, we use a regularization
parameter of γ = 10.

The results produced by SimGD and Consensus Optimization for 0, 5000, 10000 and
20000 iterations are depicted in Figure 2.3. We see that while SimGD jumps around the
modes of the distribution and fails to converge, Consensus Optimization converges smoothly
to the target distribution (shown in red). Figure 2.4 shows the empirical distribution of the
eigenvalues of the Jacobian of v(·) and the regularized vector field ṽ(·). It can be seen that
near the Nash equilibrium most eigenvalues are indeed very close to the imaginary axis and
that the proposed modification of the vector field used in Consensus Optimization moves
the eigenvalues to the left.

4While RMSProp is slightly more complex than gradient descent, it can be interpreted as gradient descent
with a mechanism of automatically rescaling the weights. If we assume this rescaling to be (approximately)
constant near an equilibrium point, our theory still applies.
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2.4 Consensus Optimization

v′(θ ,ψ) ṽ′(θ ,ψ)

Before
training

After
training

Figure 2.4: Eigenvalues. Empirical distribution of eigenvalues before and after training
using Consensus Optimization. The first column shows the distribution of the eigenvalues
of the Jacobian v′(θ ,ψ) of the unmodified vector field v(θ ,ψ). The second column shows
the eigenvalues of the Jacobian ṽ′(θ ,ψ) of the regularized vector field ṽ(θ ,ψ) = v(θ ,ψ)−
γ∇R(θ ,ψ) used in Consensus Optimization. We see that v′(θ ,ψ) has eigenvalues close to
the imaginary axis near the Nash equilibrium. As predicted theoretically, this is not the
case for the regularized vector field ṽ(θ ,ψ). For visualization purposes, the real part of the
spectrum of ṽ′(θ ,ψ) before training was clipped.

CIFAR-10 In our second experiment, we apply Consensus Optimization to the CIFAR-10
dataset [102], using a DC-GAN-like architecture [160] without Batch Normalization [75] in
the generator or discriminator. These architectures are known to be hard to optimize using
SimGD or AltGD [5, 160].

We see that Consensus Optimization successfully trains the models and we also observe
that unlike when using vanilla AltGD, the generator and discriminator losses remain almost
constant during training. This is illustrated in Figure 2.5. For a quantitative evaluation, we
also measure the Inception score [173] over time (Figure 2.5c), showing that Consensus
Optimization compares favorably to a DC-GAN trained with AltGD. The improvement of
Consensus Optimization over AltGD is even more significant when we use four instead of
three convolutional layers (Figure 2.6). A qualitative comparison is shown in Figure 2.7.
We see that Consensus Optimization successfully stabilizes GAN training in cases where
SimGD and AltGD fail. Interestingly, however, it fails for the standard setting of a DC-GAN
where we use Batch Normalization. We believe that this due the presence of spurious
attractors in the GAN training dynamics when we use Consensus Optimization: while
Consensus Optimization stabilizes the training dynamics, it can make formerly instable
stationary points of the gradient vector field stable if the regularization parameter is chosen
to be high. This may lead to poor solutions.
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2 Smooth two-player Games

(a) Discriminator loss (b) Generator loss (c) Inception score

Figure 2.5: Training Dynamics. (a) and (b): Comparison of the generator and discrimina-
tor losses on a DC-GAN architecture with three convolutional layers trained on CIFAR-10
for Consensus Optimization (without Batch Normalization) and AltGD (with Batch Nor-
malization). We observe that while AltGD leads to highly fluctuating losses, Consensus
Optimization successfully stabilizes the training and makes the losses almost constant
during training. (c): Comparison of the Inception score over time which was computed
using 6400 samples. We see that on this architecture both methods have comparable rates
of convergence and Consensus Optimization achieves slightly better end results.

(a) Discriminator loss (b) Generator loss (c) Inception score

Figure 2.6: Training Dynamics. (a) and (b): Comparison of the generator and discrimina-
tor losses on a DC-GAN architecture with four convolutional layers trained on CIFAR-10
for Consensus Optimization (without Batch Normalization) and AltGD (with Batch Normal-
ization). (c): Comparison of the Inception score over time which was computed using 6400
samples. We see that on this architecture Consensus Optimization achieves much better end
results.
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2.5 Conclusion

Finally, we note that Consensus Optimization becomes less stable for deeper architectures.
We attribute this result both to the presence of spurious attractors in the regularized gradient
vector field and that our regularizer can lead to eigenvalues with big absolute value, which
makes the Jacobian of the gradient vector field ill-conditioned. Indeed, recent works [9,
55, 140] suggest that considerably better results can be obtained by adapting the matrix
W (θ ,ψ) in (2.26) so that the diagonal blocks are given by identity matrices. In Chapter 6
we introduce a different regularizer for GAN training that is better adapted to GANs and
which therefore does not have the same problems, but still makes the training dynamics
exponentially stable.

2.5 Conclusion

In this chapter we have taken a step back and looked at local convergence for general
smooth two-player games. By extending the theory of Ratliff, Burden, and Sastry [163] we
have seen that local convergence for both Simultaneous Gradient Descent and Alternating
Gradient Descent is determined by the properties of the eigenvalues of the gradient vector
field. We have also derived a simple algorithm that ensures local convergence of general
smooth two-player games, albeit at the price of potentially introducing spurious attractors to
the game dynamics. While these results are directly applicable to GANs, we will see in the
next chapters that for the special case of GANs we can get additional theoretical insights.
In particular, we construct simple examples of GANs that do not converge and derive
novel regularizers that ensure local convergence of general GANs under mild technical
assumptions.
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SimGD AltGD ConOpt

DC-GAN

+ no
batch-normalization

+ constant number of
filters in each layer

+ Jensen-Shannon
objective

Figure 2.7: Qualitative Comparison. Comparison of the results obtained by training differ-
ent architectures with SimGD, AltGD and Consensus Optimization: we train a standard
DC-GAN architecture (with 4 convolutional layers), a DC-GAN architecture without Batch
Normalization in neither the discriminator nor the generator, a DC-GAN architecture that
additionally has a constant number of filters in each layer and a DC-GAN architecture that
additionally uses the Jensen-Shannon objective for the generator. This objective was used
for the derivations in [62], but not used in practice as it was found to hamper convergence.
While Consensus Optimization struggles with the original DC-GAN architecture (with Batch
Normalization), it successfully trains all other architectures.
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3 The Dirac-GAN

In Chapter 1 we have seen how Generative Adversarial Networks (GANs) can be understood
both from a divergence and a game-theoretic point of view. While the former view yields
an interpretation of what we optimize, the second one leads to concrete algorithms such
as Simultaneous Gradient Descent (SimGD) and Alternating Gradient Descent (AltGD).
However, in Chapter 2 we have seen that SimGD and AltGD need not converge to a
Nash equilibrium for general smooth two-player games, even locally. Importantly, standard
convergence results for gradient descent in optimization do not directly transfer to smooth
two-player games.

In this chapter we start our discussion of GAN convergence with a simple, yet highly
informative example of GAN training: we design a minimal example of GAN training that
can be understood analytically. This example, which we call the Dirac-GAN, serves various
purposes: first, from a theoretic point of view, it serves as a counterexample which shows
that naive gradient descend-based GAN training does not always converge. Second, it gives
us a framework to formally analyze various algorithms and regularization strategies for
GAN training and to understand what behavior we can expect in more complex situations.
Finally, it serves as a testbed to develop new techniques to stabilize GAN training which
we can generalize to more complex examples. Indeed, we will see in Chapter 6 and 8 that
regularization techniques which we develop for the Dirac-GAN generalize remarkably well
to more complex GAN architectures.

3.1 The one-dimensional Dirac-GAN

In this section we introduce a minimal one-dimensional example of GAN training, which
we call the Dirac-GAN. In Chapter 4, we generalize this example to higher dimensions
which will lead to additional insights.

How could a minimal example of GAN training look like? To fully specify a GAN, we
have to specify the data distribution pD, the distribution produced by the generator pθ and
the discriminator Dψ . The simplest possible data distribution pD is arguably given by a
single number in R. To even further simplify the discussion1, we set this number to zero:
pD = δ0. The generator also produces just one number, which we denote by θ ∈ R. To
discriminate between two numbers, a linear discriminator is sufficient: Dψ(x) = ψ · x with
ψ ∈ R. In summary, we define the Dirac-GAN as follows:

Definition 3.1. The one-dimensional Dirac-GAN consists of a (univariate) generator
distribution pθ = δθ and a linear discriminator Dψ(x) = ψ · x. The true data distribution
pD is given by a Dirac-distribution concentrated at zero.

1We remove this assumption in Chapter 4.
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3 The Dirac-GAN

pD = δ0 pθ = δθ

Dψ(x)

(a) t = t0

pD = δ0 pθ = δθ

Dψ(x)

(b) t = t1

Figure 3.1: Dirac-GAN. Visualization of the Dirac-GAN which shows that gradient descent-
based GAN optimization is not always convergent: (a) In the beginning, the discriminator
pushes the generator towards the true data distribution and the discriminator’s slope
increases. (b) When the generator reaches the target distribution, the slope of the discrim-
inator is largest, pushing the generator away from the target distribution. This results in
oscillatory training dynamics that never converge.
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(a) SimGD

2 1 0 1 2
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0

1

2

(b) AltGD

Figure 3.2: Training Dynamics. Training behavior of the Dirac-GAN. The starting iterate
is marked in red.
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3.1 The one-dimensional Dirac-GAN

Note that for the Dirac-GAN, both the generator and the discriminator have exactly
one parameter. This situation is visualized in Figure 3.1. In this setup, the GAN training
objective (1.28) is given by

L(θ ,ψ) = ϕ1(ψ θ)+ϕ2(0) (3.1)

The usage of a linear discriminator in Definition 3.1 might appear restrictive. However,
from a divergence point of view (Section 1.1) the class of linear discriminators is in
fact as powerful as the class of all real-valued functions for this example: when we use
ϕ1(t) = − log(1+ exp(−t)) and we take the supremum over ψ in (3.1), we obtain (up to
scalar and additive constants) the Jensen-Shannon divergence between pθ and pD. The
same holds true for all other divergences considered in Section 1.1.

Interestingly, GAN training does not converge in this simple setup.

Lemma 3.2. Assume that (ϕ1,ϕ2) is valid (Definition 1.9). The unique Nash equilibrium
of the game defined by (3.1) is given by (θ ∗,ψ∗) = (0,0). Moreover, the Jacobian of the
gradient vector field at the equilibrium point has the two eigenvalues ±ϕ ′1(0) i which are
both on the imaginary axis.

Proof. First note that pθ ∗ = pD and pψ∗ = χ0. By Lemma 1.14, (θ ∗,ψ∗) hence defines a
(pure) Nash equilibrium. Moreover, for θ 6= θ ∗ = 0,

E x∼pD

[
∂

∂ψ
Dψ(x)

∣∣∣∣
ψ=ψ∗

]
= 0 6= θ = E x∼pθ

[
∂

∂ψ
Dψ(x)

∣∣∣∣
ψ=ψ∗

]
(3.2)

By Lemma 1.15 every Nash equilibrium (θNE ,ψNE) hence satisfies pθNE = pD, i.e. θNE = 0.
We obtain the gradient vector field v(θ ,ψ) by differentiating the loss (3.1) with respect to θ

and ψ:

v(θ ,ψ) =

(
−ϕ ′1(θψ)ψ
ϕ ′1(θψ)θ

)
(3.3)

In particular, since θNE = 0,

v(θNE ,ψNE) =

(
−ϕ ′1(0)ψNE

0

)
(3.4)

Because (θNE ,ψNE) is a pure Nash equilibrium, we have v(θNE ,ψNE) = 0 (Lemma 2.1).
Because (ϕ1,ϕ2) is valid, we have ϕ ′1(0) 6= 0 and thus ψNE = 0. This shows that (θ ∗,ψ∗) =
(0,0) is indeed the unique Nash equilibrium.

Moreover, the Jacobian v′(θ ,ψ) of v(·) is given by(
−ϕ ′′1 (θψ)ψ2 −ϕ ′1(θψ)−ϕ ′′1 (θψ)θψ

ϕ ′1(θψ)+ϕ ′′1 (θψ)θψ ϕ ′′1 (θψ)θ 2

)
(3.5)
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3 The Dirac-GAN

Evaluating (3.5) at the Nash equilibrium θ ∗ = ψ∗ = 0, we obtain

v′(0,0) =
(

0 −ϕ ′1(0)
ϕ ′1(0) 0

)
(3.6)

which has the eigenvalues ±ϕ ′1(0) i.

We now take a closer look at the training dynamics produced by various algorithms for
training the Dirac-GAN. First, we consider the (idealized) continuous system in (2.5): while
Lemma 3.2 shows that the continuous system is generally not linearly convergent to the
equilibrium point, it could in principle converge with a sublinear convergence rate. However,
this is not the case as the next lemma shows:

Lemma 3.3. The integral curves of the gradient vector field v(θ ,ψ) do not converge to the
Nash equilibrium. More specifically, every integral curve (θ(t),ψ(t)) of the gradient vector
field v(θ ,ψ) satisfies θ(t)2 +ψ(t)2 = const for all t ∈ [0,∞).

Proof. Let R(θ ,ψ) := 1
2(θ

2 +ψ2). Then

d
dt

R(θ(t),ψ(t)) = θ(t)v1(θ(t),ψ(t))+ψ(t)v2(θ(t),ψ(t)) = 0 (3.7)

showing that R(θ ,ψ) is indeed constant for all t ∈ [0,∞).

Note that our results do not contradict the results of Nagarajan and Kolter [136] and
Heusel et al. [68]: our example violates Assumption IV by Nagarajan and Kolter [136] that
the support of the generator distribution is equal to the support of the true data distribution
near the equilibrium (see Chapter 5). It also violates the assumption2 by Heusel et al. [68]
that the optimal discriminator parameter vector is a continuous function of the current
generator parameters. In fact, unless θ = 0, there is not even an optimal discriminator
parameter for the Dirac-GAN. Indeed, we find that two time-scale updates as suggested by
Heusel et al. [68] do not lead to convergence for the Dirac-GAN (see Figure 3.3). However,
our example seems to be a prototypical situation for (unregularized) GAN training which
usually deals with distributions that are concentrated on lower dimensional manifolds [6].

We now take a closer look at the discretized system.

Lemma 3.4. For SimGD with learning rates hg and hd for the generator and discrimi-
nator, respectively, the Jacobian of the update operator F(θ ,ψ) has eigenvalues λ1/2 =

1±
√

hghdϕ ′1(0)i with absolute values
√

1+hghdϕ ′1(0)2 at the Nash equilibrium. Inde-
pendently of the learning rate, SimGD is therefore not stable near the equilibrium. Even
stronger, for every initial condition and learning rates hg,hd > 0, the weighted squared
norm

θ 2
k

hg
+

ψ2
k

hd
(3.8)

2This assumption is usually even violated by Wasserstein GANs (WGANs), as the optimal discriminator
parameter vector as a function of the current generator parameters can have discontinuities near the Nash
equilibrium. See Section 3.3.2 for details.
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(b) AltGD (nd = 1)
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(c) AltGD (nd = 5)

Figure 3.3: Two time-scale Training. Convergence properties of our GAN using two time-
scale training as proposed by Heusel et al. [68]. For the Dirac-GAN we do not see any sign
of convergence when training with two time-scales. The starting iterate is marked in red.

of the iterates (θk,ψk) obtained by SimGD is monotonically increasing.

Proof. The update operator for SimGD is given by

F(θ ,ψ) =

(
θ −hgϕ ′1(θψ)ψ
ψ +hdϕ ′1(θψ)θ

)
(3.9)

The Jacobian at the equilibrium point (θ ∗,ψ∗) = (0,0) is therefore

F ′(0,0) =
(

1 −hgϕ ′1(0)
hdϕ ′1(0) 1

)
(3.10)

An easy calculation shows that the eigenvalues are given by

λ1/2 = 1+
√

hghd ϕ
′
1(0) i (3.11)

To see the weighted squared norms of the iterates (θk,ψk) are monotonically increasing, we
calculate

θ 2
k+1

hg
+

ψ2
k+1

hd
=

1
hg

(θk−hgϕ
′
1(θkψk)ψk)

2 +
1
hd

(ψk +hdϕ
′
1(θkψk)θk)

2

=
θ 2

k
hg

+
ψ2

k
hd

+ϕ
′
1(θkψk)

2(hgψ
2
k +hdθ

2
k )

>
θ 2

k
hg

+
ψ2

k
hd

(3.12)

The behavior of SimGD for the Dirac-GAN is visualized in Figure 3.2a. Similarly, for
AltGD we have

Lemma 3.5. For AltGD with ng generator and nd discriminator updates and learning rates
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3 The Dirac-GAN

hg and hd , the Jacobian of the update operator F(θ ,ψ) has eigenvalues

λ1/2 = 1− α2

2
±

√(
1− α2

2

)2

−1 (3.13)

with α :=
√

ngndhghd ϕ ′1(0) at the equilibrium. For α ≤ 2, all eigenvalues are hence on the
unit circle. Moreover for α > 2, there are eigenvalues outside the unit circle.

Proof. The update operators for AltGD are given by

FG(θ ,ψ) =

(
θ −hgϕ ′1(θψ)ψ

ψ

)
(3.14)

FD(θ ,ψ) =

(
θ

ψ +hdϕ ′1(θψ)θ

)
(3.15)

The Jacobians of these operators at the equilibrium are given by

F ′G(0,0) =
(

1 −hgϕ ′1(0)
0 1

)
(3.16)

F ′D(0,0) =
(

1 0
hdϕ ′1(0) 1

)
(3.17)

As a result, the Jacobian of the combined update operator is

(Fnd
D ◦Fng

G )′(0,0) = F ′D(0,0)
nd ·F ′G(0,0)ng

=

(
1 −nghgϕ ′1(0)

ndhdϕ ′1(0) −ngndhghdϕ ′1(0)
2 +1

) (3.18)

An easy calculation shows that the eigenvalues of this matrix are

λ1/2 = 1− α2

2
±

√(
1− α2

2

)2

−1 (3.19)

with α =
√

ngndhghd |ϕ ′1(0)| which are on the unit circle if and only if α ≤ 2. Moreover
for α > 2 all eigenvalues are on the real axis and we have

1− α2

2
−

√(
1− α2

2

)2

−1≤ 1− α2

2
<−1 (3.20)

which is outside the unit circle.

Even though Lemma 3.5 shows that AltGD does not converge with linear rate to the Nash
equilibrium, it could in principle converge with a sublinear convergence rate. However,
this is very unlikely because – as Lemma 3.3 shows – even the continuous system does
not converge. Indeed, we empirically find that AltGD oscillates in stable cycles around the
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equilibrium and shows no sign of convergence (Figure 3.2b).

3.2 Where do instabilities come from?

Our simple example shows that naive gradient-based GAN optimization does not always
converge to the equilibrium point. To get a better understanding of what can go wrong for
more complicated GANs, it is instructive to analyze these instabilities in depth for this
simple example problem.

To understand the instabilities, we have to take a closer look at the oscillatory behavior
that GANs exhibit both for the Dirac-GAN and for more complex systems. An intuitive
explanation for the oscillations is given in Figure 3.1: when the generator is far from
the true data distribution, the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes more certain, which increases the
discriminator’s slope (Figure 3.1a). Now, when the generator reaches the target distribution
(Figure 3.1b), the slope of the discriminator is largest, pushing the generator away from
the target distribution. As a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope from positive to negative. After a
while, we end up with a similar situation as in the beginning of training, only on the other
side of the true data distribution. This process repeats indefinitely and does not converge.

Another way to look at this is to consider the local behavior of the training algorithm near
the Nash equilibrium. Indeed, near the Nash equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data distribution. Even if the generator
is initialized exactly on the target distribution, there is no incentive for the discriminator to
move to the equilibrium discriminator. As a result, training is unstable near the equilibrium.

This phenomenon of discriminator gradients orthogonal to the data distribution can also
arise for more complex examples: as long as the data distribution is concentrated on a low
dimensional manifold and the class of discriminators is big enough, there is no incentive
for the discriminator to produce zero gradients orthogonal to the tangent space of the
data manifold and hence converge to the equilibrium discriminator. Even if the generator
produces exactly the true data distribution, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space. When this happens, the discriminator
does not provide useful gradients for the generator orthogonal to the data distribution and
the generator does not converge.

Note that these instabilities can only arise if the true data distribution is concentrated on a
lower dimensional manifold. Indeed, Nagarajan and Kolter [136] showed that - under some
suitable assumptions - gradient descent-based GAN optimization is locally convergent for
absolutely continuous distributions. Unfortunately, this assumption may not be satisfied for
data distributions like natural images to which GANs are commonly applied [6]. Moreover,
even if the data distribution is absolutely continuous but concentrated along some lower
dimensional manifold, the eigenvalues of the Jacobian of the gradient vector field will be
very close to the imaginary axis, resulting in a highly ill-conditioned problem. We observed
this effect in Section 2.4.3 where we examined the spectrum of the Jacobian for a data
distribution given by a circular mixture of Gaussian distributions with small variance.
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(h) Gradient penalty (CR)

Figure 3.4: Regularization. Convergence properties of different GAN training algorithms
using AltGD with recommended number of discriminator updates per generator update
(nd = 1 if not noted otherwise). The shaded area in Figure 3.4c visualizes the set of forbidden
values for the discriminator parameter ψ . The starting iterate is marked in red.
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3.3 Regularization

3.3 Regularization

As we have seen in Section 3.1, unregularized GAN training does not always converge to
the Nash equilibrium. In this section we discuss how several regularization techniques that
have recently been proposed influence convergence of the Dirac-GAN.

3.3.1 Nonsaturating GAN

Especially in the beginning of training, the discriminator can reject samples produced by
the generator with high confidence [62]. When this happens, the loss for the generator may
saturate so that the generator receives almost no gradient information anymore.

To circumvent this problem Goodfellow et al. [62] introduced a nonsaturating objective
for the generator. In nonsaturating GANs, the generator objective is replaced with3

max
θ

E x∼pθ

[
ϕ1(−Dψ(x))

]
(3.21)

In our example, this is maxθ ϕ1(−ψθ).
While the nonsaturating generator objective was originally motivated by global stability

considerations, we investigate its effect on local convergence. A linear analysis similar to
normal GANs yields

Lemma 3.6. The unique Nash equilibrium for the nonsaturating Dirac-GAN is given by
θ ∗ = ψ∗ = 0. The eigenvalues of the Jacobian of the gradient vector field at the equilibrium
are ±ϕ ′1(0)i which are both on the imaginary axis.

Proof. The gradient vector field for the nonsaturating GAN is given by

v(θ ,ψ) =

(
−ϕ ′1(−θψ)ψ

ϕ ′1(θψ)θ

)
(3.22)

As in the proof of Lemma 3.2, we see that (θ ∗,ψ∗) = (0,0) defines the unique Nash
equilibrium for the nonsaturating GAN.

Moreover, the Jacobian v′(θ ,ψ) is(
ϕ ′′1 (−θψ)ψ2 −ϕ ′1(−θψ)+ϕ ′′1 (−θψ)θψ

ϕ ′1(θψ)+ϕ ′′1 (θψ)θψ ϕ ′′1 (θψ)θ 2

)
(3.23)

At θ ∗ = ψ∗ = 0 we therefore have

v′(0,0) =
(

0 −ϕ ′1(0)
ϕ ′1(0) 0

)
(3.24)

with eigenvalues λ1/2 =±ϕ ′1(0)i.

Lemma 3.6 implies that SimGD is not locally convergent for a nonsaturating GAN and
any learning rate h > 0, because the eigenvalues of the Jacobian of the corresponding update

3Goodfellow et al. [62] used ϕ1(t) = ϕ2(t) =− log(1+ exp(−t)).
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3 The Dirac-GAN

operator F all have absolute value larger than one (Lemma 2.3). While Lemma 3.6 also
rules out linear convergence towards the Nash equilibrium in the continuous case (i.e. for
h→ 0), the continuous training dynamics could in principle still converge with a sublinear
convergence rate. Indeed, we find this to be the case for the Dirac-GAN. We have

Lemma 3.7. For every integral curve of the gradient vector field of the nonsaturating
Dirac-GAN we have

d
dt
(θ(t)2 +ψ(t)2) = 2θψ

[
ϕ
′
1(θψ)−ϕ

′
1(−θψ)

]
(3.25)

For concave ϕ1, this is non-positive. Moreover, for ϕ ′′1 (0) < 0, the continuous training
dynamics of the nonsaturating Dirac-GAN converge with logarithmic convergence rate.

Proof. The gradient vector field for the nonsaturating Dirac-GAN is given by

v(θ ,ψ) =

(
−ϕ ′1(−θψ)ψ

ϕ ′1(θψ)θ

)
(3.26)

Hence, we have

d
dt
(θ(t)2 +ψ(t)2) = v1(θ ,ψ)θ + v2(θ ,ψ)ψ = 2θψ

[
ϕ
′
1(θψ)−ϕ

′
1(−θψ)

]
(3.27)

For concave ϕ1, we have
ϕ ′1(θψ)−ϕ ′1(−θψ)

2θψ
≤ 0 (3.28)

and hence
d
dt
(θ(t)2 +ψ(t)2) = 4θ

2
ψ

2 ϕ ′1(θψ)−ϕ ′1(−θψ)

2θψ
≤ 0 (3.29)

Now assume that ϕ ′′1 (0) < 0. To intuitively understand why the continuous system
converges with logarithmic convergence rate, we express the training dynamics in polar
coordinates (θ ,ψ) = (

√
wcos(φ),

√
wsin(φ)). We have, by (3.27),

d
d t

w = 2θψ
[
ϕ
′
1(θψ)−ϕ

′
1(−θψ)

]
= 4ϕ

′′
1 (0)θ

2
ψ

2 +O(|θψ|4)
= ϕ

′′
1 (0)w

2 sin2(2φ)+O(w4)

(3.30)

Similarly, the temporal derivative of the angle φ is

d
d t

φ =
1
w

(
−ψ

θ

)T(−ϕ ′1(−θψ)ψ
ϕ ′1(θψ)θ

)
=

ϕ ′1(θψ)θ 2 +ϕ ′1(−θψ)ψ2

w
= ϕ

′
1(0)+O(w)

(3.31)
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When we ignore higher order terms, we can solve this system analytically4 for φ and w:

φ(t) = ϕ
′
1(0)(t− t0) (3.33)

w(t) =
2

−ϕ ′′1 (0)t +
ϕ ′′1 (0)
4ϕ ′1(0)

sin(4ϕ ′1(0)(t− t0))+ c
(3.34)

The training dynamics are hence convergent with logarithmic convergence rate O
(

1√
t

)
.

For a more formal proof, first note that w is non-increasing by the first part of the proof.
Moreover, for every ε > 0 there is δ > 0 such that for w < δ :

ϕ
′
1(0)− ε ≤ d

d t
φ ≤ ϕ

′
1(0)+ ε (3.35)

d
d t

w≤ (ϕ ′′1 (0)sin2(2φ)+ ε)w2. (3.36)

This implies that for every time interval [0,T ], φ(t) is in

⋃
k∈Z

[
π

8
+ k

π

2
,
3π

8
+ k

π

2

]
(3.37)

for t in a union of intervals QT ⊆ [0,T ] with total length at least βbαTc where

α = 2
π
(ϕ ′1(0)− ε) and β = π

4

(
ϕ
′
1(0)+ ε

)−1 (3.38)

Importantly, for ε small enough, α,β are positive constants that are independent of T . For
these t ∈ QT we have sin2(2φ(t))≥ 1

2 . Because ϕ ′′1 (0)< 0, this shows

d
d t

w(t)≤
(

1
2

ϕ
′′
1 (0)+ ε

)
w(t)2 (3.39)

for t ∈ QT and ε small enough. Solving the right hand formally yields for some c > 0

w(t)≤ 1
−(1

2 ϕ ′′1 (0)+ ε)t + c
(3.40)

As w(t) is non-increasing for t /∈QT and the total length of QT is at least βbαTc this shows
that

w(T )≤ 1
−(1

2 ϕ ′′1 (0)+ ε)βbαTc+ c
(3.41)

The training dynamics hence converge with logarithmic convergence rate O
(

1√
t

)
.

4For solving the ODE we use the separation of variables-technique and the identity∫
2sin2(ax)dx = x− sin(2ax)

2a
. (3.32)
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Note that the standard choice ϕ1(t)=− log(1+exp(−t)) is concave and satisfies ϕ ′′1 (0)=
−1

4 < 0. Lemma 3.6 is hence applicable and shows that the continuous training dynamics
of the nonsaturating Dirac-GAN converge for the standard choice of ϕ1, albeit with an
extremely slow convergence rate. However, this analysis relies strongly on the fact that we
assumed that the data distribution is concentrated at zero and the proof of Lemma 3.7 does
not transfer to the general case (i.e. pD = px0) that we examine in Chapter 4. Nonetheless,
Lemma 3.7 highlights the benefits of the non-saturating objective proposed by Goodfellow
et al. [62] for the stability of GAN training. The training behavior of the nonsaturating GAN
on our example problem is visualized in Figure 3.4b.

3.3.2 Wasserstein GAN

As discussed in Section 1.1, the two-player GAN game can be interpreted as minimizing a
probabilistic divergence between the true data distribution and the distribution produced
by the generator [62, 143]. This divergence is obtained by considering the best-response
strategy for the discriminator, resulting in an objective function that only contains the
generator parameters. Many recent regularization techniques for GANs are based on the
observation [6] that this divergence may be discontinuous with respect to the parameters of
the generator or may even take on infinite values if the support of the data distribution and
the generator distribution do not match.

To make the divergence continuous with respect to the parameters of the generator,
Arjovsky, Chintala, and Bottou [5] replace the Jensen-Shannon divergence used in the
original derivation of GANs [62] with the Wasserstein divergence (Section 1.1.4), resulting
in a model called Wasserstein GAN (WGAN). In practice, Arjovsky, Chintala, and Bottou
[5] propose to use ϕ1(t) = ϕ2(t) = t and restrict the class of discriminators to Lipschitz
continuous functions with Lipschitz constant equal to 1. While a WGAN converges if the
discriminator is always trained until convergence, in practice WGANs are usually trained by
running only a fixed finite number of discriminator updates per generator update. However,
near the Nash equilibrium the optimal discriminator parameters can have a discontinuity as
a function of the current generator parameters: for the Dirac-GAN, the optimal discriminator
has to move from ψ =−1 to ψ = 1 when θ changes signs. As the gradients get smaller near
the equilibrium point, the gradient updates do not lead to convergence for the discriminator.
Overall, the training dynamics are again determined by the Jacobian of the gradient vector
field near the Nash equilibrium.

Lemma 3.8. A WGAN trained with SimGD or AltGD with a fixed number of discriminator
updates per generator update and learning rates hg,hd > 0 does generally not converge to
the Nash equilibrium for the Dirac-GAN.

Proof. Let us first consider SimGD. Assume that the iterates (θk,ψk) converge to the
equilibrium point (0,0). Note that (θk+1,ψk+1) 6= 0 if (θk,ψk) 6= 0. We can therefore assume
without loss of generality that (θk,ψk) 6= 0 for all k ∈ N.

Because limk→∞ ψk = 0, there exists k0 such that for all k ≥ k0 we have |ψk| < 1. For
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k ≥ k0 we therefore have (
θk+1
ψk+1

)
=

(
1 −hg

hd 1

)(
θk
ψk

)
(3.42)

For k ≥ k0, the iterates are therefore given by(
θk
ψk

)
= Ak−k0

(
θk0

ψk0

)
with A =

(
1 −hg

hd 1

)
(3.43)

However, the eigenvalues of A are given by λ1/2 = 1±
√

hghd i which both have absolute
value

√
1+hghd > 1. This contradicts the assumption that (θk,ψk) converges to (0,0).

A similar argument also hold for AltGD. In this case, A is given by(
1 0
hd 1

)nd (1 −hg

0 1

)ng

=

(
1 −nghg

ndhd 1−ngndhghd

)
(3.44)

The eigenvalues of A as in (3.44) are given by

1−
ngnhhghd

2
±

√(
1−

ngndhghd

2

)2

−1 (3.45)

At least one of these eigenvalues has absolute value greater or equal to one. Note that for al-
most all initial conditions (θ0,ψ0), the inner product between the eigenvector corresponding
to the eigenvalue with absolute value bigger than one will be nonzero for all k ∈ N. Since
the recursion in (3.42) is linear, this contradicts the fact that (θk,ψk)→ (0,0), showing that
AltGD generally does not converge to the Nash equilibrium either.

The training behavior of the WGAN is visualized in Figure 3.4c. The convergence
properties of WGANs were also considered by Nagarajan and Kolter [136] who showed
that even for absolutely continuous densities and infinitesimal learning rates, WGANs are
not always convergent.

3.3.3 Wasserstein GAN-GP

In practice, it can be hard to enforce the Lipschitz-constraint for WGANs. A practical
solution to this problem was proposed by Gulrajani et al. [64], who derived a simple gradient
penalty with a similar effect as the Lipschitz-constraint. The resulting training objective is
commonly referred to as Wasserstein GAN with Gradient Penalties (WGAN-GP).

Similarly to WGANs, we find that WGAN-GP does not converge for the Dirac-GAN. A
similar analysis also applies to the DRAGAN-regularizer proposed by Kodali et al. [98].

The regularizer proposed by Gulrajani et al. [64] is given by

R(ψ) =
γ

2
Ex̂
(
‖∇xDψ(x̂)‖−1

)2 (3.46)
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3 The Dirac-GAN

where x̂ is sampled uniformly on the line segment between two random points x1 ∼ pθ ,
x2 ∼ pD.

For the Dirac-GAN, this regularizer simplifies to

R(ψ) =
γ

2
(|ψ|−1)2 (3.47)

The corresponding gradient vector field is given by

ṽ(θ ,ψ) =

(
−ψ

θ − sign(ψ)γ(|ψ|−1)

)
(3.48)

Note that the gradient vector field has a discontinuity at the equilibrium point, as the
gradient vector field takes on values with norm bigger than some fixed constant in every
neighborhood of the equilibrium point. As a result, we have

Lemma 3.9. WGAN-GP trained with SimGD or AltGD with a fixed number of generator
and discriminator updates and learning rates hg,hd > 0, does generally not converge to the
Nash equilibrium for the Dirac-GAN.

Proof. First, consider SimGD. Assume that the iterates (θk,ψk) converge to the equilibrium
point (0,0). For almost all initial conditions5 we have (θk,ψk) 6= (0,0) for all k ∈ N. This
implies

|ψk+1−ψk|= hd |θk− γψk− sign(ψk)| (3.49)

and hence limk→∞ |ψk+1−ψk| = hd 6= 0, showing that (θk,ψk) is not a Cauchy sequence.
This contradicts the assumption that (θk,ψk) converges to the equilibrium point (0,0).

A similar argument also holds for AltGD.

The training behavior of WGAN-GP on our example problem is visualized in Figure 3.4d.
Despite these negative results, WGAN-GP has been successfully applied in practice [64,
88] and we leave a theoretical analysis of these empirical results to future research.

3.3.4 Consensus optimization

In Section 2.4 we have derived Consensus Optimization [128]. Consensus Optimization
is an algorithm that attempts to solve the problem of eigenvalues with zero real-part by
introducing a regularization term that explicitly moves the eigenvalues to the left. The
regularization term in Consensus Optimization is given by

R(θ ,ψ) =
γ

2
‖v(θ ,ψ)‖2 =

γ

2
(‖∇θL(θ ,ψ)‖2 +‖∇ψL(θ ,ψ)‖2) (3.50)

As was shown in Section 2.4, Consensus Optimization converges locally for small learning
rates h > 0. Indeed, for the Dirac-GAN we have

5Depending on γ and h modulo a set of measure 0.
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Lemma 3.10. For the Dirac-GAN, the eigenvalues of the Jacobian of the gradient vector
field for Consensus Optimization at the equilibrium point are given by

λ1/2 =−γϕ
′
1(0)

2± iϕ ′1(0) (3.51)

In particular, all eigenvalues have negative real part −γϕ ′1(0)
2. Hence, Consensus Op-

timization is locally convergent with linear convergence rate for small enough learning
rates.

Proof. As shown in Section 2.4, the Jacobian of the modified vector field ṽ at the equilibrium
point is

ṽ′(0,0) = v′(0,0)− γv′(0,0)ᵀv′(0,0) (3.52)

In our case, this is (
−γϕ ′1(0)

2 −ϕ ′1(0)
ϕ ′1(0) −γϕ ′1(0)

2.

)
(3.53)

A simple calculation shows that the eigenvalues of ṽ′(0,0) are given by

λ1/2 =−γϕ
′
1(0)

2± iϕ ′1(0) (3.54)

A visualization of Consensus Optimization for the Dirac-GAN is given in Figure 3.4e.
Unfortunately, Consensus Optimization has the drawback that it can introduce new

spurious points of attraction to the GAN training dynamics. While this is usually not a
problem for simple examples, it can be a problem for more complex ones like deep neural
networks. In the next sections we therefore consider two alternative regularizers that make
the dynamics exponentially stable but are better behaved far away from the equilibrium
point.

3.3.5 Instance noise

As we have seen in the previous sections, unregularized GAN training is not always
convergent. Moreover, we have also seen that WGAN [5] and WGAN-GP [64] do not
always lead to convergence either. While Consensus Optimization makes the training
dynamics locally convergent, it can also introduce new spurious points of attraction to the
GAN training dynamics. These results raise the question if we can find regularizers that are
better adapted to GAN training, but still lead to local convergence.

A common technique to stabilize GANs is to add instance noise [6, 177], i.e. independent
Gaussian noise, to the data points. While the original motivation was to make the proba-
bilistic divergence between data and generator distribution well-defined for distributions
that do not have common support, this does not clarify the effects of instance noise on the
training algorithm itself and its ability to find a Nash equilibrium. Interestingly, however, it
was recently shown [136] that in the case of absolutely continuous distributions, gradient
descent-based GAN optimization is - under suitable assumptions - locally convergent.

Indeed, for the Dirac-GAN we have:
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Figure 3.5: Instance Noise. While unregularized GAN training is inherently unstable,
instance noise can stabilize it. (a) Near the Nash equilibrium, the discriminator of the
Dirac-GAN is pushed towards the zero discriminator. (b) As we increase the noise level σ

from 0 to σcritical, the real part of the eigenvalues at the equilibrium point becomes negative
and the absolute value of the imaginary part becomes smaller. For noise levels bigger
than σcritical all eigenvalues are real-valued and GAN training hence behaves like a normal
optimization problem.

Lemma 3.11. When using Gaussian instance noise with standard deviation σ , the eigen-
values of the Jacobian of the gradient vector field are given by

λ1/2 =−
ρ2σ2

2
±

√
ρ2

2 σ4

4
−ρ2

1 (3.55)

with ρ1 = ϕ ′1(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0). In particular, all eigenvalues of the Jacobian
have negative real-part at the Nash equilibrium if (ϕ1,ϕ2) is strictly valid and σ > 0. Hence,
SimGD and AltGD are both locally convergent for small enough learning rates.

Proof. When using instance noise, the GAN training objective (1.28) is given by

E
θ̃∼N (θ ,σ2)

[
ϕ1(θ̃ψ)

]
+E x∼N (0,σ2) [ϕ2(−xψ)] (3.56)

The corresponding gradient vector field is hence given by

ṽ(θ ,ψ) = E
θ̃ ,x

[(
−ψϕ ′1(θ̃ψ)

θ̃ϕ ′1(θ̃ψ)− xϕ ′2(−xψ)

)]
(3.57)

The Jacobian ṽ′(θ ,ψ) is therefore

E
θ̃ ,x

[(
−ϕ ′′1 (θ̃ψ)ψ2 −ϕ ′1(θ̃ψ)−ϕ ′′1 (θ̃ψ)θ̃ψ

ϕ ′1(θ̃ψ)+ϕ ′′1 (θ̃ψ)θ̃ψ ϕ ′′1 (θ̃ψ)θ̃ 2 + x2ϕ ′′2 (−xψ)

)]
(3.58)
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Evaluating (3.58) at (θ ∗,ψ∗) = (0,0) yields

ṽ′(0,0) =
(

0 −ρ1
ρ1 −ρ2σ2

)
(3.59)

with ρ1 = ϕ ′1(0) = ϕ ′2(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0). A straightforward calculation shows
that the eigenvalues of ṽ′(0,0) are given by

λ1/2 =−
ρ2σ2

2
±

√
ρ2

2 σ4

4
−ρ2

1 (3.60)

Note that by Definition 1.9 ρ1 6= 0 and by Lemma 1.12 ρ2 > 0 if (ϕ1,ϕ2) is strictly valid. In
this case, both λ1 and λ2 therefore have negative real part.

Interestingly, Lemma 3.11 shows that there is a critical noise level given by σ2
critical =

2 |ρ1|/ρ2. If the noise level is smaller than the critical noise level, the eigenvalues of
the Jacobian have non-zero imaginary part which results in a rotational component in
the gradient vector field near the equilibrium point. If the noise level is larger than the
critical noise level, all eigenvalues of the Jacobian become real-valued and the rotational
component in the gradient vector field disappears. The optimization problem is best behaved
when we select σ = σcritical: in this case we can even achieve quadratic convergence for
hg = hd = |ρ1|−1. The effect of instance noise on the eigenvalues is visualized in Figure 3.5b,
which shows the traces of the two eigenvalues as we increase σ from 0 to 2σcritical.

Figure 3.4f shows the training behavior of the GAN with instance noise, showing that
instance noise indeed creates a strong radial component in the gradient vector field which
makes the training algorithm converge.

3.3.6 Zero-centered gradient penalties

Motivated by the success of instance noise to make the f -divergence between two distribu-
tions well-defined, Roth et al. [169] derived a local approximation to instance noise that
results in a zero-centered6 gradient penalty for the discriminator.

For the Dirac-GAN, a penalty on the squared norm of the gradients of the discriminator
(no matter where) results in the regularizer

R(ψ) =
γ

2
ψ

2 (3.61)

This regularizer does not include the weighting terms considered by Roth et al. [169].
However, the same analysis can also be applied to the regularizer with the additional
weighting, yielding almost exactly the same results.7

6In contrast to the gradient regularizers used in WGAN-GP [64] and DRAGAN [98] which are not zero-
centered.

7Please see Section 6.6.3 for an analysis.
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Lemma 3.12. When using the gradient regularizer from (3.61) for the discriminator, the
eigenvalues of the Jacobian of the gradient vector field at the equilibrium point are given by

λ1/2 =−
γ

2
±
√

γ2

4
−ρ2

1 (3.62)

with ρ1 = ϕ ′1(0) = ϕ ′2(0). In particular, for γ > 0 all eigenvalues have negative real part.
Hence, SimGD and AltGD are both locally convergent for small enough learning rates.

Proof. The regularized gradient vector field becomes

ṽ(θ ,ψ) =

(
−ϕ ′1(θψ)ψ

ϕ ′1(θψ)θ − γψ

)
(3.63)

The Jacobian ṽ′(θ ,ψ) is therefore given by(
−ϕ ′′1 (θψ)ψ2 −ϕ ′1(θψ)−ϕ ′′1 (θψ)θψ

ϕ ′1(θψ)+ϕ ′′1 (θψ)θψ ϕ ′′1 (θψ)θ 2− γ

)
(3.64)

Evaluating (3.64) at θ ∗ = ψ∗ = 0 yields

ṽ′(0,0) =
(

0 −ρ1
ρ1 −γ

)
(3.65)

whose eigenvalues are given by

λ1/2 =−
γ

2
±
√

γ2

4
−ρ2

1 (3.66)

Like for instance noise, there is a critical regularization parameter γcritical = 2 |ρ1| that
results in a locally rotation-free vector field. A visualization of the training behavior of
the Dirac-GAN with gradient penalty is shown in Figure 3.4g. Figure 3.4h illustrates the
training behavior of the GAN with gradient penalty and Critical Regularization (CR). In
particular, we see that near the Nash equilibrium the vector field does not have a rotational
component anymore and hence behaves like a normal optimization problem.

3.4 Conclusion

In this chapter we have introduced a minimal example of GAN training, which shows
that neither Simultaneous Gradient Descent nor Alternating Gradient Descent converge
for general (unregularized) GANs. However, as we have seen, for our example there is a
simple solution to stabilize the training dynamics: both instance noise and zero-centered
gradient penalties make the GAN training dynamics of the one-dimensional Dirac-GAN
exponentially stable. Interestingly, both kinds of regularizer have the same effect on the
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eigenvalues of the Jacobian of the gradient vector field. This raises the question if these
regularizers can also stabilize GAN training for more complex examples. To answer this
question we first generalize our results to higher dimensions in the next chapter. In Chapter 5
and 6, we apply our results to arbitrary GANs, finding that many properties of our simple
example carry over to the general case.
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4 The Multidimensional Dirac-GAN

In Chapter 3, we have introduced a simple one-dimensional example of GAN training,
which we call the one-dimensional Dirac-GAN. In this chapter we generalize our results
from Chapter 3 to higher dimensions. While analyzing the one-dimensional Dirac-GAN
is instructive to better understand the training dynamics of GANs, even more insights
can be gained by considering the multidimensional generalization. Indeed, when the data
distribution for the Dirac-GAN is not concentrated at zero, the convergence behavior of the
Dirac-GAN can only be fully understood in higher dimensions.1

Recall that the one-dimensional Dirac-GAN is defined by a data distribution pD = δ0, a
generator pθ = δθ and a linear discriminator Dψ(x) = ψ · x where θ ,ψ ∈ R. As we have
seen in Chapter 3, we can analytically solve the resulting GAN training dynamics. This
leads to important insights into the convergence behavior of GAN training. However, the
one-dimensional Dirac-GAN is a very simple model and so far it is unclear if we can find a
similar model for high-dimensional distributions (e.g. image distributions).

It turns out that this is possible. The one-dimensional Dirac-GAN from Chapter 3 can
be easily generalized to multiple dimensions: in this case, the generator produces a Dirac
distribution concentrated at a point θ ∈Rn and the discriminator is given by a linear function
Dψ(x) = ψTx with ψ ∈ Rn. In addition, we would like to remove the requirement that the
true data distribution is concentrated at 0. We therefore assume that the true data distribution
is given by pD = δx0 for some x0 ∈ Rn.

In summary, we define the multidimensional Dirac-GAN as follows:

Definition 4.1. The multidimensional Dirac-GAN consists of a generator distribution
pθ = δθ with θ ∈ Rn and a linear discriminator Dψ(x) = ψTx with ψ ∈ Rn. The true data
distribution pD is given by a Dirac-distribution concentrated at x0 ∈ Rn.

4.1 Unregularized Training

We first consider the case where the multidimensional Dirac-GAN is trained without
additional regularization, as proposed in the original GAN paper [62]. In this case, the GAN
training objective (1.28) becomes

L(θ ,ψ) = ϕ1(ψTθ)+ϕ2(−ψTx0) (4.1)

1Also see Nie and Patel [140] who used a multidimensional version of our example [129] as a starting point
for their analysis of GAN training.
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By computing the gradients with respect to θ and ψ , we obtain the gradient vector field

v(θ ,ψ) =

(
−ϕ ′1(ψ

Tθ)ψ

ϕ ′1(ψ
Tθ)θ −ϕ ′2(−ψTx0)x0

)
(4.2)

We first consider existence and uniqueness of Nash-equilibria for the multidimensional
Dirac-GAN.

Lemma 4.2. Assume that (ϕ1,ϕ2) is strictly valid (Definition 1.9) and consider (θ ∗,ψ∗) =
(x0,0). Then (θ ∗,ψ∗) is the unique (pure) Nash equilibrium of the GAN-game where the
generator and discriminator try to minimize and maximize (4.1), respectively

Proof. Obviously, for (θ ∗,ψ∗) = (x0,0) we have pθ ∗ = pD and Dψ∗ = χ0. By Lemma 1.14,
(θ ∗,ψ∗) hence defines a Nash equilibrium.

To see that the equilibrium is unique, we apply Lemma 1.15. To this end, we use that
∇ψDψ(x) = x. Hence, for θ 6= x0:

E x∼pD

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
= x0 6= θ = E x∼pθ

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
(4.3)

Lemma 1.15 is hence applicable, showing that every Nash equilibrium (θNE ,ψNE) satisfies
pθNE = pD and DψNE (x) = 0 for x ∈ supp pD, i.e. θNE = x0 and ψT

NEx0 = 0. As a result, the
gradient vector field (4.2) at (θNE ,ψNE) is

v(θNE ,ψNE) =

(
−ϕ ′1(0)ψNE

0

)
(4.4)

Since (θNE ,ψNE) is a Nash equilibrium, we have v(θNE ,ψNE) = 0 by Lemma 2.1 and
therefore, using ϕ ′1(0) 6= 0, ψNE = 0. This shows that (θ ∗,ψ∗) = (x0,0) is the unique Nash
equilibrium.

As before, we can understand the local convergence behavior of Simultaneous Gradient
Descent (SimGD) and Alternating Gradient Descent (AltGD) by looking at the Jacobian
of the gradient vector field (4.2) at the equilibrium point. To this end, we again define
ρ1 = ϕ ′1(0) = ϕ ′2(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0).

Lemma 4.3. The Jacobian at the equilibrium point (θ ∗,ψ∗) = (x0,0) for the multidimen-
sional Dirac-GAN is given by:

v′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2 x0xT0

)
(4.5)

with ρ1 = ϕ ′1(0) = ϕ ′2(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0). The Jacobian has n−1 eigenvalues
at ρ1 i and −ρ1 i respectively. The other two eigenvalues are

− ρ2‖x0‖2

2
±

√
ρ2

2‖x0‖4

4
−ρ2

1 (4.6)
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In particular, the system is exponentially stable if and only if n = 1, ρ2 > 0 and x0 6= 0.

Proof. First, by taking the derivative of (4.2), we obtain the following expression for the
Jacobian v′(θ ,ψ):(

−ϕ ′′1 (ψ
Tθ)ψψT −ϕ ′1(ψ

Tθ) I−ϕ ′′1 (ψ
Tθ)ψθT

ϕ ′1(ψ
Tθ) I +ϕ ′′1 (ψ

Tθ)θψT ϕ ′′1 (ψ
Tθ)θθT+ϕ ′′2 (−ψTx0)x0xT0

)
(4.7)

Evaluating this expression at (θ ∗,ψ∗) = (x0,0) yields

v′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2x0xT0

)
(4.8)

with ρ1 = ϕ ′1(0) = ϕ ′2(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0).

Let J := v′(θ ∗,ψ∗). To compute the eigenvalues of J, we compute the characteristic
polynomial χ(λ ):

χ(λ ) = det(λ I− J) = det
(

λ I ρ1I
−ρ1I λ I +ρ2x0 xT0

)
(4.9)

Assume for now that λ 6= 0. Using Lemma A.1 about the determinant of block matrices, we
obtain

χ(λ ) = det(λ I)det
((

λ +
ρ2

1
λ

)
I +ρ2x0 xT0

)
= det

(
(λ 2 +ρ

2
1 )I +ρ2λ x0 xT0

) (4.10)

Let R := (λ 2 +ρ2
1 )I. Then

det(R) = (λ 2 +ρ
2
1 )

n and xT
0 R−1x0 =

‖x0‖2

λ 2 +ρ2
1

(4.11)

By the matrix determinant lemma (Lemma A.2), we therefore obtain

χ(λ ) = (1+ρ2λ xT0 R−1x0)det(R)

=

(
1+

ρ2‖x0‖2

λ 2 +ρ2
1

λ

)
(λ 2 +ρ

2
1 )

n

= ξ (λ )(λ 2 +ρ
2
1 )

n−1

(4.12)

where
ξ (λ ) = λ

2 +ρ2‖x0‖2
λ +ρ

2
1 (4.13)

By continuity, this result also holds for λ = 0. The Jacobian v′(θ ∗,ψ∗) hence has n− 1
eigenvalues at −ρ1i and +ρ1i, respectively. The other two eigenvalues are given by the
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Figure 4.1: Eigenvalues. (a) The Jacobian of the multidimensional Dirac-GAN has 2n−2
eigenvalues on the imaginary axis and two eigenvalues in the left half plane. (b) When we
use instance noise or zero-centered gradient penalties, all eigenvalues are in the left half
plane. As we increase the noise level / regularization parameter, the eigenvalues move along
a circle until they hit the real axis. Afterwards, the eigenvalues move in opposite directions
along the real axis.

zeros of ξ (λ ), i.e.

− ρ2‖x0‖2

2
±

√
ρ2

2‖x0‖4

4
−ρ2

1 (4.14)

The eigenvalues of the Jacobian v′(θ ∗,ψ∗) for the multidimensional Dirac-GAN are
visualized in Figure 4.1a.

As discussed in Section 3.3.1, in practice GANs are often trained with a nonsaturating
loss for the generator [62]. In this case, the gradient vector field (4.2) becomes

v(θ ,ψ) =

(
−ϕ ′1(−ψTθ)ψ

ϕ ′1(ψ
Tθ)θ −ϕ ′2(−ψTx0)x0

)
(4.15)

As it turns out, near the equilibrium point the training dynamics of the nonsaturating
GAN behaves similarly to the unmodified case:

Remark 4.4. The results from Lemma 4.3 also hold for the non-saturating case (4.15).

Proof. The Jacobian v′(θ ,ψ) of the modified gradient vector field in (4.15) is(
ϕ ′′1 (−ψTθ)ψψT −ϕ ′1(−ψTθ) I +ϕ ′′1 (−ψTθ)ψθT

ϕ ′1(ψ
Tθ) I +ϕ ′′1 (ψ

Tθ)θψT ϕ ′′1 (ψ
Tθ)θθT+ϕ ′′2 (−ψTx0)x0xT0

)
(4.16)

Evaluating at (θ ∗,ψ∗) = (x0,0) yields

v′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2x0xT0

)
(4.17)
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4.2 Regularized Training

with ρ1 = ϕ ′1(0) = ϕ ′2(0) and ρ2 =−ϕ ′′1 (0)−ϕ ′′2 (0). In particular, the Jacobian in (4.17) is
equal to the Jacobian (4.5) and hence also has the same eigenvalues.

Interestingly, Lemma 4.3 shows that the one-dimensional Dirac-GAN is exponentially
stable for x0 6= 0. However, for n≥ 2, this is no longer the case. We hence see that the case
x0 6= 0 can only be understood when we generalize the one-dimensional Dirac-GAN to
higher dimensions.

4.2 Regularized Training

In the last section we have seen that the gradient vector field of the unregularized multidi-
mensional Dirac-GAN has eigenvalues on the imaginary axis when n≥ 2. Unregularized
training of the multidimensional Dirac-GAN is therefore generally not stable. We have also
seen that multidimensional case provides new insights regarding the case where the true data
distribution is not concentrated at zero. We now consider multidimensional generalizations
of the regularizers that have stabilized the one-dimensional Dirac-GAN: instance noise and
zero-centered gradient penalties.

4.2.1 Instance Noise

Let us first consider the case where we add isotropic Gaussian noise to both the generator
and the true data distribution. As in Section 3, we see that the regularized gradient vector
field is given by

ṽ(θ ,ψ) = E
θ̃∼N (θ ,σ2 I),x∼N (x0,σ2 I)

(
−ϕ ′1(ψ

Tθ̃)ψ

ϕ ′1(ψ
Tθ̃) θ̃ −ϕ ′2(−ψTx)x

)
(4.18)

Lemma 4.5. When using isotropic instance noise with standard deviation σ , the Jacobian
of the regularized gradient vector field (4.18) at the equilibrium (θ ∗,ψ∗) = (x0,0) is

ṽ′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2

(
σ2I + x0xT0

)) (4.19)

The Jacobian has 2n−2 eigenvalues at

−ρ2σ2

2
±

√
−ρ2

2 σ4

2
−ρ2

1 (4.20)

Moreover, the other two eigenvalues are

− ρ2(σ
2 +‖x0‖2)

2
±

√
ρ2

2 (σ
2 +‖x0‖2)2

4
−ρ2

1 (4.21)
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4 The Multidimensional Dirac-GAN

Proof. The Jacobian of ṽ′(θ ,ψ) is

E
θ̃ ,x

(
−ϕ ′′1 (ψ

Tθ̃)ψψT −ϕ ′1(ψ
Tθ̃) I−ϕ ′′1 (ψ

Tθ̃)ψθ̃T

ϕ ′1(ψ
Tθ̃) I +ϕ ′′1 (ψ

Tθ̃) θ̃ψT ϕ ′′2 (ψ
Tθ̃) θ̃ θ̃T+ϕ ′′2 (−ψTx)xxT

)
(4.22)

where θ̃ ∼N (θ ,σ2 I) and x∼N (x0,σ
2 I). Evaluating at (θ ∗,ψ∗) = (x0,0) yields

ṽ′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2

(
σ2I + x0xT0

)) (4.23)

As in the proof of Lemma 4.3, we apply Lemma A.1 to obtain the characteristic polynomial:

χ(λ ) = det
(

λ I ρ1I
−ρ1I λ I +ρ2

(
σ2I + x0 xT0

))
= det(λ I)det

((
λ +

ρ2
1

λ

)
I +ρ2

(
σ

2I + x0 xT0
))

= det
(
(λ 2 +ρ2σ

2
λ +ρ

2
1 )I +ρ2λ x0 xT0

)
(4.24)

Now, let
R := (λ 2 +ρ2σ

2
λ +ρ

2
1 )I (4.25)

A straightforward calculation shows that

det(R) = (λ 2 +ρ2σ
2
λ +ρ

2
1 )

n (4.26)

xT
0 R−1x0 =

‖x0‖2

λ 2 +ρ2σ2λ +ρ2
1

(4.27)

By the matrix determinant lemma (Lemma A.2), we obtain

χ(λ ) = (1+ρ2λ xT0 R−1x0)det(R)

=

(
1+

ρ2‖x0‖2λ

λ 2 +ρ2σ2λ +ρ2
1

)
(λ 2 +ρ2σ

2
λ +ρ

2
1 )

n

= ξ (λ )(λ 2 +ρ2σ
2
λ +ρ

2
1 )

n−1

(4.28)

with
ξ (λ ) = λ

2 +ρ2(σ
2 +‖x0‖2)λ +ρ

2
1 (4.29)

The Jacobian v′(θ ∗,ψ∗) hence has 2n−2 eigenvalues at

−ρ2σ2

2
±

√
−ρ2

2 σ4

2
−ρ2

1 (4.30)
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The other two eigenvalues are given by the zeros of ξ (λ ), i.e.

− ρ2(σ
2 +‖x0‖2)

2
±

√
ρ2

2 (σ
2 +‖x0‖2)2

4
−ρ2

1 (4.31)

The eigenvalues of the Jacobian v′(θ ∗,ψ∗) for the multidimensional Dirac-GAN with
instance noise are visualized in Figure 4.1b.

So far, we have only considered the case where we add isotropic white Gaussian instance
noise with standard deviation σ to both the true data distribution and the generator distribu-
tion. However, it is also interesting to consider the case where we add anisotropic noise to
the distributions. Adapting the proof of Lemma 4.5, we obtain

Lemma 4.6. When we add anisotropic Gaussian instance noise with covariance matrix
Σ both to the generator and data distribution, i.e. θ̃ ∼ N (θ ,Σ) and x ∼ N (x0,Σ), the
Jacobian of gradient vector field at (θ ∗,ψ∗) = (x0,0) is given by

ṽ′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2

(
Σ+ x0xT0

)) (4.32)

The eigenvalues of ṽ′(θ ∗,ψ∗) are

− ρ2µk

2
±

√
ρ2

2 µ2
k

4
−ρ2

1 (4.33)

where µk (k = 1, . . . ,n) denote the eigenvalues of Σ+ x0xT0 .

Proof. As in the proof of Lemma 4.5, we see that the Jacobian at the equilibrium point is

ṽ′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −ρ2

(
Σ+ x0xT0

)) (4.34)

Moreover, using Lemma A.1 about the determinant of block matrices, we see

χ(λ ) = det(λ I)det
((

λ +
ρ2

1
λ

)
I +ρ2

(
Σ+ x0 xT0

))
= det

(
(λ 2 +ρ

2
1 )I +ρ2λ

(
Σ+ x0 xT0

)) (4.35)

Let χ−ρ2λ(Σ+x0xT0 )
denote the characteristic polynomial of −ρ2λ

(
Σ+ x0xT0

)
. We can then

rewrite (4.35) as
χ(λ ) = χ−ρ2λ(Σ+x0xT0 )

(
λ

2 +ρ
2
1
)

(4.36)

Hence, the eigenvalues of v′(θ ∗,ψ∗) can be calculated by solving

λ
2 +ρ2µλ +ρ

2
1 = 0 (4.37)
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4 The Multidimensional Dirac-GAN

for all eigenvalues µ of Σ+ x0xT0 . This shows that the eigenvalues λ are given by

− ρ2µk

2
±

√
ρ2

2 µ2
k

4
−ρ2

1 (4.38)

with µk (k = 1, . . . ,n) the eigenvalues of Σ+ x0xT0 .

When we use anisotropic instance noise, the eigenvalues hence behave similarly to the
isotropic case, visualized in Figure 4.1b. However, in this case the eigenvalues lie at different
locations on the dashed gray line.

4.2.2 Zero-centered gradient penalties

So far, we have considered instance noise as a regularizer for the multidimensional Dirac-
GAN. However, introducing noise into GAN training can make training less stable and
also leads to slower convergence. In particular, Lemma 4.5 shows that ∇2

ψL(θ ∗,ψ∗) is
ill-conditioned2 if σ2 is much smaller than ‖x0‖2. That means that in practice we have to
choose σ ≈ ‖x0‖ to obtain a convergent system. However, in high-dimensional spaces this
becomes quickly intractable, as σ2 is the noise level added to each coordinate whereas ‖x0‖2

is the sum of the squared coordinates and therefore scales linearly with the dimensionality
of x0. While instance noise hence leads to a stable system in the deterministic case, the
amount of instance noise required to stabilize the system can quickly become intractable in
high-dimensional spaces.

Similarly as we did for the one-dimensional Dirac-GAN in Section 3.3.6, we therefore
consider zero-centered gradient penalties, a deterministic regularizer, as an alternative.
Because zero-centered gradient penalties are deterministic, they do not introduce additional
noise into the training.

As we have seen in Section 3.3.6, zero-centered gradient penalties have the same effect
on the local convergence behavior of the one-dimensional Dirac-GAN as instance noise. As
it turns out, this statement generalizes to higher dimensions. When we use zero-centered
gradient penalties, the gradient vector field (2.2) is given by

ṽ(θ ,ψ) =

(
−ϕ ′1(ψ

Tθ)ψ
ϕ ′1(ψ

Tθ)θ −ϕ ′2(−ψTx0)x0− γψ

)
(4.39)

Calculating the Jacobian and its eigenvalues at the equilibrium point is now straightforward:

Lemma 4.7. When using zero-centered gradient penalties with regularization parameter γ ,
the Jacobian of the gradient vector field (4.39) at (θ ∗,ψ∗) = (x0,0) is

ṽ′(θ ∗,ψ∗) =
(

0 −ρ1I
ρ1I −γI−ρ2 x0xT0

)
(4.40)

2We analyze the conditioning of GANs in depth in Chapter 7.
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The Jacobian has 2n−2 eigenvalues at

− γ

2
±
√

γ2

4
−ρ2

1 (4.41)

Moreover, the other two eigenvalues are

− γ +ρ2‖x0‖2

2
±

√
−(γ +ρ2‖x0‖2)2

4
−ρ2

1 (4.42)

Proof. The proof is similar to the proof of Lemma 4.5. In this case,

R := (λ 2 + γλ +ρ
2
1 )I (4.43)

and therefore

det(R) = (λ 2 + γλ +ρ1)
n (4.44)

xT
0 R−1x0 =

‖x0‖2

λ 2 + γλ +ρ2
1

(4.45)

Hence,

χ(λ ) = (1+ρ2λ xT0 R−1x0)det(R)

=

(
1+

ρ2‖x0‖2

λ 2 + γλ +ρ2
1

λ

)
(λ 2 + γλ +ρ

2
1 )

n

= ξ (λ )(λ 2 + γλ +ρ
2
1 )

n−1

(4.46)

with
ξ (λ ) = λ

2 +(γ +ρ2‖x0‖2)λ +ρ
2
1 (4.47)

The Jacobian v′(θ ∗,ψ∗) therefore has 2n−2 eigenvalues at

− γ

2
±
√

γ2

4
−ρ2

1 (4.48)

The other two eigenvalues are again given by the zeros of ξ (λ ), i.e.

− γ +ρ2‖x0‖2

2
±
√

(γ +ρ2‖x0‖2)2

4
−ρ2

1 (4.49)

Lemma 4.7 shows that zero-centered gradient penalties have the same effect on local
stability of the multidimensional Dirac-GAN as instance noise (Figure 4.1b). However, in
contrast to instance noise, zero-centered gradient penalties are a deterministic regularizer
and therefore do not have the same drawbacks as instance noise which introduces additional
noise into the training.
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Figure 4.2: Multidimensional Dirac-GAN: Qualitative results for the multidimensional
Dirac-GAN over the number of iterations. While unregularized GAN training does not
converge, training with zero-centered gradient penalties leads to convergence.
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Figure 4.3: Multidimensional Dirac-GAN: Quantitative results for the multidimensional
Dirac-GAN. The graph shows the Mean Squared Error (MSE) between the target image x0
and the generated sample θ over the number of iterations. While unregularized GAN training
does not converge, training with zero-centered gradient penalties leads to convergence.
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4.3 Simulation

In this section we experimentally test our results from the previous sections. To this end,
we consider a multidimensional Dirac-GAN where x0 is given by an RGB image of res-
olution 256× 256. The dimensionality of the problem is hence n = 256 · 256 · 3 ≈ 197k.
In Section 3.3.6 we have seen that ‖x0‖2 has a strong effect on the conditioning of the
system. We therefore rescale the pixel values3 of x0 to [0,1/256], so that ‖x0‖2 ∈ [0,1]. For
all experiments, we use learning rates of hg = hd = 0.1 for the generator and discriminator,
respectively. For regularized training, we use zero-centered gradient penalties with γ = 1.
We initialize the discriminator weights ψ with zeros and the generator weights θ with
random numbers in [0,1/256].

Figure 4.2 shows a qualitative comparison of unregularized and regularized training of
the multidimensional Dirac-GAN. We clearly see that neither SimGD nor AltGD converge
to the true data distribution. In contrast, SimGD and AltGD with zero-centered gradient
penalties exhibit fast convergence to the Nash equilibrium: even after 200 iterations, the
resulting image is visually not distinguishable from the target image. Figure 4.3 shows the
Mean Squared Error (MSE) between the target image x0 and the image θ produced by the
generator. We clearly see that unregularized training does not converge. In contrast, training
with zero-centered gradient penalties leads to linear convergence towards the equilibrium
point, both for SimGD and AltGD.

4.4 Conclusion

In this chapter we have seen that our results from Chapter 3 generalize to higher-dimensional
spaces. More specifically, we have introduced and analyzed a multidimensional general-
ization of the one-dimensional Dirac-GAN. Interestingly, while qualitatively the multidi-
mensional Dirac-GAN behaves similar to the one-dimensional case, it also yields additional
insights. Indeed, the multidimensional case exhibits two kinds of eigenvalues with different
influences on the GAN training dynamics. In the next chapter we extend our results even
further and analyze the stability of general (unregularized) GANs.

3Using Corollary A.4, it can be shown that this is equivalent to choosing a large regularization parameter γ as
well as a small learning rate hd for the discriminator and a large learning rate hg for the generator.
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5 Convergence Theory

In the last two chapters, we have analyzed the Dirac-GAN in depth. While this simple
example leads to interesting insights, we have not yet answered if and how these results
transfer to more complex cases. In this chapter we develop general mathematical tools to
understand GAN training in the general case.

To generalize our convergence results from the previous chapters to arbitrary GANs,
we have to formulate several assumptions. To this end, we build on the four assumptions
formulated by Nagarajan and Kolter [136], but generalize them. Nagarajan and Kolter [136]
were able to prove local convergence of the continuous GAN dynamics under these four
assumptions. In this chapter we prove a discrete version of these results using our theory
from Chapter 2.

Unfortunately, while the four assumptions are usually (approximately) satisfied as long as
both pθ and pD are absolutely continuous distributions, the fourth condition is not satisfied
in more realistic situations. Indeed, for the one-dimensional Dirac-GAN from Chapter 3 and
the multidimensional Dirac-GAN from Chapter 4, the fourth assumption is not satisfied. In
Chapter 6 we therefore build on the results from this chapter and show how regularization
helps overcome the limitations of the fourth assumption.

In addition to the results presented in this chapter, in Appendix D we describe another
form of stable equilibrium, called Energy Solution, that may exist for unregularized GAN
training. However, this kind of solution requires a more expressive discriminator and can be
ill-conditioned. Please see Appendix D for a discussion.

5.1 Assumptions

In this section we formulate slightly generalized versions of the assumptions by Nagarajan
and Kolter [136]. As we want to focus on theoretical insights instead of technical details,
we assume that Gθ (z) and Dψ(x) are infinitely often differentiable in their parameters1

and inputs θ ,ψ,x and z. Moreover, we assume that we can always exchange differentia-
tion and integration (i.e. expectations). This condition is satisfied, for example, when the
corresponding derivatives are uniformly bounded.

Recall that we denote the parameter spaces of the generator Gθ (·) and the discrimina-
tor Dψ(·) by ΩG ⊆ Rn and ΩD ⊆ Rm, respectively. Let (θ ∗,ψ∗) ∈ ΩG×ΩD denote an
equilibrium point of the (unregularized) training dynamics. In our convergence analysis,
we consider the realizable case, i.e. as in Section 1.2 we assume that there are generator
parameters that make the generator produce the true data distribution.

1Note that this condition is not satisfied when we implement Gθ (·) and Dψ (·) with ReLU activation functions.
However, we can always approximate the activation functions with infinitely differentiable functions.
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Assumption I. We have pθ ∗ = pD and Dψ∗(x) = 0 for x ∈ supp pD.

Similarly to Nagarajan and Kolter [136], we assume that ϕ1 and ϕ2 satisfy the following
property:

Assumption II. ϕ1 and ϕ2 are twice differentiable at 0 and (ϕ1,ϕ2) is strictly valid.2

Note that by Lemma 1.12 we have ϕ ′1(0) = ϕ ′2(0) 6= 0 and ϕ ′′1 (0)+ϕ ′′2 (0)< 0. For brevity,
we again define ρ1 := ϕ ′1(0) = ϕ ′2(0) and ρ2 :=−ϕ ′′1 (0)−ϕ ′′2 (0).

The convergence proof is complicated by the fact that for neural networks, there gener-
ally is not a single equilibrium point (θ ∗,ψ∗), but a submanifold of equivalent equilibria
corresponding to different parameterizations of the same function. We therefore define the
reparameterization manifoldsMG andMD. To this end, let

h(ψ) := E x∼pD
[
|Dψ(x)|2

]
(5.1)

The reparameterization manifolds are then defined as

MG := {θ | pθ = pD} MD := {ψ | h(ψ) = 0} (5.2)

To prove local convergence, we have to assume some regularity properties forMG andMD

near the equilibrium point. To state these assumptions, we need

g(θ) := E x∼pθ

[
∇ψDψ(x)|ψ=ψ∗

]
(5.3)

Assumption III. There are ε-balls Bε(θ
∗) and Bε(ψ

∗) around θ ∗ and ψ∗ so thatMG∩
Bε(θ

∗) andMD∩Bε(ψ
∗) define C1- manifolds. Moreover, the following holds:

(i) if w ∈ Rn is not in the tangent space ofMD at ψ∗, then ∂ 2
wh(ψ∗) 6= 0.

(ii) if w ∈ Rm is not in the tangent space ofMG at θ ∗, then ∂wg(θ ∗) 6= 0.

While formally similar, the two conditions in Assumption III have very different meanings:
the first condition is a simple regularity property that means that the geometry ofMD can
be locally described by the second derivative of h. The second condition implies that the
discriminator is strong enough so that it can detect any deviation from the equilibrium
generator distribution. Indeed, this is the only point where we assume that the class of
representable discriminators is sufficiently expressive (and excludes, for example, the trivial
case Dψ(x) = 0 for all ψ and x). Indeed, the second condition can be regarded as a local
version of the condition in Lemma 1.15 that we needed to ensure uniqueness of the Nash
equilibrium. Note that Assumption III is similar to the third assumption from Nagarajan
and Kolter [136], but more general. Indeed, Nagarajan and Kolter [136] only consider linear
manifoldsMG andMD.

Finally, we state a fourth assumption, which was also originally proposed by Nagarajan
and Kolter [136], on the support of the data and generator distributions.

Assumption IV. There is an ε-balls Bε(θ
∗) so that supp (pθ ) = supp (pD) for all θ ∈

Bε(θ
∗).

2See Definition 1.9 for the definition of “strictly valid”.
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Assumption IV is the most restrictive assumption and is typically only satisfied for
absolutely continuous data and generator distributions (e.g. Gaussian distributions). Indeed,
Assumption IV does not hold for the (unregularized) Dirac-GAN from Chapter 3 and 4. In
Chapter 6 we introduce regularizers that enable us to remove this assumption.

5.2 Linearization

To prove convergence of the GAN training dynamics, we first need to understand the local
structure of the gradient vector field v(·). Recall that the gradient vector field v(·) is defined
as

v(θ ,ψ) :=
(
−∇θL(θ ,ψ)
∇ψL(θ ,ψ)

)
(5.4)

with
L(θ ,ψ) = Ex∼pθ

[
ϕ1(Dψ(x))

]
+Ex∼pD

[
ϕ2(−Dψ(x))

]
(5.5)

We first derive an explicit representation of v(·).

Lemma 5.1. The gradients of L(θ ,ψ) with respect to θ and ψ are given by

∇θL(θ ,ψ) = ∇θ Ex∼pθ

[
ϕ1(Dψ(x))

]
(5.6)

= E z∼p0

[
ϕ
′
1(Dψ(Gθ (z))

[
∂Gθ

∂θ
(z)
]T
·∇xDψ(Gθ (z))

]
(5.7)

∇ψL(θ ,ψ) = E x∼pθ

[
ϕ
′
1(Dψ(x))∇ψDψ(x)

]
−E x∼pD

[
ϕ
′
2(−Dψ(x))∇ψDψ(x)

]
(5.8)

Proof. To compute ∇θL(θ ,ψ), we apply the multivariate chain rule to

E x∼pθ

[
ϕ1(Dψ(x))

]
= E z∼p0

[
ϕ1(Dψ(Gθ (z)))

]
(5.9)

To compute ∇ψL(θ ,ψ), we apply the multivariate chain rule to (5.5).

As discussed in Chapter 2, to understand local convergence near an equilibrium point
(θ ∗,ψ∗) we have to analyze the Jacobian v′(θ ∗,ψ∗).

Lemma 5.2 (Nagarajan and Kolter). Assume that (θ ∗,ψ∗) satisfies Assumption I and IV.
The Jacobian of the gradient vector field v(θ ,ψ) at (θ ∗,ψ∗) is then

v′(θ ∗,ψ∗) =
(

0 −KT
DG

KDG −KDD

)
(5.10)

The terms KDD and KDG are given by

KDG = ρ1
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

(5.11)

KDD = ρ2 E x∼pD
[
∇ψDψ∗(x)∇ψDψ∗(x)T

]∣∣
ψ=ψ∗

(5.12)
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Proof. First note that by the definition of v(·) in (5.4), the Jacobian v′(θ ∗,ψ∗) of v(·) is
given by (

−∇2
θ
L(θ ∗,ψ∗) −∇2

ψ,θL(θ ∗,ψ∗)T
∇2

ψ,θL(θ ∗,ψ∗) ∇2
ψL(θ ∗,ψ∗)

)
(5.13)

Let us first consider ∇2
θ
L(θ ∗,ψ∗). By Lemma 5.1, we have

∇θL(θ ,ψ) = ∇θ Ex∼pθ

[
ϕ1(Dψ(x))

]
(5.14)

However, we have Dψ∗(x) = 0 for all x ∈ supp pD by Assumption I. Moreover, by Assump-
tion IV there is ε > 0 such that for all θ ∈ Bε(θ

∗) we have supp pθ = supp pD. This shows
that for θ ∈ Bε(θ

∗) we have ∇θL(θ ,ψ∗) = 0 and therefore also ∇2
θ
L(θ ∗,ψ∗) = 0.

To compute ∇2
ψ,θL(θ ∗,ψ∗), we compute the partial Jacobian of (5.8) with respect to θ :

∇
2
ψ,θL(θ ∗,ψ∗) =

∂

∂θ
E x∼pθ

[
ϕ
′
1(Dψ(x))∇ψDψ(x)

]∣∣
θ=θ ∗,ψ=ψ∗

= ρ1
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣
θ=θ ∗,ψ=ψ∗

(5.15)

Here, we again used Dψ∗(x) = 0 for x ∈ supp pD (Assumption I) and supp pθ = supp pD
for θ ∈ Bε(θ

∗) (Assumption IV).
Finally, consider ∇2

ψL(θ ∗,ψ∗). By taking the partial Jacobian of (5.8) with respect to ψ ,
we obtain

∇
2
ψL(θ ,ψ) = E x∼pθ

[
ϕ
′′
1 (Dψ(x))∇ψDψ(x)∇ψDψ(x)T+ϕ

′
2(Dψ(x))∇2

ψDψ(x)
]

−E x∼pD
[
−ϕ

′′
1 (−Dψ(x))∇ψDψ(x)∇ψDψ(x)T+ϕ

′
2(−Dψ(x))∇2

ψDψ(x)
]

(5.16)

Evaluating at (θ ∗,ψ∗) hence yields, by Assumption I,

∇
2
ψL(θ ∗,ψ∗) =−ρ2 E x∼pD

[
∇ψDψ(x)∇ψDψ(x)T

]∣∣
ψ=ψ∗

(5.17)

5.3 Convergence

We now prove our first convergence theorem. This theorem was first derived by Nagarajan
and Kolter [136] for the continuous GAN training dynamics under slightly more restrictive
assumptions. Here, we provide a proof of a similar theorem for the discretized training
dynamics (i.e. SimGD or AltGD) under our more general assumptions.

To show convergence, we want to apply Theorem 2.5. To this end, we have to show that
MG×MD consists only of stationary points of v(·) in a neighborhood of (θ ∗,ψ∗) and that
v′(θ ∗,ψ∗) only has eigenvalues with negative real-part when restricted to(

T(θ ∗,ψ∗) (MG×MD)
)⊥

= (Tθ ∗MG)
⊥× (Tψ∗MD)

⊥ (5.18)
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5.3 Convergence

We first show thatMG×MD consists only of stationary points of v(·) near (θ ∗,ψ∗).

Lemma 5.3. Assume that (θ ∗,ψ∗) satisfies Assumption I and Assumption IV. Then there
is ε > 0 such that (MG ∩Bε(θ

∗))×MD consists only of stationary points of v(·), i.e.
v(θ ,ψ) = 0 for all (θ ,ψ) ∈ (MG∩Bε(θ

∗))×MD.

Proof. We have to show that ∇θL(θ ,ψ) = 0 and ∇ψL(θ ,ψ) = 0 for all (θ ,ψ) ∈ (MG∩
Bε(θ

∗))×MD for some ε > 0.
We first consider ∇ψL(θ ,ψ). By Lemma 5.1, we have

∇ψL(θ ,ψ) = E x∼pθ

[
ϕ
′
1(Dψ(x))∇ψDψ(x)

]
−E x∼pD

[
ϕ
′
2(−Dψ(x))∇ψDψ(x)

]
(5.19)

However, for (θ ,ψ) ∈MG×MD we have pθ = pD and Dψ(x) = 0 for all x ∈ supp pD.
This shows that

∇ψL(θ ,ψ) = E x∼pD
[
ϕ
′
1(0)∇ψDψ(x)−ϕ

′
2(0)∇ψDψ(x)

]
= 0 (5.20)

Now consider ∇θL(θ ,ψ). We use Dψ(x) = 0 for x ∈ supp pD and ψ ∈MD as well as
supp pθ = supp pD for θ ∈ Bε(θ

∗) by Assumption IV. As in the proof of Lemma 5.2, this
shows that

∇θL(θ ,ψ) = ∇θ Ex∼pθ
[ϕ1(0)] = 0 (5.21)

for all (θ ,ψ) ∈ Bε(θ
∗)×MD with some ε > 0. All in all, we see that v(θ ,ψ) = 0 for all

(θ ,ψ) ∈ (MG∩Bε(θ
∗)×MD.

Lemma 5.3 allows us to directly draw a conclusion about the interaction term KDG =
∇2

ψ,θ L(θ ∗,ψ∗) from Lemma 5.2.

Lemma 5.4. Let KDG be defined as in Lemma 5.2. Then the following assertions hold:

i) KDGw = 0 for all w ∈ Tθ ∗MG

ii) KT
DGw = 0 for all w ∈ Tψ∗MD

iii) KDGw ∈ (Tψ∗MD)
⊥ for all w ∈ Rn

iv) KT
DGw ∈ (Tθ ∗MG)

⊥ for all w ∈ Rm

Proof. Let w ∈ Tθ ∗MG. By definition of the tangent space Tθ ∗MG, there is a C1-curve
θ : (−ε,ε)→MG with θ(0) = θ ∗ and θ ′(0) = w. Hence, by Lemma 5.2,

KDGw =
d
dt

∇ψL(θ(t),ψ∗)
∣∣∣∣
t=0

(5.22)

However, by Lemma 5.3, ∇ψL(θ(t),ψ∗) = 0 for all t ∈ (−ε,ε) for ε small enough, since
(θ(t),ψ∗) ∈MG×MD. This shows KDGw = 0 for all w ∈ Tθ ∗MG, which is (i). We can
prove (ii) in a similar way, using

KT
DGw =− d

dt
∇θL(θ ∗,ψ(t))

∣∣∣∣
t=0

= 0 (5.23)
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for a curve ψ : (−ε,ε)→MD with ψ(0) = ψ∗ and ψ ′(0) = w if w ∈ Tψ∗MD.
To show (iii), let w ∈ Rn and w̃ ∈ Tψ∗MD. Using (ii) from the first part of the proof, we

obtain
w̃T(KDGw) = (KT

DGw̃)Tw = 0T ·w = 0 (5.24)

Since, w̃ ∈ Tψ∗MD was arbitrary, this shows KDGw ∈ (Tψ∗MD)
⊥ for all w ∈ Rn, which is

(iii). The last assertion (iv) follows in the same way from (i).

Next, we examine the eigenvalues of v′(θ ∗,ψ∗). We first state a simple criterion from
Nagarajan and Kolter [136] under what conditions the Jacobian has only eigenvalues with
negative real-part. In Chapter 7 we extend this lemma to obtain tight bounds on the real and
imaginary part of the eigenvalues.

Here, we give a short proof of a lemma by Nagarajan and Kolter [136].

Lemma 5.5 (Nagarajan and Kolter). Assume J ∈ R(n+m)×(n+m) is of the following form:

J =

(
0 −PT

P −Q

)
(5.25)

where Q ∈Rm×m is a symmetric positive definite matrix and P ∈Rm×n has full column rank.
Then all eigenvalues λ of J satisfy ℜ(λ )< 0.

Proof. Let wT = (wT
1 ,w

T
2 ) ∈ Cn+m with w1 ∈ Cn and w2 ∈ Cm denote some eigenvector of

J with corresponding eigenvalues λ ∈ C. Then

ℜ(λ ) =
λ + λ̄

2
=

1
2

wH(J+ JT)w =−wH
2 Qw2. (5.26)

Because Q is positive definite, we have ℜ(λ )≤ 0. Moreover, it suffices to show that w2 6= 0
to prove ℜ(λ )< 0.

Assume that w2 = 0. Because w is an eigenvector of J, we have Pw1−Qw2 = λw2 and
therefore Pw1 = 0. Because P has full-column rank, this shows w1 = 0 and hence w = 0.
However, this contradicts the fact that w is an eigenvector of J. All in all, this show that
w2 6= 0 and thus ℜ(λ )≤−wH

2 Qw2 < 0 as required.

To apply Lemma 5.5, we have to show that KDD is positive definite and KDG has full
column rank (at least orthogonal toMD andMG). However, we have

Lemma 5.6. Assume that Assumption I, II, III and IV hold. If w ∈ Rm is not in the tangent
space ofMD at ψ∗, then wTKDDw > 0.

Proof. By Lemma 5.2, we have

wTKDDw = ρ2 E x∼pD

[(
∇ψDψ∗(x)Tw

)2
]

(5.27)

By Assumption II, we have ρ2 > 0. Hence, wTKDDw≥ 0 and wTKDDw = 0 implies

∇ψDψ(x)Tw
∣∣
ψ=ψ∗

= 0 (5.28)
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for all x ∈ supp pD. Let
h(ψ) := E x∼pD

[
|Dψ(x)|2

]
(5.29)

Using the fact that Dψ(x) = 0 for x ∈ supp pD, we see that the Hessian of h(ψ) at ψ∗ is

∇
2
ψh(ψ∗) = 2 E x∼pD

[
∇ψDψ∗(x)∇ψDψ∗(x)T

]
(5.30)

The second directional derivative ∂ 2
wh(ψ∗) is therefore

∂
2
wh(ψ∗) = 2 E x∼pD

[(
∇ψDψ∗(x)Tw

)2
]
= 0 (5.31)

By Assumption III, this can only hold if w is in the tangent space ofMD at ψ∗.

Lemma 5.7. Assume that Assumption I, II, III and IV hold. If w ∈ Rn is not in the tangent
space Tθ ∗MG ofMG at θ ∗, then KDGw /∈ Tψ∗MD

Proof. By Lemma 5.4 we have KDGw∈ (Tψ∗MD)
⊥. It therefore suffices to show KDGw 6= 0

to prove KDGw /∈ Tψ∗MD. However, by Lemma 5.2, we have

KDGw = ρ1

[
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

]
w

= ρ1∂wg(θ)

(5.32)

for
g(θ) := E pθ (x)

[
∇ψDψ(x)

∣∣
ψ=ψ∗

]
(5.33)

By Assumption III and because ρ1 6= 0 (Assumption II), this implies KDGw 6= 0 if w is not
in the tangent space ofMG at θ ∗. Together with Lemma 5.4 this yields the assertion.

We are now ready to state the first convergence result. Nagarajan and Kolter [136] proved
a continuous version of this theorem under slightly more restrictive assumptions. Here, we
prove a discrete version, using the tools that we developed in Chapter 2.

Theorem 5.8. Assume Assumption I, II, III and IV hold for (θ ∗,ψ∗). For small enough
learning rates, SimGD and AltGD are both convergent toMG×MD in a neighborhood of
(θ ∗,ψ∗). Moreover, the rate of convergence is at least linear.

Proof. We want to show that both SimGD and AltGD are locally convergent toMG×MD

by applying Theorem 2.5. First note that by Lemma 5.3 there is ε > 0 such that (MG∩
Bε(θ

∗))×MD consists only of stationary points of the gradient vector field.
Let Tθ ∗MG and Tψ∗MD denote the tangent spaces ofMG andMD at θ ∗ and ψ∗ and

let BG ∈ Rn×l1 and BD ∈ Rm×l2 denote orthogonal bases of (Tθ ∗MG)
⊥ and (Tψ∗MD)

⊥,
respectively. Moreover, let

B :=
(

BG 0
0 BD

)
∈ R(n+m)×(l1×l2) (5.34)
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First note that the columns of B define a basis of(
T(θ ∗,ψ∗) (MG×MD)

)⊥
= (Tθ ∗MG)

⊥× (Tψ∗MD)
⊥ (5.35)

To apply Theorem 2.5 we have to show that BTv′(θ ∗,ψ∗)B has only eigenvalues with
negative real-part.

Using Lemma 5.2, we see that BTv′(θ ,ψ)B is

BTv′(θ ∗,ψ∗)B =

(
0 −BT

GKT
DGBD

BT
DKDGBG −BT

DKDDBD

)
(5.36)

We now show that BT
DKDDBD is positive definite and BT

DKDGBG has full column rank.
To this end, first note that for any w ∈ Rl1 , we have BDw ∈ (Tψ∗MD)

⊥ and hence
BDw /∈ Tψ∗MD for w 6= 0. Therefore, by Lemma 5.6, we have

wT
(
BT

DKDDBD
)

w = (BDw)TKDD(BDw)> 0 (5.37)

for w 6= 0. As a result, we see that BT
DKDDBD is symmetric positive definite.

Similarly, since BGw /∈ Tθ ∗MG for w 6= 0, we can apply Lemma 5.7 to obtain KDGBGw /∈
Tψ∗MD. However, this implies that KDGBG w has a non-zero component orthogonal to
Tψ∗MD, i.e. BT

DKDGBG w 6= 0. Since w 6= 0 was arbitrary, this implies that BT
DKDGBG has

full column rank.
Lemma 5.5 now implies that all eigenvalues of BTv′(θ ∗,ψ∗)B have negative real part. By

Theorem 2.5, SimGD and AltGD are therefore both convergent toMG×MD near (θ ∗,ψ∗)
for small enough learning rates. Moreover, the rate of convergence is at least linear.

5.4 Examples

Let us now consider some examples. For each example, we discuss the validity of the
assumptions and if the training dynamics are locally convergent. It is easy to see that
both Assumption I and Assumption II are true for all examples as long as we choose a
strictly valid pair of activation functions (ϕ1,ϕ2). In the following, we therefore discuss
only Assumption III and Assumption IV.

Dirac-GAN For the Dirac-GAN, we have h(ψ) = |ψTx0|2, g(θ) = θ andMG = {x0}.
As a result,MD = Tψ∗MD = {ψ ∈Rn | ψ ⊥ x0}. Note that the special case x0 = 0 implies
MD = Tψ∗MD =Rn. BothMG andMD are hence C1-manifolds and ∂ 2

wh(ψ∗) = |wTx0| 6=
0 for w /∈ Tψ∗MD . We also have ∂wg(θ ∗) = w 6= 0 for w /∈ Tθ ∗MG = {0}. The conditions
of Assumption III are hence also satisfied. However, we have supp pD = {x0} 6= {θ} =
supp pθ for θ 6= x0. Assumption IV is therefore not satisfied for the multidimensional
Dirac-GAN. We hence cannot apply Theorem 5.8. Indeed, as we have seen in Chapter 4,
the multidimensional Dirac-GAN is not locally convergent.
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Figure 5.1: Examples. Quantitative results for two of our examples for h=w= 1. The graph
shows the Wasserstein divergence between the target distribution pD and the generator
distribution pθ over the number of iterations. While the Ellipse example converges, the Four
Points example does not. For this plot we use AltGD, but the results for SimGD look similar.

Dirac-GAN with Instance Noise For the multidimensional Dirac-GAN with Gaussian
instance noise, we also have g(θ) = θ and hence ∂wg(θ) = w 6= 0 for w /∈ Tθ ∗MG = {0}
as well asMG = {x0}. When using instance noise with standard deviation σ , h becomes

h(ψ) = E x∼N (x0,σ2I)
[
|ψTx|2

]
= ψT E x∼N (x0,σ2I)

[
xxT
]

ψ

= ψT
[
x0xT0 +σ

2I
]

ψ

= |ψTx0|2 +σ
2‖ψ‖2

(5.38)

Hence,MD = {0} and ∂ 2
wh(ψ∗) = |wTx0|2+σ2 ‖w‖2 6= 0 when w 6= 0 and σ 6= 0. Assump-

tion III is therefore satisfied. Moreover, supp pD = X = supp pθ for all θ , Assumption IV
is hence also true. Theorem 5.8 is therefore applicable, showing that the Dirac-GAN with
instance noise is linearly convergent to (θ ∗,ψ∗), confirming our results from Chapter 4.

Ellipse Let us consider the Ellipse example from Chapter 1: in this example, p0 is given
by a uniform distribution on [0,2π], i.e. p0 = U [0,2π], and pD is a uniform distribution
on an ellipse with width w and height h in the two-dimensional plane. Moreover, we have
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defined the generator and discriminator as

Gθ (z) =
(

θ1 cos(z)
θ2 sin(z)

)
and Dψ(x) = ψ1x2

1 +ψ2x2
2 (5.39)

As discussed in Chapter 1, the equilibrium point in this example is at θ ∗ = (w
2 ,

h
2) and

ψ∗ = 0. Assumption IV is again not satisfied. However, the proof of Lemma 5.2 still holds,
since Dψ∗(x) = 0 for all x ∈ X . The Jacobian of the gradient vector field at (θ ∗,ψ∗) is
therefore given by

v′(θ ∗,ψ∗) =
(

0 −KT
DG

KDG KDD

)
(5.40)

Here, KDD is

KDD = ρ2 E x∼pD
[
∇ψDψ∗(x)∇ψDψ∗(x)T

]∣∣
ψ=ψ∗

= ρ2 E z∼U [0,2π]

[
θ ∗1

4 cos4(z) θ ∗1
2
θ ∗2

2 cos2(z)sin2(z)
θ ∗1

2
θ ∗2

2 cos2(z)sin2(z) θ ∗2
4 sin4(z)

]
=

1
8

ρ2

(
3θ ∗1

4
θ ∗1

2
θ ∗2

2

θ ∗1
2
θ ∗2

2 3θ ∗2
4

) (5.41)

Hence detKDD = 1
8 ρ2

2 θ ∗1
4
θ ∗2

4 6= 0 if θ ∗1 ,θ
∗
2 6= 0 and ρ2 6= 0. Similarly, KDG is

KDG = ρ1
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

=
ρ1

2
∂

∂θ

(
θ 2

1
θ 2

2

)∣∣∣∣
θ=θ ∗

= ρ1

(
θ ∗1 0
0 θ ∗2

) (5.42)

If θ ∗1 ,θ
∗
2 6= 0, KDG has therefore full column rank. Although Assumption IV is not satisfied

in this example, Lemma 5.5 is still applicable, showing that the GAN training example
is linearly convergent to (θ ∗,ψ∗) close to the equilibrium point. This example shows that
Theorem 5.8 only gives a sufficient condition for convergence and the system can still be
stable if the conditions for Theorem 5.8 are not satisfied. Indeed, experimentally we find
that (unregularized) GAN training converges for this example, see Figure 5.1.

Four Points We now consider the Four Points example from Chapter 1. The discriminator
is again given by

Dψ(x) = ψ1x2
1 +ψ2x2

2 (5.43)

However, the generator is now given by the discrete distribution

pθ =
1
4
(δ(−θ1,−θ2)+δ(−θ1,θ2)+δ(θ1,−θ2)+δ(θ1,θ2)) (5.44)
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Moreover, we have defined pD = pθ ∗ for some θ ∗ ∈ R2. At the equilibrium, we again have
ψ∗ = 0. Note that this example is very similar to the previous example. Assumption IV is
again not satisfied. However, in this case we have

KDD = ρ2

(
θ ∗1

4
θ ∗1

2
θ ∗2

2

θ ∗1
2
θ ∗2

2
θ ∗2

4

)
(5.45)

This implies that detKDD = 0. For this example, Lemma 5.5 is hence not applicable. Indeed,
we find that the Jacobian v′(θ ∗,ψ∗) has eigenvalues on the imaginary axis for h = w and
is very ill-conditioned for h 6= w. The training dynamics are hence not convergent in this
example, see Figure 5.1. In the next chapter we will see how we can handle this and similar
cases.

5.5 Conclusion

In this chapter we have presented a generalized version of the GAN convergence theory
by Nagarajan and Kolter [136]. While this convergence theory shows that GAN training
is locally asymptotically stable in the absolutely continuous case, this condition is not
satisfied for general GANs. Indeed, even our simple example from Chapter 3 does not
satisfy this condition. In the next chapter we therefore use the tools from this chapter to
analyze generalizations of the gradient regularizer from Chapter 3 for general GANs.
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The results from Chapter 5 show that GAN training is locally convergent under Assumption I,
II, III and IV. Assumption I, II and III hold for simple examples of GAN training and it
can be argued that they hold at least approximately for more complex cases. In contrast,
Assumption IV is much stronger and does not even hold for simple examples such as the
Dirac-GAN from Chapter 3 and 4.

Typically, Assumption IV holds for absolutely continuous data and generator distributions
(e.g. Gaussian distributions), but does not hold for other cases. This explains why instance
noise [6, 177], i.e. Gaussian noise on the data and generator distributions, helps stabilize
GAN training. However, instance noise introduces additional noise into GAN training,
which is not desirable. Indeed, as we have seen in Chapter 4, the amount of noise to achieve
stability can be too large for a practical algorithm for high-dimensional output spaces.

In Chapter 3 and 4 we have shown that zero-centered gradient penalties have a similar
effect as instance noise for the Dirac-GAN. In this chapter we generalize this result to
more complex GANs. To this end, we introduce simple regularizers based on zero-centered
gradient penalties and show that these regularizers make the system exponentially stable.

While gradient-based regularizers have been proposed before [64, 98, 169], these regular-
izers were more complicated. Moreover, none of the previous works showed the influence
of gradient penalties on local convergence properties of the system. Indeed, our convergence
analysis can only be extended to the regularizer by Roth et al. [169], but does not hold for
the regularizers by Gulrajani et al. [64] and Kodali et al. [98]. As we have seen in Chapter 3,
the latter two methods do not always converge.

6.1 Gradient Penalties

Our analysis in Chapter 3 and 4 suggests that the main effect of zero-centered gradient
penalties on local stability is to penalize the discriminator for deviating from the Nash
equilibrium. The simplest way to achieve this is to penalize the gradient on real data alone:
when the generator distribution produces the true data distribution and the discriminator
is equal to zero on the data manifold, the gradient penalty ensures that the discriminator
cannot create a non-zero gradient orthogonal to the data manifold without suffering a loss
in the GAN game. This leads to the following regularization term:

R1(θ ,ψ) :=
γ

2
E pD(x)

[
‖∇Dψ(x)‖2] (6.1)
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Algorithm 4 AltGD with zero-centered Gradient Penalties
1: while not converged do
2: θ ← θ −hg∇θL(θ ,ψ)
3: ψ ← ψ +hd∇ψ(L(θ ,ψ)−Ri(θ ,ψ))
4: end while

Algorithm 5 SimGD with zero-centered Gradient Penalties
1: while not converged do
2: δθ ←−∇θL(θ ,ψ)
3: δψ ← ∇ψ(L(θ ,ψ)−Ri(θ ,ψ))
4: θ ← θ +hgvθ

5: ψ ← ψ +hdvψ

6: end while

Note that this regularizer is a simplified version of to the regularizer derived by Roth et al.
[169], which is defined as

γ E x∼pθ

[
(1−σ(Dψ(x)))2‖∇xDψ(x)‖2] + γ E x∼pD

[
σ(Dψ(x)))2‖∇xDψ(x)‖2] (6.2)

However, our regularizer does not contain the additional weighting terms and penalizes the
discriminator gradients only on the true data distribution.

We also consider a similar regularization term given by

R2(θ ,ψ) :=
γ

2
E x∼pθ

[
‖∇Dψ(x)‖2] (6.3)

where we penalize the discriminator gradients on the current generator distribution instead
of the true data distribution.

When we combine R1- or R2-regularization with Alternating Gradient Descent (AltGD),
we obtain Algorithm 4. Similarly, when we use Simultaneous Gradient Descent (SimGD)
instead of AltGD, we obtain Algorithm 5. Note that for the Dirac-GAN from Chapter 3,
both regularizers reduce to the gradient penalty from Chapter 3 whose behavior is visualized
in Figure 3.4g and Figure 3.4h.

6.2 Assumptions

In this chapter we present convergence results for the regularized GAN training dynamics
for both regularization terms R1(·) and R2(·) under some suitable assumptions. In particular,
we show that we can remove Assumption IV when we introduce the regularization terms
R1(·) and R2(·).

As in Chapter 5, we assume variants of Assumption I, II and III, but do not assume
Assumption IV. However, since we do not assume that pD and pθ have locally the same
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support, we have to define the function h slightly differently now:

h̃(ψ) := E x∼pD
[
|Dψ(x)|2 +‖∇xDψ(x)‖2] (6.4)

Moreover, as before, we define

g(θ) := E x∼pθ

[
∇ψDψ(x)|ψ=ψ∗

]
(6.5)

The reparameterization manifolds are now defined as

MG := {θ | pθ = pD} M̃D := {ψ | h̃(ψ) = 0} (6.6)

We can now state our assumptions. Assumption I becomes

Assumption I′. We have pθ ∗ = pD and Dψ∗(x) = 0 for all x ∈ X .

Note that we now assume that Dψ∗(x) = 0 for all x ∈ X . We need this variant of As-
sumption I, since Dψ∗(x) = 0 for x ∈ supp pD is not enough to ensure that (θ ∗,ψ∗) is a
stationary point of v(·) when Assumption IV is not satisfied. Since we only consider local
convergence, we can always restrict X to some local neighborhood of supp pD. However,
for a simpler exposition, we assume Dψ∗(x) = 0 for all x ∈ X here.

The next two assumptions are the same as Assumption II and III, but Assumption III′

uses h̃ from (6.4) instead of h from (5.1).

Assumption II′. ϕ1 and ϕ2 are twice differentiable at 0 and (ϕ1,ϕ2) is strictly valid.1

Assumption III′. There are ε-balls Bε(θ
∗) and Bε(ψ

∗) around θ ∗ and ψ∗ so thatMG∩
Bε(θ

∗) and M̃D∩Bε(ψ
∗) define C1- manifolds. Moreover, the following holds:

(i) if w ∈ Rn is not in the tangent space of M̃D at ψ∗, then ∂ 2
wh̃(ψ∗) 6= 0.

(ii) if w ∈ Rm is not in the tangent space ofMG at θ ∗, then ∂wg(θ ∗) 6= 0.

6.3 Linearization

To derive our convergence theory for the regularized GAN training dynamics, we have to
understand the behavior of the regularized vector field ṽi(·), defined by

ṽi(θ ,ψ) :=
(

−∇θL(θ ,ψ)
∇ψL(θ ,ψ)−∇ψRi(θ ,ψ)

)
(6.7)

Here, Ri(θ ,ψ) with i ∈ {1,2} is defined as in in (6.1) and (6.3) and

L(θ ,ψ) = Ex∼pθ

[
ϕ1(Dψ(x))

]
+Ex∼pD

[
ϕ2(−Dψ(x))

]
(6.8)

Since, we already have derived expressions for ∇θL(θ ,ψ) and ∇ψL(θ ,ψ) in Lemma 6.1,
we only have to derive similar expressions for ∇ψR1(θ ,ψ) and ∇ψR2(θ ,ψ).

1See Definition 1.9 for the definition of “strictly valid”.
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Lemma 6.1. The gradients ∇ψR1(θ ,ψ) and ∇ψR2(θ ,ψ) of the regularization terms R1(·)
and R2(·) with respect to ψ are

∇ψR1(θ ,ψ) = γ E x∼pD
[
∇ψ,xDψ(x)∇xDψ(x)

]
(6.9)

∇ψR2(θ ,ψ) = γ E x∼pθ

[
∇ψ,xDψ(x)∇xDψ(x)

]
(6.10)

Proof. These equations can be derived by taking the gradient of (6.1) and (6.3) with respect
to ψ .

To understand the local structure of ṽi(·) near (θ ∗,ψ∗), we have to understand the
Jacobian ṽ′i(θ

∗,ψ∗). To this end, we first derive a closed-form expression for ∇2
ψRi(θ

∗,ψ∗).

Lemma 6.2. The partial Hessians ∇2
ψR2(θ

∗,ψ∗) and ∇2
ψR1(θ

∗,ψ∗) of the regularization
terms R1(·) and R2(·) with respect to ψ at (θ ∗,ψ∗) are both given by

∇
2
ψRi(θ

∗,ψ∗) = γ E x∼pD
[
∇ψ,xDψ(x)∇ψ,xDψ(x)T

]∣∣
ψ=ψ∗

(6.11)

Moreover, both regularization terms satisfy ∇ψ,θ Ri(θ
∗,ψ∗) = 0.

Proof. ∇2
ψRi(θ

∗,ψ∗) can be computed by taking the derivative of (6.9) and (6.10) with re-
spect to ψ and using that by Assumption I′ we have Dψ∗(x)= 0 and hence also ∇xDψ∗(x)= 0
for x ∈ X .

Moreover, we clearly have ∇ψ,θ R1(θ
∗,ψ∗) = 0, because R1(·) does not depend on θ . To

compute ∇ψ,θ R2(θ
∗,ψ∗), we use the fact that ∇xDψ∗(x) = 0 for all x ∈ X which implies

∇ψR2(θ ,ψ
∗) = 0 for all θ ∈ΩG and hence also ∇ψ,θ R2(θ

∗,ψ∗) = 0.

Using Lemma 6.2, we can derive a closed-form expression for ṽ′i(θ
∗,ψ∗). As in Chapter 5,

we define ρ1 := ϕ ′1(0) = ϕ ′2(0) and ρ2 :=−ϕ ′′1 (0)−ϕ ′′2 (0). Note that Assumption II′ and
Lemma 1.12 imply that ρ1 6= 0 and ρ2 > 0.

Lemma 6.3. Assume that (θ ∗,ψ∗) satisfies Assumption I′. The Jacobian of the regularized
gradient vector fields ṽi(·) for i ∈ {0,1} at (θ ∗,ψ∗) is then

ṽ′i(θ
∗,ψ∗) =

(
0 −KT

DG
KDG −K̃DD

)
. (6.12)

where K̃DD = KDD +LDD. The terms KDG, KDD and LDD are given by

KDG = ρ1
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

(6.13)

KDD = ρ2 E x∼pD
[
∇ψDψ(x)∇ψDψ(x)T

]∣∣
ψ=ψ∗

(6.14)

LDD = γ E x∼pD
[
∇ψ,xDψ(x)∇ψ,xDψ(x)T

]∣∣
ψ=ψ∗

(6.15)

Proof. The proof is almost the same as in Lemma 5.2, but we cannot use Assumption IV
anymore in the proof. However, going over the proof of Lemma 5.2, we see that we can
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instead use Dψ∗(x) = 0 for all x ∈ X (Assumption I′) wherever we used Assumption IV.
The expression of LDD follows directly from Lemma 6.2.

6.4 Convergence

After having analyzed the local structure of the regularized gradient vector field (6.7), we
now want to apply Theorem 2.5 to show local convergence of both SimGD and AltGD for the
regularized GAN training dynamics. To this end, we have to show that under Assumption I′,
II′ and III′,MG×M̃D consists only of stationary points of ṽi(·) and that ṽ′i(θ

∗,ψ∗) has
only eigenvalues with negative real-part orthogonal to Tθ ∗MG×Tψ∗M̃D.

Again, we first show thatMG×M̃D consists only of stationary points of the regularized
gradient vector fields ṽi(·).

Lemma 6.4. MG ×M̃D consists only of stationary points of ṽi(·) for i ∈ {1,2}, i.e.
ṽi(θ ,ψ) = 0 for all (θ ,ψ) ∈MG×M̃D.

Proof. As in the proof of Lemma 5.3 we see that

∇ψL(θ ∗,ψ∗) = E x∼pD
[
ϕ
′
1(0)∇ψDψ(x)−ϕ

′
2(0)∇ψDψ(x)

]
= 0 (6.16)

Now consider ∇θL(θ ,ψ). By Lemma 5.1 we have

∇θL(θ ,ψ) = E z∼p0

[
ϕ
′
1(Dψ(Gθ (z))

[
∂Gθ

∂θ
(z)
]T
·∇xDψ(Gθ (z))

]
(6.17)

However, for θ ∈MG we have pθ = pD and thus Gθ (z)∈ supp pD. Moreover, for ψ ∈M̃D

we have ∇xDψ(x) = 0 for all x ∈ supp pD and therefore ∇xDψ(Gθ (z)) = 0. Thus, for
(θ ,ψ) ∈MG×M̃D,

∇θL(θ ,ψ) = E z∼p0

[
ρ1

[
∂Gθ

∂θ
(z)
]T
·0

]
= 0 (6.18)

Finally, consider ∇ψRi(θ ,ψ). By Lemma 6.1, we have

∇ψR1(θ ,ψ) = γ E x∼pD
[
∇ψ,xDψ(x)∇xDψ(x)

]
(6.19)

∇ψR2(θ ,ψ) = γ E x∼pθ

[
∇ψ,xDψ(x)∇xDψ(x)

]
(6.20)

However, for (θ ,ψ) ∈MG×M̃D we have pθ = pD and ∇xDψ(x) = 0 for all x ∈ supp pD.
This shows that for i ∈ {1,2}

∇ψRi(θ ,ψ) = γ E x∼pD
[
∇ψ,xDψ(x) ·0

]
= 0 (6.21)

This shows the conclusion.

Again, we can directly draw a conclusion about the interaction term KDG from Lemma 6.4.
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Lemma 6.5. Let KDG be defined as in Lemma 6.3. Then the following assertions hold:

i) KDGw = 0 for all w ∈ Tθ ∗MG

ii) KT
DGw = 0 for all w ∈ Tψ∗M̃D

iii) KDGw ∈ (Tψ∗M̃D)
⊥ for all w ∈ Rn

iv) KT
DGw ∈ (Tθ ∗MG)

⊥ for all w ∈ Rm

Proof. The proof is identical to the proof of Lemma 5.4 except that we use Lemma 6.3 and
Lemma 6.4 instead of Lemma 5.2 and Lemma 5.3.

To prove local stability, we have to show that ṽ′(θ ∗,ψ∗) is well behaved when restricting
it to the orthogonal complement of the tangent space ofMG×M̃D at (θ ∗,ψ∗). We therefore
now derive results that are analogous to Lemma 5.6 and Lemma 5.7 from Chapter 5.

Lemma 6.6. Assume that Assumption I′, II′ and III′ hold. If w 6= 0 is not in the tangent
space of M̃D at ψ∗, then wTK̃DDw > 0.

Proof. By Lemma 5.2, we have

wTKDDw = ρ2 E x∼pD

[(
∇ψDψ∗(x)Tw

)2
]

(6.22)

and by Lemma 6.3
wTLDDw = γ E x∼pD

[∥∥∇x,ψDψ∗(x)w
∥∥2
]

(6.23)

By Assumption II, we have ρ2 > 0. Hence, wTK̃DDw≥ 0 and wTK̃DDw = 0 implies

∇ψDψ∗(x)w = 0 and ∇x,ψDψ∗(x)w = 0 (6.24)

for all x ∈ supp pD.
Recall that

h̃(ψ) := E x∼pD
[
|Dψ(x)|2 +‖∇xDψ(x)‖2] (6.25)

Using the fact that Dψ(x) = 0 and ∇xDψ(x) = 0 for x ∈ supp pD, we see that the Hessian
of h̃(ψ) at ψ∗ is

∇
2
ψ h̃(ψ∗) = 2E x∼pD

[
∇ψDψ(x)∇ψDψ(x)T+∇ψ,xDψ(x)∇ψ,xDψ(x)T

]
(6.26)

The second directional derivative ∂ 2
wh̃(ψ) is therefore

∂
2
wh̃(ψ) = 2E x∼pD

[
|∇ψDψ(x)Tw|2 +‖∇x,ψDψ(x)w‖2]= 0 (6.27)

By Assumption III, this can only hold if w is in the tangent space of M̃D at ψ∗.

We also need a result which is analogous to Lemma 5.7.

Lemma 6.7. Assume that Assumption I′, II′ and III′ hold. If w ∈ Rn is not in the tangent
space Tθ ∗MG ofMG at θ ∗, then KDGw /∈ Tψ∗M̃D
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6.4 Convergence

Proof. The proof is identical to the proof of Lemma 5.7, but we use Lemma 6.5 instead of
Lemma 5.4.

We are now ready to state our main convergence result for the regularized GAN training
dynamics:

Theorem 6.8. Assume Assumption I′, II′ and III′ hold for (θ ∗,ψ∗) and that we regularize
the discriminator using either R1(·) or R2(·). For small enough learning rates, SimGD and
AltGD are then both convergent toMG×M̃D in a neighborhood of (θ ∗,ψ∗). Moreover,
the rate of convergence is at least linear.

Proof. First note that by Lemma 6.4MG×M̃D consists only of stationary points of the
regularized gradient vector fields ṽi(·) for i ∈ {0,1}.

We now want to use Theorem 2.5 to show that both SimGD and AltGD are locally
convergent toMG×M̃D for the regularized gradient vector fields ṽi(·). To this end, let
Tθ ∗MG and Tψ∗M̃D denote the tangent spaces ofMG and M̃D at θ ∗ and ψ∗ and let BG ∈
Rn×l1 and BD ∈Rm×l2 denote orthogonal bases of (Tθ ∗MG)

⊥ and (Tψ∗M̃D)
⊥, respectively.

Moreover, let

B :=
(

BG 0
0 BD

)
∈ R(n+m)×(l1+l2) (6.28)

As in the proof of Theorem 5.8 we have to show that BTṽ′i(θ
∗,ψ∗)B has only eigenvalues

with negative real-part.
Using Lemma 6.3, we see that BTṽ′i(θ ,ψ)B is

BTṽ′i(θ
∗,ψ∗)B =

(
0 −BT

GKT
DGBD

BT
DKDGBG −BT

DK̃DDBD

)
(6.29)

As in the proof of Theorem 5.8 we now show that BT
DK̃DDBD is positive definite and

BT
DKDGBG has full column rank.
To this end, first note that for any w ∈ Rl1 , we have BDw ∈ (Tψ∗M̃D)

⊥ and hence
BDw /∈ Tψ∗M̃D for w 6= 0. Therefore, by Lemma 6.6, we have

wT
(
BT

DK̃DDBD
)

w = (BDw)TK̃DD(BDw)> 0 (6.30)

for w 6= 0. As a result, we see that BT
DK̃DDBD is symmetric positive definite.

Similarly, since BGw /∈ Tθ ∗M̃G for w 6= 0, we can apply Lemma 6.7 to obtain KDGBG w /∈
Tψ∗M̃D. However, this implies that KDGBGw has a non-zero component orthogonal to
Tψ∗M̃D, i.e. BT

DKDGBG w 6= 0. Since w 6= 0 was arbitrary, this implies that BT
DKDGBG has

full column rank.
Lemma 5.5 now implies that all eigenvalues of BTṽ′i(θ

∗,ψ∗)B have negative real part. By
Theorem 2.5, SimGD and AltGD are therefore both convergent toMG×M̃D near (θ ∗,ψ∗)
for small enough learning rates. Moreover, the rate of convergence is at least linear.

Theorem 6.8 shows that GAN training with our gradient penalties is convergent when
initialized sufficiently close to the equilibrium point. While this does not show that the
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Figure 6.1: Four Points. Quantitative results for the Four Points Example for h = w = 1.
The graph shows the Wasserstein divergence between the target distribution pθ ∗ and the
generator distribution pθ over the number of iterations. While unregularized GAN training
does not converge, training with R1- and R2-regularization leads to convergence. For this
plot we use AltGD, but the results for SimGD look similar.

method is globally convergent, it at least shows that near the equilibrium the method is
well-behaved.

6.5 Examples

Again, we consider some examples. More specifically, we reconsider the two non-convergent
examples from Section 5.4 and discuss how zero-centered gradient penalties lead to local
convergence in these cases.

Dirac-GAN For the Dirac-GAN, we have h̃(ψ) = |ψTx0|2 +‖ψ‖2. As a result, M̃D =
{0} and ∂ 2

wh̃(ψ∗) = |wTx0|2+‖w‖2 6= 0 for w 6= 0. The conditions of Assumption I′, II′ and
III′ are hence all satisfied and Theorem 6.8 therefore shows that the GAN training dynamics
are convergent near (θ ∗,ψ∗). Indeed, as we have seen in Chapter 4, the multidimensional
Dirac-GAN with zero-centered gradient penalties is locally convergent.
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Four Points Using Lemma 6.3 we see that in this case

KDD = ρ2

(
θ ∗1

4
θ ∗1

2
θ ∗2

2

θ ∗1
2
θ ∗2

2
θ ∗2

4

)
(6.31)

LDD = 4γ

(
θ ∗1

2 0
0 θ ∗2

2

)
(6.32)

KDG = 2ρ1

(
θ ∗1 0
0 θ ∗2

)
(6.33)

In particular, we see that LDD and KDG have both full rank for θ ∗1 ,θ
∗
2 6= 0. Lemma 6.3 and

Lemma 5.5 hence imply that the Jacobian v′(θ ∗,ψ∗) only has eigenvalues with negative
real part. Both SimGD and AltGD are hence locally convergent near (θ ∗,ψ∗). Indeed, a
straightforward calculation shows that Assumption I′, II′ and III′ hold in this case and
Theorem 6.8 is hence applicable. Figure 6.1 shows the Wasserstein divergence between pθ

and pθ ∗ over the number of iterations for h=w= 1. As predicted theoretically, unregularized
GAN training is not convergent, while R1- and R2-regularization lead to convergence.

In summary, we see that R1- and R2-regularization ensures convergence of the non-
convergent examples from Section 5.4.

6.6 Extensions

In Theorem 6.8 we have proved local convergence of the regularized GAN training dynamics
under Assumption I′, II′ and III′. However, practitioners often use variants of the training
algorithm that do not satisfy these assumptions.

For example, in the original GAN paper, Goodfellow et al. [62] proposed a non-saturating
version of GAN training which is not a zero-sum game anymore. Similarly, Wasserstein
GANs (WGANs) [5] use linear activation functions ϕ1(t) = ϕ2(t) = t, which do not satisfy
Assumption II′. Finally, Roth et al. [169] proposed a more complex version of our zero-
centered gradient penalties and showed empirically that this regularizer stabilizes the GAN
training dynamics.

However, as it turns out, our theory can be easily extended to these cases as well.

6.6.1 Nonsaturating GAN

We first discuss the nonsaturating GAN training dynamics, proposed by Goodfellow et al.
[62]. In non-saturating GANs, the generator is trained to maximize

E z∼p0

[
ϕ1(−Dψ(Gθ (z)))

]
(6.34)

instead of minimizing
E z∼p0

[
ϕ1(Dψ(Gθ (z)))

]
(6.35)

Effectively, this means that ϕ1(t) is replaced with −ϕ1(−t) when training the generator.
However, we have
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Lemma 6.9. When we replace ϕ1 with some other differentiable function ϕ̃1 such that
ϕ ′1(0) · ϕ̃ ′1(0)> 0 when training the generator, the results of Theorem 6.8 still hold.

Proof (Sketch). Almost all steps in the proof of Theorem 6.8 still hold. The only difference
is that the Jacobian at (θ ∗,ψ∗) is now

ṽ′i(θ
∗,ψ∗) =

(
0 − ϕ̃ ′1(0)

ϕ ′1(0)
KT

DG

KDG K̃DD

)
. (6.36)

However, this implies that BTṽ′i(θ
∗,ψ∗)B is

BTṽ′i(θ
∗,ψ∗)B =

(
0 − ϕ̃ ′1(0)

ϕ ′1(0)
BT

GKT
DGBD

BT
DKDGBG −BT

DK̃DDBD

)
(6.37)

Using Corollary A.4 with h1 =
ϕ̃ ′1(0)
ϕ ′1(0)

, we see that the eigenvalues of (6.37) are equal to the
eigenvalues of  0 −

√
ϕ̃ ′1(0)
ϕ ′1(0)

BT
GKT

DGBD√
ϕ̃ ′1(0)
ϕ ′1(0)

BT
DKDGBG −BT

DK̃DDBD

 (6.38)

However, the matrix in (6.38) can be treated in the same way as the matrix in (6.29). The
rest of the proof of Theorem 6.8 hence still applies.

6.6.2 Linear Activations

In the proof of Theorem 6.8 we have assumed that (ϕ1,ϕ2) is strictly valid and therefore
ϕ ′′1 (0)+ϕ ′′2 (0)< 0. This excludes the function ϕ1(t) = ϕ2(t) = t which is used in WGANs.
We now show that our convergence proof extends to the case where ϕ1(t) = ϕ2(t) = t when
we modify Assumption III′ as little bit.2

Lemma 6.10. When we replace h̃(ψ) with

h̃(ψ) := E x∼pD
[
‖∇xDψ(x)‖2] (6.39)

and M̃D with M̃D := {ψ | h̃(ψ) = 0} the results of Theorem 6.8 still hold for ϕ1(t) =
ϕ2(t) = t.

Proof (Sketch). Almost everything in the proof of Theorem 6.8 still holds for these modified
assumptions. The only thing that we have to show is thatMG×M̃D still consists only of
stationary points and that Lemma 6.6 still holds in this setting.

To see the former, note that by Lemma 5.1 we still have ∇θL(θ ,ψ) = 0 for (θ ,ψ) ∈
MG×M̃D, because we have ∇xDψ(x) = 0 for ψ ∈ M̃D and x ∈ supp pD. On the other
hand, for ϕ1(t) = ϕ2(t) = t we also have ∇ψL(θ ,ψ) = 0 if θ ∈MG, because for θ ∈MG

2We can also relax Assumption I′ to Dψ∗(x) = const. for all x ∈ X in this case.
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the definition ofMG implies that pθ = pD and hence, by Lemma 5.1,

∇ψL(θ ,ψ) = E x∼pD
[
∇ψDψ(x)

]
−E x∼pD

[
∇ψDψ(x)

]
= 0 (6.40)

To see why Lemma 6.6 still holds, first note that for ϕ1(t) = ϕ2(t) = t, we have ρ2 = 0, so
that, by Lemma 6.3, KDD = 0. Hence,

wTK̃DDw = wTLDDw (6.41)

We therefore have to show that wTLDDw 6= 0 if w is not in the tangent space of M̃D.
However, we have seen in the proof of Lemma 6.6 that

wTLDDw = γ E x∼pD

[∥∥∇x,ψDψ∗(x)w
∥∥2
]
. (6.42)

Hence wTLDDw = 0 implies ∇x,ψDψ∗(x)w = 0 for x ∈ supp pD and thus

∂
2
wh̃(ψ) = 2E x∼pD

[
‖∇x,ψDψ(x)w‖2]= 0. (6.43)

By Assumption III, this can only be the case if w is in the tangent space of M̃D. This
concludes the proof.

6.6.3 Other Gradient Penalties

In Section 6.2, we have seen that both regularizers R1(·) and R2(·) from Section 6.1 make
the GAN training dynamics locally convergent. In Section 6.1 we briefly discussed a similar,
but more complex regularizer that was proposed by Roth et al. [169] who tried to find a
computationally efficient approximation to instance noise. The regularizer (6.2) proposed
by Roth et al. [169] is given by a linear combination of R1(·) and R2(·) where the weighting
is adaptively chosen depending on the value of the discriminator Dψ(·) at a data point x.
The regularizer RRoth(θ ,ψ) is defined as

γ E x∼pθ

[
(1−σ(Dψ(x)))2‖∇xDψ(x)‖2] + γ E x∼pD

[
σ(Dψ(x)))2‖∇xDψ(x)‖2] (6.44)

Indeed, we can show that our convergence proof extends to this regularizer (and a slightly
more general class of regularizers).

Lemma 6.11. When we replace the regularization terms R1(θ ,ψ) and R2(θ ,ψ) with
R3(θ ,ψ) given by

E x∼pθ

[
ν1(Dψ(x))‖∇xDψ(x)‖2]+E x∼pD

[
ν2(Dψ(x))‖∇xDψ(x)‖2] (6.45)

so that ν1(0)+ν2(0)> 0, the results of Theorem 6.8 still hold.

Proof (Sketch). Again, we have to show thatMG×M̃D still consists only of stationary
points and that Lemma 6.6 still holds in this setting.

However, by using ∇xDψ(x) = 0 for x ∈ supp pD and ψ ∈ M̃D, it is easy to see that
∇ψR3(θ ,ψ) = 0 for all (θ ,ψ) ∈MG×M̃D, which implies thatMG×M̃D still consists
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only of stationary points.
To see why Lemma 6.6 still holds in this setting, note that (after a little bit of algebra) we

still have ∇ψ,θ R3(θ
∗,ψ∗) = 0 and

∇
2
ψR3(θ

∗,ψ∗) = (ν1(0)+ν2(0))LDD. (6.46)

because ∇xDψ∗(x) = 0 for all x ∈ X . The proof of Lemma 6.6 therefore still applies in this
setting. The rest of the proof is identical to the proof of Theorem 6.8.

6.7 Conclusion

In this chapter we have introduced and analyzed R1- and R2-regularization. These regulariz-
ers are generalizations of the zero-centered gradient penalties from Chapter 3. Surprisingly,
both regularizers exhibit a similar qualitative behavior for general GANs as for the Dirac-
GAN. In particular, when we use R1- or R2-regularization, both Simultaneous Gradient
Descent and Alternating Gradient Descent become locally asymptotically stable near the
equilibrium point, even when the data distribution is not absolutely continuous. In the next
chapter we take this analysis even further and derive formulas for convergence rates.
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In Chapter 6 we have shown that Generative Adversarial Networks (GANs) are locally
convergent when appropriately regularized. However, so far our theory is incomplete: in
Chapter 6 we could only show the existence of a learning rate h that leads to convergence,
but we could not make statements about the magnitude of h nor the rate of convergence. This
is problematic, since convergence could in principle be too slow for a practical algorithm.
For example, as discussed in Chapter 2, this can happen for Simultaneous Gradient Descent
when the Jacobian of the gradient vector field at the equilibrium point has eigenvalues with
large imaginary part. In general, to learn more about the rate of convergence, we have to
gain a deeper understanding of the eigenvalues of the Jacobian of the update operator.

In this chapter we therefore derive eigenvalue bounds for the Jacobian of the update
operator. This will enable us to derive convergence rates for (deterministic) GANs using
Simultaneous Gradient Descent (SimGD) or Alternating Gradient Descent (AltGD). This
analysis is insightful, as it highlights the role of the different learning rates as well as the
conditioning of the GAN training dynamics.

7.1 Eigenvalue bounds

Recall that the Jacobian at the equilibrium point (Lemma 6.3) can be written as

v′(θ ∗,ψ∗) =
(

0 −KT
DG

KDG −K̃DD

)
(7.1)

To derive convergence rates for SimGD and AltGD, we first have to understand the eigen-
values of the Jacobian at the equilibrium point in (7.1).

In this section we therefore first state eigenvalue bounds for matrices of the form

J =

(
0 −PT

P −Q

)
(7.2)

where Q ∈Rm×m is symmetric positive semi-definite and P ∈Rm×n. Note, that the Jacobian
in (7.1) is a special case of (7.2) with P = KDG and Q = K̃DD. For simplicity we assume
n = m in this section. While this condition is not necessarily true for every GAN, it is true
for all examples (e.g. the Dirac-GAN) we have considered so far.

We would like to state the bounds in terms of the singular values of Q and P. In the
following, we therefore denote the minimal and maximal singular value of Q by ηmin and
ηmax, respectively. Since Q is symmetric positive semi-definite, the singular values of Q
are equal to the eigenvalues of Q. Moreover, we denote the minimal and maximal singular
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7 Convergence Rates

values of P by smin and smax, respectively. As we assume n = m in this chapter, the squared
singular values of P are equal to the eigenvalues of PPT.

In prior work Nagarajan and Kolter [136] proved eigenvalue bounds for matrices as in
(7.2). More specifically, assuming that P has full column-rank, Nagarajan and Kolter [136]
could prove that eigenvalues of (7.2) satisfy

ℜ(λ )≤−ηmin

2
if ℑ(λ ) = 0 (7.3)

ℜ(λ )≤− λmin(PTP)
ηmaxηmin +λmin(PTP)

if ℑ(λ ) 6= 0 (7.4)

where λmin(PT P) denotes the minimum eigenvalue of PTP.
Nagarajan and Kolter [136] did not assume n = m. However, it turns out that when we

assume n = m, we can derive much tighter bounds. More specifically we reformulate the
problem of finding eigenvalues of (7.2) as a quadratic eigenvalue problem [187]. Our new
eigenvalue bounds are tight in the sense that no bound that depends only on the minimum
and maximum singular values of P and Q can be tighter (Lemma C.3). Our approach
also yields additional insights into the spectrum of the Jacobian at equilibrium points. In
particular, we derive lower bounds for ℜ(λ ) as well as lower and upper bounds for ℑ(λ ),
all of which do not directly follow from the analysis by Nagarajan and Kolter [136]. As a
result, our new bounds enable us to derive convergence bounds for SimGD and AltGD in
Section 7.2 and 7.3.

We first state our main result, which we prove in Appendix C.

Theorem 7.1. Let

J =

(
0 −PT

P −Q

)
∈ R2n×2n (7.5)

with P ∈ Rn×n and Q ∈ Rn×n. Moreover, assume that Q is symmetric positive semi-definite
and let ηmin and ηmax denote the minimum and maximum singular value of Q. Similarly,
let smin and smax denote the smallest and largest singular value of P. Then the following
assertions hold:

• If 1
2 ηmax < smin, all eigenvalues of J satisfy ℑ(λ ) 6= 0.

• If smax ≤ 1
2 ηmin, all eigenvalues of J satisfy ℑ(λ ) = 0.

• All eigenvalues λ of J with ℑ(λ ) 6= 0 satisfy

−ηmax

2
≤ℜ(λ )≤ −ηmin

2
(7.6)

• All eigenvalues λ of J with ℑ(λ ) = 0 satisfy

− ηmax

2
−
√

η2
max

4
− s2

min ≤ℜ(λ )≤−ηmax

2
+

√
η2

max

4
− s2

min (7.7)
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7.1 Eigenvalue bounds

• All eigenvalues λ of J satisfy√
s2

min−
η2

max

4
≤ |ℑ(λ )| ≤

√
s2

max−
η2

min
4

(7.8)

Here, the lower bound in (7.8) holds as long as the expression inside the square root
is non-negative, i.e. when 1

2 ηmax < smin.

• All eigenvalue with ℑ(λ ) 6= 0 satisfy

smin ≤ |λ | ≤ smax (7.9)

Proof. Please see Appendix C.

Note that our upper bound in (7.6) for ℑ(λ ) 6= 0 is equal to the bound (7.3) derived by
Nagarajan and Kolter [136] using different techniques. The bound (7.4) in Nagarajan and
Kolter [136], however, is less tight than our bound, as the next lemma shows:

Lemma 7.2. Our bound for ℜ(λ ) when ℑ(λ ) = 0 in (7.7) can be further bounded by

−ηmax ≤ℜ(λ )≤− s2
min

ηmax
(7.10)

Proof. It is easy to see, that

−ηmax ≤−
ηmax

2
−
√

η2
max

4
− s2

min (7.11)

Hence, −ηmax ≤ℜ(λ ). On the other hand, we have for all t ≥ α > 0:

− t +
√

t2−α2 =
(−t +

√
t2−α2)(t +

√
t2−α2)

t +
√

t2−α2
=

−α2

t +
√

t2−α2
≤ −α2

2t
(7.12)

Inserting t = ηmax
2 and α = smin yields ℜ(λ )≤− s2

min
ηmax

, hence the assertion.

Note that this bound is always lower than the bound (7.4) by Nagarajan and Kolter [136]:
according to Lemma 7.2 all eigenvalues λ of J with ℑ(λ ) 6= 0 satisfy

ℜ(λ )≤− s2
min

ηmax
=− ηmins2

min

ηminηmax
≤− ηmins2

min

ηmaxηmin + s2
min

(7.13)

Note that for m = n we have λmin(PTP) = s2
min, showing that our bound is tighter than the

bound in (7.4).
When we derive convergence rates for AltGD, we need a variant of Theorem 7.1 which

we can prove in a similar way.
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Lemma 7.3. Let

J =

(
0 −PT

P −Q−hPPT

)
∈ R2n×2n (7.14)

with h > 0 and P, Q ∈ Rn×n. Assume that Q is symmetric positive semi-definite and let ηmin

and ηmax denote the minimum and maximum singular value of Q. Similarly, let smin and
smax denote the minimum and maximum singular value of P. Then the following holds:

• Assume that one of the following conditions is true:

i) h≥ 2
smax+smin

and ηmax +hs2
max ≤ 2smax

ii) h≤ 2
smax+smin

and ηmax +hs2
min ≤ 2smin

Then all eigenvalues of J have non-zero imaginary part.

• All eigenvalues λ of J with non-zero imaginary part satisfy

|1+hλ |2 ≤ 1−hηmin (7.15)

Proof. Please see Appendix C.

7.2 Simultaneous Gradient Descent

In this section we show how we can use the theory developed in Section 7.1 to derive tight
convergence bounds for SimGD in GAN optimization. This analysis leads to insights into
the effect of different learning rates for the generator and discriminator. Moreover, it might
be useful as an inspiration to develop novel preconditioners for GAN optimization.

Let hg and hd denote the learning rates of the generator and discriminator, respectively.
For simplicity, we also define h :=

√
hghd and τ =

√
hd/hg. Note that this implies hg = h/τ

and hd = hτ , i.e. we can regard h as the learning rate of the whole system and τ as a modifier
which adjusts the learning rates for the generator and discriminator. Indeed, τ > 1 implies
that the discriminator has a higher learning rate than the generator and τ < 1 implies that
the discriminator has a lower learning rate than the generator.

As in Chapter 6, let Tθ ∗MG and Tψ∗M̃D denote the tangent spaces ofMG and M̃D at
θ ∗ and ψ∗. Moreover, let BG ∈ Rn×l1 and BD ∈ Rm×l2 such that the columns of BG and BD

define orthogonal bases of (Tθ ∗MG)
⊥ and (Tψ∗M̃D)

⊥, respectively. Again, we define

B :=
(

BG 0
0 BD

)
∈ R(n+m)×(l1+l2) (7.16)

Moreover, we assume l1 = l2 =: l. To derive convergence rates for (deterministic) SimGD,
we have to understand the eigenvalues of the Jacobian of the corresponding update operator
orthogonal to Tθ ∗MG and Tψ∗M̃D, i.e. of BTF ′(θ ∗,ψ∗)B.

First, we prove the following general convergence statement for SimGD.
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7.2 Simultaneous Gradient Descent

Lemma 7.4. Let h :=
√

hghd and τ :=
√

hd
hg

. Moreover, let KDG and K̃DD be defined as in
Lemma 6.3 and let

J :=
(

0 −PT

P −τ Q

)
(7.17)

with P := BT
DKDGBG and Q := BT

DK̃DDBD. If all eigenvalues λ of J satisfy |1+hλ | ≤ α < 1,
then SimGD converges in a neighborhood of (θ ∗,ψ∗) with convergence rate at least α .

Proof. Recall from Chapter 6 that the update operator F for SimGD is given by

F(θ ,ψ) =

(
θ −hg∇θL(θ ,ψ)

ψ +hd∇ψ(L(θ ,ψ)−Ri(θ ,ψ))

)
(7.18)

The Jacobian of the update operator F at (θ ∗,ψ∗) is hence given by

F ′(θ ∗,ψ∗) =
(

I −hgKT
DG

hdKDG I−hdK̃DD

)
(7.19)

As a consequence,

BTF ′(θ ∗,ψ∗)B = I +
(

0 −hgPT

hdP −hdQ

)
(7.20)

with P = BT
DKDGBG and Q = BT

DK̃DDBD.
By Corollary A.4, the eigenvalues of BTF ′(θ ∗,ψ∗)B are hence equal to the eigenvalues

of I +hJ with J as in (7.17) and h =
√

hghd . By Theorem B.4, SimGD hence converges
with convergence rate at least α , if |1+hλ | ≤ α < 1 for all eigenvalues λ of J.

Note that this matrix in (7.17) is of the form (7.2) with Q replaced by τ Q and we can
hence apply Theorem 7.1 to it.

In the following, let J := BTṽ′i(θ
∗,ψ∗)B, Q := BT

DK̃DDBD and P := BT
DKDGBG. Moreover,

let ηmin and ηmax denote the minimum and maximum singular value of Q. Similarly, let smin

and smax denote the minimum and maximum singular value of P. We now come to our first
result on the convergence rate of SimGD:

Lemma 7.5. Assume that τ ≤ 2smin
ηmax

and h < τηmin
s2

max
. Then SimGD is convergent with rate at

least
αs,1(h,τ) =

√
1−hτηmin +h2s2

max (7.21)

Proof. The eigenvalues of the Jacobian of the update operator for SimGD are given by
1+hλ where λ denote the eigenvalues of

J :=
(

0 −PT

P −τ Q

)
(7.22)

By Theorem 7.1, all eigenvalues of J have non-zero imaginary part if 1
2 τηmax < smin, i.e. if

τ < 2smin
ηmax

. In this case,
|1+hλ |2 = 1+2hℜ(λ )+h2|λ |2 (7.23)
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7 Convergence Rates

By Theorem 7.1, we know that ℜ(λ )≤−1
2 τηmin and |λ | ≤ smax. Hence,

|1+hλ |2 ≤ 1−hτηmin +h2s2
max (7.24)

Note that this even also holds for τ = 2smin
ηmax

, since in this case all eigenvalues λ with ℑ(λ ) = 0
satisfy ℜ(λ ) =− τηmax

2 by Theorem 7.1 and, as a consequence, |λ |= τηmax
2 = smin. Therefore,

we still have ℜ(λ )≤− τηmin
2 and |λ | ≤ smax.

The expression in (7.24) is smaller than 1 if and only if h < τηmin
s2

max
. Together with

Lemma 7.4, this yields the assertion.

Lemma 7.6. For a fixed τ ≤ 2smin
ηmax

, the bound in (7.21) is minimal as a function of h > 0 for
h∗ = τηmin

2s2
max

in which case

αs,1(h∗,τ) =

√
1−
(

ηminτ

2smax

)2

(7.25)

Moreover, (7.25) is minimal as a function of τ for τ∗ = 2smin
ηmax

and its minimum is given by

α
∗
s =

√
1−
(

ηminsmin

ηmaxsmax

)2

(7.26)

Proof. To obtain the optimal values for h and τ , we again look at the convergence rate in
(7.24). Recall that the bound in (7.24) holds if τ ≤ 2smin

ηmax
. Optimizing (7.24) in terms of h

yields h∗ = ηminτ

2s2
max

and

αs,1(h∗,τ) =

√
1−
(

ηminτ

2smax

)2

(7.27)

Optimizing this in terms of τ under the constraint τ ≤ 2smin
ηmax

yields τ∗ = 2smin
ηmax

and

αs,1(h∗,τ∗) =

√
1−
(

ηminsmin

ηmaxsmax

)2

(7.28)

So far, we have analyzed the regime τ ≤ 2smin
ηmax

where all eigenvalues of J have non-zero
imaginary part. Instead of restricting our analysis to this case, we can also try to control the
real eigenvalues. We therefore now investigate the case where all eigenvalues are on the real
axis.

Lemma 7.7. Assume τ ≥ 2smax
ηmin

. Let

b− :=
τηmax

2
−
√

τ2η2
max

4
− s2

min and b+ :=
τηmax

2
+

√
τ2η2

max

4
− s2

min (7.29)
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7.2 Simultaneous Gradient Descent

and assume h < 2
b+ . Then SimGD is convergent with rate at least

αs,2(h,τ) =

{
1−hb− if h≤ 2

τηmax

hb+−1 else
(7.30)

Proof. To prove the lemma, we again use Lemma 7.4.

If τ ≥ 2smax
ηmin

, i.e. smax ≤ 1
2 τηmin, all eigenvalues λ of J are real-valued by Theorem 7.1

and
−b+ ≤ λ ≤−b− (7.31)

Hence, for all eigenvalues λ of J,

|1+hλ | ≤max
(
|1−hb+|, |1−hb−|

)
(7.32)

Let r := τηmax
2 and s :=

√
r2− s2

min. Then b− = r− s and b+ = r+ s. As a consequence,

(1−hb−)2 = (1−hr)2 +h2 s2 +2(1−hr)hs (7.33)

and similarly,
(1−hb+)2 = (1−hr)2 +h2 s2−2(1−hr)hs (7.34)

Since r,s≥ 0, this implies that

max
(
|1−hb+|, |1−hb−|

)
=

{
|1−hb−| if h≤ 1

r

|1−hb+| else
(7.35)

Moreover, for h≤ 1
r , we have

1−hb− = (1−hr)+hs≥ 0 (7.36)

and hence |1−hb−|= 1−hb−. Similarly, for h≥ 1
r , we have

1−hb+ = (1−hr)−hs≤ 0 (7.37)

and hence |1−hb+|= hb+−1.

All in all, this show

|1+hλ | ≤

{
1−hb− if h≤ 2

τηmax

hb+−1 else
(7.38)

and hence (7.30) as required. Note that hb+−1 < 1 if and only if h < 2
b+ .

Lemma 7.8. For a fixed τ ≥ 2smax
ηmin

, the bound in (7.30) is minimal as a function of h > 0 for
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7 Convergence Rates

h∗ = 2
τηmax

in which case

αs,2(h∗,τ) =

√
1−
(

2smin

τηmax

)2

(7.39)

Moreover, (7.39) is minimal as a function of τ for τ∗ = 2smax
ηmin

and its minimum is given by

α
∗
s =

√
1−
(

ηminsmin

ηmaxsmax

)2

(7.40)

Proof. Clearly, the minimum of the bound αs,2(h,τ) in (7.30) is obtained for h∗ = 2
τηmax

, in
which case

αs,2(h∗,τ) = 1−hb− = hb+−1 =

√
1−
(

2smin

τηmax

)2

(7.41)

Minimizing this with respect to τ under the constraint τ ≥ 2smax
ηmin

yields τ = 2smax
ηmin

and

αs,2(h∗,τ∗) =

√
1−
(

ηminsmin

ηmaxsmax

)2

(7.42)

So far, we have considered two regimes for τ : in the first regime (τ ≤ 2smin
ηmin

), all eigenvalues
of J have non-zero real part. In the second regime (τ ≥ 2smax

ηmax
), all eigenvalues lie on the

real axis. Interesting, when optimizing h and τ in both regimes, we obtain exactly the same
convergence rate for SimGD.

This directly leads to the question if this convergence rate is optimal or if we can achieve
a better convergence rate for 2smin

ηmax
< τ < 2smax

ηmin
. Indeed, naively setting (7.25) equal to (7.39)

and solving for τ would yield the better rate√
1− smin

smax

ηmin

ηmax
(7.43)

Unfortunately, however, this would require conflicting optimal learning rates for (7.25) and
(7.39).1 Nonetheless, we can still find good values for τ and h that yield a better convergence
rate than in (7.26) and (7.40).

Lemma 7.9. For τ = 2smax√
ηminηmax

and h =
√

ηmin
ηmax

1
smax

, SimGD is locally convergent with rate
at least

α
∗∗
s =

√
1−
(

smin

smax

)2
ηmin

ηmax
(7.44)

1Nonetheless, it is easy to see that this is a lower bound (7.43) on the best achievable convergence rate for
SimGD on arbitrary GANs.

102



7.3 Alternating Gradient Descent

This corresponds to the learning rates hg = ηmin
2s2

max
. and hd = 2

ηmax
for the generator and

discriminator, respectively.

Proof. As in Lemma 7.7, we see that for all eigenvalues λ with non-zero imaginary part
(independently of τ)

|1+hλ | ≤
√

1−hτηmin +h2s2
max (7.45)

Similarly, as in Lemma 7.7, for all λ with zero imaginary part

|1+hλ | ≤

{
1−hb− if h≤ 2

τηmax

hb+−1 else
(7.46)

with b−,b+ as in Lemma 7.7. Moreover, as in Lemma 7.6, we see that the bound in (7.45)
is optimal for h∗1 =

τηmin
2s2

max
. Similarly, as in Lemma 7.8, we see that the bound in (7.46) is

optimal for h∗2 =
2

τ ηmax
.

We can find a combined bound, by setting h∗1 and h∗2 equal, i.e.

τηmin

2s2
max

=
2

τηmax
(7.47)

Solving for τ , yields τ = 2smax√
ηminηmax

. The bound in (7.45) becomes√
1− ηmin

ηmax
(7.48)

Similarly, the bound in (7.46) becomes√
1−
(

smin

smax

)2
ηmin

ηmax
(7.49)

The maximum of these two expression (7.48) and (7.49) is clearly given by (7.49), yielding
the assertion.

To obtain the corresponding expressions for hg and hd , use hg = hτ and hd = h
τ
.

7.3 Alternating Gradient Descent

After having analyzed SimGD, we now turn our attention towards AltGD. To this end, we
first prove an analogues lemma to Lemma 7.4 that allows us to derive convergence rates for
AltGD.

Lemma 7.10. Let h :=
√

hghd and τ :=
√

hd
hg

. Moreover, define

J :=
(

0 −PT

P −τ Q−hPPT

)
(7.50)
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with P := BT
DKDGBG and Q = BT

DK̃DDBD. Assume that all eigenvalues λ of J satisfy
|1+ hλ | ≤ α < 1. Then AltGD converges linearly in a neighborhood of (θ ∗,ψ∗) with
convergence rate at least α .

Proof. Recall that the update operator for the generator and discriminator are given by

FG(θ ,ψ) =

(
θ −hg∇θL(θ ,ψ)

ψ

)
(7.51)

FD(θ ,ψ) =

(
θ

ψ +hd∇ψ(L(θ ,ψ)−Ri(θ ,ψ))

)
(7.52)

respectively.
As a result, the Jacobians are given by

F ′G(θ
∗,ψ∗) =

(
I −hgKT

DG
0 I

)
and F ′D(θ

∗,ψ∗) =

(
I 0

hdKDG I−hdK̃DD

)
(7.53)

The Jacobian of the combined update operator is hence given by

F ′(θ ∗,ψ∗) = F ′D(θ
∗,ψ∗) ·F ′G(θ ∗,ψ∗) =

(
I −hgKT

DG
hdKDG I−hdK̃DD−hghdKDGKT

DG

)
(7.54)

Lemma 6.5 shows that KT
DGw ∈ (Tθ ∗MG)

⊥ for all w ∈ Rl . Since BGBT
G is the projection

onto (Tθ ∗MG)
⊥, this shows that

BT
D(KDGKT

DG)BD = BT
DKDG(BGBT

G)K
T
DGBD = PPT (7.55)

As simple calculation therefore yields

BTF ′(θ ∗,ψ∗)B = I +
(

0 −hgPT

hdP −hdQ−hdhgPPT

)
(7.56)

Using Corollary A.4, we see that the eigenvalues of BTF ′(θ ∗,ψ∗)B are hence equal to the
eigenvalues of I +hJ with J as in (7.50). The eigenvalues are therefore 1+hλ with λ the
eigenvalues of J. By Theorem B.4, AltGD hence converges linearly with rate at least α , if
|1+hλ | ≤ α < 1 for all λ .

Similarly to the previous section, we could apply Theorem 7.1 to (7.50) to obtain con-
vergence rates for AltGD. However, it turns out that we can obtain better rates by applying
Lemma 7.3 instead. The reason is that Lemma 7.3 better exploits the structure of the
Jacobian in (7.50).

Lemma 7.11. Let h :=
√

hghd and τ :=
√

hd
hg

. Assume that one of the following conditions
hold:

i) h≥ 2
smax+smin

and τηmax +hs2
max ≤ 2smax

ii) h≤ 2
smax+smin

and τηmax +hs2
min ≤ 2smin.
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7.3 Alternating Gradient Descent

AltGD is then convergent with rate at least

αa(h,τ) =
√

1−hτηmin (7.57)

Proof. This is a direct application of Lemma 7.10 and Lemma 7.3.

Lemma 7.12. For h∗ = 2
smin+smax

and τ∗ = 2sminsmax
ηmax(smin+smax)

the bound in (7.57) is optimal and
the system converges with rate at least

α
∗
a =

√
1− 4sminsmax

(smin + smax)2
ηmin

ηmax
(7.58)

This corresponds to learning rates hd = 4sminsmax
ηmax(smin+smax)2 and hg =

ηmax
sminsmax

.

Proof. Consider the case h≤ 2
smin+smax

. Since we can always improve the bound (7.57) by
increasing τ , we can eliminate τ by setting

τ =
2smin−hs2

min

ηmax
(7.59)

Minimizing (7.57) hence means to maximize

hτηmin =
ηmin

ηmax
(2sminh−h2s2

min) (7.60)

as a function of h. The maximum of (7.60) as a function of h without constraint is at h = 1
smin

.
However, this is bigger than 2

smin+smax
. The maximum under the constraint h ≤ 2

smin+smax
is

hence at h = 2
smin+smax

.
Similarly, we see that for the case h≥ 2

smin+smax
, the maximum lies at h = 2

smin+smax
. In both

cases
hτηmin =

4sminsmax

(smin + smax)2
ηmin

ηmax
(7.61)

While the convergence rate α∗a in (7.58) looks similar to the convergence rate α∗∗s in
(7.44), it is actually much better. Indeed, since smin

smax
≤ 1 we have

α
∗
a =

√√√√√1−
4 smin

smax(
1+ smin

smax

)2
ηmin

ηmax
≤
√

1− smin

smax

ηmin

ηmax
≤ α

∗∗
s (7.62)

Indeed, α∗∗s depends on smin
smax

in a quadratic way, whereas α∗a depends on smin
smax

in a linear way.
Moreover, as we have seen in Section 7.2, this bound is better than the best achievable rate
for SimGD. This analysis hence highlights the benefits of AltGD over SimGD for training
GANs.
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7.4 Conclusion

In this chapter we have analyzed the eigenvalues of the Jacobian of the gradient vector
field to derive convergence rates for (deterministic) GANs with finite learning rates. While
these results are currently more of theoretical value, we believe that they provide important
insights into the conditioning of the training dynamics. An important possible application
of our theory would be, for example, to derive preconditioners that are both fast to compute
and that make the system better conditioned. In addition, our analysis also highlights the
benefits of AltGD over SimGD for training GANs, raising the question if we can derive
even better training schemes. We hope that our analysis paves the way for further research
in this direction.
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8 Experimental Results

In the previous chapters we have derived a general convergence theory for Generative
Adversarial Networks (GANs). In particular, in Chapter 5 we have seen that GAN training
for absolutely continuous data and generator distributions is exponentially stable. However,
in Chapter 3 and 4 we have derived simple counter examples showing that GAN training
is not necessarily convergent when this condition is not met. Indeed, the Manifold Hy-
pothesis [119], which is the basis for dimensionality reduction techniques, states that most
real-world distributions lie in the vicinity of low dimensional manifolds. As a result, the
convergence result from Chapter 5 is often not applicable to unregularized GAN training
for real-world data distributions.

Fortunately, however, we have seen in Chapter 6 that it is possible to design simple
regularizers that make GAN training locally convergent even when the data distribution and
generator distribution lie on lower dimensional manifolds.

In this chapter we test this result experimentally. To this end, we apply our new regulariz-
ers both to low dimensional data distributions as well as real-world image distributions.1

8.1 Simple 2D Distributions

Measuring convergence for GANs is hard for high-dimensional problems, because defining a
metric that can reliably determine convergence is non-trivial. We therefore first examine the
behavior of different regularizers on simple 2D examples, where we can assess convergence
using an estimate of the Wasserstein divergence.

8.1.1 Experimental Setup

In our first experiment, we compare unregularized GAN training [62], WGAN-GP [64] as
well as GAN training with R1- and R2-regularization on simple 2D distributions. For a fair
comparison, we run WGAN-GP both with one and five discriminator updates per generator
update (as recommended by Gulrajani et al. [64]).

We test the five different training algorithms on six different 2D data distributions for six
different GAN architectures. The six data distributions are visualized in Figure 8.1. All six
GAN architectures consist of 4-layer fully-connected neural networks for both the generator
and discriminator, where we select the number of hidden units from {8,16,32} and use
either Leaky-ReLU (i.e. t→max(t,0.2t)) or Tanh-activation functions. Except for WGAN-
GP, we always use the nonsaturating GAN-objective introduced by Goodfellow et al. [62]

1The code to reproduce the experiments presented in this chapter can be found under https://github.com/
LMescheder/gan_stability.
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8 Experimental Results

(a) (b) (c) (d) (e) (f)

Figure 8.1: Distributions for 2D Experiments. The four 2D data distributions on which
we test the different algorithms: (a) Gaussian, (b) line, (c) circle, (d) four lines, (e) four
squares, (f) eight.

unregularized WGAN-GP
(nd = 1)

WGAN-GP
(nd = 5) R1-regularized R2-regularized

Gaussian 0.087 0.479 0.078 0.049 0.050
line 0.037 0.350 0.038 0.030 0.028
circle 0.059 0.307 0.067 0.056 0.059
four lines 0.180 0.214 0.121 0.107 0.099
four squares 0.232 0.373 0.159 0.157 0.151
eight 0.079 0.390 0.088 0.080 0.082

mean 0.112 0.352 0.092 0.080 0.078

Table 8.1: Results for 2D Experiments. Wasserstein divergence between generator distri-
bution and true data distribution for six different 2D distributions and five different training
methods. The results are averaged over six different architectures.

for training the generator. For WGAN-GP we use the linear generator and discriminator
objectives introduced by Gulrajani et al. [64].

For each method, we run both Stochastic Gradient Descent (SGD) and RMSProp with 4
different learning rates: for SGD, we select the learning rate from {5 ·10−3,10−2,2 ·10−2,5 ·
10−2}. For RMSProp, we select it from {5 ·10−5,10−4,2 ·10−4,5 ·10−4}. For the R1-, R2-
and WGAN-GP-regularizers we try the regularization parameters γ = 1, γ = 3 and γ = 10.

We evaluate the results of the algorithms using the Wasserstein divergence (Section 1.1.4).
We estimate the Wasserstein divergence using the Python Optimal Transport Package2 by
drawing 2048 samples from both the generator distribution and the true data distribution.
We train all methods for 50k iterations and we report the Wasserstein divergence averaged
over the last 10k iterations. For each method and architecture, we report the results for the
hyperparameter setting which achieves the lowest Wasserstein divergence to the true data
distribution.

8.1.2 Results

For each 2D-distribution and training method Table 8.1 reports the average Wasserstein
divergence for the six different architectures. We see that the R1- and R2-regularizers perform

2http://pot.readthedocs.io
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8.2 Real World Distributions

(a) unregularized (b) R1 (c) R2 (d) WGAN-GP 1 (e) WGAN-GP 5

Figure 8.2: Qualitative Results for 2D Experiment. Best solutions found by the different
algorithms for learning a circle. The blue points are samples from the true data distribution,
the orange points are samples from the generator distribution. The colored areas visualize
the gradient magnitude of the equilibrium discriminator. We find that while training with
R1- and R2-regularization converges to equilibrium discriminators that are zero in a neigh-
borhood of the true data distribution, unregularized training and WGAN-GP converge to
Energy Solutions (Appendix D).

similarly to each other and they achieve better results than unregularized training or training
with WGAN-GP. Interestingly, WGAN-GP with one discriminator update per generator
update performs the worst and achieves only slightly better results than unregularized
GAN training when using five discriminator update per generator update. This agrees with
our results from Chapter 3 which show that WGAN-GP is not always convergent to the
equilibrium point.

The best solution found by each method for the “circle”-distribution is shown in Figure 8.2.
We see that the R1- and R2-regularizers converge to solutions for which the discriminator
is zero in a neighborhood of the true data distribution. On the other hand, unregularized
training and WGAN-GP converge to Energy Solutions where the discriminator forms a
potential function for the true data distribution (Appendix D).

In summary, our results show that unregularized GAN training with neural networks can
yield reasonable results for low dimensional data distributions. However, even in this setting
R1- and R2-regularization improve the results. In contrast, WGAN-GP [64] performs much
worse when we run only one discriminator update per generator update. This confirms our
theoretical result that zero-centered gradient penalties are superior to WGAN-GP.

8.2 Real World Distributions

So far, we have seen that R1- and R2-regularization help stabilize GAN training on simple
analytic examples (Chapter 3 and 4) as well as for GANs on simple 2D data distributions
(Section 8.1).

To test how well the gradient penalties from Chapter 6 perform on more complicated tasks,
we now compare R1- and R2-regularization to unregularized GAN training and WGAN-GP
on a variety of challenging real-world image datasets.
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8 Experimental Results

8.2.1 Datasets

We first train GANs on the CelebA dataset [110] as well as four different classes of the
LSUN dataset [207] at resolution 256×256. Both CelebA and LSUN consist of realistic
images in a restricted domain and therefore constitute good datasets for testing training
algorithms for GANs.

Afterwards, we study how well our results generalize to less restricted domains. To this
end, we train conditional generative models for all 1000 classes of the ILSVRC2012 dataset
(ImageNet) [171] at resolution 128×128 in a single GAN. Because of the high variability of
this dataset, this is known to be a challenging task and only few prior works have managed
to obtain recognizable samples on this dataset. Parallel lines of work that report results for
this dataset either show a high amount of mode collapse [144, 173], report results only at
a lower resolution [70] or use advanced normalization layers to stabilize the training [19,
134, 135, 209]. In contrast, our models do not use any normalization layers, but consist
only of standard ResNet-blocks of convolutional and fully-connected layers. This enables
us to study the influence of the training algorithm independently from the neural network
architecture.3

Finally, to see if R1-regularization also helps to train GANs for high-resolution image
distributions, we apply our method to the CelebA-HQ dataset [88] at resolution 1024×1024.
Training GANs at this resolution is a very challenging task and the only prior work [88]
that reports results at this resolution uses a complicated multiresolution training schedule.
In contrast, we directly train the full-resolution model end-to-end.4

8.2.2 Metrics

To evaluate the different training algorithms, we measure the Inception score [173] and
Fréchet Inception Distance (FID) [68] between the generator distribution pθ and true data
distribution pD during the training process.5

The Inception score is defined by

Inception-Score(pθ ) = exp(E x∼pθ
[KL (pIN(y | x)‖ pIN(y))]) (8.1)

where pIN(y | x) denotes the label distribution of an Inception Network [181] and pIN(y) =
E x∼pθ

[pIN(y | x)] is the corresponding marginal distribution. The idea behind the Inception
score is that the Kullback-Leibler divergence in (8.1) is high if the entropy of pIN(y | x) is
low and the entropy of pIN(y) is high. This means that the Inception score is high if all labels
are predicted by the Inception Network with equal probability (high entropy of pIN(y)), but

3Brock, Donahue, and Simonyan [19] report that even with spectral normalization [134] GAN training
collapses in latter stages of training and R1-regularization prevents this collapse. However, they also observe
that this improved stability comes at the cost of a lower Inception score in their experiments.

4Current state-of-the-art methods [89, 90] for high-resolution image generation now also use R1-regularization,
reporting that this lead to considerably better results than WGAN-GP [89].

5For both the Inception score and FID we adapted the code from https://github.com/mseitzer/

pytorch-fid, which uses the pretrained Inception Network from http://download.tensorflow.org/

models/image/imagenet/inception-2015-12-05.tgz.
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8.2 Real World Distributions

for one specific x ∈ X the Inception Network is very certain about the label (low entropy of
pIN(y | x)).

The Inception score has the drawback [10] that it does not depend on the true data
distribution and is therefore not a good metric to measure convergence of training algorithms.
Moreover, the Inception score is not a good measure of sample diversity (e.g. to measure
mode collapse) and is inherently restricted to ImageNet.

Heusel et al. [68] therefore propose the FID as an alternative which computes a divergence
between two probability distributions in feature space. To compute the FID, we first embed
both the data distribution pD and the generator distribution pθ into the 2048-dimensional
feature space of an Inception Network [181]. Afterwards, we approximate these two dis-
tributions with Gaussian distributions with the same first and second order moments. The
FID is defined as the Fréchet distance6 between these two Gaussian distributions. Using the
analytic formula for the Fréchet distance between two multivariate Gaussian distributions
[40], we obtain

FID(pθ , pD) = ‖µθ −µD‖2 + tr
(

ΣD+Σθ −2(ΣDΣθ )
1/2
)

(8.2)

where µθ , µD, Σθ , and Σθ denote the mean vectors and covariance matrices of the distri-
butions obtained by embedding pθ and pD into the feature space of an Inception Network,
respectively. As we are interested in convergence of the algorithms rather than generaliza-
tion, we do not use a separate test set for computing the FID, but directly compute the FID
between the training distribution and the distribution produced by the generator.

We compute both the Inception score and FID using 64k samples from the generator.

8.2.3 Experimental Setup

For the ImageNet experiment we use ResNet-architectures for the generator and discrimina-
tor, both having 26 layers in total. Both the generator and discriminator are conditioned on
the labels of the input data. The architectures for the generator and discriminator are shown
in Table E.3 and Table E.4 in Appendix E.1. We use pre-activation ResNet-blocks and
ReLU-nonlinearities everywhere. We also multiply the output of the ResNet-blocks with 0.1.
For the generator, we sample a latent variable z from a 256-dimensional standard Gaussian
distribution and concatenate it with a 256 dimensional embedding of the labels on the unit
sphere. The resulting 512-dimensional vector is then fed into the first fully-connected layer
of the generator. The discriminator takes as input an image and outputs a 1000 dimensional
vector. Depending on the label of the input, we select the corresponding index in this vector
and use it as the logits for the GAN-objective.

For CelebA and LSUN, we use a similar training setup as for the ImageNet experiment,
but we use slightly different architectures (Table E.1 and Table E.2). For CelebA-HQ, we
use almost the same architecture as for CelebA (Table E.1 and Table E.2), but add two
more levels to the generator to increase the resolution from 256×256 to 1024×1024 and
decrease the number of features from 64 to 16. We modify the discriminator architecture

6The square root of the Fréchet distance is also called the Wasserstein-distance of order two [191].
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Figure 8.3: Quantitative Results CelebA. We measure Fréchet Inception Distance (FID)
between generator and data distribution over the number of iterations. Unregularized GAN
training quickly collapses. The graph for unregularized GAN training is therefore outside
the range of the y-axis.

in a similar way. Except for WGAN-GP, we always use the nonsaturating GAN-objective
introduced by Goodfellow et al. [62].

For training, we use the RMSProp optimizer [69] with α = 0.99, ε = 10−8 (PyTorch
defaults) and a learning rate of 10−4. We use γ = 10 for both R1/R2-regularization and
WGAN-GP (as recommended by Gulrajani et al. [64]). Similarly to prior work [58, 88,
204], we use an exponential moving average with decay 0.999 over the weights to produce
the final model. We find that we can achieve considerably better results for all methods by
performing a generator update followed by a discriminator update for the same latent code z
instead of using different latent codes. All results in this section use this update method.7

For ImageNet, we use a batch size of 128 and we train the networks on two Tesla
V100 GPUs for 600k iterations. For LSUN and CelebA, we use a batch size of 64 and
train each model8 for about 600k iterations on one Tesla V100 GPU. Because of memory
constraints, we decrease the batch size to 32 for CelebA-HQ and train the model for about
500k iterations on two Tesla V100 GPUs. In contrast to Karras et al. [88], we train our
model end-to-end during the whole course of training, i.e. we do not use progressively
growing GAN-architectures (nor any of the other techniques used by Karras et al. [88] to
stabilize the training).

7In the original publication [129] we used two different latent codes z∼ p0 for the generator and discriminator
update, resulting in a noisier training objective and worse final results.

8For LSUN and CelebA-HQ, we finetuned the pretrained models from the original publication [129] using our
new update rules.
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8.3 Conclusion

8.2.4 Results

The FID for CelebA over the number of iterations is visualized in Figure 8.3. We see
that unregularized training quickly leads to mode collapse: the best FID achieved by
unregularized GAN training is 29.7 after about 20k iteration, which is outside the y-range of
Figure 8.3. After that, unregularized GAN training collapses. In contrast, both WGAN-GP
and GAN training with R1/R2-regularization are stable. Moreover, the training curves of R1-
and R2-regularization are similar to each other and, compared to WGAN-GP, both R1- and
R2-regularization lead to better end results, confirming our theory. Some random samples of
our GAN with R1-regularization on CelebA and LSUN are shown in Figure 8.5 and 8.6,
respectively. We see that our model is able to produce realistic and diverse results.

Quantitative result over the number iterations for our experiment on ImageNet are shown
in Figure 8.4. Again, we see that unregularized GAN training collapses. The best Inception
score and FID for unregularized GAN training on this dataset is 17.0 and 46.1 after 80k
and 70k iterations, respectively. In contrast, both WGAN-GP and GAN training with R1/R2-
regularization lead to more stable training and both the Inception score and FID keep
improving as training progresses. Again GAN training with R1/R2-regularization achieves
better end results than WGAN-GP, which is in line with our theory. In later iterations, we
observe rare instabilities9 both for WGAN-GP and R1-regularization. While this might be
due to the architectures we use for training (recall that we did not use any normalization
layers), it could also be due to the fact that the realizability assumption (Assumption I′) is not
satisfied. Figure 8.7 and Figure 8.8 show conditional samples for some selected ImageNet
classes. While not completely photorealistic, we find that our model can produce convincing
samples from all 1000 ImageNet classes. In addition, we also show some qualitative results
for a conditional GAN trained on ImageNet at resolution 256×256 in Appendix F.2.

For CelebA-HQ, we find that the simple R1-regularizer stabilizes the training, allowing
our model to converge to a good solution without using a progressively growing GAN.
Some random samples are shown in Figure 8.9.

8.3 Conclusion

In this chapter we have conducted a thorough experimental evaluation of our regularizers
from Chapter 6, which so far were mainly theoretically motivated. To this end, we compared
our regularizers to unregularized GAN training and WGAN-GP on both simple 2D examples
and high-dimensional image distributions. Our results suggest that our new regularizers also
work surprisingly well for real-world examples of GAN training, which validates our theory.
In particular, our regularizers enable us to train a GAN at one megapixel resolution without
resorting to additional tricks such as multiresolution training.

9Both WGAN-GP and R1-regularization sometimes fell into degenerate saturated solutions in later iterations.
Because this happened only rarely, we simply restarted training from the previous checkpoints in these
cases. Interestingly, these instabilities only happen when we train both the generator and discriminator on
the same latent code as discussed in Section 8.2.3 and therefore did not occur in the experiments of the
original publication [129].
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(b) FID

Figure 8.4: Quantitative Results ImageNet. We measure the Inception score and Fréchet
Inception Distance (FID) between generator and data distribution over the number of
iterations.
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8.3 Conclusion

Figure 8.5: Samples CelebA. Random samples for a convolutional GAN trained on the
CelebA dataset [110] at resolution 256×256.
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(a) bedroom

(b) church

(c) bridge

(d) tower

Figure 8.6: Samples LSUN. Random samples for convolutional GANs trained (separately)
on four LSUN [207] classes at resolution 256×256.
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(a) tench

(b) papillon

(c) weevil

(d) admiral

(e) lighthouse

Figure 8.7: Conditional Samples ImageNet. Random class conditional samples for a
convolutional GAN trained on the ImageNet dataset [171] at resolution 128×128.
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(a) home theater

(b) police van

(c) rugby ball

(d) pizza

(e) valley

Figure 8.8: Conditional Samples ImageNet. Random class conditional samples for a
convolutional GAN trained on the ImageNet dataset [171] at resolution 128×128.
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Figure 8.9: Samples CelebA-HQ. Random samples for a convolutional GAN trained on the
CelebA-HQ dataset [88] at resolution 1024×1024. During the whole course of training,
we directly train the full-resolution generator and discriminator end-to-end, i.e. we do not
use any of the techniques described in Karras et al. [88] to stabilize the training.
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9 Limitations and further Developments

In the first part of this thesis we have seen that linearization is a useful tool for understanding
the GAN training dynamics. We have designed simple examples of GAN training that we
could analyze analytically and - together with Nagarajan and Kolter [136] - derived a theory
for local convergence of general GANs. As we have seen, these theoretical results are useful
to design new regularizers that also work very well in practice. Despite these successes, our
theory has a number of limitations which hopefully will be addressed in future research.

First of all, our theory is only local. This means that while we can make statements about
convergence of GAN training in some local neighborhood of the equilibrium point, our
theorems do neither make statements about global convergence nor the size of the region of
convergence. Of course, it can be argued that local convergence is a minimum requirement
and understanding local convergence is hence a necessary first step before deriving a global
theory. However, statements about the size of the region of convergence are required for a
complete picture and we believe that a better theory here will yield novel insights into GAN
training. Some promising research shows that a variant of Consensus Optimization [9, 55,
140] is globally convergent for a simple GAN [55], called the Linear-Quadratic-GAN [47,
136]. However, we believe that this is only a first step towards a complete theory for more
complex GANs.

Second, our theory requires the realizability assumption, which holds for simple toy
examples for GAN training, but does not necessarily hold for more complex systems. Again,
it is important to realize that understanding convergence under the realizability assumption
is a minimum requirement. Moreover, realizability might hold at least approximately for
very expressive deep neural networks. However, more work needs to be done to understand
what happens when the realizability assumption does not hold.

Finally, for simplicity we derived our theory for the deterministic system without noise.
We deliberately focused our attention on this case, since (i) it leads to a much cleaner
theory which emphasizes the structural insights over the technical details and (ii) noise can
be arbitrarily reduced by increasing the batch size. The theoretical framework to analyze
the noisy case is given by stochastic approximation theory [14, 167, 178]. Indeed, typical
theorems1 from stochastic approximation theory require similar assumptions as our local
convergence theory. However, deriving the technical details in a principled way is beyond
the scope of this thesis. A deeper analysis of the noisy case might also lead to additional
insights, e.g. about properties of the stationary distributions of SimGD and AltGD near the
equilibrium.

In summary, there are many opportunities to extend the results presented in this thesis.
The training dynamics of GANs hence remains an interesting research topic.

1See Appendix B.2 for a brief introduction.
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Deep Learning in Function Space





“The world is continuous, but the mind is discrete.”

David Mumford

ICM 2002 plenary talk





10 The Function Space Operator

In Part I we have analyzed the training dynamics of Generative Adversarial Networks
(GANs), one of the most promising approaches to generative modeling. As we have seen,
simple regularization techniques enable stable training of GANs for image distributions,
even at very high resolution.

However, our world is not two-, but three-dimensional. To create useful generative models
of the real-world, it is hence desirable to create models that can reason in three dimensions.
The same is true for discriminative models that try to reconstruct information about the
real world from 2D images or other types of input. Unfortunately, unlike in 2D, there is
no canonical output representation for discriminative and generative models in 3D. The
reason for this is what we call the Curse of Discretization, an instance of the Curse of
Dimensionality: when we naively discretize an output space, the memory requirements grow
exponentially with the dimensionality of space. While in two dimensions (e.g. images) this
effect is not yet very severe, this changes in three dimensions where finding an expressive,
yet flexible representation that works well with deep learning is a difficult task. The Curse
of Discretization becomes even more severe when we want to synthesize other quantities
than 3D geometry, such as texture and material properties, or would like to predict time
changing geometry. We will briefly discuss these cases in Chapter 12.

Here, we propose a simple solution to the Curse of Discretization: by reinterpreting the
high-dimensional output of the network as a function, we are able to avoid discretization
completely during training of the neural networks. Our key insight is that a function from
some space to a function space can equivalently be described as a function from a Cartesian
product of spaces to a low-dimensional space. We make this statement formal by introducing
the Function Space Operator. The Function Space Operator turns the intractable problem
of learning a mapping to a function space into the tractable problem of learning a mapping
from a modified input space to a low dimensional space.

In this chapter we first give a general introduction to deep learning in function space. An
application to learning-based 3D reconstruction and 3D generative models can be found in
Chapter 11.

10.1 The Curse of Discretization

In Chapter 1 we have defined a generative model as a neural network Gθ : Z → X with
parameter vector θ that takes a latent vector z ∈Z as input and outputs an element in a high-
dimensional space X (e.g. an image). We can make this model conditional by conditioning
the model on some additional piece of information y ∈ Y , e.g. a label. This leads to a model
Gθ :Z×Y →X . The extreme case is a model that does not use any latent code z ∈ Z at all
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(a) 31 = 3 (b) 32 = 9 (c) 33 = 27 (d) 34 = 81

Figure 10.1: The Curse of Discretization. When increasing the dimensionality of S, the
number of cells in the discretization Ŝ grows exponentially. Even at a very low resolution of
three, this already leads to 81 cells if the underlying space is four-dimensional.

Output S V X = VS X̂ = V Ŝ

Semantic Map [0,1]2 Rk [0,1]2→ Rk Rk×N×N

2D Image [0,1]2 R3 [0,1]2→ R3 R3×N×N

3D Scalar Field [0,1]3 R [0,1]3→ R RN×N×N

3D Vector Field [0,1]3 R3 [0,1]3→ R3 R3×N×N×N

Time-varying 3D Scalar Field [0,1]4 R [0,1]4→ R RN×N×N×N

Time-varying 3D Vector Field [0,1]4 R3 [0,1]4→ R3 R3×N×N×N×N

3D Light Field [0,1]5 R3 [0,1]5→ R3 R3×N×N×N×N×N

Table 10.1: Output Spaces. A selection of output spaces X in deep learning and the
discretization X̂ . Here, k denotes the number of classes for the semantic map. N denotes
the spatial and temporal discretization resolution (assumed to be equal for simplicity here).

and therefore has a deterministic output. We call such a model a discriminative model. This
description is very general and includes many different cases such as 2D generative models,
semantic segmentation, learning-based 3D reconstruction and many more (Table 10.1).

For generative models, but also many discriminative models, X is usually given by a
high-dimensional data structure. Our first insight is that X can often be interpreted as a
function space: while traditionally X is usually directly described by some (e.g. spatial)
discretization X̂ , it is usually better described by the set of functions S →V from some input
domain S (e.g. [0,1]d) to some output domain V (e.g. Rk). Following common notation, we
denote the space of functions from S to V by VS .

Take image synthesis models as an example: while traditionally the output is usually
defined as a tensor R3×N×N with spatial resolution N, this description is dependent on the
discretization. Conceptually, however, we could also describe an image continuously as a
function [0,1]2→ R3 that takes a 2D coordinate as input and produces a RGB-color for
each of the 2D points.

However, directly outputting an arbitrary function is clearly intractable for neural net-
works. The common approach is therefore to discretize S and replace X = VS with the
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10.2 The Function Space Operator

discretized version X̂ = V Ŝ . Assume now that S = [0,1]d . If we discretize S in an equidis-
tant way with resolution N in each dimension, we obtain

Ŝ =

{(
i1

N−1
, . . . ,

id
N−1

)∣∣∣∣ i1, . . . , id ∈ {0, . . . ,N−1}
}

(10.1)

and therefore |Ŝ|= Nd . We see that the size of Ŝ grows exponentially with the dimensional-
ity of S . This is visualized in Figure 10.1, where we see that even for a coarse discretization
the number of elements in Ŝ becomes large as d increases.

The discretization X̂ for X is hence

X̂ = V Ŝ ∼= V(Nd) (10.2)

We see that the dimensionality of X̂ grows exponentially with d, too. We summarize this
fact in the following lemma:

Lemma 10.1. Let V denote some vector space (e.g. Rk) and S = [0,1]d . Let X = VS and
assume that we discretize S in an equidistant way with resolution N ∈ N. Then dim(X̂ ) =
dim(V) ·Nd .

Proof. We have seen that X̂ ∼= V(Nd). However, V is a vector space of dimension dim(V).
As a consequence, X̂ is also a vector space of dimension dim(X̂ ) = dim(V) ·Nd .

Discretizing X in this way becomes clearly intractable as d increases: even for tasks with
relatively low dimensionality d such as 3D reconstruction (d = 3), the dimensionality of
X̂ becomes a serious bottleneck for deep learning techniques (Table 10.1). This problem
becomes even worse for 4D reconstruction (d = 4) or when we would like to predict an
entire light field (d = 5).

We call this problem the Curse of Discretization. The Curse of Discretization is an
instance of the Curse of Dimensionality. However, as we will see in the next section, we
can circumvent it.

10.2 The Function Space Operator

Recall that we would like to approximate functions from Z ×Y to some function space
X = VS with a neural network. As we have seen in Section 10.1, naively replacing S with
a discretized version Ŝ quickly becomes intractable when the dimensionality of S grows.
Can we do something more clever than this?

Recall that the Curse of Discretization is an instance of the Curse of Dimensionality and
that deep learning can be regarded as one of the major techniques to cope with the Curse of
Dimensionality. Instead of discretizing S, we could hence try to directly approximate the
functions in X = VS with neural networks.

However, while it is straightforward to approximate a single x ∈ VS in this way, in
practice we want to approximate a function from Z×Y to VS . Luckily, we can describe
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a function Z×Y → VS equivalently as a function S ×Z×Y → V , i.e. we move S to the
left hand side of the arrow. Formally, we have

Lemma 10.2. For a function f : Z×Y → VS , let F( f ) : S ×Z×Y → V be defined by

F( f )(s,z,y) = f (z,y)(s) (10.3)

F defines a natural1 bijection between the space of all mappings from Z×Y to VS and the
space of all mapping from S ×Z×Y to V .

Proof. To see that F is a bijection, we define an “inverse” operator G that takes a function
g : S ×Z×Y → V as input has a function G(g) : Z×Y → VS as output.

We define G(g) : Z×Y → VS by

G(g)(z,y)(s) := g(s,z,y) (10.4)

To see that G is indeed the inverse to F , we calculate for z ∈ Z , y ∈ Y and s ∈ S

(G◦F)( f )(z,y)(s) = F( f )(s,z,y) = f (z,y)(s) (10.5)

Since this hold for all z ∈ Z , y ∈ Y and s ∈ S , this shows (G◦F)( f ) = f .
Similarly, we have for all z ∈ Z , y ∈ Y and s ∈ S

(F ◦G)(g)(s,z,y) = G(g)(z,y)(s) = g(s,z,y) (10.6)

and therefore (F ◦G)(g) = g.
All in all, we see that G is the inverse to F and F is hence a bijection.

In short, Lemma 10.2 can be written as(
VS
)Z×Y ∼= VS×Z×Y (10.7)

Formally, this equation resembles the classical law (ab)c = abc for real numbers a,b,c.
However, in our case Z , Y , S and V all denote sets.

The significance of Lemma 10.2 is that it is translates the intractable problem of approxi-
mating functions in Z×Y → VS to the tractable problem of approximating functions in
S×Z×Y →V : while it is usually intractable to define a neural network that has a function
x ∈ X = VS as output, it is straightforward to approximate a function from S ×Z×Y to
V = Rk with neural networks (assuming that k is reasonably small). We call the operator
F :
(
VS
)Z×Y →VS×Z×Y the Function Space Operator.

10.3 Conclusion

We have seen that both discriminative and generative models suffer from high-dimensional
output spaces. Our key insight is that we can often interpret these output spaces as function

1The term natural is formally defined in the context of category theory. Please see Mac Lane [120] for details.
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spaces. Naively discretizing a function space leads to the Curse of Discretization, i.e. that
the dimensionality of the discretization grows exponentially with the dimensionality of the
domain of the function space. Fortunately, there is a simple trick that enables us to avoid
the Curse of Discretization: by introducing the Function Space Operator we can reduce
the problem to an easier problem with a low-dimensional output space. In Chapter 11, we
describe an application of the Function Space Operator to learning-based 3D reconstruction
as well as 3D generative modeling. However, the Function Space Operator can be applied
to many problems in deep learning. In particular, in Chapter 12 we give a brief overview
of two applications of the Function Space Operator to texture synthesis and 4D generative
modeling.
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In Chapter 10 we have introduced a general method to handle high-dimensional output
spaces. The main insight is that these high-dimensional output spaces often arise from
discretizing a function space. However, we can avoid discretization of these function spaces
altogether by applying the Function Space Operator. This technique translates the difficult
problem of approximating a function with a high-dimensional output space to the tractable
problem of approximating a function with a low-dimensional output space.

In this chapter we present an application of the Function Space Operator to learning-based
3D reconstruction and 3D generative modeling.1 We first discuss existing 3D representations
and their limitations. Afterwards, we introduce the concept of an Occupancy Function, a
continuous version of an occupancy grid. Using the notion of Occupancy Function, we can
describe the problem of 3D generative modeling and 3D reconstruction as approximating a
function with an Occupancy Function as output. This allows us to apply the Function Space
Operator from Chapter 10. We call the resulting representation for 3D geometry, which uses
a neural network to approximate the Occupancy Function, an Occupancy Network.

In this chapter we describe in detail how we can learn a model that infers this representa-
tion from various forms of input, such as point clouds, single images and low-resolution
voxel representations. Moreover, we show how Occupancy Networks can be used in a
generative context and describe a technique for extracting high-quality 3D meshes from our
model at test time. Finally, we validate our approach experimentally for both generative and
discriminative tasks.

11.1 Related Work

Recently, learning-based approaches for 3D reconstruction have gained popularity [17, 26,
60, 165, 198, 199]. In contrast to traditional multi-view stereo algorithms, learned models
are able to encode rich prior information about the space of 3D shapes which helps to
resolve ambiguities in the input.

While generative models have recently achieved remarkable successes in generating
realistic high resolution images [88, 129, 195], this success has not yet been replicated in
the 3D domain. In contrast to the 2D domain, the community has not yet agreed on a 3D
output representation that is both memory efficient and can be efficiently inferred from
data. Existing representations can be broadly categorized into three categories: voxel-based
representations [17, 49, 108, 165, 179, 189, 199] , point-based representations [2, 45] and
mesh representations [84, 162, 193].

1Also see [24, 133, 150] for concurrent work that proposes similar ideas.
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(a) Voxel (b) Point (c) Mesh (d) Ours

Figure 11.1: Overview. Existing 3D representations discretize the output space differently:
(a) spatially in voxel representations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we propose to consider the continuous
decision boundary of a classifier fθ (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

In the following, we give an overview of these existing 3D representations, see Fig-
ure 11.1.

11.1.1 Voxel Representations

Due to their simplicity, voxels are the most commonly used representation for discriminative
[123, 157, 176] and generative [26, 60, 165, 179, 198, 199] 3D tasks.

Early works have considered the problem of reconstructing 3D geometry from a single
image using 3D Convolutional Neural Networks which operate on voxel grids [26, 188,
198]. Due to memory requirements, however, these approaches were limited to relatively
small 323 voxel grids. While recent works [200, 201, 208] have applied 3D Convolutional
Neural Networks to resolutions up to 1283, this is only possible with shallow architectures
and small batch sizes, which leads to slow training.

The problem of reconstructing 3D geometry from multiple input views has been con-
sidered in [79, 87, 151]. Ji et al. [79] and Kar, Häne, and Malik [87] encode the camera
parameters together with the input images in a 3D voxel representation and apply 3D convo-
lutions to reconstruct 3D scenes from multiple views. Paschalidou et al. [151] introduced an
architecture that predicts voxel occupancies from multiple images, exploiting multi-view
geometry constraints [189].

Other works have applied voxel representations to learn generative models of 3D shapes.
Most of these methods are either based on Variational Autoencoders [95, 164] or Generative
Adversarial Networks [62]. These two approaches were pursued in [17, 165] and [199],

134



11.2 Method

respectively.
Due to the high memory requirements of voxel representations, recent works have

proposed to reconstruct 3D objects in a multiresolution fashion [66, 184]. However, the
resulting methods are often complicated to implement and require multiple passes over the
input to generate the final 3D model. Furthermore, they are still limited to comparably small
2563 voxel grids. For achieving sub-voxel precision, several works [32, 104, 166] have
proposed to predict a Truncated Signed Distance Field (TSDF) [30] where each point in a
3D grid stores the truncated signed distance to the closest 3D surface point. However, this
representation is usually much harder to learn compared to occupancy representations as
the network must reason about distance functions in 3D space instead of merely classifying
a voxel as occupied or not. Moreover, this representation is still limited by the resolution of
the underlying 3D grid.

11.1.2 Point Representations

An interesting alternative representation of 3D geometry is given by 3D point clouds which
are widely used both in the robotics and in the computer graphics communities. Qi et al. [158,
159] pioneered point clouds as a representation for discriminative deep learning tasks. They
achieved permutation invariance by applying a fully-connected neural network to each
point independently followed by a global pooling operation. Fan, Su, and Guibas [45]
introduced point clouds as an output representation for 3D reconstruction. However, point
clouds lack the connectivity structure of the underlying mesh and hence require additional
post-processing [11, 21, 92, 93] steps to extract 3D geometry from the model.

11.1.3 Mesh Representations

Meshes have first been considered for discriminative 3D classification or segmentation tasks
by applying convolutions on the graph spanned by the mesh’s vertices and edges [18, 65,
194].

More recently, meshes have also been considered as output representation for 3D recon-
struction [63, 83, 100, 193]. Unfortunately, most of these approaches are prone to generating
self-intersecting meshes. Moreover, they are only able to generate meshes with simple
topology [193], require a reference template from the same object class [83, 100, 162] or
cannot guarantee closed surfaces [63]. Liao, Donne, and Geiger [108] propose an end-to-end
learnable version of the Marching Cubes algorithm [117]. However, their approach is still
limited by the memory requirements of the underlying 3D grid and hence also restricted to
323 voxel resolution.

11.2 Method

As we have seen in the previous section, existing representations for learning-based 3D
reconstruction and 3D generative modeling suffer from discretization artifacts. In this
section we propose an alternative, continuous representation which is based on our results
from Chapter 10 (Figure 11.1d).
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When using voxels, we represent 3D geometry as a discrete occupancy grid, i.e. we
represent space as a regular 3D grid Ŝ . Ideally, however, we would like to reason about the
occupancy not only at fixed discrete 3D locations (as in voxel representations) but at every
possible 3D point s ∈ S = [0,1]3 where S describes a given bounding volume. We call the
resulting function

x : S → {0,1} (11.1)

the Occupancy Function of the 3D object. We can hence reinterpret the tasks of learning-
based 3D reconstruction and 3D generative modeling as learning a functionZ×Y→{0,1}S
with Z some latent space, Y a space of observations (e.g. images, point clouds, etc.) and
S = [0,1]3. By applying the Function Space Operator from Chapter 10, we can equivalently
describe this as learning a function S ×Z×Y → {0,1}. While approximating a function
Z×Y → {0,1}Ŝ (as in voxel representations) suffers from the Curse of Discretization, we
can approximate the function S ×Z×Y → {0,1} with a neural network fθ (·) that takes
a triple (s,z,y) as input and produces a real number which represents the probability of
occupancy:

fθ : S ×Z×Y → [0,1] (11.2)

We call this network an Occupancy Network (ONet). Note that this network is equivalent
to a neural network for binary classification, except that we are interested in the decision
boundary which implicitly represents the object’s surface.

In contrast to the approaches from Section 11.1, our approach leads to high resolution
closed surfaces without self-intersections and does not require template meshes from
the same object class as input. This idea is related to classical level set [29, 36, 149]
approaches to multi-view 3D reconstruction [46, 61, 80, 99, 156, 206]. However, instead of
solving a differential equation, our approach uses deep learning to obtain a more expressive
representation which can be naturally integrated into an end-to-end learning pipeline.

11.3 Training

Our description in the previous section is very general and includes both the purely gen-
erative case (where Y = {0}) and the purely discriminative case (where Z = {0}). In this
section we first focus on the discriminative case and then describe the general case. When-
ever Z = {0} we omit the dependence of fθ (·) on z and write fθ (s,y) instead of fθ (s,z,y).
Similarly, when Y = {0} we write fθ (s,z).

Now assume that Z = {0}. To learn the parameters θ of the neural network fθ (s,y), we
randomly sample points in the 3D bounding volume S of the object under consideration:
for the i-th sample in a training batch we sample K points si j ∈ S, j = 1, . . . ,K. We then
evaluate the mini-batch loss LB at those locations:

LB(θ) =
1
|B|

|B|

∑
i=1

K

∑
j=1
L( fθ (si j,yi),oi j) (11.3)

Here, yi is the i’th observation of batch B, oi j := xi(si j) denotes the true occupancy at point
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si j, and L(·, ·) is a cross-entropy classification loss.
The performance of our method depends on the sampling scheme that we employ for

drawing the locations si j that are used for training. In Section 11.6.9 we perform a detailed
ablation study comparing different sampling schemes. In practice, we found that sampling
uniformly inside the bounding box of the object with an additional small padding yields the
best results.

Now consider the general case where Z 6= {0}. While there are different ways to train
a generative model, we use a Variational Autoencoder (VAE) for learning our implicit
model. To this end, we introduce an encoder network gvae

ψ (·) that takes the ground truth
Occupancy Function xi as well as the observation yi as input and predicts mean µi and
standard deviation σi of a Gaussian distribution qψ(z|xi,yi) on latent z ∈ Z as output. While
it is difficult to define an encoder qψ that directly operators on the entire function xi, we
can simply encode xi in a fixed way, e.g. by using the sampled points and ground truth
occupancies (si j,oi j) j=1:K as input to gvae

ψ (·). Alternatively, we could subsample the surface
of the object and use the resulting point cloud as input to gvae

ψ (·).
During training, we optimize a lower bound [51, 95, 164] to the negative log-likelihood

of the generative model:

Lgen
B (θ ,ψ) =

1
|B|

|B|

∑
i=1

[ K

∑
j=1
L( fθ (si j,zi,yi),oi j)+KL

(
qψ(z|xi,yi)‖ p0(z)

)]
(11.4)

Here, KL denotes the Kullback-Leibler divergence, p0(z) is a prior distribution on the latent
variable zi (typically Gaussian) and zi is sampled according to qψ(zi|xi,yi).

11.4 Inference

For extracting the isosurface corresponding to a new observation given a trained Occupancy
Network, we introduce Multiresolution IsoSurface Extraction (MISE), a hierarchical iso-
surface extraction algorithm (Figure 11.2). By incrementally building an OctTree [77, 124,
182, 197], MISE enables us to extract high resolution meshes from the Occupancy Network
without densely evaluating all points of a high-dimensional occupancy grid.

We first discretize the volumetric space at an initial resolution and evaluate the Occupancy
Network fθ (s,z,y) for all s in this grid. We mark all grid points s as occupied for which
fθ (s,z,y) is bigger or equal to some threshold2 τ . Next, we mark all voxels as active for
which at least two adjacent grid points have differing occupancy predictions. These are the
voxels which would intersect the mesh if we applied the Marching Cubes algorithm at the
current resolution. We subdivide all active voxels into eight subvoxels and evaluate all new
grid points which are introduced to the occupancy grid through this subdivision. We repeat
these steps until the desired final resolution is reached. At this final resolution, we apply the

2The threshold τ is the only hyperparameter of our Occupancy Network. It determines the “thickness” of the
extracted 3D surface. In our experiments we cross-validate this threshold on a validation set.
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Figure 11.2: Multiresolution IsoSurface Extraction. We first mark all points at a given
resolution which have already been evaluated as either occupied (red circles) or unoccupied
(cyan diamonds). We then determine all voxels that have both occupied and unoccupied
corners and mark them as active (light red) and subdivide them into eight subvoxels each.
Next, we evaluate all new grid points that have been introduced by the subdivision. The
previous two steps are repeated until the desired output resolution is reached. Finally we
extract the mesh using the Marching Cubes algorithm [117], simplify and refine the output
mesh using first and second order gradient information.

Marching Cubes algorithm [117] to extract an approximate isosurface

{s ∈ S | fθ (s,z,y) = τ}. (11.5)

Our algorithm converges to the correct mesh if the occupancy grid at the initial resolution
contains points from every connected component of both the interior and the exterior of the
mesh. It is hence important to take an initial resolution which is high enough to satisfy this
condition. In practice, we found that an initial resolution of 323 was sufficient in almost all
cases.

The initial mesh extracted by the Marching Cubes algorithm can be further refined. In a
first step, we simplify the mesh using the Fast Quadric Mesh Simplification algorithm3 [52].
In practice, we simplify the mesh to 5,000 faces. Finally, we refine the output mesh using
first and second order (i.e., gradient) information. Towards this goal, we sample random
points sk from each face of the output mesh and minimize the loss

K

∑
k=1

( fθ (sk,z,y)− τ)2 + γ

∥∥∥∥ ∇p fθ (sk,z,y)
‖∇p fθ (sk,z,y)‖

−n(sk)

∥∥∥∥2

(11.6)

3https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
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+

Figure 11.3: Occupancy Network Architecture. We first compute an embedding c of the
input. We then feed the input points through multiple fully-connected ResNet-blocks. In
these ResNet-blocks, we use Conditional Batch Normalization to condition the network on
c. Finally, we project the output of our network to one dimension using a fully-connected
layer and apply the sigmoid function to obtain occupancy probabilities.

where n(sk) denotes the normal vector of the mesh at sk. In practice, we set γ = 0.01.
Minimization of the second term in (11.6) uses second order gradient information and can
be efficiently implemented using Double-Backpropagation [41].

Note that this last step removes the discretization artifacts of the Marching Cubes approx-
imation and would not be possible if we had directly predicted a voxel-based representation.
In addition, our approach also allows to efficiently extract normals for all vertices of our
output mesh by simply backpropagating through the Occupancy Network.

11.5 Implementation Details

We use the same basic Occupancy Network architecture (Figure 11.3) for all experiments.
To this end, we first encode the condition y ∈ Y into a vector c ∈ RC using a task-specific
encoder network gψ(·). Our model then takes the output c ∈ RC and a batch of T 3D-
coordinates as input. In a generative setting, our network also takes a sampled latent code
z ∼ p0 as input. The points are passed through a fully-connected layer to produce a 256-
dimensional feature vector for each point. This feature vector is then passed through five pre-
activation ResNet-blocks: each ResNet-block first applies Conditional Batch Normalization
(CBN) [42, 192] to the current feature vector followed by a ReLU activation function. The
output is then fed into a fully-connected layer, a second CBN layer, a ReLU activation and
another fully-connected layer. The output of this operation is then added to the input of the
ResNet-block.

The output is finally passed through a last CBN layer and ReLU activation followed by
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+ ++ + + + + +

(a) Single Image 3D Reconstruction.

+ +

(b) Point Cloud Completion.

(c) Voxel Super-Resolution.

Figure 11.4: Encoder Architectures. Depending on the task, we leverage different encoder
architectures: (a) For image input, we use a ResNet-18 architecture [67], which was
pretrained on ImageNet. (b) For point cloud input, we use a PointNet encoder [158] with
additional pooling and expansion layers. (c) For voxel input, we use a 3D Convolutional
Neural Network.
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a fully-connected layer that projects the features down to one dimension. To obtain the
occupancy probability, this vector can simply be passed through a sigmoid activation.

The CBN layers are implemented in the following way: first, we pass the conditional en-
coding c, which we obtained from the encoder network gψ(·), through fully-connected layers
to obtain 256-dimensional vectors β (c) and γ(c). We then normalize the 256-dimensional
input feature vector fin using first and second order moments, multiply the output with γ(c)
and add the bias term β (c):

fout = γ(c)
fin− µ̂√
σ̂2 + ε

+β (c), (11.7)

Here, µ̂ and σ̂ denote the empirical mean and standard-deviation (over the batch- and T -
dimensions) of the input features fin and ε = 10−5 (the default value in PyTorch). Moreover,
we compute running means over µ̂ and σ̂2 with momentum 0.1 during training. At test time,
we replace µ̂ and σ̂2 with the corresponding running means.

The encoder network gψ(·) depends on the task (Figure 11.4): For single view 3D
reconstruction we use a ResNet-18 architecture [67] (Figure 11.4a) which was pretrained on
the ImageNet dataset [35]. However, we adjust the last fully-connected layer to project the
features to a 256-dimensional embedding c. For point cloud completion we use a PointNet
encoder [158] (Figure 11.4b) with five ResNet-blocks. To enable communication between
points at lower layers, we also add pooling and expansion layers between the ResNet-blocks.
After the ResNet-blocks, the final output is pooled using max-pooling and then projected
to a 512 embedding vector using a fully-connected layer. For voxel super-resolution we
use a 3D Convolutional Neural Network (Figure 11.4c) that encodes the 323 input into a
256-dimensional embedding vector c. We implement the encoder network gvae

ψ (·) for our
generative model as a PointNet [158] that takes a batch (si j,oi j) j=1:K of sampled points and
ground truth occupancies oi j = xi(si j) as well as ci = gψ(yi) as input and predicts mean µi

and standard deviation σi of a Gaussian distribution qψ(z|xi,yi) on latent z ∈ Z as output,
The architecture of gvae

ψ (·) is similar to the model shown in Figure 11.4b, but we only use
four fully-connected blocks instead of the five ResNet-blocks. Moreover, we replace the
last fully-connected layer with two fully-connected layers to produce both the mean µi and
log-standard-deviation logσi of the 128 dimensional latent code z.

In all experiments, we use the Adam optimizer [96] with a learning rate of h = 10−4 and
no weight decay. For other hyperparameters of Adam we use PyTorch defaults: β1 = 0.9,
β2 = 0.999 and ε = 10−8. For image input, we augment the input by scaling it with a
random factor between 0.75 and 1 and taking a random crop.

11.6 Experimental Results

We conduct three types of experiments to validate the proposed Occupancy Network. First,
we analyze the representation power of Occupancy Networks by examining how well the
network can reconstruct complex 3D shapes from a learned latent embedding. This gives
us an upper bound on the results we can achieve when conditioning our representation
on additional input. Second, we condition our Occupancy Networks on images, noisy
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point clouds and low resolution voxel representations, and compare the performance of our
method to several state-of-the-art baselines. Finally, we examine the generative capabil-
ities of Occupancy Networks by adding an encoder gvae

ψ (·) to our model and generating
unconditional samples from this model.4

11.6.1 Baselines

For the single image 3D reconstruction task, we compare our approach against several
state-of-the-art baselines which leverage various 3D representations: we evaluate against 3D
Recurrent Reconstruction Neural Network (3D-R2N2) [26] as a voxel-based method, Point
Set Generation Network (PSGN) [45] as a point-based technique and Pixel2Mesh [193] as
well as AtlasNet [63] as mesh-based approaches. For point cloud inputs, we adapt 3D-R2N2
and PSGN by changing the encoder. As mesh-based baseline, we use Deep Marching Cubes
(DMC) [108] which has recently reported state-of-the-art results on this task. For the voxel
super-resolution task we assess the improvements with respect to the input.

In order to conduct controlled experiments and to disentangle the individual components
of the different 3D reconstruction approaches, we created a PyTorch package comprising our
method and several baselines [26, 45, 108, 193]. To make sure that the performance of our
reimplementations of the baselines matches the performance of the original implementations,
we conduct thorough comparisons to the original models. Please see Appendix E.2 for
details.

11.6.2 Dataset

For our experiments we use the ShapeNet [22] subset of Choy et al. [26]. We also use the
same 323 voxelization, image renderings and train/test split (80% and 20% of the whole
dataset) as Choy et al. Moreover, we subdivide the training data into a training (70% of the
whole dataset) and a validation set (10% of the whole dataset) on which we track the loss of
our method and the baselines to determine when to stop training.

In order to determine if a point lies in the interior of a mesh (e.g., for measuring In-
tersection over Union (IoU)), we need the meshes to be watertight. We therefore use the
code5 provided by Stutz and Geiger [179], which performs TSDF-fusion on random depth
renderings of the object, to create watertight versions of the meshes. We center and rescale
all meshes so that they are aligned with the voxelizations from [26]. In practice, this means
that we transform the meshes so that the 3D bounding box of the mesh is centered at 0
and its longest edge has a length of 1. We then sample 100k points offline in the unit
cube centered at 0 with an additional small padding of 0.05 on both sides and determine
if the points lie inside or outside the watertight mesh. To this end, we count the number
of triangles that a ray which starts at the given point and which is parallel to the z-axis
intersects. If this number is even the point lies outside the mesh, otherwise it lies inside. We
save both the positions of the 100k points and their occupancies to a file. During training,

4The code to reproduce our experiments is available under https://github.com/LMescheder/

Occupancy-Networks.
5https://github.com/davidstutz/mesh-fusion
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we subsample 2048 points from this set (with replacement) as training data. Similarly, we
also sample 100k points from the surface of the object and save them to a file. We accelerate
data preprocessing using the GNU parallel tool [183]. For a fair comparison, we sample
points from the surface of the watertight mesh instead of the original model as ground truth
for PSGN [45], Pixel2Mesh [193] and DMC [108]. All of our evaluations are conducted
with respect to these watertight meshes.

Because Choy et al. [26] only provide 323 voxelizations in their dataset, we compute the
voxelizations for the experiment in Section 11.6.4 ourselves. To this end, we first detect all
voxels that intersect the surface of the mesh and mark them as occupied. We then test for a
random point in the interior of each voxel if it lies inside or outside the mesh. We mark the
corresponding voxel as occupied if the first case is true. This procedure marks all voxels as
occupied which intersect the mesh (or its interior).

11.6.3 Metrics

For evaluation we use the volumetric IoU, the Chamfer-L1 distance and a Normal Consis-
tency score.

In the following, let MPred and MGT be the set of all points that are inside or on the
predicted and ground truth mesh, respectively. The volumetric IoU is defined as the quotient
of the volume of the two meshes’ intersection and the volume of their union:

IoU(MPred ,MGT ) :=
|MPred ∩MGT |
|MPred ∪MGT |

(11.8)

We obtain unbiased estimates of these volumes by randomly sampling 100k points from
the bounding volume and determining if the points lie inside or outside MPred and MGT ,
respectively.

We define the Chamfer-L1 distance between the two meshes as

Chamfer-L1(MPred ,MGT ) :=
1

2 |∂MPred |

∫
∂MPred

min
s̃∈∂MGT

‖s− s̃‖ds

+
1

2 |∂MGT |

∫
∂MGT

min
s∈∂MPred

‖s− s̃‖ds̃
(11.9)

where ∂MPred and ∂MGT denote the surfaces of the two meshes. Moreover, we define an
Accuracy and Completeness score of MPred with respect to MGT :

Accuracy(MPred |MGT ) :=
1

|∂MPred |

∫
∂MPred

min
s̃∈∂MGT

‖s− s̃‖ds (11.10)

Completeness(MPred |MGT ) :=
1

|∂MGT |

∫
∂MGT

min
s∈∂MPred

‖s− s̃‖ds̃ (11.11)

Note that this definition implies that lower Accuracy and Completeness are better. Moreover,
note that the Chamfer-L1 distance is just the mean of the Accuracy and Completeness scores.
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163 323 643 1283 ours

Figure 11.5: Discrete vs. Continuous. Qualitative comparison of our continuous represen-
tation (right) to voxelizations at various resolutions (left). Note how our representation
encodes details which are lost in voxel-based representations.

Similarly, we define the Normal Consistency score as

Normal-Consistency(MPred ,MGT ) :=
1

2 |∂MPred |

∫
∂MPred

|n(s)T ·n(proj2(s))|ds

+
1

2 |∂MGT |

∫
∂MGT

|n(s̃)T ·n(proj1(s̃))|ds̃
(11.12)

where n(s) and n(s̃) are the (unit) normal vectors on mesh surfaces ∂MPred and ∂MGT ,
respectively, and proj2(s) and proj1(s̃) denote the projections of s and s̃ onto ∂MGT and
∂MPred . As a result, a higher Normal Consistency score is better.

We estimate all four quantities efficiently by sampling 100k points from the surface of
both meshes and employing a KD-tree to determine the corresponding nearest neighbors
from the other mesh.

11.6.4 Representation Power

In our first experiment, we investigate how well Occupancy Networks represent 3D geometry,
independent of the inaccuracies of the input encoding. The question we try to answer in this
experiment is whether our network can learn a memory efficient representation of 3D shapes
while at the same time preserving as many details as possible. This gives us an estimate
of the representational capacity of our model and an upper bound on the performance we
may expect when conditioning our model on additional input. Similarly to [184], we embed
each training sample in a 512-dimensional latent space and train our neural network to
reconstruct the 3D shape from this embedding.

We apply our method to the training split of the “chair” category of the ShapeNet dataset.
This subset is challenging to represent as it is highly varied and many models contain
high-frequency details. Since we are only interested in reconstructing the training data, we
do not use separate validation and test sets for this experiment.

For evaluation, we measure the volumetric IoU to the ground truth mesh. Quantitative
results and a comparison to voxel representations at various resolutions are shown in
Figure 11.6. We see that the Occupancy Network is able to faithfully represent the entire
dataset with a high mean IoU of 0.89 while a low-resolution voxel representation is not able
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Figure 11.6: IoU vs. Resolution. This plot shows the IoU of a voxelization to the ground
truth mesh (solid blue line) in comparison to our continuous representation (solid orange
line) as well as the number of parameters per model needed for the two representations
(dashed lines). Note how our representation leads to larger IoU with respect to the ground
truth mesh compared to a low-resolution voxel representation. At the same time, the number
of parameters of a voxel representation grows cubically with the resolution, whereas the
number of parameters of Occupancy Networks is independent of the resolution.

to represent the meshes accurately. At the same time, the Occupancy Network is able to
encode all 4746 training samples with as little as 6 million parameters, independently of the
resolution. In contrast, the memory requirements of a voxel representation grow cubically
with the spatial resolution. Qualitative results are shown in Figure 11.5. We observe that the
Occupancy Network enables us to represent details of the 3D geometry which are lost in a
low-resolution voxelization.

11.6.5 Single Image 3D Reconstruction

In our second experiment, we condition the Occupancy Network on an additional view of
the object from a random camera location. The goal of this experiment is to evaluate how
well Occupancy Functions can be inferred from complex input. While we train and test
our method on the ShapeNet dataset, we also present qualitative results for the KITTI [53]
and the Stanford Online Products [146] datasets. Moreover, we present a quantitative and
qualitative evaluation on the Pix3D dataset [180].
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Input 3D-R2N2 PSGN Pixel2Mesh AtlasNet Ours GT

Figure 11.7: Single Image 3D Reconstruction. The input image is shown in the first column,
the other columns show the results for our method compared to various baselines and the
ground truth.
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IoU Chamfer-L1 Normal Consistency

3D-R2N2 49.3% 0.278 0.695
PSGN - 0.215 -
Pixel2Mesh 48.0% 0.216 0.772
AtlasNet - 0.175 0.811
Occupancy Network 57.1% 0.215 0.834

Table 11.1: Single Image 3D Reconstruction. This table shows a numerical comparison of
our approach and the baselines for single image 3D reconstruction on the ShapeNet dataset.
Please see Table F.1 in Appendix F.3 for a per-category evaluation.

ShapeNet

In this experiment, we use a ResNet-18 image encoder [67], which was pretrained on
ImageNet [171]. For a fair comparison, we use the same image encoder for both 3D-R2N2
and PSGN. For PSGN we use a fully-connected decoder with 4 layers and 512 hidden units
in each layer. The last layer projects the hidden representation to a 3072-dimensional vector
which we reshape into 1024 3D points. As we use only a single input view, we remove the
recurrent network in 3D-R2N2. We reimplemented Pixel2Mesh [193] in PyTorch, closely
following the Tensorflow implementation provided by the authors. For AtlasNet [63], we
use the code and pretrained model6 from the authors.

For all methods, we track the loss and other metrics on the validation set and stop training
as soon as the target metric reaches its optimum. For 3D-R2N2 and our method we use
the IoU to the ground truth mesh as target metric, for PSGN and Pixel2Mesh we use the
Chamfer distance to the ground truth mesh as target metric. To extract the final mesh, we
use a threshold of 0.4 for 3D-R2N2 as suggested in the original publication [26]. To choose
the threshold parameter τ for our method, we perform grid search on the validation set
(see Section 11.6.9) and found that τ = 0.2 yields a good trade-off between Accuracy and
Completeness.

Qualitative results from our model and the baselines are shown in Figure 11.7. We observe
that all methods are able to capture the 3D geometry of the input image. However, 3D-R2N2
produces a very coarse representation and hence lacks details. In contrast, PSGN produces a
high-fidelity output, but lacks connectivity. As a result, PSGN requires additional lossy post-
processing steps to produce a final mesh7. Pixel2Mesh is able to create compelling meshes,
but often misses holes in the presence of more complicated topologies. Such topologies
are frequent, for example, for the “chairs“ category in the ShapeNet dataset. Similarly,
AtlasNet captures the geometry well, but produces artifacts in form of self-intersections
and overlapping patches. In contrast, our method is able to capture complex topologies,
produces closed meshes and preserves most of the details.

Quantitative results8 are shown in Table 11.1. We observe that our method achieves the

6https://github.com/ThibaultGROUEIX/AtlasNet
7See Figure E.1 in Appendix F.3 for meshing results.
8We later found that our numerical results improve when we do not use random crops and scaling to augment

the input images (IoU: 0.593, Chamfer-L1: 0.194, Normal Consistency: 0.840). However, for consistency
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Input Ours GT Input Ours GT

Figure 11.8: Failure Cases. While our method generally performs well, it struggles with
extremely thin object parts and objects that are very different from the objects seen during
training. These kinds of objects are especially frequent for the “lamp’ category of the
ShapeNet dataset. The input is shown in the first column, the other columns show the results
for our method compared to the ground truth.

highest IoU and Normal Consistency score to the ground truth mesh. Surprisingly, while
not trained with respect to Chamfer distance as PSGN, Pixel2Mesh or AtlasNet, our method
also achieves good results for this metric. Note that it is not possible to evaluate the IoU for
PSGN or AtlasNet, as they do not yield watertight meshes.

The inference time of our algorithm with simplification and refinement steps at resolution
1283 is about 3s / mesh. When we remove the simplification and refinement steps, the
inference time of our method reduces to 603ms / mesh with little degradation of the results.
While our method is slower compared to the baselines (3D-R2N2 [26]: 11ms, PSGN [45]:
10ms, Pixel2Mesh [193]: 31ms), we can trade off accuracy and efficiency in our inference
procedure by adaptively choosing the resolution: if we extract meshes at 323 resolution
instead and omit refinement, our inference time reduces to 41ms (32ms w/o Marching
Cubes).

Figure 11.9 shows results from the different stages of the MISE algorithm. We find that
even without further refinement our algorithm generates high-quality meshes. Moreover,
when we additionally apply simplification and refinement, the remaining discretization
artifacts (e.g. on the wings of the airplane in Figure 11.9) disappear.

Some failure cases for our method are shown in Figure 11.8. While in general our method

and to ensure a fair comparison to the baselines, we report the slightly worse results with data augmentation.
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(a) After Marching Cubes (b) After Simplification and Refinement

Figure 11.9: Multiresolution IsoSurface Extraction. This figure visualizes the different
stages of Multiresolution IsoSurface Extraction (MISE).

IoU Chamfer-L1 Normal Consistency

3D-R2N2 23.4% 1.888 0.489
PSGN - 0.770 -
AtlasNet - 0.456 0.752
Occupancy Network 31.9% 0.793 0.733
Occupancy Network+ 44.4% 0.504 0.799

Table 11.2: Pix3D Dataset. We evaluate the networks which were trained on ShapeNet on
the Pix3D dataset [180] with ground truth masks. Occupancy Network+ was trained on our
own renderings with more varied random views. Please see Table F.2 in Appendix F.3 for a
per-category evaluation.

performs well, we observe that our method sometimes has problems with very thin object
parts. Objects with such parts are especially frequent in the “lamp” category of the ShapeNet
dataset. Note that thin object parts are especially problematic for volumetric approaches to
3D reconstruction like our approach and 3D-R2N2 [26]. Approaches that take the metric of
the 3D space into account such as PSGN, Pixel2Mesh and AtlasNet are less prone to these
kinds of problems. However, these methods either only produce points clouds that have to
be meshed in a postprocessing step, can only represent meshes with very simple topology
or do not lead to watertight meshes.

Real Data

To test how well our model generalizes to real data, we apply our network to the KITTI [53]
and Stanford Online Products datasets [146] as well as the Pix3D dataset [180]. To capture
the variety in viewpoints on these datasets, we rerendered all ShapeNet objects with random
camera locations and retrained our network for this task.

KITTI For the KITTI dataset, we additionally use the instance masks provided by Al-
haija et al. [3] to mask and crop car regions. We then feed these images into our neural
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Input Reconstruction

(a) KITTI

Input Reconstruction

(b) Online Products

Figure 11.10: Real Data. We applied our trained model to the KITTI and Stanford Online
Products datasets. Despite only trained on synthetic data, our model generalizes reasonably
well to real data.

Input 3D-R2N2 PSGN AtlasNet Ours Ours+ GT

Figure 11.11: Pix3D Dataset. While all method generalize reasonably well to Pix3D [180],
they perform worse and show more artifacts than on synthetic data.
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network to predict the Occupancy Function. Some selected qualitative results are shown in
Figure 11.10a. Despite only trained on synthetic data, we observe that our method is also
able to generate realistic reconstructions in this challenging setting.

Online Products For the Stanford Online Products dataset, we apply the same pretrained
model. Several qualitative results are shown in Figure 11.10b. Again, we observe that our
method generalizes reasonably well to real images despite being trained solely on synthetic
data.

Pix3D dataset We also evaluate the networks which were trained on ShapeNet on the
Pix3D dataset [180] with ground truth masks. For all methods, we mask out the background
and crop the image so that the object is roughly in the middle of the image. As all methods
are only trained on 13 ShapeNet classes, we only use the four object classes (chair, desk,
sofa, table) from Pix3D that are similar to one of those 13 ShapeNet classes.

Qualitative and quantitative results are shown in Figure 11.11 and Table 11.2, respectively.
We find that all methods generalize reasonably well to real data, but achieve worse results
than on synthetic data. We also find that the Occupancy Network trained on more random
views (ONet+) generalizes better than Occupancy Network trained on the renderings by
Choy et al. [26]. This shows that the main limiting factor on this dataset is the realism of
the training dataset. We therefore expect that it is possible to further narrow the gap to
synthetic data by using even more varied and higher quality renderings as well as better data
augmentation strategies.

11.6.6 Point Cloud Completion

As a second conditional task, we apply our method to the problem of reconstructing the
mesh from noisy point clouds. Towards this goal, we subsample 300 points from the surface
of each of the (watertight) ShapeNet models and apply noise using a Gaussian distribution
with zero mean and standard deviation 0.05 to the point clouds.

Again, we measure both the IoU and Chamfer-L1 distance with respect to the ground
truth mesh. The results are shown in Table 11.3. We observe that our method achieves the
highest IoU and Normal Consistency score as well as the lowest Chamfer-L1 distance. Note
that all numbers are significantly better than for the single image 3D reconstruction task.
This can be explained by the fact that this task is much easier for the recognition model,
as there is less ambiguity and the model only has to fill in the gaps. Qualitative results are
shown Figure F.12 and Figure F.12 in Appendix F.3.

11.6.7 Voxel Super-Resolution

As a final conditional task, we apply Occupancy Networks to 3D super-resolution [175].
Here, the task is to reconstruct a high-resolution mesh from a coarse 323 voxelization of
this mesh.
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IoU Chamfer-L1 Normal Consistency

3D-R2N2 56.5% 0.169 0.719
PSGN - 0.144 -
DMC 67.4% 0.117 0.848
Occupancy Network 77.8% 0.079 0.895

Table 11.3: 3D Reconstruction from Point Clouds. This table shows a numerical compari-
son of our approach with respect to the baselines for 3D reconstruction from point clouds
on the ShapeNet dataset. We measure IoU, Chamfer-L1 distance and Normal Consistency
score with respect to the ground truth mesh. Please see Table F.3 in Appendix F.3 for a
per-category evaluation.

IoU Chamfer-L1 Normal Consistency

Input 63.1% 0.136 0.810
Occupancy Network 70.3% 0.109 0.879

Table 11.4: Voxel Super-Resolution. This table shows a numerical comparison of the output
of our approach in comparison to the input on the ShapeNet dataset.

The results are shown in Table 11.4. We observe that our model considerably improves
IoU, Chamfer-L1 distance and Normal Consistency score compared to the coarse input
mesh. Please see Figure F.14 in Appendix F.3 for qualitative results.

11.6.8 Unconditional Mesh Generation

Finally, we apply our Occupancy Network to unconditional mesh generation, training it
separately on four categories of the ShapeNet dataset in an unsupervised fashion. Our goal
is to explore how well our model can represent the latent space of 3D models. Some samples
are shown in Figure 11.12. Indeed, we find that our model can generate compelling new
models. In Figure F.15, F.16, F.17 and F.17 in Appendix F.3 we show interpolations in
latent space for our models, showing that our models learn a meaningful latent space of 3D
objects.

11.6.9 Ablation Study

In this section we test how the various components of our model affect its performance on
the single-image 3D reconstruction task.

Effect of Sampling Strategy First, we examine how the sampling strategy affects the
performance of our final model. We try three different sampling strategies: (i) sampling
2048 points uniformly in the bounding volume of the ground truth mesh (uniform sampling),
(ii) sampling 1024 points inside and 1024 points outside mesh (equal inside/outside) and
(iii) sampling 1024 points uniformly and 1024 points on the surface of the mesh plus some
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Figure 11.12: Unconditional 3D Samples. Random samples of our unsupervised models
trained on the categories “car“, “airplane“, “sofa“ and “chair“ of the ShapeNet dataset.
We see that our models are able to capture the distribution of 3D objects and produce
compelling new samples.

Gaussian noise with standard deviation 0.1 (uniform + near surface). We also examine the
effect of the number of sampling points by decreasing this number from 2048 to 64.

The results are shown in Table 11.5a. To our surprise, we find that uniform, the simplest
sampling strategy, works best. We explain this by the fact that other sampling strategies
introduce bias to the model: for example, when sampling an equal number of points inside
and outside the mesh, we implicitly tell the model that every object has a volume of 0.5.
Indeed, when using this sampling strategy, we observe thickening artifacts in the model’s
output. Moreover, we find that reducing the number of sampling points from 2048 to 64
still leads to good performance, although the model does not perform as well as a model
trained with 2048 sampling points.

Effect of Architecture To test the effect of the various components of our architecture,
we test two variations: (i) we remove the Conditional Batch Normalization and replace it
with a linear layer in the beginning of the network that projects the encoding of the input
to the required hidden dimension and (ii) we remove all ResNet-blocks in the decoder and
replace them with linear blocks. The results are presented in Table 11.5b. We find that both
components are helpful to achieve good performance.

Effect of the Threshold Parameter To understand the effect of the threshold parameter
τ , we examine its effect on various metrics on a validation set. To this end, we vary τ

from τ = 0.1 to τ = 0.6 and use MISE to extract the corresponding meshes. For each value
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IoU Chamfer-L1 Normal Consistency

uniform sampling (2048) 57.1% 0.215 0.834
uniform sampling (64) 55.4% 0.256 0.829
equal inside/outside 47.5% 0.291 0.835
uniform + near surface 53.6% 0.254 0.822

(a) Influence of Sampling Strategy

IoU Chamfer-L1 Normal Consistency

full model 57.1% 0.215 0.834
no ResNet-blocks 55.9% 0.243 0.831
no CBN 52.2% 0.301 0.806

(b) Influence of Network Architecture

Table 11.5: Ablation Study. When we vary the sampling strategy, we observe that uniform
sampling in the bounding volume performs best. Similarly, when we vary the architecture,
we find that our ResNet-architecture with Conditional Batch Normalization yields the best
results.

of τ , we measure the volumetric IoU, the Completeness, the Accuracy and the Normal
Consistency.

The results are shown in Figure 11.13. We observe that IoU improves as we decrease τ

until we reach the critical level of τ ≈ 0.2. For smaller τ , the IoU becomes worse again.
As expected, we observe that the Completeness score becomes better with smaller values
of τ . Surprisingly, we find that the Accuracy score also improves with smaller τ until it
reaches its optimum at τ ≈ 0.2. This is counterintuitive, because a small value of τ could a
priori lead to spurious geometries which should deteriorate the Accuracy score. We explain
this counterintuitive observation by the fact that both the Accuracy and the Completeness
are better when the gap between the two meshes is smaller. Although we might add some
spurious geometry for some objects for small τ , the meshes are closer to each other which
leads to better Accuracy and Completeness scores. This effect dominates the Accuracy
until we reach τ ≈ 0.2. For smaller τ the Accuracy becomes worse again because spurious
geometry appears. We also observe that some categories are more difficult to learn. In
particular the “lamp” category is very challenging for our method due to very fine geometry.

All in all, we see that the selection of the threshold parameter is a critical component of
our method and a threshold parameter of τ ≈ 0.2 yields the best performance.

11.7 Conclusion

In this chapter we have introduced Occupancy Networks, an application of the Function
Space Operator to learning-based 3D reconstruction and 3D generative modeling. In contrast
to existing representations for 3D geometry, Occupancy Networks are not constrained by the
discretization of the 3D space and can hence be used to represent realistic high-resolution
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(a) IoU (b) IoU per Category

(c) Trade-off curve (d) Accuracy per Category

(e) Normal consistency (f) Completeness per Category

Figure 11.13: Threshold Parameter. Effect of threshold parameter on IoU, Accuracy score,
Completeness score and Normal Consistency score for the single-view 3D reconstruction
experiment.
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meshes. Our experiments demonstrate that Occupancy Networks are very expressive and
can be used effectively both for supervised and unsupervised learning. We hence believe
that Occupancy Networks are a useful tool which can be applied to a wide variety of 3D
tasks.
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In Chapter 10, we have introduced the Function Space Operator as a way of circumventing
the Curse of Discretization. In Chapter 11 we applied this concept to the challenging tasks
of learning-based 3D reconstruction and 3D generative modeling, yielding a type of model
that we call Occupancy Network. However, the Function Space Operator is a much more
general concept and can be applied to arbitrary deep learning tasks that can be described as
having a function as output.

In this chapter we introduce two extensions of Occupancy Networks that illustrate the
usefulness of the Function Space Operator for other applications. First, we show how we
can extend Occupancy Networks to also predict texture information. Afterwards, we show
how Occupancy Networks can be extended to 4D reconstruction.

While both of these extensions are an application of the Function Space Operator, they
also require novel insights. In this thesis we only give a brief overview of the methods and
refer interested readers to the respective publications [141, 145] for details.

12.1 Texture Fields

In Occupancy Networks we predict the geometry of 3D objects from a sampled latent code
z ∈ Z and / or from some observation y ∈ Y such as a single view of the object.

While this approach produces plausible 3D geometry, there is clearly something missing:
in the real world 3D objects have materials. Assuming that these materials are Lambertian,
we can model them as a texture consisting of RGB-color values.

Historically, texture is often represented using a UV-mapping which maps every location
on the surface to an image. Unfortunately, however, this representation requires a template
model for the 3D shape and is thus hard to integrate into a deep learning pipeline. Recent
deep learning approaches have hence resorted to a voxel representation where texture can
be easily modeled by assigning a color value to each voxel.

When using colored voxels, we effectively learn a function Z×Y → V Ŝ , where Y is an
observation space (e.g. single views of the object), V =R3 represents the RGB-color values
and Ŝ is the discretized version of S = [0,1]3. However, as we have seen Chapter 10, we
can circumvent the costly discretization step of S by applying the Function Space Operator:
instead of learning a function Z×Y → V Ŝ , we can learn a function S ×Z×Y → V . We
call the resulting model a Texture Field.

Our model [145] is visualized in Figure 12.1. Note that we also condition on the shape of
the 3D object. Conditioning on the shape is not a limitation: we can always use our model
from Chapter 11 to first reconstruct or generate the 3D shape before applying the Texture
Field to it. We supervise our model with ground truth RGB images and depth maps. This
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Figure 12.1: Texture Fields. Texture Fields take a 3D shape and of an object and a tuple
(z,y) ∈ Z×Y as input and output a continuous function tθ which maps any 3D point s to a
color value, enabling the prediction of accurately textured 3D models.

way, we can train our generative model both as a Variational Autoencoder (VAE) and (by
introducing an additional image discriminator) as a Generative Adversarial Network (GAN).

For details on the method, architectures and training see Oechsle et al. [145]. Here, we
only show qualitative results for our (purely) generative model in Figure 12.3. One useful
application of our generative model is to transfer texture from one model to another as
visualized in Figure 12.4. The results in Figure 12.4 show that our model learns a useful
latent texture representation that is disentangled from the shape of the object.

12.2 Occupancy Flow

While Occupancy Networks and Texture Fields allow to reconstruct and generate realistic
static 3D objects, the real world is in motion. In principle, time-varying geometry can be
modeled by learning a function Z×Y → VS where S = [0,1]4 is a space-time volume and
V = [0,1] denotes occupancy probability. Again, we see that we can apply the Function
Space Operator to turn this difficult problem into the tractable problem of approximating a
function S ×Z×Y → V with a neural network.

However, representing time-varying geometry this way has the drawback of not providing
temporal correspondences: while the representation S ×Z×Y → V allows to extract 3D
meshes for every point in time, the model does not encode any information about 3D motion
and therefore cannot reason about correspondences across time.

To circumvent this problem, we propose to learn two neural networks, the Occupancy
Network fθ : S0×Z×Y → Vocc and the Velocity Network vθ : S ×Z×Y → Vvel with
S0 = [0,1]3, S = [0,1]4, Vocc = [0,1] and Vvel = R3, visualized in Figure 12.2. This results
in spatio-temporal model which we call Occupancy Flow (OFlow). While the first network
encodes the geometry of the object at t = 0, the second one describes a time-varying vector
field, which encodes 3D motion. As we show in the main publication [141], these two
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Figure 12.2: Occupancy Flow. In Occupancy Flow, we use an Occupancy Network f z,y
θ

to
predict a mesh at time t = 0. We then propagate points on the surface of the mesh at t = 0
forward in time by integrating an input-dependent vector field vz,y

θ
.

functions together define a time-varying Occupancy Function S ×Z×Y → Vocc that can
be trained in the same way as Occupancy Networks, optionally making use of additional
temporal correspondences between points during training. During inference we can use the
Occupancy Network fθ (·) to extract a mesh at t = 0 and then use the Velocity Network
vθ (·) to propagate the vertices of mesh forward in time. This way, we obtain dense temporal
correspondences for our results.

Again, we refer the interested reader to the main publication [141] for details. Here, we
only show some qualitative results of our generative model in Figure 12.5 and Figure 12.6.
In Figure 12.5a we show generated results when keeping the latent code for the shape fixed
and interpolating the latent code for the motion. Similarly, in Figure 12.5b we show results
when keeping the latent code for the motion fixed and interpolating the latent code for the
shape. All in all, the results in Figure 12.5 show that we can learn a useful disentangled
representation of shape and motion. Similarly to Texture Fields, we can use this insight to
transfer the motion from one object to another, which is visualized in Figure 12.6.

12.3 Conclusion

In this chapter we have described the core ideas behind two extensions of Occupancy
Networks: Texture Fields and Occupancy Flow. While Texture Fields enable us to also
represent texture of 3D geometry, Occupancy Flow extends Occupancy Networks to 4D
reconstruction and 4D generative modeling. Both extensions can be seen as an application
of the Function Space Operator and hence illustrate the usefulness of the concept.
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Figure 12.3: Generative Texture Model. Textures generated using the GAN (top 2 rows)
and VAE (bottom 2 rows) models.

Figure 12.4: Texture Transfer. Our VAE-based generative model transfers appearance
information (top) to the target models (left).
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(a) Shape Interpolation (b) Motion Interpolation

Figure 12.5: Generative Motion Model. We see that Occupancy Flow is able to learn a
meaningful latent representation of both shape and motion.

Figure 12.6: Motion Transfer. We take a start shape (first column) and encode the motion
from another sequence (second column) to transfer this motion to the shape (third column).
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13 Limitations and further Developments

As we have seen, the Function Space Operator is a useful tool to enable deep learning
for high-dimensional output spaces. Consequently, the 3D deep learning community has
quickly adopted the concept and proposed different models that are based on this idea [8,
25, 57, 74, 97, 130, 132, 141, 145, 150, 172, 174, 196]. However, deep learning in function
space does not solve all problems and can also result in new challenges.

The first challenge is to find efficient neural network architectures for implicit represen-
tations: while voxel representations allow for highly specialized architectures, such as 3D
convolutions [26, 123, 157, 176], finding these architectures is much harder for implicit
representations. Instead, in implicit representations we predict the quantity of interest (e.g.
occupancy) solely based on a single s ∈ S (e.g. 3D location). One possible approach for
designing better architectures is to think about the information flow from the input in Y:
for example, it is possible to leverage camera information [172, 196] for single-image-3D
reconstruction to condition the network on local instead of global features. However, other
approaches are conceivable: for example, it might be possible to design neural network ar-
chitectures that directly operate on the implicit representation, similarly to 3D Convolutional
Neural Networks.

The second challenge is to find efficient inference algorithms for implicit representations.
In contrast to neural networks that directly output point clouds, meshes or voxels, implicit
representations require a postprocessing step to extract geometry. In Chapter 11 we proposed
a simple inference algorithm based on building an OctTree [130]. Moreover, in Chapter 12
we briefly discussed Occupancy Flow [141], an extension of Occupancy Networks for
4D reconstruction that only has to extract a mesh once during inference. However, mesh
extraction still requires up to 3s and is therefore not fast enough for real-time applications.
In addition to these mesh extraction algorithms, other inference algorithms are possible:
for instance, Park et al. [150] skip the mesh extraction step altogether and use volumetric
rendering to directly obtain renderings from their implicit representation.

Finally, current implicit 3D representations still have to be supervised from ground truth
3D data. Unfortunately, this data is usually hard or expensive to acquire and it would
be desirable to design methods that remove this restriction. One approach is to design
a differentiable renderer to enable training from RGB images. Existing work designs
differentiable renderers either for meshes [23, 56, 91, 112, 115, 212] or voxel representations
[114, 139, 152, 188]. However, there is little work that investigates differentiable rendering
for implicit representations. Only recently1 Liu et al. [113] and Niemeyer et al. [142]
proposed to learn implicit representations from RGB and RGB-D images However, both
Liu et al. [113] and Niemeyer et al. [142] still require silhouette and camera information.

1The author of this thesis contributed to the latter paper [142].
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Conclusion

In this thesis we have revisited generative models from two perspectives.
First, we have analyzed the stability of Generative Adversarial Networks (GANs). We

have derived a theory for local convergence of the GAN training dynamics and used it to
derive regularizers for GAN training. Our results can be summarized as follows: we found
that (i) GAN training suffers from eigenvalues of the Jacobian close to the imaginary axis,
(ii) naive GAN optimization is not always convergent, (iii) zero-centered gradient penalties
can stabilize training and (iv) our regularizers enable us to train high-resolution GANs
without the need for multiresolution training. While we did not answer all theoretical and
practical questions about GAN training, we hope that our research inspires more theoretical
work into the training dynamics of GANs and related algorithms. Moreover, we believe that
our results are useful to derive novel algorithms for GAN training.

In the second part of the thesis, we have analyzed the expressiveness of generative and
certain discriminative models. Here, we focused on the problem of high-dimensional output
spaces, which are especially problematic for generative models. To tackle the emerging
issues, we proposed the Function Space Operator, a mechanism that is applicable to a
large variety of domains whose output space can be described as a function space. Our
experiments show that this simple technique enables an approach to 3D generative and
discriminative deep learning that does not require any discretization during training, called
Occupancy Networks. We experimentally found that (i) Occupancy Networks are able to
represent high-dimensional 3D geometry, (ii) implicit representations can be efficiently
learned from data such as 2D images and (iii) can be used to learn a generative model in 3D.
Moreover, we briefly described two extensions that apply the Function Space Operator to
4D generative modeling as well as a generative model of texture.

All in all, we found that both theoretical and experimental tools are useful to scale
up generative models to complex high-dimensional spaces. Indeed, recent state-of-the-art
approaches for generative modeling [89] have already adopted some of the ideas presented
in this thesis. While there is much more work to be done, we believe that the research
presented in this thesis will help develop the next generation of deep generative models.
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A Linear Algebra

In this chapter we first summarize two well-known results about the determinant of matrices.
The first result is a lemma about the determinant of block matrices. The second result, also
known as Matrix Determinant Lemma, gives a formula for the determinant of the sum of
an invertible matrix and the matrix product of two low-rank matrices. For completeness,
we also provide short proofs of these results. Afterwards, we derive a lemma about the
eigenvalues of certain matrices that is useful when considering the effect of preconditioners
and learning rates in GAN training (see Chapter 7). Finally, we state a lemma about the
operator norm of a matrix which will be useful in Appendix B.

Lemma A.1 (Determinant of Block Matrices). Let

M =

(
M11 M12
M21 M22

)
∈ C(n+m)×(n+m) (A.1)

with M11 ∈ Cn×n, M12 ∈ Cn×m, M21 ∈ Cm×n and M22 ∈ Cm×m. Moreover, assume that M11
is invertible. Then

det(M) = det(M11)det(M22−M21M−1
11 M12) (A.2)

Proof. Regard

det(M) = det
(

M11 M12
M21 M22

)
(A.3)

Multiplying the first row with−M21M−1
11 from the left and adding it to the second row yields

det(M) = det
(

M11 M12

0 M22−M21M−1
11 M12

)
= det(M11)det(M22−M21M−1

11 M12) (A.4)

Lemma A.2 (Matrix Determinant Lemma). For A ∈ Cn×n invertible and U,V ∈ Cn×m we
have

det(A+UVT) = det(A)det(I +VTA−1U) (A.5)

Proof. Let

M :=
(

A U
−VT I

)
(A.6)

Using Lemma A.1, we obtain

det(M) = det(I)det(A+UVT) = det(A+UVT) (A.7)
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On the other hand, again by Lemma A.1,

det(M) = det(A)det(I +VTA−1U) (A.8)

and hence the assertion.

The next lemma allows us to examine training algorithms for Generative Adversarial
Networks (GANs) where we use different learning rates for the generator and discriminator.
Moreover, this lemma can also be used to analyze the effect of preconditioners on GAN
training.

Lemma A.3. Let H1 ∈ Rn×n and H2 ∈ Rm×m denote symmetric positive definite matrices.
The eigenvalues of the matrix(

H1J11 H1J12
H2J21 H2J22

)
∈ R(n+m)×(n+m) (A.9)

are equal to the eigenvalues of the matrix(
H1/2

1 J11H1/2
1 H1/2

1 J12H1/2
2

H1/2
2 J21H1/2

1 H1/2
2 J22H1/2

2

)
(A.10)

Proof. Let

J :=
(

J11 J12
J21 J22

)
and H :=

(
H1 0
0 H2

)
(A.11)

Then (
H1J11 H1J12
H2J21 H2J22

)
= H J (A.12)

and (
H1/2

1 J11H1/2
1 H1/2

1 J12H1/2
2

H1/2
2 J21H1/2

1 H1/2
2 J22H1/2

2

)
= H1/2JH1/2 (A.13)

Since, H J = H1/2(H1/2JH1/2)H−1/2, the assertion follows.

Corollary A.4. Let h1,h2 > 0. The eigenvalues of the matrix(
h1 J11 h1 J12
h2 J21 h2 J22

)
(A.14)

are equal to the eigenvalues of the matrix(
h1 J11

√
h1h2 J12√

h1h2 h2 J22

)
(A.15)

Proof. This is a consequence of Lemma A.3 when we set H1 = h1I and H2 = h2I.
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Recall that the operator norm of a matrix M ∈ Cn×n is defined by

‖M‖ := sup
w∈Cn

‖w‖=1

‖Mw‖ (A.16)

Furthermore, for an invertible matrix Q ∈ Cn×n and w ∈ Cn, we define

‖w‖Q := ‖Q−1w‖ and ‖M‖Q := ‖Q−1MQ‖ (A.17)

A simple calculation shows that

‖Mw‖Q = ‖Q−1MQQ−1w‖ ≤ ‖Q−1MQ‖‖Q−1w‖= ‖M‖Q‖w‖Q (A.18)

We have1

Lemma A.5. Let M ∈ Cn×n. Assume that λmax is the eigenvalue of M with the biggest
absolute value. For every ε > 0 there is an invertible matrix Q ∈ Cn×n, such that

‖M‖Q < |λmax|+ ε (A.19)

Proof. First assume that all eigenvalues of M are distinct. Then there is Q ∈ Cn×n such that
Q−1MQ is a diagonal matrix and the diagonal entries of Q−1MQ are the eigenvalues of M.
This shows that for every w ∈ Cn with ‖w‖= 1

‖Q−1MQw‖2 =
n

∑
i=1
|λiwi|2 ≤ |λmax|2

n

∑
i=1
|wi|2 = |λmax|2 (A.20)

where λi denote the eigenvalues of M. This shows that ‖M‖Q ≤ |λmax|.
Consider now the case where the eigenvalues of M may not be distinct. While we cannot

diagonalize M, we can find an invertible P = (p1, . . . , pn) ∈Cn×n such that P−1MP is lower
triangular and the diagonal entries of P−1MP are the eigenvalues of M. Then,

M · pi = λi pi +∑
j>i

β j,i p j (A.21)

for some β j,i ∈ C. We now set qi = ε−i pi for ε ∈ (0,1) and Q = (q1, . . . ,qn) ∈ Cn×n. We
have

M ·qi = λiqi +∑
j>i

ε
j−i

β j,iq j (A.22)

Hence, for w ∈ Cn, ‖w‖= 1, using the Cauchy-Schwarz inequality,

‖Q−1MQw‖2 =
n

∑
i=1
|λiwi +∑

j<i
ε

i− j
βi, jw j|2 ≤ |λmax|+ ε ∑

i, j
|βi, j|2 (A.23)

For ε > 0 small enough this yields the assertion.

1See also Bertsekas [12], Proposition A 15.
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B Discrete Dynamical Systems

In this chapter we derive some basic results from the theory of discrete nonlinear dynamical
systems. For a similar description of the theory of continuous nonlinear dynamical systems
see for example Khalil [94] and Nagarajan and Kolter [136].

B.1 Deterministic Operators

In this section we consider continuously differentiable operators F : Ω→Ω acting on an
open set Ω ⊂ Rn. A fixed point of F is a point ω∗ ∈ Ω such that F(ω∗) = ω∗. We are
interested in stability and convergence of the fixed point iteration F(k)(ω) near the fixed
point. To this end, we first have to define what we mean by stability and local convergence.

Definition B.1. Let ω∗ ∈ Ω be a fixed point of a continuously differentiable operator
F : Ω→Ω. We call ω∗

• stable if for every ε > 0 there is δ > 0 such that ‖ω−ω∗‖< δ implies ‖F(k)(ω)−
ω∗‖< ε for all k ∈ N.

• asymptotically stable if it is stable and there is δ > 0 such that ‖ω−ω∗‖< δ implies
that F(k)(ω) converges to ω∗

• exponentially stable if there is α ∈ [0,1), δ > 0 and C > 0 such that ‖ω−ω∗‖< δ

implies
‖F(k)(ω)−ω

∗‖<C‖ω−ω
∗‖αk (B.1)

for all k ∈ N.

If ω∗ is asymptotically stable fixed point of F , we call the algorithm obtained by iteratively
applying F locally convergent to ω∗. If ω∗ is exponentially stable, we call the corresponding
algorithm linearly convergent. Moreover, if ω∗ is exponentially stable, we call the infimum
of all α so that (B.1) holds for some C > 0 the convergence rate of the fixed point iteration.

As it turns out, local convergence of fixed point iterations can be analyzed by examining
the spectrum of the Jacobian of the fixed point operator. We have the following central
Theorem:1

Theorem B.2. Let F : Ω→Ω denote a C1-mapping on an open subset Ω of Rn and ω∗ ∈Ω

be a fixed point of F. Assume that the absolute values of the eigenvalues of the Jacobian
F ′(ω∗) are all smaller than one. Then the fixed point iteration F(k)(ω) is locally convergent
to ω∗. Moreover, the rate of convergence is at least linear with convergence rate |λmax|
where λmax denotes the eigenvalue of F ′(ω∗) with the largest absolute value.

1See also Bertsekas [12], Proposition 4.4.1
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Proof. Let J := F ′(ω∗) and Q ∈ Cn×n denote an invertible matrix. Moreover, let ‖ · ‖Q be
defined as in (A.17) and let ε > 0. By the definition of the Jacobian F ′(ω∗) there is δ > 0
such that for ‖ω−ω∗‖Q < δ we have

‖F(ω)−ω
∗‖Q ≤ ‖J (ω−ω

∗)‖Q + ε‖ω−ω
∗‖Q (B.2)

By Lemma A.5 we can choose Q such that

‖F(ω)−ω
∗‖Q ≤ (λmax +2ε)‖ω−ω

∗‖Q (B.3)

Since ε > 0 was arbitrary, we can choose ε such that λmax +2ε < 1. This implies ‖F(ω)−
ω∗‖Q < δ and we therefore recursively obtain

‖F(k)(ω)−ω
∗‖Q ≤ (λmax +2ε)k‖ω−ω

∗‖Q (B.4)

Since ‖ · ‖Q and ‖ · ‖ are equivalent norms on Rn, there is C > 0 and δ̃ such that

‖F(k)(ω)−ω
∗‖ ≤C(λmax +2ε)k‖ω−ω

∗‖ (B.5)

for ‖ω−ω∗‖< δ̃ , showing that ω∗ is exponentially stable.

As it turns out, the converse of Theorem B.2 is also true, showing that the condition in
Theorem B.2 is both necessary and sufficient for ω∗ being an exponentially stable fixed
point of F .

Lemma B.3. If ω∗ is an exponentially stable fixed point of the C1-mapping F : Ω→ Ω,
then all eigenvalues of F ′(ω∗) have absolute value smaller than one.

Proof. Let J := F ′(ω∗). First note that the mapping ω → F(k)(ω) obtained by applying F
k-times to ω is differentiable and has a fixed point at ω∗. Moreover, by the multivariate
chain rule, the Jacobian of F(k) at ω∗ is Jk.

This means that there is a function gk with

F(k)(ω) = ω
∗+ Jk(ω−ω

∗)+gk(ω−ω
∗) (B.6)

and

lim
ω→ω∗

‖gk(ω−ω∗)‖
‖ω−ω∗‖

= 0 (B.7)

For t > 0, consider ω = ω∗+ tw. Together with (B.6) this yields

t‖Jkw‖ ≤ ‖F(k)(ω∗+ tw)−ω
∗‖+‖gk(t w)‖ (B.8)

Since ω∗ is an exponentially stable fixed point of F , there is C > 0 and α < 1 such that for
t small enough

t‖Jkw‖ ≤ tC‖w‖αk +‖gk(t w)‖ (B.9)
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Dividing by t on both sides yields

‖Jkw‖ ≤C‖w‖αk +
1
t
‖gk(t w)‖ (B.10)

Since this holds for all t > 0 small enough, we can consider the case t→ 0. In this case the
remainder 1

t ‖gk(tw)‖ vanishes, yielding ‖Jkw‖ ≤C‖w‖αk and therefore limk→∞ ‖Jkw‖= 0
for all w ∈ Rn. However, this can only hold for arbitrary w ∈ Rn if all eigenvalues of J have
absolute value smaller than one.

For deep neural networks, we usually do not have a single fixed point but a submanifold
of equivalent fixed points. We therefore need a generalization of Theorem B.2 that takes
submanifoldsM of fixed points into account. In the following, let Tω∗M denote the tangent
space ofM at ω∗ and (Tω∗M)⊥ its orthogonal complement.

We now prove the following generalization of Theorem B.2:

Theorem B.4. Assume that F : Ω→ Ω⊆ Rn is a C1-mapping and letM⊆ Ω denote an
(n− l)-dimensional C1-submanifold of Ω so that F(ω) =ω for all ω ∈M. Let ω∗ ∈M and
assume that B = (b1, . . . ,bl) ∈ Rn×l is a basis of (Tω∗M)⊥. Let J := BTF ′(ω∗)B. Then the
fixed point iteration defined by F is locally convergent toM with linear convergence rate
in a neighborhood of ω∗. Moreover, the convergence rate is |λmax| with λmax the eigenvalue
of J with largest absolute value.

In the remainder of this section, we prove Theorem B.4. To this end, we first reduce
Theorem B.4 to the case whereM= {0}l×Rn−l:

Lemma B.5. LetM⊆Ω denote an (n− l)-dimensional C1-submanifold of Rn and let ω∗ ∈
M. Assume that B = (b1, . . . ,bl) ∈ Rn×l and B̃ = (b̃1, . . . , b̃n−l) ∈ Rn×(n−l) are orthogonal
bases of (Tω∗M)⊥ and Tω∗M, respectively. Then there is a neighborhood U ⊆Ω of ω∗, a
neighborhood V ⊆ Rn of 0 and a C1-diffeomorphism φ : U →V such that

• φ(U ∩M) =V ∩ ({0}l×Rn−l)

• φ(ω∗) = 0

• φ ′(ω∗) = (B, B̃)T ∈ Rn×n

Proof. SinceM⊆Ω is an (n− l)-dimensional C1-submanifold of Rn, there is (by definition)
a neighborhood U0 of ω∗, a neighborhood V0 of 0 in Rn and a C1-diffeomorphism φ0 : U0→
V0 such that φ0(U0∩M) =V0∩ ({0}l×Rn−l) and φ0(ω

∗) = 0. We therefore only have to
show that we can modify φ0 into φ so that additionally φ ′(ω∗) = (B, B̃)T ∈ Rn×n.

To this end, define
Q := (B, B̃)T ·

(
φ
′
0(ω

∗)
)−1 ∈ Rn×n (B.11)

and let U :=U0 and V := Q(V0). Moreover, define φ : U →V by

φ(ω) := Q ·φ0(ω) (B.12)
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Since Q is an invertible matrix, φ is a C1-diffeomorphism and we have φ(ω∗) = 0. Moreover,

Q({0}l×Rn−l) = (B, B̃)T ·
(
φ
′
0(ω

∗)
)−1

({0}l×Rn−l)

= (B, B̃)T(Tω∗M)

= {0}l×Rn−l

(B.13)

and therefore

φ(U ∩M) = Q(V0∩ ({0}l×Rn−l))

=V ∩Q({0}l×Rn−l)

=V ∩ ({0}l×Rn−l)

(B.14)

Finally, we have

φ
′(ω∗) = (B, B̃)T ·

(
φ
′
0((ω

∗)
)−1

φ
′
0(ω

∗) = (B, B̃)T (B.15)

showing the assertion.

The next lemma is a discrete version of Theorem A.4 from Nagarajan and Kolter [136]
and we prove it in a similar way.

Lemma B.6. Let F : Ω1 → Ω2 define a C1-mapping that maps an open neighborhood
Ω1 of 0 to another open neighborhood Ω2 of 0. Assume that F(0,ω2) = (0,ω2) for all
(0,ω2) ∈Ω1 where ω2 ∈ Rn−l . Moreover, assume that all eigenvalues of

J :=
∂

∂ω1
F(ω1,0)

∣∣∣∣
ω1=0

∈ Rl×l (B.16)

have absolute value smaller than one. Then there is an open neighborhood U1 ⊆ Ω1 so
that for all ω ∈ U1 we have F(k)(ω) ∈ Ω1 ∩Ω2 and F(k)(ω) is locally convergent to
M := {(0,ω2) ∈Ω2 |ω2 ∈Rn−l} with linear convergence rate . Moreover, the convergence
rate is |λmax| with λmax the eigenvalue of J with largest absolute value.

Proof. In the following, we write F(ω1,ω2) = (F1(ω1,ω2),F2(ω1,ω2)), so that the fixed
point iteration can be written as

ω
(k+1)
1 = F1(ω

(k)
1 ,ω

(k)
2 ) (B.17)

ω
(k+1)
2 = F2(ω

(k)
1 ,ω

(k)
2 ). (B.18)

To prove the assertion, it suffices to show that there are open neighborhoods U1 ⊆Ω1 and
U2 ⊆Ω1∩Ω2 of 0 such that for ω(0) ∈U1 we have ω(k) ∈U2 for all k ∈ N and

‖ω(k)
1 ‖ ≤C‖ω(0)

1 ‖α
k (B.19)

for some α ∈ [0,1).
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We first examine the behavior of F1 near (0,0). To this end, we develop F1 into a Taylor-
series

F1(ω1,ω2) = Jω1 +g1(ω1,ω2) (B.20)

For Q ∈ Cl×l , let the norm ‖ · ‖Q on Rl be defined as in (A.17). We first show that for any
c > 0 we have ‖g1(ω1,ω2)‖Q ≤ c‖ω1‖Q sufficiently close to (0,0): because F1(0,ω2) = 0
for all ω2 close to 0, g1(ω1,ω2) must be of the form g1(ω1,ω2) = h1(ω1,ω2)ω1 with
h1(0,0) = 0. This shows that for every c > 0 there is δ > 0 such that for ‖ω1‖Q < δ and
‖ω2‖< δ we have ‖g1(ω1,ω2)‖Q ≤ c‖ω1‖Q.

Let ε > 0. According to Lemma A.5 we can select Q ∈ Cl×l such that

‖Jω1‖Q < (|λmax|+ ε)‖ω1‖Q (B.21)

for ω1 ∈ Rl where |λmax| denotes the eigenvalue of J with the largest absolute value.
Hence, for ‖ω1‖Q < δ and ‖ω2‖< δ ,

‖F1(ω1,ω2)‖Q ≤ ‖Jω1‖Q +‖g1(ω1,ω2)‖Q < (|λmax|+ ε + c)‖ω1‖Q (B.22)

Because we can make c+ ε as small as we want, this shows that

‖ω(k)
1 ‖Q ≤ α

k‖ω(0)
1 ‖Q < δ (B.23)

for some α ∈ [0,1), if ‖ω(0)
1 ‖Q < δ and ‖ω(l)

2 ‖ < δ for all l = 0, . . . ,k− 1 with δ > 0
sufficiently small. We therefore have to show that the iterates ω

(k)
2 stay in a neighborhood of

0, i.e. ‖ω(k)
2 ‖< δ , when the starting iterates ω

(0)
1 and ω

(0)
2 are initialized sufficiently close

to 0.
To show this, we develop F2 into a Taylor-series around 0:

F2(ω1,ω2) = ω2 +g2(ω1,ω2). (B.24)

Again, we see that g2 must be of the form g2(ω1,ω2) = h2(ω1,ω2)ω1, showing that
‖g2(ω1,ω2)‖ ≤ c′‖ω1‖Q for some fixed constant c′ > 0 if ‖ω1‖Q < δ and ‖ω2‖< δ (note
that in general h2(0,0) 6= 0). We therefore have

‖ω(k)
2 −ω

(0)
2 ‖ ≤

k−1

∑
l=0
‖g2(ω

(l)
1 ,ω

(l)
2 )‖

≤
k−1

∑
l=0

c′‖ω(l)
1 ‖Q

≤
k−1

∑
l=0

c′α l‖ω(0)
1 ‖Q

≤ c′

1−α
‖ω(0)

1 ‖Q

(B.25)

Hence, if we initialize ω(0) so that ‖ω(0)
1 ‖Q < min(1, 1−α

2c′ )δ and ‖ω(0)
2 ‖ <

δ

2 , we have
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‖ω(k)
1 ‖Q < δ and ‖ω(k)

2 ‖ < δ for all k ∈ N. Moreover, we further have by (B.23) and
because ‖ · ‖ and ‖ · ‖Q define equivalent norms on Rl

‖ω(k)
1 ‖ ≤Cα

k‖ω(0)
1 ‖ (B.26)

for some C > 0 and all k ∈ N. This concludes the proof.

We are now ready to prove Theorem B.4:

Theorem B.4. Let φ : U →V be defined as in Lemma B.5 and Fφ : V ∩φ(F−1(U))→V be
defined by Fφ := φ ◦F ◦φ−1. It suffices to show that Fφ satisfies the condition of Lemma B.6.

First of all, for ω2 ∈ Rn−l we have φ−1(0,ω2) ∈M if (0,ω2) ∈V . Since F(ω) = ω for
all ω ∈M, this shows that

Fφ (0,ω2) = φ
(
F
(
φ
−1(0,ω2)

))
= φ

(
φ
−1(0,ω2)

)
= (0,ω2) (B.27)

Moreover, since φ ′(ω∗) = (B, B̃)T,

F ′φ (0,0) = φ
′(ω∗) ·F ′(ω∗) · (φ ′(ω∗))−1

=

(
BT

B̃T

)
F ′(ω∗)

(
B B̃

)
=

(
BTF ′(ω∗)B BTF ′(ω∗)B̃
B̃TF ′(ω∗)B B̃TF ′(ω∗)B̃

) (B.28)

Hence,
∂

∂ω1
Fφ (ω1,0)

∣∣∣∣
ω1=0

= BTF ′(ω∗)B = J (B.29)

This shows that Fφ satisfies the assumption of Lemma B.6. Because for ω sufficiently close
to ω∗

F(k) = φ
−1 ◦F(k)

φ
◦φ (B.30)

this yields the assertion.

B.2 Stochastic Operators

In this thesis we focus on deterministic dynamical systems. However, many results from
the theory of deterministic dynamical systems can be extended to stochastic systems with
uniformly bounded noise in a straightforward way. Importantly, to achieve robustness under
noise, we usually require linear convergence in the deterministic case. In this section we
show that systems that are linearly convergent to a fixed point in the deterministic case
are convergent in the stochastic case when the system is appropriately annealed (e.g. by
annealing the learning rate) and the noise is uniformly bounded. For more information
please see e.g. Spall [178] and the seminal work by Robbins and Monro [167].
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Assume that FB(ω) is a stochastic operator depending the (random) batch B. Let F(ω) :=
E B [FB(ω)]. Consider the iteration

ω
(k+1) = FB(ω(k)) = F(ω(k))+ ε

(k) (B.31)

with ε(k) := FB(ω(k))−F(ω(k)). Note that by definition E B
[
ε(k)
]
= 0. Moreover, we have

F ′(ω) = E B
[
F ′B(ω)

]
(B.32)

For simplicity we assume that ω∗ is an isolated fixed points of F : Ω→Ω in this section.2

In the following we assume that ‖ · ‖Q is a norm as in (A.17) so that there is δ > 0 and
0≤ α < 1 with

‖F(ω)−ω
∗‖Q ≤ α‖ω−ω

∗‖Q (B.33)

for all ‖ω −ω∗‖Q < δ . Note that by Lemma A.5 such a norm ‖ · ‖Q always exists if all
eigenvalues of F ′(ω∗) have absolute value smaller than one (cf. the proof of Theorem B.2).

We now come to our first stability result of stochastic dynamical systems near fixed points.

Lemma B.7. Assume that ω∗ is a fixed point of F and there is Q ∈ Cn×n as well as δ > 0
such that

‖F(ω)−ω
∗‖Q ≤ α‖ω−ω

∗‖Q (B.34)

for ‖ω−ω∗‖Q < δ . Moreover, assume that ‖ε(k)‖ < (1−α)δ for all k ∈ N and ‖ω(0)−
ω∗‖Q < δ . We then have ‖ω(k)−ω∗‖Q < δ for all k ∈ N.

Proof. We prove the lemma via induction over k. By assumption ‖ω(0)‖Q < δ .
Assume ‖ω(k)−ω∗‖Q < δ . Then

‖ω(k+1)−ω
∗‖Q ≤ ‖F(ω(k))−ω

∗‖Q +‖ε(k)‖Q

≤ α‖ω(k)−ω
∗‖+(1−α)δ

≤ αδ +(1−α)δ

= δ

(B.35)

Induction over k now yields the assertion.

Note that the requirements in Lemma B.7 on ε(k) are very weak and ε(k) could even be a
sequence chosen in an adversarial way. This demonstrates the strength of linear convergence
on local stability.

We know consider the annealed operator

FB,β (ω) := βFB(ω)+(1−β )ω (B.36)

2Establishing stochastic convergence results towards manifolds of equilibrium points is indeed much harder
than in the deterministic case, since random movements along the tangent space of the manifold can have a
nontrivial influence on the dynamics in this case. We therefore would need much stronger assumptions (e.g.
compactness of M) to establish convergence.
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for some β > 0 and similarly

Fβ (ω) := E B
[
FB,β (ω)

]
= βF(ω)+(1−β )ω (B.37)

Consider the iteration

ω
(k+1) = FB,βk(ω

(k)) = Fβk(ω
(k))+βkε

(k) (B.38)

In the following, we need a lemma about the convergence of infinite sums.

Lemma B.8. Let ak,l ∈ R define a sequence of sequences such that liml→∞ ak,l = ak ∈ R.
Moreover assume that |ak,l| ≤ bk with ∑

∞
k=1 bk < ∞. Then

lim
l→∞

∞

∑
k=1

ak,l =
∞

∑
k=1

ak (B.39)

Proof. For ε > 0 choose m ∈ N such that

∞

∑
k=m+1

bk < ε (B.40)

Then

|
∞

∑
k=1

ak,l−
∞

∑
k=1

ak| ≤
m

∑
k=1
|ak,l−ak|+2

∞

∑
k=m+1

bk <
m

∑
k=1
|ak,l−ak|+2ε (B.41)

Since liml→∞ ak,l = ak we can choose l0 ∈ N such that |ak,l − ak| < ε

m for l ≥ l0 and k =
1, . . . ,m. Then

|
∞

∑
k=1

ak,l−
∞

∑
k=1

ak|< 3ε (B.42)

which shows the assertion.

We now come to our main stochastic convergence theorem.

Theorem B.9. Assume that ω∗ is a fixed point of F and there is Q ∈ Cn×n as well as δ > 0
such that

‖F(ω)−ω
∗‖Q ≤ α‖ω−ω

∗‖Q (B.43)

for ‖ω−ω∗‖Q < δ . Assume that βk is a sequence such that 0≤ βk ≤ 1 and

∞

∑
k=0

βk = ∞ and
∞

∑
k=0

β
2
k < ∞ (B.44)

Moreover, assume that ‖ε(k)‖Q < (1−α)δ for all k ∈ N and that all ε(k) are uncorrelated

with E
[
‖ε(k)‖2

Q

]
≤ σ2. Let ω(0) such that ‖ω(0)−ω∗‖Q < δ . Then ω(k) converges in L2

to ω∗, i.e.
lim
k→∞

E ‖ω(k)−ω
∗‖2

Q = 0 (B.45)
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Proof. First, note that

‖Fβk(ω)−ω
∗‖Q = ‖βk(F(ω)−ω

∗)+(1−βk)(ω−ω
∗)‖Q

≤ (αβk +(1−βk))‖ω−ω
∗‖Q

= αk‖ω−ω
∗‖Q

(B.46)

with αk := αβk +(1−βk) = 1−βk(1−α)≤ 1.
As in the proof of Lemma B.7 we therefore obtain for ‖ω(k)−ω∗‖Q < δ

‖ω(k+1)−ω
∗‖Q ≤ ‖Fβk(ω

(k))−ω
∗‖Q +βk‖ε(k)‖Q

< (αβk +(1−βk))δ +βk(1−α)δ

= δ

(B.47)

Inductively, we hence see that ‖ω(k)−ω∗‖Q < δ for all k ∈ N.
Using (B.46) and the fact that ω(k) and ε(k) are uncorrelated, we obtain

E
[
‖ω(k+1)−ω

∗‖2
Q

]
= E

[
‖Fβk(ω

(k))−ω
∗+βkε

(k)‖2
Q

]
≤ α

2
k E
[
‖ω(k)−ω

∗‖2
Q

]
+β

2
k σ

2
(B.48)

Hence, recursively,

E
[
‖ω(k+1)−ω

∗‖2
Q

]
≤

k

∑
l=0

(
k

∏
m=l+1

αm

)2

β
2
l σ

2 +

(
k

∏
m=0

αm

)2

‖ω(0)−ω
∗‖2

Q (B.49)

However,

k

∏
m=l+1

αm = exp

(
k

∑
m=l+1

log(1−βm(1−α))

)
≤ exp

(
−

k

∑
m=l+1

βm(1−α)

)
(B.50)

which converges to zero as k goes to infinity by assumption. Lemma B.8 now yields the
assertion, because (

k

∏
m=l+1

αm

)2

β
2
l ≤ β

2
l (B.51)

and ∑l β 2
l converges by assumption.

A typical example of a sequence βk that satisfies the assumption of Theorem B.9 is
βk =

β0
k+1 . Indeed, it is possible to prove a convergence rate of O(k−1/2) in this case [178].
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C Eigenvalue bounds

We will now derive the theory necessary to prove Theorem 7.1. To this end, we reformulate
the problem of finding eigenvalues of J as a quadratic eigenvalue problem [187].

Lemma C.1. Let

J =

(
0 −PT

P −Q

)
∈ R(n+m)×(n+m) (C.1)

with P ∈ Rm×n and Q ∈ Rm×m. Then the characteristic polynomial of J can be written as

χ(λ ) = λ
n−m det(λ 2I +λQ+PPT) (C.2)

Proof. Using Lemma A.1 about the determinant of block matrices, we obtain

det(λ I− J) = det
(

λ I PT

−P λ I +Q

)
= det(λ I)det

(
λ I +Q+P(λ I)−1PT

)
= λ

n−m det
(
λ

2I +λQ+PPT
)

(C.3)

Lemma C.1 shows that we can analyze the eigenvalues of J by analyzing the quadratic
eigenvalue problem in (C.2). To this end, the following lemma is helpful:

Lemma C.2. Let λ ∈ C be a solution to the quadratic eigenvalue problem

det(λ 2I +λA1 +A2) = 0 (C.4)

with A1,A2 ∈ Cm×m Hermitian. Then there is w ∈ Cm , ‖w‖= 1, such that λ is of the form

λ =
−wHA1w

2
±
√

(wHA1w)2

4
−wHA2w (C.5)

Proof. Because of (C.4), the matrix λ 2I +A1λ +A2 is singular. As a result, there exist
w ∈ Cn, ‖w‖= 1 such that

λ
2w+λA1w+A2w = 0 (C.6)

Multiplying with wH from the left yields

λ
2 +wHA1w λ +wHA2w = 0 (C.7)

Note that wHA1w,wHA2w ∈ R, because both A1 and A2 are Hermitian by assumption.
Solving this equations for λ yields the assertion.
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C Eigenvalue bounds

We are now have our tools ready to prove Theorem 7.1. To this end, we will use
Lemma C.1 together with Lemma C.2 to obtain expressions of the eigenvalues for which
we can compute bounds.

Theorem 7.1. Let

J =

(
0 −PT

P −Q

)
∈ R2n×2n (7.5)

with P ∈ Rn×n and Q ∈ Rn×n. Moreover, assume that Q is symmetric positive semi-definite
and let ηmin and ηmax denote the minimum and maximum singular value of Q. Similarly,
let smin and smax denote the smallest and largest singular value of P. Then the following
assertions hold:

• If 1
2 ηmax < smin, all eigenvalues of J satisfy ℑ(λ ) 6= 0.

• If smax ≤ 1
2 ηmin, all eigenvalues of J satisfy ℑ(λ ) = 0.

• All eigenvalues λ of J with ℑ(λ ) 6= 0 satisfy

−ηmax

2
≤ℜ(λ )≤ −ηmin

2
(7.6)

• All eigenvalues λ of J with ℑ(λ ) = 0 satisfy

− ηmax

2
−
√

η2
max

4
− s2

min ≤ℜ(λ )≤−ηmax

2
+

√
η2

max

4
− s2

min (7.7)

• All eigenvalues λ of J satisfy√
s2

min−
η2

max

4
≤ |ℑ(λ )| ≤

√
s2

max−
η2

min
4

(7.8)

Here, the lower bound in (7.8) holds as long as the expression inside the square root
is non-negative, i.e. when 1

2 ηmax < smin.

• All eigenvalue with ℑ(λ ) 6= 0 satisfy

smin ≤ |λ | ≤ smax (7.9)

Proof. By Lemma C.1, the characteristic polynomial of J is given by

χ(λ ) = det(λ 2I +λQ+PPT) (C.8)

Employing Lemma C.2 we further see that every non-zero eigenvalue λ of J satisfies

λ =
−wHQw

2
±
√

(wHQw)2

4
−‖PTw‖2 (C.9)

for some w ∈ Cn with ‖w‖= 1. There are two cases to consider.
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In the first case 1
4(w

HQw)2 < ‖PTw‖2. In this case ℜ(λ ) =−1
2 wHQw and

ℑ(λ ) =±
√
‖PTw‖2− (wHQw)2

4
(C.10)

which directly shows

−ηmax

2
≤ℜ(λ )≤−ηmin

2
(C.11)√

s2
min−

η2
max

4
≤ |ℑ(λ )| ≤

√
s2

max−
η2

min
4

(C.12)

as long as the expressions in the square roots are non-negative. We also see that

|ℜ(λ )|2 + |ℑ(λ )|2 = 1
4

wHQw+‖PTw‖2− 1
4

wHQw = ‖PTw‖2 (C.13)

and thus
s2

min ≤ |ℜ(λ )|2 + |ℑ(λ )|2 ≤ s2
max (C.14)

In the second case 1
4(w

HQw)2 ≥ ‖PTw‖2. In this case ℑ(λ ) = 0 and ℜ(λ ) is of the form

ℜ(λ ) =−wHQw
2
±
√

(wHQw)2

4
−‖PTw‖2 (C.15)

However, it is easy to see (e.g. by calculating the first derivative) that the functions g1(t) :=
−t+

√
t2−α2 is increasing in t and decreasing in α for every t ≥ α > 0. Similarly, g2(t) :=

−t−
√

t2−α2 is decreasing in t and increasing in α for every t ≥ α > 0.
This directly yields the bounds

− ηmax

2
−
√

η2
max

4
− s2

min ≤ℜ(λ )≤−ηmax

2
+

√
η2

max

4
− s2

min (C.16)

as long as the expressions in the square roots are non-negative.
Moreover, note that the first case 1

4(w
HQw)2 < ‖PTw‖2 cannot arise when 1

2 ηmin ≥ smax.
Similarly, the second case 1

4(w
HQw)2 ≥ ‖PTw‖2 cannot arise when 1

2 ηmax < smin.

The bounds in Theorem 7.1 are tight in the sense that no bound that only depends only
on ηmin, ηmax, smin and smax can be tighter. This is a consequence of the next lemma:

Lemma C.3. Let J be defined as in (7.5) with

P :=


s1 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 s2

 and Q :=


η1 0 0 0
0 η2 0 0
0 0 η1 0
0 0 0 η2

 (C.17)
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C Eigenvalue bounds

for η1,η2,s1,s2 ≥ 0. The eigenvalues of J are then{
−ηi

2
±
√

η2
i

4
− s2

j

∣∣∣∣∣ i, j ∈ {1,2},

}
(C.18)

In particular, all applicable bounds in Theorem 7.1 are tight for J.

Proof. By Lemma C.1, the characteristic polynomial of J is

χ(λ ) = det(λ 2I +λQ+PPT) = ∏
i, j∈{1,2}

(λ 2 +ηiλ + s2
j) (C.19)

Setting χ(λ ) to zero yields the assertion.

To prove convergence rates for Alternating Gradient Descent in Chapter 7, we need the
following variant of Theorem 7.1:

Lemma 7.3. Let

J =

(
0 −PT

P −Q−hPPT

)
∈ R2n×2n (7.14)

with h > 0 and P, Q ∈ Rn×n. Assume that Q is symmetric positive semi-definite and let ηmin

and ηmax denote the minimum and maximum singular value of Q. Similarly, let smin and
smax denote the minimum and maximum singular value of P. Then the following holds:

• Assume that one of the following conditions is true:

i) h≥ 2
smax+smin

and ηmax +hs2
max ≤ 2smax

ii) h≤ 2
smax+smin

and ηmax +hs2
min ≤ 2smin

Then all eigenvalues of J have non-zero imaginary part.

• All eigenvalues λ of J with non-zero imaginary part satisfy

|1+hλ |2 ≤ 1−hηmin (7.15)

Proof. By Lemma C.1, the characteristic polynomial of J is

det(λ 2I +λ (Q+hPPT)+PPT) (C.20)

By Lemma C.2, the eigenvalues λ of J can be written as

λ =−wH(Q+hPPT)w
2

±
√

(wH(Q+hPPT)w)2

4
−‖PTw‖2 (C.21)

Similarly as in the proof of Theorem 7.1, we see that all eigenvalues of J are imaginary if

ηmax +hs2 ≤ 2s (C.22)
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for every s ∈ [smin,smax]. However, maximizing hs2− 2s over s in s ∈ [smin,smax] yields
s = smin if h≤ 2

smax+smin
and s = smax else.

Moreover, in this case,

ℜ(µ) =−wH(Q+hPPT)w
2

(C.23)

ℑ(µ) =±
√
‖PTw‖2− (wH(Q+hPPT)w)2

4
(C.24)

Hence,
|µ|2 = ℜ(µ)2 +ℑ(µ)2 = ‖PTw‖2 (C.25)

and thus
|1+hµ|2 = 1+2hℜ(µ)+h2|µ|2 = 1−hwHQw≤ 1−hηmin (C.26)
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D Energy Solutions

In this chapter we briefly discuss a stable kind of equilibrium that can occur for unregularized
GAN training. However, this kind of equilibrium requires a more expressive discriminator
and can also be ill-conditioned. For technical reasons, we assume that supp pD defines a
C1-manifold in this section.

Energy Solutions are solutions where the discriminator forms a potential function for the
true data distribution. Such solutions (θ ∗,ψ∗) satisfy the following property:

Assumption I′′. We have pθ ∗ = pD, Dψ∗(x) = 0, ∇xDψ∗(x) = 0 and wT∇2
xDψ∗(x)w > 0

for all x ∈ supp pD and w not in the tangent space of supp pD at x.

We also need a modified version of Assumption III which ensures certain regularity
properties of the reparameterization manifoldsMG and M̃D near the equilibrium (θ ∗,ψ∗).
To formulate Assumption III′′, we need

g̃(ψ) := ∇θ E x∼pθ

[
Dψ(x)

]∣∣
θ=θ ∗

(D.1)

Assumption III′′. There are ε-balls Bε(θ
∗) and Bε(ψ

∗) around θ ∗ and ψ∗ so thatMG∩
Bε(θ

∗) and M̃D∩Bε(ψ
∗) define C1- manifolds. Moreover, the following holds:

(i) if w ∈ Rm is not in the tangent space of M̃D at ψ∗, then ∂wg̃(ψ∗) 6= 0.
(ii) if w ∈ Rn is not in the tangent space ofMG at θ ∗, then there is a latent code z ∈ Z so

that ∂

∂θ
Gθ (z)w|θ=θ ∗ is not in the tangent space of supp pD at Gθ ∗(z) ∈ supp pD.

The first part of Assumption III′′ implies that the generator gradients become nonzero
whenever the discriminator moves away from an equilibrium discriminator. The second part
of Assumption III′′ means that every time the generator leaves the equilibrium, it pushes
some data point away from supp pD, i.e. the generator is not simply redistributing mass on
supp pD.

In Theorem D.3 we show that Energy Solutions lead to local convergence of the unregu-
larized GAN training dynamics. For the proof, we first need a generalization of Lemma 5.2:

Lemma D.1. Assume that (θ ∗,ψ∗) satisfies Assumption I′′. The Jacobian of the gradient
vector field v(θ ,ψ) at (θ ∗,ψ∗) is then given by

v′(θ ∗,ψ∗) =
(
−KGG −KT

DG
KDG −KDD

)
. (D.2)
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D Energy Solutions

The terms KDD and KDG are given by

KGG = ρ1 E z∼p0

[[
∂Gθ

∂θ
(z)
]T

∇
2
xDψ∗(Gθ (z))

∂Gθ

∂θ
(z)

]∣∣∣∣∣
θ=θ ∗

(D.3)

KDD = ρ2 E x∼pD
[
∇ψDψ(x)∇ψDψ(x)T

]∣∣
ψ=ψ∗

(D.4)

KDG = ρ1
∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

(D.5)

Proof. Almost all parts of the proof of Lemma 5.2 are still valid, but Assumption IV is no
longer true. In the proof of Lemma 5.2 we used Assumption IV to show ∇2

θ
L(θ ∗,ψ∗) = 0

and ∇2
ψ,θL(θ ∗,ψ∗) = KDG.

However, by Assumption I′′ we have ∇xDψ(x) = 0 for x ∈ supp pD. We can therefore
calculate ∇2

ψ,θL(θ ∗,ψ∗) by taking the derivative of (5.7) with respect to ψ and exploit that
all terms that contain ∇xDψ∗(x) for x ∈ supp pD vanish. Using (5.7), we see that

∇
2
θ ,ψL(θ ,ψ) = E z∼p0

[
ϕ
′′
1 (Dψ(Gθ (z))

[
∂Gθ

∂θ
(z)
]T
·∇xDψ(Gθ (z))∇ψDψ(Gθ (z))T

+ϕ
′
1(Dψ(Gθ (z))

[
∂Gθ

∂θ
(z)
]T
·∇x,ψDψ(Gθ (z))

]
(D.6)

Hence,

∇
2
θ ,ψL(θ ∗,ψ∗) = E z∼p0

[
ρ1

[
∂Gθ

∂θ
(z)
]T
·∇x,ψDψ(Gθ (z))

]∣∣∣∣∣
θ=θ ∗,ψ=ψ∗

= ρ1∇θ E z∼p0

[
∂Dψ

∂ψ
(Gθ (z))

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

(D.7)

This shows that

∇
2
ψ,θL(θ ∗,ψ∗) = ∇

2
θ ,ψL(θ ∗,ψ∗)T = ρ1

∂

∂θ
E x∼pθ

[
∇ψDψ(x)

]∣∣∣∣
θ=θ ∗,ψ=ψ∗

(D.8)

Similarly, to compute ∇2
θ
L(θ ∗,ψ∗) we take the partial Jacobian of (5.7) with respect to θ

and evaluate at (θ ∗,ψ∗). Here, we again exploit that all terms that contain ∇xDψ∗(x) = 0
vanish, showing ∇2

θ
L(θ ∗,ψ∗) = KGG.

We also need a simple generalization of Lemma 5.5.

Lemma D.2. Assume J ∈ R(n+m)×(n+m) is of the following form:

J =

(
−Q1 −PT

P −Q2

)
(D.9)

where Q1 ∈Rn×n is a symmetric positive semi-definite matrix and Q2 ∈Rm×m is a symmetric
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positive definite matrix and P ∈ Rm×n has full column rank. Then all eigenvalues λ of J
satisfy ℜ(λ )< 0.

Proof. The proof is almost identical to the proof of Lemma 5.5, except that now

ℜ(λ ) =
λ + λ̄

2
=−w1Q1w1−w2Q2w2 ≤−w2Q2w2 (D.10)

The rest of the proof remains the same.

We are now ready to formulate our convergence result for Energy Solutions:

Theorem D.3. Assume Assumption I′′, II′ and III′′ hold for (θ ∗,ψ∗). For small enough
learning rates, Simultaneous Gradient Descent (SimGD) and Alternating Gradient Descent
(AltGD) for the (unregularized) gradient vector field v(·) are both convergent toMG×M̃D

in a neighborhood of (θ ∗,ψ∗). Moreover, the rate of convergence is at least linear.

Proof (Sketch). The proof is similar to the proof of Theorem 5.8.
First, note thatMG×M̃D still only consists of equilibrium points. Next, we consider

BTv′(θ ∗,ψ∗)B =

(
−BT

GKGGBG −BT
GKT

DGBD

BT
DKDGBG −BT

DKDDBD

)
(D.11)

For w not in the tangent space ofMG at θ ∗, we have wTKGGw > 0. This can be shown
using Lemma D.1, Assumption I′′ and the second part of Assumption III′′. This implies that
BT

GKGGBG is positive definite.
Moreover, we need to show that for w not in the tangent space of M̃D at ψ∗, we have

KT
DGw /∈ T∗

θ
MG. This can be shown by applying the first part of Assumption III′′. As a

result, we see that BT
GKT

DGBD has full column rank.
The rest of the proof is the same as the proof of Theorem 5.8 except that we use

Lemma D.2 instead of Lemma 5.5.

Note that Energy Solutions are only possible, if the discriminator is able to satisfy
Assumption I′′. This is not the case for the Dirac-GAN from Chapter 3. However, if we use
a quadratic discriminator instead, there are also Energy Solutions to the unregularized GAN
training dynamics for the Dirac-GAN. To see this, we can parameterize Dψ(x) as

Dψ(x) := ψ1x2 +ψ2x. (D.12)

It is easy to check that the Dirac-GAN with a discriminator as in (D.12) indeed has Energy
Solutions: every (θ ,ψ) with θ = 0 and ψ2 = 0 defines an equilibrium point of the Dirac-
GAN and the GAN training dynamics are locally convergent near this point if ψ1 > 0.
Note however, that even though all equilibria with ψ1 > 0 are points of attraction for the
continuous GAN training dynamics, they may not be attractors for the discretized system
when ψ1 is large and the learning rate h is fixed. In general, the conditioning of Energy
Solutions depends on the condition numbers of the Hessians ∇2

xDψ∗(x) at all x ∈ supp pD.
Indeed, the presence of ill-conditioned Energy Solutions might be one possible explanation
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D Energy Solutions

why Wasserstein GAN with Gradient Penalties often works well in practice although it is
not even locally convergent for the Dirac-GAN.
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E Additional Implementation Details

E.1 GAN Architectures

For CelebA and LSUN, we use Convolutional Neural Networks for both the generator (Ta-
ble E.1) and discriminator (Table E.2). For CelebA-HQ, we use almost the same architecture
as for CelebA, but add two more levels to the generator to increase the resolution from
256×256 to 1024×1024 and decrease the number of features from 64 to 16. We modify
the discriminator architecture in a similar way.

For the ImageNet experiment, we use ResNet-architectures for the generator and discrim-
inator, both having 26 layers in total. Both the generator and discriminator are conditioned
on the labels of the input data. The architectures for the generator and discriminator are
shown in Table E.3 and Table E.4.
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E Additional Implementation Details

Layer Output Size Filter

Fully-Connected 1024 ·4 ·4 512→ 1024 ·4 ·4
Reshape 1024×4×4 -

ResNet-Block 1024×4×4 1024→ 1024→ 1024
NN-Upsampling 1024×8×8 -

ResNet-Block 1024×8×8 1024→ 1024→ 1024
NN-Upsampling 1024×16×16 -

ResNet-Block 512×16×16 1024→ 512→ 512
NN-Upsampling 512×32×32 -

ResNet-Block 256×32×32 512→ 256→ 256
NN-Upsampling 256×64×64 -

ResNet-Block 128×64×64 256→ 128→ 128
NN-Upsampling 128×128×128 -

ResNet-Block 64×128×128 128→ 64→ 64
NN-Upsampling 64×256×256 -

ResNet-Block 64×256×256 64→ 64→ 64
Conv2D 3×256×256 64→ 3

Table E.1: Generator Architecture. Generator architecture for CelebA- and LSUN-
experiments.

Layer Output Size Filter

Conv2D 64×256×256 3→ 64

ResNet-Block 64×256×256 64→ 64→ 64
Avg-Pool2D 64×128×128 -

ResNet-Block 128×128×128 64→ 64→ 128
Avg-Pool2D 128×64×64 -

ResNet-Block 256×64×64 128→ 128→ 256
Avg-Pool2D 256×32×32 -

ResNet-Block 512×32×32 256→ 256→ 512
Avg-Pool2D 512×16×16 -

ResNet-Block 1024×16×16 512→ 512→ 1024
Avg-Pool2D 1024×8×8 -

ResNet-Block 1024×8×8 1024→ 1024→ 1024
Avg-Pool2D 1024×4×4 -

Fully-Connected 1024 ·4 ·4 1024 ·4 ·4→ 1

Table E.2: Discriminator Architecture. Discriminator architecture for CelebA- and LSUN-
experiments.
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E.1 GAN Architectures

Layer Output Size Filter

Fully-Connected 1024 ·4 ·4 512→ 1024 ·4 ·4
Reshape 1024×4×4 -

ResNet-Block 1024×4×4 1024→ 1024→ 1024
ResNet-Block 1024×4×4 1024→ 1024→ 1024
NN-Upsampling 1024×8×8 -

ResNet-Block 1024×8×8 1024→ 1024→ 1024
ResNet-Block 1024×8×8 1024→ 1024→ 1024
NN-Upsampling 1024×16×16 -

ResNet-Block 512×16×16 1024→ 512→ 512
ResNet-Block 512×16×16 512→ 512→ 512
NN-Upsampling 512×32×32 -

ResNet-Block 256×32×32 512→ 256→ 256
ResNet-Block 256×32×32 256→ 256→ 256
NN-Upsampling 256×64×64 -

ResNet-Block 128×64×64 256→ 128→ 128
ResNet-Block 128×64×64 128→ 128→ 128
NN-Upsampling 128×128×128 -

ResNet-Block 64×128×128 128→ 64→ 64
ResNet-Block 64×128×128 64→ 64→ 64
Conv2D 3×128×128 64→ 3

Table E.3: Generator Architecture. Generator architecture for ImageNet-experiment.
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Layer Output Size Filter

Conv2D 64×128×128 3→ 64

ResNet-Block 64×128×128 64→ 64→ 64
ResNet-Block 128×128×128 64→ 64→ 128
Avg-Pool2D 128×64×64 -

ResNet-Block 128×64×64 128→ 128→ 128
ResNet-Block 256×64×64 128→ 128→ 256
Avg-Pool2D 256×32×32 -

ResNet-Block 256×32×32 256→ 256→ 256
ResNet-Block 512×32×32 256→ 256→ 512
Avg-Pool2D 512×16×16 -

ResNet-Block 512×16×16 512→ 512→ 512
ResNet-Block 1024×16×16 512→ 512→ 1024
Avg-Pool2D 1024×8×8 -

ResNet-Block 1024×8×8 1024→ 1024→ 1024
ResNet-Block 1024×8×8 1024→ 1024→ 1024
Avg-Pool2D 1024×4×4 -

ResNet-Block 1024×4×4 1024→ 1024→ 1024
ResNet-Block 1024×4×4 1024→ 1024→ 1024
Fully-Connected 1024 ·4 ·4 1024 ·4 ·4→ 1000

Table E.4: Discriminator Architecture. Discriminator architecture for ImageNet-
experiment.
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E.2 Occupancy Network Baselines

In order to conduct controlled experiments and to disentangle the individual components of
the different 3D reconstruction approaches, we created a PyTorch package comprising our
method and several baselines [26, 45, 108, 193]. To make sure that the performance of our
reimplementations of the baselines matches the performance of the original implementations,
we conduct thorough comparisons to the original models.

3D-R2N2

The 3D Recurrent Reconstruction Neural Network (3D-R2N2) [26] is a method to map
one or multiple images of an object to its 3D shape. The images are encoded as a low-
dimensional vector and subsequently used as input to a 3D-LSTM network [72] to combine
features from multiple views. Finally, the decoder uses the LSTM network’s hidden states
to produce a voxel representation of the object.

In our experiments, we use a ResNet-18 as encoder and a decoder consisting of one
fully-connected and four transposed convolutional layers with ReLU activations. As we do
not use multiple input views for 3D reconstruction, we do not utilize the proposed 3D-LSTM
module. A quantitative comparison of the authors’ implementation and our version can be
found in Table E.5.

Point Set Generation Networks

Point Set Generation Network (PSGN) [45] is a point-based 3D object reconstruction model
that takes a single image as input and outputs 1024 3D point coordinates.

The comparison of results from our architecture for PSGN and the deterministic two-
branch version proposed in the original publication can be found in Table E.6. The former
uses a ResNet-18 as encoder and four fully-connected layers with a hidden dimension
of 512 and ReLU activations as decoder. The latter consists of seven blocks of multiple
convolutional layers as encoder, and four blocks of transposed and ordinary convolutional
layers as decoder where connections to the respective mirrored encoder blocks are introduced
similar to U-Net [168]. We refer to the original publication [45] for more details. We train
the models for 100 hours on a Nvidia GTX 1080 GPU with a batch size of 64.

As indicated in the table, the ResNet-18-based version achieves slightly better Accuracy,
Completeness and Chamfer-L1 distance. We suspect that the higher scores are caused by
using a more powerful ResNet-18 as the encoder.

Our experiments suggest that PSGN is good at reconstructing 3D geometry. Unfortunately,
however, PSGN lacks connectivity information and hence requires additional postprocessing
steps to obtain the final mesh. In our experiments we find that reconstructing the final mesh
from the output of PSGN is indeed very challenging. To reconstruct the mesh, we tried
both Screened Poisson Surface Reconstruction (SPSR) [93] and Ball Pivoting (BP) [11].
Unfortunately, however, we were not able to find a set of hyperparameters for SPSR that is
able to produce reasonable meshes for all input classes. We believe that this is partly due to
the fact that PSGN does not output any normals. As SPSR requires normals, we therefore
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have to estimate the normals in a preprocessing step using a moving window. Ball Pivoting
works better in our experiments and some qualitative results are shown in Figure E.1. While
Ball Pivoting succeeds in generating reasonable meshes from the output of PSGN, the
meshes are very rough and have a lot of missing parts. In particular, the meshes generated
by Ball Pivoting are not watertight.

E.2.1 Pixel2Mesh

Pixel2Mesh [193] is a mesh-based approach to reconstruct 3D shapes from single images.
The initial start mesh of an ellipsoid is progressively deformed to match the object’s shape
by extracting perceptual features from the input image. The model consists of three feature
pooling and mesh deformation blocks, each containing 12 (first two) or 13 (latter) graph
convolution layers with ResNet-inspired [67] skip connections and ReLU activations. In
the latter two blocks, the perceptual and hidden features from the last graph convolution
layer are concatenated before an unpooling operation is applied. This way, the number of
vertices is increased proportionally to the number of edges in the mesh. The final outputs of
the network are locations for 156, 628, and 2466 vertices, each output corresponding to one
block.

In our experiments, we adhere to the implementation provided in the official GitHub
repository1 which differs slightly from details given in the paper [193]. We compare the
results from the authors’ pretrained model on data they provide as well as our implementation
on our ground truth data in different settings. While our ground truth point clouds are a
fixed number of uniformly sampled points from the CAD models, the Pixel2Mesh authors
performed Poisson-disk sampling which results in different numbers of points for each
CAD model. In addition, they multiplied the vertex coordinates by a factor of 0.57 and
inverted the y and z axes. To provide a fair comparison, we conduct our experiments using
a template ellipsoid adjusted to our data by inverting the transformation and use a high
number of target points (8,000). We train our model for several days on a Nvidia Titan X
GPU with batch size 12.

The quantitative results can be seen in Table E.7. We observe that we can almost com-
pletely reproduce the results from the pretrained model with our reimplementation. In
addition, we find that qualitative results and failure cases are very similar as well. For the car
class, we note that while the car meshes of our implementation sometimes have cavities on
the roof, the ones from the pretrained model show the same artifacts on the bottom. In our
experience, the results depend on a carefully selected ellipsoid alignment as well as number
of ground truth points. In contrast to Pixel2Mesh, the Occupancy Network is not directly
trained on Chamfer loss and, surprisingly, yet achieves almost the same Chamfer-L1 distance.
In addition, our proposed method outperforms the Pixel2Mesh method significantly in both,
Intersection over Union (IoU) and Normal Consistency score.

1https://github.com/nywang16/Pixel2Mesh

198

https://github.com/nywang16/Pixel2Mesh


E.2 Occupancy Network Baselines

E.2.2 AtlasNet

We evaluate AtlasNet [63] using the code and pretrained model with 25 parameterizations
provided by the authors2. As AtlasNet uses a slightly different test/train split as our code3,
we test AtlasNet on the intersection of the test splits of [63] and [26]. Because the data was
normalized differently in [63] than in our framework, we use the ground truth point clouds
provided by [63] to renormalize the output of [63] to the unit cube.

E.2.3 Deep Marching Cubes

We apply Deep Marching Cubes (DMC) [108] as a baseline for mesh-based point cloud
completion. Given a point cloud, the method predicts mesh objects in an explicit representa-
tion consisting of occupancy probabilities and vertex displacement variables on a 3D grid.
The first part of the pipeline distills point cloud information into a 3D grid by extracting
point features and performing 3D grid pooling. Then, a U-Net-based [168] architecture
with 3D convolutional layers parameterizes the mapping between the extracted grid features
and the predicted mesh representation. The full architecture is trained in an end-to-end
fashion using four different losses. The first loss penalizes the mean Euclidean distance
between each point of the ground truth point cloud and its closest mesh face. A second
loss (the weight prior) encourages the occupancy probabilities at the boundary of the scene
to be small. The absolute difference between a pair of adjacent occupancy probabilities is
penalized to enforce smoothness. Furthermore, an additional loss preserves smoothness
between adjacent faces.

In the original implementation these loss functions are implemented as a CFFI CUDA
extension for PyTorch since these loss functions are computationally very expensive. We
adapted the original implementation in PyTorch 0.3.0 to our framework in PyTorch 1.0
without algorithmic changes. Unfortunately, the CFFI CUDA extensions in [108] are not
compatible with PyTorch versions > 0.3.0, so that we transferred the original extensions to
C++ / CUDA extensions for PyTorch 1.0.

To ensure a fair comparison, we use point clouds consisting of 300 instead of 3,000 points
as input, in contrast to the original implementation. However, during training, we still apply
the point-to-mesh loss to the full point cloud with 3,000 points following [108]. We observe
that the default weighting of the weight prior 10 as chosen in the original implementation
causes artifacts in form of rectangular shapes for flat 3D objects, thus we reduce the weight
to 5.

2https://github.com/ThibaultGROUEIX/AtlasNet
3Almost all samples in the test split from [63] are also in the test split from [26], but not the other way around.
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Input PSGN PSGN + BP Input PSGN PSGN + BP

Figure E.1: PSGN Meshing Results. To obtain a mesh for the output of PSGN [45], we
apply the Ball Pivoting (BP) algorithm [11]. We find that meshing the output of PSGN
directly is non-trivial: While the combination of PSGN and BP allows to obtain coarse
meshes from single images, the output has many missing parts and the method does not lead
to closed meshes.
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3D-R2N2 (authors) 3D-R2N2 (ResNet18)
1 view 3 views 5 views 1 view

category

airplane 51.3% 54.9% 56.1% 60.6%
bench 42.1% 50.2% 52.7% 56.2%
cabinet 71.6% 76.3% 77.2% 76.4%
car 79.8% 82.9% 83.6% 84.6%
chair 46.6% 53.3% 55.0% 53.2%
display 46.8% 54.5% 56.5% 52.8%
lamp 38.1% 41.5% 42.1% 38.9%
loudspeaker 66.2% 70.8% 71.7% 68.5%
rifle 54.4% 59.3% 60.0% 59.5%
sofa 62.8% 69.0% 70.6% 70.6%
table 51.3% 56.4% 58.0% 57.1%
telephone 66.1% 73.2% 75.4% 74.0%
vessel 51.3% 59.6% 61.0% 60.6%

mean 56.0% 61.7% 63.1% 62.5%

Table E.5: 3D-R2N2 Reimplementation. This table shows the IoU reported in the original
3D-R2N2 paper and our reimplementation with respect to the voxelized ground truth mesh.
In contrast to other IoU values reported in this thesis, in this table we compare with the 323

voxelization of the ground truth meshes and not the high resolution meshes themselves.
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F Additional Experimental Results

F.1 Consensus Optimization

CIFAR-10 A quantitative comparison of Consensus Optimization to Alternating Gradient
Descent (AltGD) and Simultaneous Gradient Descent (SimGD) is shown in Figure F.1.
We see that in three out of four configurations, Consensus Optimization achieves a higher
Inception score than SimGD and AltGD. The smoothing optimizer in Figure F.1 is similar
to Consensus Optimization, where we apply the regularizer only to the discriminator. While
is also often works, it usually achieves a lower Inception score and fails in the scenario
where we use a Jensen-Shannon objective. This is also the case for an architecture where
we add an additional fully-connected layer at the last layer (Figure F.2): while Consen-
sus Optimization works well here, the smoothing optimizer fails to converge. Figure F.3
shows qualitative results on CIFAR-10 when trained with different divergence functions.
Interestingly, Consensus Optimization converges both for the Jensen-Shannon divergence
and the Indicator divergence, where normal SimGD and AltGD do not converge. Finally,
Figure F.4, Figure F.6 and Figure F.5 show the effects of the hyperparameters on AltGD
and Consensus Optimization. We see that the learning rate and regularization parameter are
critical hyperparameters for Consensus Optimization. As a rule of thumb, the learning rate
should be between 10−5 and 10−4 and the regularization parameter should be between 1
and 10.

CelebA In this experiment, we again use a DC-GAN-like architecture [160] without
Batch Normalization in the generator or the discriminator. Moreover, we additionally use
a constant number of filters in each layer and add additional ResNet-layers. A qualitative
comparison between AltGD and Consensus Optimization on CelebA is shown in Figure F.7.
We clearly see that AltGD leads to mode collapse and Consensus Optimization yields better
results.
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(a) DC-GAN (b) + no Batch Normalization

(c) + constant number of filters in each layer (d) + Jensen-Shannon objective

Figure F.1: Inception Score. Inception score over the number of iterations for the results
in Figure 2.7. To investigate if Consensus Optimization can alternatively be interpreted as a
way of smoothing the discriminator, we also conducted experiments where we removed the
regularization term from the generator loss but keep it for the discriminator loss. We call
the corresponding algorithm smoothing optimizer. While the smoothing optimizer trains
a DC-GAN with Batch Normalization successfully where Consensus Optimization fails, it
usually performs worse than Consensus Optimization.

206



F.1 Consensus Optimization

(a) + constant number of filters in each layer (b) + Jensen-Shannon objective

Figure F.2: Inception Score. Inception score over the number of iterations for training the
architecture from Figure F.1 with an additional fully-connected layer in the discriminator
on CIFAR-10. We observe similar results as in Figure F.1, but the smoothing optimizer
fails for the architecture with a constant number of filters in each layer where Consensus
Optimization succeeds.

(a) Standard GAN objective (b) Jensen-Shannon (c) Indicator divergence

Figure F.3: Divergences. We can use Consensus Optimization to train models with different
generator objectives corresponding to different divergence functions: all samples were
generated by a DC-GAN model without Batch Normalization and with a constant number
of filters in each layer. We see that Consensus Optimization can be used to train GANs with
a large variety of divergence functions.
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(a) 3 convolutional layers (b) 4 convolutional layers

Figure F.4: Learning Rate. Effect of the learning rate on training a DC-GAN architecture
with AltGD. We use RMSProp [69] as an optimizer for all experiments.

(a) 3 convolutional layers (b) 4 convolutional layers

Figure F.5: Learning Rate. Effect of the learning rate on Consensus Optimization. We use
the RMSProp optimizer [69] for all experiments with a regularization parameter γ = 0.1
for the architecture with 3 convolutional layers and γ = 10 for the architecture with 4
convolutional layers.
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(a) 3 convolutional layers (b) 4 convolutional layers

Figure F.6: Regularization Parameter. Effect of the regularization parameter γ on Consen-
sus Optimization. We use the RMSProp optimizer [69] with a learning rate of 2 ·10−4 for
all experiments.

(a) SimGD (b) AltGD (c) ConOpt

Figure F.7: Results on CelebA. Samples generated from a model where both the generator
and discriminator are based on a Deep Convolutional GAN (DC-GAN) [160]. However,
we use no Batch Normalization, a constant number of filters in each layer and additional
ResNet-layers. We see that only our method results in visually compelling results. While
SimGD completely fails to train the model, AltGD results in a bad solution. Although AltGD
does better than SimGD on this example, there is a significant amount of mode collapse and
the results keep changing from iteration to iteration.

209



F Additional Experimental Results

F.2 High Resolution Image Synthesis

Figure F.8 and Figure F.9 show samples for a conditional GAN trained on ImageNet at
resolution 256×256. The architecture is similar to the one for the ImageNet experiment
from Chapter 8, but we use one more level to increase the resolution from 128× 128 to
256× 256 and decrease the number of features from 64 to 32. Moreover, we use 2048
instead of 1024 features in the top-most layer for the generator and the lower layer of the
discriminator. We train our model on four Tesla V100 GPUs for about 750k iterations and a
batch size of 192.

We observe that R1-regularization stabilizes the training even at this resolution, allowing
us to obtain realistic high-resolution samples on this challenging task. Indeed, even in
later iterations of training, we did not experience any instabilities. The model reaches an
Inception score of 45.0 and a FID of 32.0.
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(a) tench

(b) papillon

(c) weevil

(d) admiral

(e) lighthouse

(f) castle

Figure F.8: High-Resolution Samples ImageNet. Random class conditional samples for a
GAN trained on the ImageNet dataset [171] at resolution 256×256.
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(a) home theater

(b) police van

(c) rugby ball

(d) ski

(e) pizza

(f) valley

Figure F.9: High-Resolution Samples ImageNet. Random class conditional samples for a
GAN trained on the ImageNet dataset [171] at resolution 256×256.
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F.3 Occupancy Networks

Additional qualitative results for the single image 3D reconstruction task are shown in
Figure F.10 and Figure F.11. While all methods are able to reconstruct the 3D geometry,
we observe that our method can better capture high frequencies details than other methods.
Per-category quantitative results for the single-image 3D reconstruction experiment are
shown in Table F.1. Moreover, Table F.2 contains per-category results on the Pix3D dataset.

Qualitative results for point cloud completion are shown in Figure F.12 and Figure F.13.
We observe that our method is able to reconstruct high frequency details from the sparse
input point clouds. The full quantitative results for point cloud completion are shown in
Table F.3. Qualitative results for the voxel super-resolution task are shown in Figure F.14.

Figure F.15, F.16, F.17 and F.18 show interpolations in latent space for our unconditional
model. We find that our model learns a meaningful representation of the input data.
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Input 3D-R2N2 PSGN Pixel2Mesh AtlasNet Ours GT

Figure F.10: Single Image 3D Reconstruction. The input image is shown in the first column,
the other columns show the results for our method compared to various baselines.
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Input 3D-R2N2 PSGN Pixel2Mesh AtlasNet Ours GT

Figure F.11: Single Image 3D Reconstruction. The input image is shown in the first column,
the other columns show the results for our method compared to various baselines.
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F Additional Experimental Results

Input 3D-R2N2 PSGN DMC Ours GT

Figure F.12: Point Cloud Completion. The input point cloud is shown in the first column,
the other columns show the results for our method compared to various baselines.
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Input 3D-R2N2 PSGN DMC Ours GT

Figure F.13: Point Cloud Completion. The input point cloud is shown in the first column,
the other columns show the results for our method compared to various baselines.
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F.3 Occupancy Networks

Input Ours GT Input Ours GT

Figure F.14: Voxel Super-Resolution. The input is shown in the first column, the other
columns show the results for our method compared to the ground truth.
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F Additional Experimental Results

Figure F.15: Unconditional Model. Interpolations in latent space for “car” category of
the ShapeNet dataset.
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Figure F.16: Unconditional Model. Interpolations in latent space for “airplane” category
of the ShapeNet dataset.
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F Additional Experimental Results

Figure F.17: Unconditional Model. Interpolations in latent space for “sofa” category of
the ShapeNet dataset.
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Figure F.18: Unconditional Model. Interpolations in latent space for “chair” category of
the ShapeNet dataset.
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Abbreviations

3D-R2N2 3D Recurrent Reconstruction Neural Network

AltGD Alternating Gradient Descent

BP Ball Pivoting

CAD Computer Aided Design
CBN Conditional Batch Normalization
CelebA Large-scale CelebFaces Attributes Dataset
CFFI C Foreign Function Interface
CNN Convolutional Neural Network
ConOpt Consensus Optimization
CR Critical Regularization
CUDA Compute Unified Device Architecture

DC-GAN Deep Convolutional GAN
DMC Deep Marching Cubes
DRAGAN Deep Regret Analytic Generative Adversarial Networks

FID Fréchet Inception Distance

GAN Generative Adversarial Network
GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection over Union

Leaky-ReLU Leaky Rectified Linear Unit
LSTM Long short-term memory
LSUN Large Scene Understanding Dataset

MISE Multiresolution IsoSurface Extraction
MSE Mean Squared Error

OFlow Occupancy Flow
ONet Occupancy Network
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Abbreviations

PSGN Point Set Generation Network

ReLU Rectified Linear Unit
ResNet Residual Network

SGD Stochastic Gradient Descent
SimGD Simultaneous Gradient Descent
SPSR Screened Poisson Surface Reconstruction

TSDF Truncated Signed Distance Field

VAE Variational Autoencoder

WGAN-GP Wasserstein GAN with Gradient Penalties
WGAN Wasserstein GAN
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Glossary

3D Recurrent Reconstruction Neural Network (3D-R2N2) Method for learning-based
3D reconstruction using a 3D-Convolutional Neural Network. Introduced by Choy
et al. [26]. 142, 146–150, 197, 201, 214, 215, 218, 219, 231

Accuracy score Evaluation metric for 3D meshes. Defined as the mean distance of points
from the predicted mesh to the ground truth mesh. 143, 147, 154, 155, 197, 233, see
also: Chamfer-L1 distance

Adam Optimizer introduced by Kingma and Ba [96] that extends RMSProp by introducing
an additional momentum term. 141

Alternating Gradient Descent (AltGD) Method for finding equilibrium points in smooth
two-player games by applying alternating gradient updates on the cost functions of
the two players. 18, 22, 23, 26, 27, 29–31, 35–39, 43, 44, 46, 50–52, 54, 56, 60, 68,
69, 74, 77–79, 84, 87, 89–91, 94–97, 103–106, 121, 186, 191, 205, 208, 209, 231,
234

AtlasNet Single view 3D reconstruction method proposed by Groueix et al. [63] based on
deforming a collection of small patches. 142, 146–150, 199, 214–216

Ball Pivoting (BP) Algorithm introduced by Bernardini et al. [11] for reconstructing a
mesh from a point cloud. 197, 198, 200, 231

Batch Normalization Technique introduced by Ioffe and Szegedy [75] to accelerate and
stabilize training of deep neural networks. 35, 36, 38, 139, 153, 154, 205–207, 209,
231, 234

CelebA-HQ High resolution dataset by Karras, Laine, and Aila [89] based on CelebA.
110–113, 119, 193

Chamfer distance Distance between two sets in a metric space. Defined as the mean
squared distance from a point on one mesh to the other mesh and vice versa. 147,
148, 198, 203, see also: Chamfer-L1 distance

Chamfer-L1 distance Distance between two sets in a metric space. Defined as the mean
distance from a point on one mesh to the other mesh and vice versa. Average of
Accuracy score and Completeness score. 143, 147, 151, 152, 197, 198, 203, 216, 220,
see also: Chamfer distance
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Glossary

CIFAR-10 Low-resolution (32×32) dataset of 60,000 images belonging to 10 different
classes introduced by Krizhevsky and Hinton [102]. 35, 36, 205, 207

Completeness score Evaluation metric for 3D meshes. Defined as the mean distance of
points from the ground truth mesh to the predicted mesh. 143, 147, 154, 155, 197,
233, see also: Chamfer-L1 distance

Compute Unified Device Architecture (CUDA) Parallel computing platform and appli-
cation programming interface by Nvidia for using the GPU for general purpose
computing. 199, 231

Computer Aided Design (CAD) Approach for creating and modifying designs using com-
puters. 198, 231, 238

Conditional Batch Normalization (CBN) Technique to condition a neural network on
additional input by making the learned moments in Batch Normalization conditional,
used e.g. by Dumoulin, Shlens, and Kudlur [42] and Vries et al. [192]. 139, 141, 153,
154, 231

Consensus Optimization (ConOpt) Method for finding equilibrium points in smooth two-
player games when the Jacobian has purely imaginary eigenvalues or eigenvalues
with large imaginary part. Introduced by Mescheder, Nowozin, and Geiger [128]. 23,
30–38, 46, 52, 53, 121, 205–209, 231

Convolutional Neural Network (CNN) Type of neural network that uses convolutional
layer. 134, 140, 141, 163, 193, 231, 233

Curse of Dimensionality Umbrella term stating that many problems in machine learning
become harder in higher dimensions. 127, 129, 234

Curse of Discretization Instance of the Curse of Dimensionality discussed in Chapter 10
that occurs when discretizing function spaces with high-dimensional domain. 127,
129, 131, 136, 157, 235

Deep Convolutional GAN (DC-GAN) GAN architecture introduced by Radford, Metz,
and Chintala [160]. One of the first architectures that was able to produce realistic
images. 35, 36, 38, 205–209, 231

Deep Marching Cubes (DMC) Technique for learning-based 3D reconstruction that makes
the Marching Cubes algorithm differentiable. Introduced by Liao, Donne, and Geiger
[108]. 142, 143, 199, 218, 219, 227, 231

Deep Regret Analytic Generative Adversarial Networks (DRAGAN) Type of GAN in-
troduced by [98] that uses a similar regularizer like WGAN-GP. 51, 55, 231

Dirac-GAN Minimal GAN for which neither Simultaneous Gradient Descent nor Alter-
nating Gradient Descent converges. Introduced by Mescheder, Geiger, and Nowozin
[129] and described in detail in Chapter 3 and 4. 4, 39–43, 45, 47, 48, 50–56, 59, 60,
62, 63, 65–69, 71, 73, 78, 79, 83, 84, 90, 94, 95, 191, 192
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Glossary

Energy Solution Stable equilibrium for unregularized GAN training where discriminator
forms a potential function for data distribution. See Appendix D for details. 71, 109,
189, 191

Fast Quadric Mesh Simplification Mesh simplification algorithm by Garland and Heck-
bert [52] which approximates surface errors using quadric matrices. Implementation:
https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification 138

Fréchet Inception Distance (FID) Metric proposed by Heusel et al. [68] to evaluate Gen-
erative Adversarial Networks. The metric is defined as the Fréchet Distance between
two Gaussian distributions that approximate the distributions obtained by applying an
inception network to the true data distribution and the generator distribution. Lower
is better. 110–114, 210, 231, 235

Function Space Operator Operator introduced in Chapter 10 that defines a bijection
between the space of functions Z ×Y → VS and the space of functions from
S ×Z×Y → V . Approximating the latter kind of function is often easier and does
not suffer from the Curse of Discretization. 4, 127, 130, 131, 133, 136, 154, 157–159,
163, 165

Generative Adversarial Network (GAN) Generative model introduced by Goodfellow
et al. [62] based on training a generator and discriminator in an adversarial fashion.
v, vii, xxi, 2–4, 9, 13–18, 22–27, 31, 34, 37, 39–43, 45–47, 50, 53–57, 59, 60, 62,
66, 68, 69, 71, 73, 74, 80, 81, 83–85, 87, 89–91, 93–95, 98, 102, 105–107, 109–113,
115–119, 121, 127, 134, 158, 165, 169, 170, 189, 191, 207, 210–212, 231, 234–236,
238

ImageNet Hierarchical image database. Dataset for ImageNet Large Scale Visual Recog-
nition Challenge. http://www.image-net.org 110–113, 140, 141, 147, 193, 195,
196, 210

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Popular challenge for
image classification and object detection [171]. 110, 231, 235, see also: ImageNet

Inception Network Convolutional neural network architecture proposed by Szegedy et al.
[181]. Used for computing the Inception score and Fréchet Inception Distance. 110,
111

Inception score Score proposed by Salimans et al. [173] to evaluate Generative Adversarial
Networks. The score is defined as the Kullback-Leibler divergence between the output
of an inception network conditioned on a generated image and the marginal label
distribution and applying the exponential function to this value. Higher is better. 35,
36, 110, 111, 113, 114, 205, 210, 235

Indicator divergence Divergence between probability measures p1 and p2 which is 0 if
p1 = p2 and ∞ otherwise. 10, 11, 205
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Glossary

Intersection over Union (IoU) Metric to compare 3D meshes by dividing the volume of
their intersection by the volume of their union. Score always lies between zero (worst)
and one (best). 142–145, 147, 148, 151, 152, 154, 155, 198, 201, 203, 216, 220, 231

KITTI Dataset for autonomous driving introduced by Geiger et al. [53]. http://www.
cvlibs.net/datasets/kitti 145, 149, 150

Kullback-Leibler divergence Probabilistic divergence between probability distributions.
xxiii, 10, 14, 110, 137, 235

Large Scene Understanding Dataset (LSUN) Dataset for scene understanding with dif-
ferent scene categories by Yu et al. [207]. 110–113, 116, 193, 194, 231

Large-scale CelebFaces Attributes Dataset (CelebA) Dataset of celebrity faces with at-
tributes by Liu et al. [110]. 110–113, 115, 193, 194, 231, 233

Leaky Rectified Linear Unit (Leaky-ReLU) Variant of ReLU activation function for neu-
ral networks defined by t 7→max(t,αt). for some α > 0. 107, 231

Least-Squares-GAN GAN proposed by Mao et al. [121] that uses ϕ1(t) = ϕ2(t) =−(1+
t)2 as activation functions. 16

Long short-term memory (LSTM) Type of RNN-cell with memory introduced by Hochre-
iter and Schmidhuber [72] to tackle the vanishing gradient problem. 197, 231

Manifold Hypothesis Hypothesis that most real-world distributions lie in the vicinity of a
low dimensional submanifold of the ambient space. Basis for manifold learning and
dimensionality reduction techniques, see e.g. Ma and Fu [119]. 107

Marching Cubes Algorithm for extracting an isosurface from a discrete grid of values.
Introduced by Lorensen and Cline [117]. 135, 137–139, 148, 234

Mean Squared Error (MSE) Error metric defined as the mean squared difference between
two vectors. 68, 69, 231

Multiresolution IsoSurface Extraction (MISE) Method introduced by Mescheder et al.
[130] to extract an isosurface from a continuous function by incrementally building
an OctTree. 137, 148, 153, 231

Neural Network divergence Probabilistic divergence defined by a neural network dis-
criminator (see Section 1.1.5). The concept was proposed by Arora et al. [7]. 10,
15

Normal Consistency score Measure to assess how consistent the normals of two meshes
are. Defined as the mean dot product of the normals on one mesh and the normals at
the closest points on the other other mesh and vice versa. 143, 144, 147, 148, 151,
152, 154, 155, 198, 203, 216, 220
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Glossary

Occupancy Flow (OFlow) Representation for time-varying 3D geometry introduced by
Niemeyer et al. [141] based on a static Occupancy Network at a t = 0 and a time-
varying vector field. 158, 159, 161, 163, 227, 231, 238

Occupancy Function Representation of 3D geometry as a function that assigns one to all
points inside the object and zero to the points outside. 3, 133, 136, 137, 145, 151,
159

Occupancy Network (ONet) Representation for 3D geometry introduced by Mescheder
et al. [130] based on representing 3D geometry as the decision boundary of a deep
learning classifier. xxi, 4, 133, 136, 137, 139, 141, 142, 144, 145, 149, 151, 152, 154,
156–159, 163, 165, 198, 217, 231, 237

OctTree Representation of space where voxels of interest are recursively subdivided into 8
subvoxels. 137, 163, 236

Pix3D Dataset of pixel-level aligned image-shape pairs. Introduced by Sun et al. [180].
http://pix3d.csail.mit.edu 145, 149–151, 213, 217

Pixel2Mesh Single view 3D reconstruction method proposed by Wang et al. [193] based
on deforming a template ellipsoid using local features. 142, 143, 146–149, 198, 203,
214, 215, 227

Point Set Generation Network (PSGN) Technique for learning-based 3D reconstruction
that represents geometry as a point cloud. Introduced by Fan, Su, and Guibas [45].
142, 143, 146–150, 197, 198, 200, 214, 215, 218–220, 232

PointNet Permutation-invariant neural network architecture for point clouds. Proposed by
Qi et al. [158]. 140, 141

Python Optimal Transport Package Python library to efficiently estimate the Wasser-
stein divergence and other quantities based on optimal transport. http://pot.
readthedocs.io 108

PyTorch Deep learning framework [153] that is based on dynamic computation graphs.
https://pytorch.org/ 32, 112, 141, 142, 147, 199, 227

Rectified Linear Unit (ReLU) Activation function for neural networks defined by t 7→
max(t,0). 34, 71, 111, 139, 197, 198, 232, 236

Residual Network (ResNet) Type of neural network where the input of each block is
added to the output which leads to more stable training. Introduced by He et al. [67].
110, 111, 139–141, 147, 153, 154, 193, 197, 198, 205, 209, 232

RMSProp Optimizer introduced by Hinton, Srivastava, and Swersky [69] that normalizes
the gradients by dividing them with a historical average of their norms. 34, 108, 112,
208, 209, 233
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Glossary

Screened Poisson Surface Reconstruction (SPSR) Variant of Poisson Surface Recon-
struction [92] which explicitly incorporates an interpolation constraint. Introduced by
Kazhdan and Hoppe [93]. 197, 232

ShapeNet Repository of 3D CAD models. Introduced by Chang et al. [22]. xviii, 142, 144,
145, 147–149, 151–153, 216, 217, 220, 222–225

Simultaneous Gradient Descent (SimGD) Method for finding equilibria in smooth two-
player games by simultaneously performing gradient descent on the cost functions of
the two players. 18, 22, 23, 25–31, 34, 35, 37–39, 42, 43, 47, 50, 52, 54, 56, 60, 68,
69, 74, 77–79, 84, 87, 89–91, 94–96, 98, 99, 101–103, 105, 106, 121, 191, 205, 209,
232, 234

Stanford Online Products Dataset of online products introduced by Oh Song et al. [146]
http://cvgl.stanford.edu/projects/lifted_struct 145, 149–151

Stochastic Gradient Descent (SGD) Stochastic version of gradient descent where the
gradient is estimated using mini-batches. 108, 232

StyleGAN High-resolution Generative Adversarial Network introduced by Karras, Laine,
and Aila [89] that conditions the generator architecture on the latent code z ∈ Z using
Adaptive Instance Normalization. 2

Tensorflow Deep learning framework [1] that is based on static computation graphs. https:
//www.tensorflow.org/ 32

Texture Field Continuous representation of texture proposed by Oechsle et al. [145]. 157–
159, 227

Truncated Signed Distance Field (TSDF) Function that assigns the signed distance with
respect to to an object to every point in space and which is truncated to a certain
maximum absolute value. 135, 142, 232

Variational Autoencoder (VAE) Generative model introduced by Kingma and Welling
[95] and Rezende, Mohamed, and Wierstra [164] based on maximum-likelihood
training with approximate variational inference. 9, 134, 137, 158, 160, 232

Velocity Network Continuous representation of a 3D motion field proposed by Niemeyer
et al. [141]. Used in Occupancy Flow. 158, 159

Wasserstein divergence Divergence between probability measures based on optimal trans-
port, which - among others - serves as the inspiration for Wasserstein GANs. Con-
sidered, e.g., by Gini [59], Kantorovich and Rubinstein [85], Kantorovich [86], and
Vaserstein [190]. 10, 14, 15, 50, 79, 90, 91, 107, 108, 237, 238

Wasserstein GAN (WGAN) Variant of GAN introduced by Arjovsky, Chintala, and Bot-
tou [5] which is inspired by the Wasserstein divergence. Forces the discriminator to
be Lipschitz. 42, 46, 50, 51, 53, 91, 92, 232, 238
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Glossary

Wasserstein GAN with Gradient Penalties (WGAN-GP) Variant of WGAN introduced
by Gulrajani et al. [64] based on penalizing the discriminator for gradients whose
norm is not one. 46, 51–53, 55, 107–110, 112, 113, 192, 232, 234
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