

Ecology & Hydrology

Article (refereed) - postprint

Billett, M.F.; Garnett, M.H.; Dinsmore, K.J. 2015. Should aquatic CO2 evasion be included in contemporary carbon budgets for peatland ecosystems? *Ecosystems*, 18 (3). 471-480. <u>10.1007/s10021-014-9838-5</u>

© 2015 Springer Science+Business Media New York

This version available http://nora.nerc.ac.uk/509753/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

The final publication is available at Springer via http://dx.doi.org/10.1007/s10021-014-9838-5

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Should aquatic CO ₂ evasion be included in contemporary carbon budgets for
2	peatland ecosystems?
3	
4	MF Billett ^{1,2} , MH Garnett ³ , KJ Dinsmore ²
5	¹ Biological & Environmental Sciences, School of Natural Sciences, University of
6	Stirling, Stirling, FK9 4LA, UK
7	² Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB,
8	UK
9	³ NERC Radiocarbon Facility, Rankine Avenue, Scottish Enterprise Technology Park,
10	East Kilbride, G75 0QF, UK
11	
12	Abstract
13	Quantifying the sink strength of northern hemisphere peatlands requires
14	measurements or realistic estimates of all major C flux terms. Whilst assessments of
15	the net ecosystem carbon balance (NECB) routinely include annual measurements of
16	net ecosystem exchange and lateral fluxes of dissolved organic carbon (DOC), they
17	rarely include estimates of evasion (degassing) of CO_2 and CH_4 from the water
18	surface to the atmosphere, despite supersaturation being a consistent feature of
19	peatland streams. Instantaneous gas exchange measurements from temperate UK
20	peatland streams suggest that the CO ₂ evasion fluxes scaled to the whole catchment
21	are a significant component of the aquatic C flux (23.3 \pm 6.9 g C m ⁻² catchment yr ⁻¹)
22	and comparable in magnitude to the downstream DOC flux (29.1±12.9 g C $m^{\text{-}2}$
23	catchment yr ⁻¹). Inclusion of the evasion flux term in the NECB would be justified if
24	evaded CO_2 and CH_4 were isotopically "young" and derived from a "within-
25	ecosystem" source, such as peat or in-stream processing of DOC. Derivation from

1 "old" biogenic or geogenic sources would indicate a separate origin and age of C 2 fixation, disconnected from the ecosystem accumulation rate that the NECB definition implies. Dual isotope analysis (δ^{13} C and 14 C) of evasion CO₂ and DOC strongly 3 4 suggest that the source and age of both are different and that evasion CO₂ is largely derived from allochthonous (non-stream) sources. Whilst evasion is an important flux 5 6 term relative to the other components of the NECB, isotopic data suggest that its 7 source and age are peatland-specific. Evidence suggests that a component of the CO₂-8 C evading from stream surfaces was originally fixed from the atmosphere at a 9 significantly earlier time (pre-AD1955) than modern (post-AD1955) C fixation by 10 photosynthesis.

11

12 **1. Introduction**

13 Northern hemisphere peatlands are a huge global repository of organic C (estimates vary between 200-450 Pg C (Gorham 1991; Turunen and others 2002)) and its 14 15 breakdown products. The latter are released directly as CO₂, CH₄ and dissolved and 16 particulate organic carbon (DOC and POC) into freshwater systems from which direct gaseous losses of C (evasion or degassing) to the atmosphere occurs. The magnitude 17 18 of the aquatic C loss pathway is of significant interest, particularly as the climate 19 warms and sink-source relationships of peatlands change (IPCC, 2007). Where the 20 evasion flux has been quantified (Kling and others 1991; Dinsmore and others 2010) 21 data have shown that it is a significant component of the NECB and on a catchment-22 scale is of the same order of magnitude as the lateral flux of DOC (Hope and others 23 2001; Wallin and others 2013). The NECB, defined as the net rate of carbon 24 accumulation or loss from an ecosystem, includes two flux terms that are directly 25 linked to the aquatic pathway, net dissolved inorganic and organic C inputs/losses

1 (F_{DIC} and F_{DOC}) (Chapin and others 2006). The conceptual framework of the NECB 2 also explicitly defines its lower physical limits, which in the case of terrestrial 3 ecosystems is below the rooting zone, and for freshwater ecosystems the bottom of 4 either the sediments or the water column (Chapin and others 2006). Changes in both the annual C balance and NECB are now being routinely measured across northern 5 6 hemisphere peatlands in order to quantify changes in C sink strength. Measurement 7 periods range from 2-6 years and include studies from Scotland (1996-98, 2007-08), 8 Canada (1998-2004), Sweden (2004-05) and Ireland (2003-08) (Billett and others 9 2004; Dinsmore and others 2010; Roulet and others 2007; Nilsson and others 2008; 10 Koehler and others 2011).

11 The fact that streams and rivers associated with peatland systems are 12 consistently supersaturated with respect to CO₂ and CH₄ (Hope and others 2001; 13 Dinsmore and Billett 2008; Wallin and others 2011) is a clear indication of the degassing potential of the aquatic system. Both gases are lost from the aquatic 14 15 pathway as surface water gas concentrations progressively equilibrate with lower 16 concentrations in the atmosphere. This has been demonstrated in downstream spatial 17 measurements of pCO_2 and pCH_4 in which high concentrations are directly related to 18 the spatial distribution of peat soils (Dawson and others 2002; Billett and Moore 19 2008) and where outgassing occurs in the proximity of source areas (Nilsson and 20 others 2008). Measurements from the UK, N America and Sweden show that 21 significant amounts of gas exchange occur across the water-air interface of peatland 22 streams (Billett and Moore 2008; Billett and Harvey 2013; Wallin and others 2011). 23 However, a lack of water-air flux measurements in small headwater streams has often 24 led to the use of estimated or modelled values of gas transfer coefficients or velocities 25 in regional upscaling (e.g. Teodoru and others 2009). Accurate flux estimates are also

1 hindered by poor quantification of water surface area in low order streams. Hence 2 there is still much uncertainty about the magnitude of the CO₂ evasion flux and its 3 origin. This uncertainty has been recently improved by studies that show that K_{CO2} 4 (the gas transfer coefficient of CO_2) can be predicted by a combination of slope and 5 stream width/depth (Wallin and others 2011) or slope and stream velocity (Butman 6 and Raymond 2011). In addition, the ability to measure CO₂ concentrations at higher temporal resolution has greatly improved understanding of aquatic CO₂ hydro-7 8 dynamics (Johnson and others 2010, Dinsmore and others 2013).

9 Whilst flux terms and the methods used to measure C exchange are well 10 established for land-atmosphere gas exchange and downstream aquatic losses, evasion 11 (degassing of CO₂ and CH₄ at the water surface) is less well understood and often 12 poorly quantified or even worse, ignored. Most eddy covariance measurement 13 systems exclude standing or flowing water and leave the evasion flux unmeasured 14 (e.g. Billett and others 2004). Hence in a continental or global context the magnitude 15 of the evasion flux is a major "unknown" (Cole and others 2007), although estimates 16 for US streams and rivers suggest they release 97±32 Tg of C to the atmosphere each year (Butman and Raymond 2011). Globally it has been estimated that CO₂ evasion 17 18 from inland waters is of similar magnitude to CO₂ uptake by the oceans (Tranvik and 19 others 2009). In arctic lakes and streams it represents 25-50% of the net annual 20 landscape carbon accumulation rate (Kling and others 1991). In the whole Yukon 21 catchment (854,700 km²) Striegl and others (2012) have estimated that gas emissions from the water surface account for 50% of the total lateral C export. Collectively these 22 23 values suggest that the evasion flux represents an important loss of carbon and GHGs 24 (greenhouse gases) from peatland ecosystems that include the aquatic pathway. Because the overall concept of the NECB is to assess the net rate of ecosystem C 25

accumulation ("sink strength"), the inclusion of evasion CO₂ in NECB calculations 1 2 will be justified if it is derived wholly from (1) lateral transport to the stream of 3 "young" soil-derived CO_2 , (2) within-stream decomposition of DOC and POC or (3) 4 C fixed by within-stream photosynthesis. However, if CO₂ lost by evasion to the atmosphere is "old" and originates from outside the ecosystem boundary (for 5 6 example, from a geogenic source or below the active rooting zone), inclusion in the 7 NECB would not be justified and lead to an under-estimation of the current sink 8 strength of peatland systems. Whilst "young and old" carbon could be defined in 9 several ways, a chronological tool is required to provide an unambiguous definition. 10 Here we measure the relative age of C based on it's radiocarbon concentration (Levin 11 and Hesshaimer 2000); "young" C is defined as C fixed from the atmosphere post-AD1955 that is ¹⁴C enriched (>100% modern) due to nuclear weapons testing (post-12 13 bomb); "old" or pre-bomb C is ¹⁴C depleted and was fixed pre-AD1955. In addition, 14 if the source of the CO₂ lost by evasion is both allochthonous and constitutes old 15 stored carbon rather than young recently fixed/respired terrestrial carbon, 16 contemporary NECB estimates would be influenced by carbon fixed during a different era. The concept of an NECB to assess carbon accumulation in terrestrial ecosystems 17 18 is only useful when the timescales of C fixation are comparable and allow for 19 interaction between individual components; hence it is important that non-20 contemporary C (for example derived from geological sources or peat produced more 21 than 60 years ago) be excluded.

Here we aim to address the issue of inclusion of aquatic C in the NECB by firstly assessing the magnitude of the fluxes by comparing instantaneous measurements of CO_2 evasion and DOC fluxes from 6 UK peatland sites, and then producing estimates of catchment scale evasion fluxes using measurements of water

surface area. We then uniquely combine C flux and dual isotope δ^{13} C and 14 C measurements from the same sites to answer the following questions; (1) is C evaded as CO₂ allochthonous (defined as aquatic C derived from terrestrial sources), or is it autochthonous (defined as aquatic C produced by in-stream C fixation), and (2) should evasion CO₂ be considered as part of the contemporary NECB of peatlands (we define contemporary in this case as our measurement period 2004-2008), or is it derived from an older (pre-AD1955) C pool?

8

9 **2. Sites and Methods**

10 Between 2004-2006 instantaneous aquatic C flux measurements were carried out in 11 peatlands in Scotland (Loch More; Auchencorth Moss), northern England (Moor 12 House; Bleaklow) and Wales (Migneint; Plynlimon). Catchment characteristics are summarised in Table 1. Seven 1st to 3rd order streams in total were studied, the 13 14 Achscoriclate Burn (Loch More), Black Burn (Auchencorth Moss), Cottage Hill Sike 15 and Rough Sike (both Moor House), Doctor's Gate Clough (Bleaklow), Afon Ddu 16 (Migneint) and Afon Hafren (Plynlimon). The host catchments vary in altitude and size from 121-746 m and 0.2-4.7 km², respectively with mean annual precipitation 17 18 ranging from 1129 mm (Loch More, the most northerly site) to 2746 mm (Plynlimon, 19 the most westerly site). Mean annual air temperature ranged from 5.3-10.0°C. 20 Peatland catchments are typically semi-natural and affected to varying degrees by low 21 levels of (often seasonal) grazing and in some cases drainage. Hydrologically the 22 streams are typically "flashy" with a rapid rainfall-runoff response and a wide range 23 in discharge values (Table 1). Streamwater chemistry is characterised by low pH, low 24 Ca and high DOC concentrations (Billett et al. 2007). For further details of the 7 25 streams refer to Billett and Harvey (2013).

Between 2-10 concurrent instantaneous flux measurements of vertical CO₂ (and CH₄) evasion and lateral aquatic C (DOC, DIC, CO₂ and CH₄) were made at each of 2 locations at the 6 peatland sites (12 sites in total). The evasion flux was measured using a combination of gas (propane) and soluble tracer injection along 18-23 m long reach lengths. The calculated (K_{CO2} or K_{CH4}) gas transfer coefficient was converted to an instantaneous CO₂ or CH₄ evasion flux using the following equation:

7 8 9

Instantaneous evasion flux (mg C m⁻² s⁻¹) =
$$\Delta_{CO2} (\Delta_{CH4}) \times K_{CO2} (K_{CH4}) \times \tau \times Q$$

R

10 where Δ_{CO2} or Δ_{CH4} is the difference in the dissolved gas concentrations in the study 11 reach if the stream was at atmospheric equilibrium (mg C L⁻¹), *K*_{CO2} or *K*_{CH4} is the gas 12 transfer coefficient (min⁻¹), τ is the reach length travel time (min), Q is the average 13 reach discharge (L s⁻¹) measured on each occasion at both ends of the study reaches 14 using either a continuous or pulse injection of NaCl tracer, and R the water surface area 15 of the reach (m²). Full details of the methodology and flux calculations are given in 16 Billett and Harvey (2013).

17 Dissolved CO₂ and CH₄ were measured directly at both ends of the study reach 18 using headspace analysis (Kling and others 1991; Hope and others 1995; Hope and 19 others 2001). This technique requires measurement of ambient atmospheric CO₂/CH₄ 20 concentration, stream temperature, atmospheric pressure and elevation above mean sea 21 level. A HP5890 Series II with Flame Ionisation Detector (FID) and attached 22 methaniser was used to determine CO₂ and CH₄ concentrations (CO₂ and CH₄ detection 23 limits 10 ppmv and 70 ppbv, respectively). Two filtered (0.45 µm PTFE) water samples 24 (60 ml) were collected for the determination of DOC concentration. After sample 25 acidification and sparging with N2, DOC concentration was determined by digestion/uv 26 oxidation using a Rosemount Dohrman DC-80 TOC Analyser (detection limit 0.1 mg L⁻ ¹; precision \pm 0.04 mg L⁻¹). DIC concentration was calculated from the difference 27

between the concentration of total dissolved carbon (DOC+DIC) in an unacidified
 sample and DOC concentration.

Instantaneous CO₂ and CH₄ (vertical) evasion fluxes (mg C m⁻² s⁻¹) were 3 compared to the lateral (downstream) flux of various C species (DOC, DIC, CO₂ and 4 CH₄) by expressing all flux rates per unit area of catchment (mg C ha⁻¹ catchment s⁻¹). 5 Downstream fluxes were calculated by multiplying concentration (μg or mg C L⁻¹) by 6 7 flow (L s⁻¹) and dividing by the catchment area upstream of the sample point. For 8 evasion we make the simplifying assumption that the measured evasion rate was 9 representative of the upstream channel area. Although we made evasion measurements 10 along 2 representative reaches in the middle and lower sections of each stream, we 11 know that evasion rate has high spatial variability (see Billett & Harvey 2013 for 12 individual measurements). Then we calculated the water surface area in each catchment 13 from the active drainage area length (including all flowing tributaries) and the average 14 width of all the streams/tributaries within the drainage system. The former was 15 calculated from detailed base maps and ground truthing, the latter by multiple 16 measurements (10 m spacing) of stream width in the field. Catchment-scale evasion rates (allowing comparison with downstream C fluxes) were calculated as follows: 17

18 CO₂ or CH₄ evasion flux (mg C ha⁻¹ catchment s⁻¹) =

19 20

Simultaneous measurements of the δ¹³C and ¹⁴C content of evasion CO₂-C and DOCC were carried out on several of the UK peatland streams as well as 2 headwater
streams in Finnish peatlands. Sufficient evasion CO₂ for ¹⁴C analysis by accelerator
mass spectrometry (AMS) was collected directly in the field using a molecular sieve
linked to a floating chamber. The ¹⁴C content of DOC was determined from 1L water
samples that were subsequently filtered and freeze dried. For further details of the

methodology see Billett and others 2007; Billett and others 2012a; Billett and others
 2012b).

3

4 **3. Results and Discussion**

Mean streamwater concentrations (mg C L⁻¹) of C species (Table 2) were dominated 5 6 by DOC (14.1) with lower amounts of DIC (3.8), CO_2 (1.4) and CH_4 (0.01). Dissolved gas concentrations are equivalent to mean $epCO_2$ and $epCH_4$ values of 6.1 7 8 and 193, respectively (excess partial pressure or ep is the concentration of the 9 dissolved gas in the water sample divided by its concentration in pure water at 10 atmospheric equilibrium, Neal and others 1998). Discharge rates at the times the flux measurements were made were 0.8-374.4 L s⁻¹ (mean 45.1). Mean % water surface 11 12 area within all the headwater catchments was 0.20% (n=7, range 0.07-0.37%). This is 13 one of the most important steps involved in upscaling reach-scale to catchment-scale 14 evasion fluxes. Our measured average value compares favourably with mean 15 estimates of 0.14% from a large number of boreal peatland streams (mean catchment area 67 km²) in NW Québec (Teodoru and others 2009) and 0.19% from 1st to 4th 16 17 order headwater streams (n=13) in boreal Sweden (Wallin and others 2011). In 18 addition, Hope and others (2001) estimated stream water surface area as 0.22% from a 19 small (1.3 km²) headwater peatland catchment in NE Scotland. At a much larger 20 scale, Butman and Raymond (2011) used a higher value of 0.52% (regional range 21 0.23-0.84%) for the stream/river water surface area between 25°N and 50°N in the 22 USA; this value however included stream orders 1 to 10.

Both catchment scale CO₂ evasion and DOC fluxes were similar and
 significantly related to flow, although the relationship between discharge and DOC

25 flux was strongest (Fig. 1). Our catchment-scale evasion rates are likely to under-

1	estimate the size of the overall flux because, whilst they include hydrological
2	variability, they only include a small degree of spatial variability and exclude the
3	source areas that are often associated with high pCO_2 and pCH_4 (e.g. Nilsson and
4	others 2008). If the data from all sites are considered collectively the CO ₂ evasion flux
5	$(7.38\pm15.34 \text{ mg C ha}^{-1} \text{ catchment s}^{-1})$ was equivalent to the downstream export of
6	DOC (9.24 \pm 28.56 mg C ha ⁻¹ catchment s ⁻¹) and 10x larger than the downstream
7	(lateral) export of CO ₂ -C (Table 2). Overall median CO ₂ -C evasion fluxes were higher
8	than the median DOC fluxes at the sites. Fluxes of CH4 (either as evasion or
9	downstream export) were more than 2 orders of magnitude lower than the equivalent
10	CO ₂ flux.

11 The values presented in Fig. 1 can be used to make a first approximation of 12 fluxes from each individual catchments (Table 3), although the small number of 13 measurements for each catchment means that individual values have to be treated with a degree of caution. Despite this caveat, annual upscaled CO2 evasion fluxes for 14 individual catchments were in the range 9-27 g C m⁻² catchment yr⁻¹ and DOC fluxes 15 in the range 2-29 g C m⁻² catchment yr⁻¹; only the Hafren catchment showed a 16 significant difference between flux values. We derive overall annual CO₂ evasion and 17 18 DOC flux values from all our peatland headwater streams of 23.3±6.9 and 29.1±12.9 g C m⁻² catchmment yr⁻¹, respectively (Table 3). We compared these values to 19 published DOC fluxes from 6 of the sites derived from long-term datasets (2 to 16 yr) 20 21 based on a weekly or 2 weekly sampling frequency (Table 2). Both our overall CO₂ 22 evasion and DOC fluxes were comparable to the long-term published DOC flux value $(25.0 \text{ g C m}^{-2} \text{ catchment yr}^{-1})$ derived from all the sites (Table 3). We are therefore 23 confident that the overall flux values derived from a relatively small number of 24

individual measurements in the 7 catchments, were representative of the peatland
 system in terms of its inherent variability associated with discharge and season.

_

3 Whilst several recent studies (e.g. Wallin and others 2013) have also 4 demonstrated the similarity in catchment-scale CO₂ evasion and DOC fluxes from peatland headwater streams and therefore highlight the importance of the aquatic 5 6 pathway as a significant catchment carbon loss, relatively little is known about the source of the evaded CO₂ and whether it should be included in calculations of the 7 8 contemporaneous NECB. We carried out concurrent dual isotope measurements (δ^{13} C and ¹⁴C) of both evasion CO₂-C and DOC-C at 4 of the temperate UK peatland sites 9 10 described above (Billett and others 2007; Billett and others 2012a) as well as in 2 11 boreal forested peatland headwater streams in N Karelia, Finland (Billett and others 12 2012b). Here for the first time we bring the isotope (Fig. 2, Table 4) and flux data 13 together and use it to compare the age and source of both C species. The evasion isotope values have been corrected to account for CO₂ degassing into a closed 14 15 collection chamber (Billett and Garnett 2010).

Evasion CO₂ was consistently and significantly more ¹³C enriched than DOC 16 in all 5 peatland catchments, with only 3 pairs of samples (total = 52) exhibiting 17 similar δ^{13} C values (-27.6 to -28.4 ‰). Individual catchments were characterised by a 18 specific range in δ^{13} C-CO₂, with the Finnish sites being the most 13 C depleted and the 19 Loch More (UK) sites the most ¹³C enriched. The source, or more likely sources, of 20 21 evasion CO_2 are therefore different from DOC, with the former derived either from decomposition of C3 plant material ($\delta^{13}C \approx -28$ ‰), atmospheric CO₂ ($\delta^{13}C \approx -8$ ‰), 22 geological weathering ($\delta^{13}C \approx 0$ %) or CO₂ resulting from anaerobic fermentation 23 $(\delta^{13}C \approx -14 \text{ to } +10 \text{ }\%)$ (Billett and others 2007; Billett and others 2012a). Compared 24

1 to CO₂, δ^{13} C-DOC values varied little and were consistent with a single source, 2 namely decomposition of organic matter derived from C3 plants.

3 At all sites DOC was consistently and significantly more ¹⁴C enriched than 4 evasion CO₂ with individual catchments characterised by a distinct clustering of values (Fig. 2). With one exception (Auchencorth Moss), the radiocarbon content of 5 6 DOC samples was young and close to the contemporary atmospheric value (107-105 7 % modern, estimated from Levin and Kromer 2004) for the time of sampling (2004-8 2008). These observations indicate that the DOC contained a substantial component of post-bomb C (i.e. carbon originally fixed after AD1955). The most ¹⁴C enriched 9 10 CO₂ samples were from N Karelia, Finland (mean 107.69±1.94 % modern), which 11 again indicated that this CO₂ was radiogenically young and substantially derived from 12 carbon fixed during the post-bomb era. In contrast, CO₂ from most UK sites had ¹⁴C 13 concentrations <100 % modern, reflecting a component of old pre-bomb carbon (i.e. carbon fixed before ~AD1955); the most ¹⁴C depleted (i.e. oldest) CO₂ was from Loch 14 15 More (aged up to 1502±28 years BP) and Auchencorth Moss (aged up to 1163±29 16 years BP), however, all sites did at times provide CO_2 samples with ${}^{14}C$ 17 concentrations >100 % modern, indicating younger post-bomb carbon.

The difference in the δ^{13} C and 14 C signatures of DOC and evasion CO₂ 18 19 strongly suggest that a significant proportion of CO₂ lost by evasion is not derived 20 from within-stream breakdown of DOC. A non-stream source in peatland systems is 21 also supported by published non-isotopic data showing a strong link between temporal 22 changes in soil atmosphere and stream CO₂ concentrations (Hope and others 2004; 23 Dinsmore and Billett 2008). In addition, the isotopic signature of CO₂ evasion at most 24 of the sites appears to have either a deeper biogenic (peat) or a geogenic (weathering) 25 component and thus originates from outside the physical lower ecosystem boundary

1 associated with the strict definition of the NECB (Chapin and others 2006). The 2 timescales of geogenic CO₂ production versus contemporary carbon cycling also leads 3 to challenges in interpreting the NECB, suggesting inclusion of this evaded CO₂ 4 component may not be appropriate. There are peatland sites (e.g. Loch More and Auchencorth Moss) where the source and age of CO₂ and DOC are significantly 5 6 different (Fig. 2) whilst there are others, such as the forested Finnish peatland sites, 7 where the isotopic signatures are much closer and more characteristic of DOC and 8 CO₂ produced from recently fixed C (Billett and others 2012b). Hence, whilst the 9 isotopic data can be explained by a mixture of sources in most of these acidic low 10 productivity systems, CO_2 evasion is likely to be primarily derived from non-stream 11 sources. A similar conclusion was reached in the Yukon River and its tributaries, 12 where Wickland and others (2012) found that biodegradation of soil-derived DOC 13 only accounted for <6% of the total CO₂ emission from the water surface.

14 Compared to DOC, the source of evasion CO₂ varies significantly from 15 peatland to peatland and we present evidence to show that old (pre-AD1955) CO_2 is being released into the atmosphere from a number of sites. This is significant because 16 17 it suggests that the contemporary C balance of peatlands is being affected by the 18 release of C from an older (pre-AD1955) and deeper (primarily sub-rooting zone) C 19 pool, the contribution of which varies spatially between peatlands. Whilst DOC at 20 these sites can almost exclusively be regarded as the result of turnover of young 21 organic C, evasion CO₂ cannot be regarded solely as the breakdown product of 22 recently fixed and respired terrestrial carbon. At the UK peatland sites there is strong 23 evidence to suggest that the evaded CO₂ is derived from multiple sources including 24 decomposition of deep peat (biogenic) and carbonate weathering (geogenic) (Billett and others 2007; Billett and others 2012a). We have recently shown that the age of 25

1 aquatic dissolved CO₂ at the Auchencorth Moss catchment varied from 707 to 1210 2 years BP during a single hydrological year (Garnett and others 2012), with the oldest and youngest CO₂ associated with low (deep source) and high discharge (shallow 3 source), respectively. Because the δ^{13} C-CO₂ values were relatively constant (-23.0 to -4 5 24.2 ‰) the isotope data indicates that the CO₂ is predominantly derived from a single 6 biogenic peat source that varies in depth during the hydrological year. The release of CO₂ of variable age and source from natural peatland pipes to the atmosphere (Billett 7 8 and others 2012a) further supports the potential for the involvement of a deeper, old C 9 pool in measurements of the contemporary C balance, originating from outside the 10 ecosystem boundaries normally associated with the NECB.

11

12 **4.** Conclusions

13 Our best current estimate for the size of the evasion flux term from UK peatland headwater streams is 23.3 g C m⁻² catchment yr⁻¹, which is of similar magnitude to the 14 15 UK lateral DOC flux estimate of 19-27 g C m⁻² catchment yr⁻¹ for the same type of 16 stream system (Billett and others 2010). Upscaled to a national level using a value of 24,640 km² for the UK peatland area (Billett and others 2010), we estimate that the 17 18 CO₂ evasion flux from peatland streams represents an additional natural emission source of the order of 0.57 Mt C yr⁻¹ to the atmosphere. Given the errors associated 19 with the evasion estimate (Table 3) and the area of UK peatlands (values range from 20 17,500 km² to 32,830 km²; Joosten & Clark 2002, JNCC 2011), the UK peatland CO₂ 21 evasion emission value could range from 0.29-0.99 Mt C yr⁻¹. To put this into context 22 23 Hope and others (1997) and Worrall and others (2012) have independently estimated a total DOC loss from British rivers to tidal waters of 0.68±0.07 Mt C yr⁻¹ and 24 0.91±0.35 Mt C yr⁻¹, respectively. The value of 0.57 Mt C yr⁻¹ is higher than that 25

estimated for the loss of C from the drainage of UK fenlands (0.5 Mt C yr⁻¹) and from
 peat extraction (0.2 Mt C yr⁻¹) (Cannell and others 1999).

3 We combined instantaneous flux measurements of DOC and CO₂ evasion with 4 isotopic evidence to demonstrate both the magnitude of the CO₂ evasion flux with respect to the contemporary peatland C balance (see also Billett et al. 2010), and 5 6 question whether it should strictly be included in the NECB. The answer is catchment 7 specific and not simple. Even though some peatlands are characterised by biogenic, 8 isotopically young evasion CO_2 , the isotopic signatures of DOC and evasion CO_2 9 rarely match, suggesting there is a difference in their source, residence time and transport rate to the stream system. Even when the ¹⁴C content of DOC and evasion 10 11 CO₂ are isotopically young, the age of original C fixation varies and typically pre-12 dates the contemporary atmosphere by up to about 13 years (e.g. Billett and others 13 2012b). Hence in terms of C fluxes and turnover, the aquatic and land-atmosphere 14 systems are not synchronised, to an extent that the annual NECB will inevitably 15 include flux terms that are operating at different timescales (Fig. 3). This implies that 16 there may be significant lags in the components that make up the C balance of a 17 peatland, with parts of the C cycle responding at different rates to change.

18 These differences become greater in peatland sites where both old (pre-19 AD1955) biogenic and geogenic CO₂ from deep sources degas from stream surfaces. 20 In these systems it is difficult to justify (both in terms of age and origin) the inclusion 21 of the evasion flux in the contemporary NECB, although it could be justified in a C accounting exercise as an additional emission source. The answer is, however, not 22 23 unequivocal because the isotopic signature of evasion CO₂ may comprise multiple 24 sources of differing ages and we do not rule out the presence of modern C that will dilute an older ¹⁴C-CO₂ signal. Whilst ¹⁴C dating of CO₂ does not provide a precise 25

age for these different sources or their relative importance, ¹⁴C concentrations >100%
modern must contain C fixed from the atmosphere since AD1955, and concentrations
<100% modern unequivocally demonstrate the presence of C fixed before AD1955.
Isotopic evidence from the aquatic pathway therefore suggests we may need to rethink
the way we understand or interpret the NECB, although the extent of the rethink will
vary from peatland to peatland.

7

8 Acknowledgements

9 The research reported here was funded primarily by a UK NERC Advanced Research 10 Fellowship (NER/J/S/2002/00647) with additional NERC Radiocarbon Facility 11 allocations (1093.1004, 1158.1005, 1260.1007, 1380.0409). The various UK 12 landowners are thanked for allowing access to the study sites and METLA (Finnish 13 Forestry Research Institute) for providing logistical support for fieldwork in Finland. 14 The authors thank the three anonymous reviewers and the Subject Matter Editor for 15 their constructively critical review of the manuscript.

16

17 **References**

- Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ,
 Flechard C, Fowler D (2004), Linking land-atmosphere-stream carbon fluxes
 in a lowland peatland system, Glob Biogeochem Cycle 18:GB1024.
- Billett MF, Garnett MH, Harvey F. 2007. UK peatland streams release old carbon
 dioxide to the atmosphere and young dissolved organic carbon to rivers.
 Geophys Res Lett 34 :L23401.
- Billett MF, Moore TR. 2008. Supersaturation and evasion of CO₂ and CH₄ in surface
 waters at Mer Bleue Peatland, Canada. Hydrol Proc 22:2044–2054.

1	Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ, Worrall F,								
2	Burden A, Dinsmore KJ, Jones T, McNamara NP, Parry L, Rowson JG, Rose								
3	R. 2010. Carbon balance of UK peatlands: current state of knowledge and								
4	future research challenges. Clim Res 45:13-29.								
5	Billett MF, Garnett MH. 2010. The isotopic composition of CO ₂ lost by evasion from								
6	surface water to the atmosphere: a methodological comparison of a direct and								
7	indirect approach. Limnol Oceanog Methods 8:45-53.								
8	Billett MF, Dinsmore KJ, Garnett MH, Smart RP, Holden J, Baird AJ, Chapman, PJ.								
9	2012a. Variable source and age of different forms of carbon released from								
10	natural peatland pipes. JGR Biogeosciences 117:G02003.								
11	Billett MF, Garnett MH, Dinsmore KJ, Dyson KE, Harvey F, Thomson AH, Piirainen								
12	S, Kortelainen P. 2012b. Age and source of different forms of carbon released								
13	from boreal peatland streams during spring snowmelt in E. Finland.								
14	Biogeochem 111:273-286.								
15	Billett MF, Harvey FH. 2013. Measurements of CO ₂ and CH ₄ evasion from UK								
16	peatland headwater streams. Biogeochem 114:165-181.								
17	Butman D, Raymond PA. 2011. Significant efflux of carbon dioxide from streams and								
18	rivers in the United States, Nature Geosci 4:839-842.								
19	Cannell, MGR, Milne R, Hargreaves KJ, Brown TAW, Cruickshank, MM, Bradley								
20	RI, Spencer T, Hope D, Billett MF, Adger WN, Subak S. 1999. National								
21	inventories of terrestrial carbon sources and sinks: The U.K. experience, Clim								
22	Change 42:505–530.								
23	Chapin FS III, Woodwell GM, Randerson JT Rastetter EB, Lovett GM, Baldocchi								
24	DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole								
25	JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA,								

1	McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML,
2	Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED. 2006.
3	Reconciling carbon-cycle concepts terminology, and methods. Ecosystems
4	9:1041–1050.
5	Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM,
6	Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the
7	Ecosystems 10:171-184.
8	Dawson JJC, Billett MF, Neal C, Hill S. 2002. A comparison of particulate, dissolved
9	and gaseous carbon in two contrasting upland streams in the UK. J Hydrol
10	257:226-246.
11	Dinsmore KJ, Billett MF. 2008. Continuous measurement and modelling of CO2
12	losses from a peatland stream during stormflow events. Water Resour Res
13	44:W12417.
14	Dinsmore KJ, Billett MF, Skiba U, Rees RM, Drewer J, Helfter C. 2010. Role of the
15	aquatic pathway in the carbon and greenhouse gas budgets of a peatland
16	catchment. Global Change Biol 16:2750-2762.
17	Dinsmore KJ, Wallin MB, Johnson MS, Billett MF, Bishop K, Pumpanen J, Ojala A.
18	2013. Contrasting CO ₂ concentration discharge dynamics in headwater
19	streams: A multi-catchment comparison. 2013 J Geophy Res – Biogeosciences
20	118:445-461.
21	Garnett MH, Dinsmore KJ, Billett MF. 2012. Annual variability in the radiocarbon
22	age and source of dissolved CO ₂ in a peatland stream. SciTotal Environ 427-
23	428:277-285.
24	Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probable responses
25	to climatic warming, Ecol Appl 1:182–195.

1	Hope D, Palmer SM, Billett MF, Dawson JJC. 2001. Carbon dioxide and methane						
2	evasion from a temperate peatland stream. Limnol Oceanog 46:847-857.						
3	Hope D, Palmer SM, Billett MF, Dawson JJC. 2004. Variations in dissolved CO ₂ and						
4	CH ₄ in a first order stream and catchment: an investigation of soil stream.						
5	Hydrol Proc 18:3255-3275.						
6	Hope D. Dawson JJC, Cresser MS, Billett MF. 1995. A method for measuring free-						
7	CO ₂ in upland streamwater using headspace analysis. J Hydrol 166:1–14.						
8	Hope D, Billett MF, Milne R, Brown TAW. 1997. Exports of organic carbon in						
9	British rivers. Hydrol Proc 11:325–344.						
10	IPCC. 2007. Technical Summary. In Climate Change 2007: The Physical Science						
11	Basis. Contribution of Working Group 1 to the Forth Assessment Report of						
12	the Intergovernmental Panel on Climate Change, edited by Solomon S, Qin D,						
13	Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL,						
14	Cambridge University Press, Cambridge, United Kingdom and New York,						
15	NY, USA.						
16	JNCC. 2011. Towards an Assessment of the State of UK Peatlands. Joint Nature						
17	Conservation Committee Report No. 445, ISSN 0963 8901.						
18	Johnson MS, Billett MF, Dinsmore KJ, Wallin M, Dyson K. 2010. Direct in situ						
19	measurement of dissolved carbon dioxide in freshwater aquatic systems -						
20	method and applications. Ecohydrol 3:68-78.						
21	Joosten H, Clarke D. 2002. Wise use of mires and peatlands. International Mire						
22	Conservation Group and International Peat Society, ISBN 951-97744-8-3.						
23	Kling GW, Kipphut GW, Miller MC. 1991. Arctic streams and lakes as conduits to						
24	the atmosphere: Implications for tundra carbon budgets. Science 251:298-301.						
25	Koehler AK, Sottocornola M, Kiely G. 2011. How strong is the current carbon						

1	sequestration of an Atlantic blanket bog? Global Change Biol 17:309–319,
2	doi: 10.1111/j.1365-2486.2010.02180.x
3	Levin I, Hasshaimer V. 2000. Radiocarbon – A unique tracer of global carbon cycle
4	dynamics. Radiocarbon 42:69-80.
5	Neal C, House WA, Down C. 1998. An assessment of excess carbon dioxide partial
6	pressures in natural waters based on pH and alkalinity measurements. Sci
7	Total Environ 210–211:173–185.
8	Nilsson M, Sagerfors J. Buffam I. Laudon H, Eriksson T, Grelle A, Klemedtsson L,
9	Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal
10	oligotrophic minerogenic mire - a significant sink after accounting for all C-
11	fluxes. Glob Change Biol 14:2317-2332.
12	Roulet N, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J. 2007.
13	Contemporary carbon balance and late Holocene carbon accumulation in a
14	northern peatland. Global Change Biol 13:397–411.
15	Striegl RG, Dornblaser MM, McDonald CP, Rover JR, Stets EG. 2012. Carbon
16	dioxide and methane emissions from the Yukon River system. Global
17	Biogeochem Cycles 26:GB0E05.
18	Teodoru C R, Del Giorgio PA, Prairie YT, Camire M. 2009. Patterns in pCO2 in
19	boreal streams and rivers of northern Quebec, Canada. Global Biogeochem
20	Cycles 23:GB2012.
21	Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P,
22	Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I,
23	Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA,
24	Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S,
25	Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer

1	GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate.
2	Limnol Oceanog 54:2298–2314.
3	Turunen J, Tomppo E, Tolonen K, Reinikainen A. 2002. Estimating carbon
4	accumulation rates of undrained mires in Finland – application to boreal and
5	subarctic regions. Holocene 12:69-80.
6	Wallin MB, Öquist MG, Buffam I, Billett MF, Nisell J, Bishop KH. 2011.
7	Spatiotemporal variability of the gas transfer coefficient (KCO ₂) in boreal
8	streams; implications for large scale estimates of CO ₂ evasion. Global
9	Biogeochem Cycles 25:GB3025.
10	Wallin MB, Grabs T, Buffam I, Laudon H, Ågren A, Öquist M.G, Bishop KH. 2013.
11	Evasion of CO_2 from streams – The dominant component of the carbon export
12	through the aquatic conduit in a boreal landscape. Global Change Biol
13	19:785–797.
14	Wickland K P, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG.
15	2012. Biodegradability of dissolved organic carbon in the Yukon River and its
16	tributaries: Seasonality and importance of inorganic nitrogen. Global
17	Biogeochem Cycles 26:GB0E03.
18	Worrall F, Davis H, Bhogal A, Lilly A, Evans M, Turner K, Burt T, Barraclough D,
19	Smith P, Merrington G. 2012. The flux of DOC from the UK - Predicting the
20	role of soils, land use and net watershed losses. J Hydrol 448:149-160.
21	
22	

1 <u>List of Tables</u>

2	Table 1: General characteristics of the study catchments (median discharge values are
3	for the lowest downstream site at the time of sampling)
4	Table 2: Overall mean, standard deviation and median (n=49) concentration and
5	instantaneous aquatic carbon flux values
6	Table 3: Mean (\pm SE) annual evasion CO ₂ and lateral DOC fluxes (g C m ⁻² catchment
7	yr ⁻¹) from the study catchments. The measurement period for the published
8	DOC fluxes are in parentheses. A significant difference (paired t-test) between
9	catchment CO ₂ evasion and DOC fluxes is shown by $(p \le 0.05)$
10	Table 4: Mean δ^{13} C-CO ₂ , δ^{13} C-DOC, 14 C-CO ₂ and 14 C-DOC (±SD) of evasion CO ₂
11	and stream DOC at sites in the UK and Finland. ¹⁴ C values are expressed in
12	% modern. A significant differences (paired t-test) between the isotopic
13	composition of CO_2 and DOC ($\delta^{13}C$ and ${}^{14}C$) in individual catchments is
14	shown by ***(p≤0.001), **(p≤0.01) and *(p≤0.05)
15	
16	List of Figures
17	Figure 1: Instantaneous CO ₂ and DOC fluxes (mg C ha ⁻¹ catchment s ⁻¹) as a function
17 18	Figure 1: Instantaneous CO ₂ and DOC fluxes (mg C ha ⁻¹ catchment s ⁻¹) as a function of discharge (Ls ⁻¹). The red and blue regression lines are for DOC and evasion
17 18 19	Figure 1: Instantaneous CO ₂ and DOC fluxes (mg C ha ⁻¹ catchment s ⁻¹) as a function of discharge (Ls ⁻¹). The red and blue regression lines are for DOC and evasion CO ₂ , respectively
17 18 19 20	 Figure 1: Instantaneous CO₂ and DOC fluxes (mg C ha⁻¹ catchment s⁻¹) as a function of discharge (Ls⁻¹). The red and blue regression lines are for DOC and evasion CO₂, respectively Figure 2: Relationship between (a) δ¹³C and (b) ¹⁴C for DOC and evasion CO₂
17 18 19 20 21	 Figure 1: Instantaneous CO₂ and DOC fluxes (mg C ha⁻¹ catchment s⁻¹) as a function of discharge (Ls⁻¹). The red and blue regression lines are for DOC and evasion CO₂, respectively Figure 2: Relationship between (a) δ¹³C and (b) ¹⁴C for DOC and evasion CO₂ Figure 3: Conceptual diagram to illustrate the origins, flux pathways and multiple
 17 18 19 20 21 22 	 Figure 1: Instantaneous CO₂ and DOC fluxes (mg C ha⁻¹ catchment s⁻¹) as a function of discharge (Ls⁻¹). The red and blue regression lines are for DOC and evasion CO₂, respectively Figure 2: Relationship between (a) δ¹³C and (b) ¹⁴C for DOC and evasion CO₂ Figure 3: Conceptual diagram to illustrate the origins, flux pathways and multiple timescales associated with the evasion of CO₂ at the water-atmosphere
 17 18 19 20 21 22 23 	Figure 1: Instantaneous CO ₂ and DOC fluxes (mg C ha ⁻¹ catchment s ⁻¹) as a function of discharge (Ls ⁻¹). The red and blue regression lines are for DOC and evasion CO ₂ , respectively Figure 2: Relationship between (a) δ^{13} C and (b) ¹⁴ C for DOC and evasion CO ₂ Figure 3: Conceptual diagram to illustrate the origins, flux pathways and multiple timescales associated with the evasion of CO ₂ at the water-atmosphere interface in peatland streams. Although the size of the 3 evasion
 17 18 19 20 21 22 23 24 	 Figure 1: Instantaneous CO₂ and DOC fluxes (mg C ha⁻¹ catchment s⁻¹) as a function of discharge (Ls⁻¹). The red and blue regression lines are for DOC and evasion CO₂, respectively Figure 2: Relationship between (a) δ¹³C and (b) ¹⁴C for DOC and evasion CO₂ Figure 3: Conceptual diagram to illustrate the origins, flux pathways and multiple timescales associated with the evasion of CO₂ at the water-atmosphere interface in peatland streams. Although the size of the 3 evasion sources are similar in this diagram, they will vary from peatland to peatland

Table 1

Site	Catchment	Annual	Elevation	Discharge and
	Area (km ²)	Precipitation (mm)	Range (m)	range (Ls ⁻¹)
Loch More	4.24	1129	121-195	36 (1-332)
Auchencorth	3.35	1155	248-300	14 (3-93)
Moss				
Rough Sike	0.83	1980	565-746	12 (6-114)
Cottage Hill	0.17	1980	545-580	5 (2-188)
Sike				
Bleaklow	1.39	1200	447-578	11 (10-12)
Conwy	1.24	2200	454-514	108 (3-374)
Hafren	0.93	2726	535-635	50 (9-75)

Table 2	Ta	ble	e 2	2
---------	----	-----	-----	---

Concentration (mg C L ⁻¹)				Flux (mg C ha ⁻¹ catchment s ⁻¹)			
	Mean	SD	Median	Downstream	Mean	SD	Median
DOC	14.1	8.4	12.5	DOC	9.24	28.56	1.79
DIC	3.8	6.0	2.7	DIC	1.82	6.06	0.28
<i>CO</i> ₂ - <i>C</i>	1.4	1.1	1.1	<i>CO</i> ₂ - <i>C</i>	0.72	1.68	0.20
<i>CH</i> ₄ - <i>C</i> 0.010 0.025 0.003		CH ₄ -C	0.004	0.014	0.001		
				Evasion			
				<i>CO</i> ₂ - <i>C</i>	7.38	15.34	2.71
				CH ₄ -C	0.030	0.081	0.003

Table 3

Site	n	<i>CO</i> ₂	DOC	Published	Reference
				DOC fluxes	
Loch More	5	71.1	12.3	No data	
		±58.9	±10.3		
Auchencorth	8	9.2	7.5	26.9 (2 yr)	Billett et al. 2004
Moss		±3.2	±3.3	19.3 (5 yr)	Dinsmore et al. 2013
Rough Sike	7	20.3	13.4	29.0 (16 yr)	Dinsmore (unpubl)
		±13.1	±6.7		
Cottage Hill Sike	10	26.6	93.6	23.4 (15 yr)	Billett et al. 2010
		±13.5	±59.7	57.5 (2 yr)	Holden et al. 2012
Bleaklow	4	18.9	2.3	16.0 (3 yr)	O'Brien et al. 2008
		±9.7	±0.6		
Conwy	8	9.3	28.9	19.3 (2 yr)	Billett et al. 2010
		±3.5	±12.4		
Hafren	7	21.8*	5.2	8.4 (2 yr)	Dawson et al. 2002
		±7.0	±1.4		
Overall mean	49	23.3	29.1	25.0	
value		±6.9	±12.9		

Tal	ble	4

	δ ¹³ C		¹⁴ C	
Site	C-CO ₂	C-DOC	C-CO ₂	C-DOC
Loch More	-17.5	-28.2***	96.30	109.50**
(n=8)	(±2.17)	(±0.20)	(±9.27)	(±3.59)
Auchencorth	-23.7	-28.3**	93.80	104.00*
Moss (n=10)	(±2.81)	(±0.39)	(±6.18)	(±3.88)
Cottage Hill	-18.6	-28.1***	96.90	111.00***
Sike (n=11)	(±2.07)	(±0.14)	(±2.62)	(±2.41)
Conwy	-19.6	-28.5***	100.90	112.20***
(n=8)	(±1.00)	(±0.10)	(±1.25)	(±0.83)
Finland	-25.2	-28.4***	107.59	111.11***
(n=15)	(±2.02)	(±0.15)	(±1.94)	(±1.18)

Figure 2

Figure 3

