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How do animals respond to environmental pollution by potentially toxic elements (PTEs), and 

what detoxification pathways do they use? This is a key question: not only to understand the 

fundamental biological responses of organisms in contaminated environments, but also to assess 

if these responses can also have practical uses, for instance as biomarkers of pollution. 

Metallothioneins have been especially widely studied in this context. Metallothioneins are 

small cysteine-rich proteins that strongly bind soft metal ions1 – indeed, they were originally 

incorrectly believed to be cadmium-requiring enzymes, as they sequester cadmium so readily 

from the environment. They have repeatedly been shown to be strongly metal-inducible in many 

different animal species, and there is ample evidence (again, in multiple species) that knocking 

out metallothioneins reduces tolerance to PTEs such as cadmium.2  



 2 

However, it is also clear that metallothioneins alone are not the sole players in detoxification, 

and that metallothioneins have many biological roles beyond detoxification1. As a result, the 

baseline variability of metallothioneins in the natural environment can be high, which can also 

complicate their use as biomarkers of pollution.2 What other biological systems are involved in 

responses to PTEs? There is growing evidence that phytochelatins may be important in many 

different animal species. Phytochelatins, like metallothioneins, are cysteine-rich peptides; unlike 

metallothioneins, they are not genetically encoded, but are non-ribosomal peptides produced 

from glutathione by the enzyme phytochelatin synthase (PCS).1 Originally thought to be found 

only in plants and yeast, PCS genes have since been found in species that span almost the whole 

animal tree of life (with some important exceptions, such as the phylum Arthropoda, and – 

mentioned here for reasons of parochial interest – the sub-phylum Craniata). Biochemical studies 

have also shown that these PCS genes are functional: the Caenorhabditis elegans PCS enzyme 

produces phytochelatins when it’s expressed in an appropriate host, and knocking out the gene 

increases the sensitivity of C. elegans to cadmium.1  

However, do phytochelatins have real-world relevance to PTE detoxification in animals? For 

C. elegans, at least, the answer is clear: phytochelatins are produced in vivo after exposure to 

cadmium, and – at least for cadmium – they are more important than metallothioneins, as 

knocking out the PCS gene has an even bigger effect on cadmium lethality than knocking out the 

metallothionein genes.3 Could phytochelatins turn out to be of general importance for dealing 

with PTEs across many animal species? The PCS protein is generally constitutively expressed, 

and it has a very high turnover rate, so it can respond quickly to sudden increases in metal ion 

concentrations.1 This suggests a possible functional interaction with metallothioneins for PTE 

detoxification: phytochelatins would be synthesized rapidly on exposure to PTEs, and could play 
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a holding role, mopping up free metal ions until the (relatively slow) induction and synthesis of 

metallothionein proteins. Metallothioneins could then take over the main detoxification role.  

Sadly, real life appears to be less straightforward. Recently, the PCS from the human parasite 

Schistosoma mansoni was also shown to synthesize phytochelatins when cloned into yeast. This 

extended the number of animal phyla containing species with confirmed functional PCS enzymes 

to two, Platyhelminthes and Nematoda. However, and contrary to our simplistic metal-

detoxification hypothesis, S. mansoni doesn’t synthesize phytochelatins when exposed to the 

classic inducer cadmium4 – maybe phytochelatins are here playing an alternative biological role, 

such as maintaining metal homeostasis or scavenging free radicals.4 Other studies have also 

shown that phytochelatins and metallothioneins may have different specificities and hence 

different ecological functions – for example, in plants, metallothioneins may be more important 

for detoxifying copper and phytochelatins for detoxifying cadmium.1 

Clearly we need more information on what might happen in other animals, ideally from 

different taxonomic groups, and exposed to a range of different metal ions. A recent study has 

now given us a third data point: the earthworm Lumbricus rubellus (phylum Annelida) produced 

phytochelatins in response to arsenic, both in laboratory exposures (Figure 1) and in worms 

sampled from contaminated field sites.5 Admittedly, this means we still only have data from 

three phyla, but it does demonstrate that phytochelatin responsiveness to PTEs is not unique to 

nematodes. 

What are the implications for environmental scientists? Metallothioneins have been very 

widely studied, and phytochelatin responses in plants have also been widely studied, but so far 

there is barely a double-handful of papers relevant to phytochelatins in animals. We argue that 

studying phytochelatin responses in animal species, and their interactions with metallothioneins, 
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should be an important future goal. PCS genes are found in animal species from eight phyla so 

far that we are aware of. These include species that are widely used in environmental toxicity 

testing and environmental monitoring – e.g. the oyster Crassostrea gigas, as well as nematodes 

and earthworms. Given the taxonomic spread of the PCS gene, and the decreasing cost of 

sequencing a novel genome, we have no doubt that many more animals with PCS genes will be 

identified in the future. Phytochelatins can be analysed relatively easily by liquid 

chromatography coupled to an appropriate detector. This direct analysis of the peptides 

themselves is probably necessary, as so far there is little evidence that phytochelatin responses 

are mediated by gene expression.5 Hence, at least for species that are known or suspected to 

contain PCS genes, studying metallothionein responses alone to PTEs may not be enough to 

understand metal handling: knowledge of phytochelatin responses may also be needed to 

complete the picture.  

We propose four questions for future research: which animal species with PCS genes make 

phytochelatins in response to PTEs? What happens to metal ions once they have been bound by 

phytochelatins? Do phytochelatins interact with metallothioneins to help detoxify PTEs? And 

could phytochelatin levels potentially be used as biomarkers of environmental pollution? 

Answering these questions would be an important step forward in understanding how pollution 

by PTEs affects key invertebrate species in the environment. 
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Figure 1. The metabolites phytochelatin-2 (red symbols, (GluCys)2Gly) and phytochelatin-3 

(blue symbols, (GluCys)3Gly) both increase in a dose-responsive manner to 28-day soil exposure 

to arsenic in the earthworm Lumbricus rubellus. Figure originally published in Liebeke et al.5  
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