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1. Introduction 

Tissue performance and its physical properties are closely intertwined processes. 

They depend on the cells present in the tissue, and on the loading forces to which the 

respective tissue is exposed. As such, in the context of load bearing tissues, like articu-

lar cartilage and bone, cells are capable of generating or resisting mechanical forces that 

can be many times the weight of these tissues. These tissues and their specific cells 

therefore need to possess particular biomechanical characteristics with respect to elastic-

ity and rigidity in order to withstand continuous stretch or strain mechanisms, and to 

maintain their form and function. In this context, analyses of the biomechanical proper-

ties of cells have already provided much information about the physiological cellular 

characteristics, and in many cases information on how to differentiate a healthy cell 

from a cell in a pathological condition. In fact, micromechanical characteristics have 

now been proposed as a potential biomarker for allowing differentiation between differ-

ent physiological and pathological cellular or tissue states (Rianna and Radmacher, 

2016). In view of the ongoing demand for cell based and regenerative treatment ap-

proaches, biomechanical properties of living cells  as well as  their response to external 

stimuli are considered key components which have received much research attention  in 

the past few years (Butler et al., 2009, Guilak et al., 2014b, Tay et al., 2013).   

In all complex biological structures, different types of highly specialized cells are 

embedded in a three-dimensional heterogeneously network termed the extracellular ma-

trix (ECM). The ECM plays a physiological role as an active component of living tissue 

and is responsible for a variety of functions (Frantz et al., 2010), such as providing sup-

port, segregating tissues, and regulating intercellular communication (Gao et al., 2014). 

Its main components are various types of collagens, fibrous proteins, glycosaminogly-

cans (GAGs) and proteoglycans. These ECM components link together to form a struc-

turally stable composite, providing the mechanical properties to the tissue, and enabling 

the communication between tissue and its residing cells (Pizzo et al., 2005). The ECM’s 

biomechanical properties are mainly determined by the relative composition and net-

work structure of its collagens, proteoglycans and elastin (Suki et al., 2011). Interesting-

ly, the cells-as an independent entity-are capable of sensing and responding to mechani-

cal forces of varying magnitude, direction, and frequency (Discher et al., 2005, Cho et 

al., 2017) through integrin-mediated interactions with the matrix (Plotnikov et al., 



1 | Introduction                                                                         

 

 

Pg. 2                                                                                                 Marina Danalache 

2012). In such, the mechanical features of a matrix influence important cellular process-

es such as mobility (Lange and Fabry, 2013, Lin et al., 2019), proliferation (Hadjipanayi 

et al., 2009), differentiation (Smith et al., 2018) and apoptosis (Walker et al., 2018). 

Moreover, alterations of biomechanical characteristics of the ECM have been associated 

with severe pathologies such as chronic obstructive pulmonary disease and cancer (Liu 

et al., 2010, Bidan et al., 2015, Gkretsi and Stylianopoulos, 2018, Broders-Bondon et 

al., 2018). It is assumed that if a cell cannot sense its mechanical environment, it simply 

cannot survive (Yusko and Asbury, 2014). The biochemical and biomechanical signa-

ture of the ECM as well as cell-microenvironment crosstalk are crucial to understanding 

the structure-function-effect relationship of healthy as well as pathologic tissues. 

To directly measure biomechanical characteristics on a micro- or even nanoscale 

level, atomic force microscopy (AFM) has emerged as a novel technique. It allows the 

precise determination of local biomechanical properties of biological components or 

interfaces, such as ECM-cell interactions. It works at a nanometer resolution, and meas-

urements can be performed without damaging the tested samples (Dufrene and Pelling, 

2013). Several studies have shown that AFM is a suitable and reliable technique with a 

large repertoire of applications. Established applications of its use are for the measure-

ment of mechanical properties, behavior, and function of living cells (Moeendarbary 

and Harris, 2014),  as well as for determinating  elastic properties of various tissues un-

der normal physiological and pathological conditions (Haase and Pelling, 2015, Dufrêne 

et al., 2017, Marrese et al., 2017, Deng et al., 2018, Kwon et al., 2019). Moreover, AFM 

can operate in a wide variety of conditions. It can, for example, be performed in situ, as 

well as in a fluid environment, thus allowing for live monitoring in real-time. Addition-

ally, AFM probing can be combined with various microscopy techniques such as fluo-

resce staining and imaging, to specifically probe a region where the protein/-s of interest 

are located (Wilusz et al., 2012b, El-Kirat-Chatel and Dufrene, 2012). AFM operates on 

the principle of surface sensing using an extremely sharp tip (usually 5-10 nm), also 

known as an AFM probe, that interacts with the sample. The interaction between the 

AFM probe and the sample then provides information on the sample’s biomechanical 

features.  

The setup for AFM consists of the above-mentioned probe tip which is put into 

contact with the tissue, located at the end of a cantilever. A laser beam is then focused 
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onto the very end of the cantilever, which it is reflected onto a position-sensitive photo-

diode. The diode is designed to measure the horizontal and vertical deflection of the 

laser on the cantilever. An x-y-z piezoelectric scanner allows for the movement of the 

sample or the cantilever in all three directions (Figure 1)(Gavara, 2017). As the tip scans 

over the surface, the interactions between the AFM tip and the features on the surface 

cause displacement or bending of the cantilever. This bending is indicative of the tip-

sample interaction force. The up/down and side to side motion of the AFM tip as it 

scans along the surface is measured by means of a laser beam which is projected on and 

then reflected off the cantilever. The reflected laser beam is then tracked by the sensi-

tive photo-detector. The deflection sensitivity of these detectors must be calibrated be-

forehand. The calibration defines a correlation between how many nanometers of mo-

tion correspond to a unit of voltage. 

 

 

 

Figure 1. Schematical representation of the AFM setup. 

Biological samples can be investigated using an AFM cantilever or probe which is 

controlled by a piezoelectric scanner. A phase inverted optical microscope at-

tached to the AFM system allows the user to specifically analyze single living cells 

or specific select areas within the tissue. The laser tracking system for the reflected 

beam is represented by a photodiode.                                                                             

Abbreviation: AFM- atomic force microscopy  
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Depending on the nature of the interaction between the tip and sample surface, the 

AFM can be operated in different modes, such as the AFM-contact mode (e.g. force-

distance curve analysis) or the tapping mode (semi-contact). While in contact mode, the 

AFM tip is brought into physical contact with the sample, and the cantilever deflection 

is measured. In tapping mode, the tip is periodically retracted from the sample, and the 

cantilever height is modulated at the cantilever’s resonance frequency. The latter is 

largely used for imaging biomolecules such as DNA, proteins, and lipids (Viji Babu and 

Radmacher, 2019). The most basic AFM technique operated in contact mode in terms of 

quantitative studies of biomechanical characteristics of cells and tissues is represented 

by a force-distance curve analysis (Figure 2). The applications of these experiments 

range from nano-mechanical investigation of elastic properties to protein unfolding and 

investigation of single chemical bonds (Janshoff et al., 2000). 

 In a force-distance curve, the interaction forces between the AFM probe and 

sample are measured while the AFM probe is approached to and afterwards retracted 

from the sample. In doing so, both the approach and the retraction curve offer cues with 

respect to the viscoelastic properties of the sample, as well as possible adhesion proper-

ties between the tip and sample. By fitting the data obtained from the force curve with 

an appropriate geometric model (e.g. Hertz fit model) of the AFM tip, the sample’s 

Young's modulus can be calculated. The Young's modulus, also known as the elastic 

modulus (EM), characterizes the resistance of a material/tissue when it is subjected to 

compression and elongation. This describes the stiffness of the sample. A stiffer materi-

al will therefore exhibit a higher elastic modulus and vice versa (Vinckier and Semenza, 

1998).     
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Figure 2. Schematical representation of a force-distance curve in the AFM con-

tact mode.  

The force curve can be divided into two different segments: 1-(green) refers to mo-

tion where the AFM probe approaches the surface, and 2-(red) when the probe re-

tracts from the surface. As the probe initially approaches the surface, the forces 

are too small to give a measurable deflection of the tip, thus leaving the tip in its 

undisturbed position. The further the cantilever approaches the sample, the more 

the force increases. In the retracting regime, the probe and sample are already in 

contact with one another. Thus, in contrast to the approaching curve where bend-

ing forces are solely due to the increasing proximity of the cantilever with the 

probe, additional adhesion forces are present in the retracting regime while the 

cantilever is retracted in the z-axis from the sample. As the AFM probe is pulled 

out of contact with the sample, it first gets “stuck” before it is able to loosen from 

the adhesion at the interface, which even leads to a short negative deflection of the 

cantilever. The AFM probe and its subsequent bending up or down and the unper-

turbed position of the AFM probe are also displayed in blue.                                         

Abbreviation: AFM-atomic force microscopy 

 

The focus of the thesis was to apply a customized AFM approach on load-bearing 

connective tissue/cells, particularly articular cartilage and bone cells. This was done in 

order to determine and differentiate between possible structural-functional changes in 

the biomechanical properties (Young’s moduli) of the encompassing matrix/-es of the 

targeted tissue/cells. In the first research part, the changes that occur due to alterations 

in the biochemical signatures of the tissues due to ongoing pathological processes such 

as osteoarthritis (OA) were investigated. The second research analyses, the changes in 

the culture settings of the jaw periosteum derived progenitor cells (JPCs), such as media 

supplementation (human platelet lysate (hPL) versus fetal calf serum (FCS)) were ex-

amined. 
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  Biomechanical properties of cartilage and their role in 

osteoarthritis 

Osteoarthritis (OA) is a degenerative joint disease that affects large parts of the 

elderly population. Since there is thus far no defined cut-off threshold for the diagnosis 

of OA, the condition is difficult to quantify. The incidence of symptomatic knee OA is 

estimated to be around 1% per year, with a radiographic incidence of about 2% per year 

(Felson et al., 1995, Oliveria et al., 1995). This results in an overall prevalence of the 

disease in nearly 50% of adults aged 75 and above (Jordan et al., 2007). OA leads to 

reduced flexibility and mobility of the joint, and to load-dependent joint pain that can 

severely disable the patient, which also results in a high socio-economic burden. Risk 

factors for OA are trauma, systemic inflammatory diseases, bacterial infections, meta-

bolic factors such as obesity, and mechanical factors (Felson, 2009). To date, conserva-

tive joint preserving therapies such as pain management, physiotherapy, or local infiltra-

tions cannot restore the original joint architecture. They only serve to alleviate the pain, 

to help patients cope with the emerging symptoms, and to postpone the disease progres-

sion (Huey et al., 2012, Djouad et al., 2009).  

Even though OA comprises the capsula and ligaments of the joint, as well as the 

subchondral bone, the primary tissue destroyed throughout the degenerative process of 

OA is the articular cartilage. The only cells present within the mature articular cartilage 

are the chondrocytes, which form specific, unique, and easily distinguishable spatial 

cellular patterns. These patterns are specific for each joint, as well as the joint’s loading 

mechanism (Rolauffs et al., 2008, Schumacher et al., 2002). In healthy tissue areas, 

chondrocytes are arranged as single strings in the femoral condyle, and with the onset 

and progression of degenerative changes during OA, cellular rearrangement occurs: first 

double strings arise (Rolauffs et al., 2010), followed by clustering of the cells in small 

and then finally in big clusters (Lotz et al., 2010) (Figure 3). 
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Figure 3. Light microscopy pictures of chondrocyte rearrangement throughout 

the course of OA.  

While in healthy cartilage, single strings are present (A/D), OA initiation and pro-

gression triggers the occurrence of double strings (B/E), small clusters (F), and ul-

timately big clusters (C/G).                                                                                        

(A-C) Scale bar (white) measuring 100µm; (D-G) Scale bar (white) of 20µm.                                                                                       

Figure partially adapted from (Danalache et al., 2019). 

 

These remodelling cellular processes have previously been suggested to have po-

tential as an “image-based biomarker” for OA-promoted degenerative processes occur-

ring at a cellular level (Aicher and Rolauffs, 2014). Like in any other connective tissue, 

cartilage is comprised of a vast and dense ECM. The ECM-arciform collagen fibers not 

only take their origin but also terminate in the subchondral bone. These fibers-possess 

an enormous tensile strength and keep a large amount of proteoglycans entrapped, 

which in turn can bind water molecules; in such providing the necessary compressive 

resilience and elasticity to the tissue.  

Within the articular cartilage, there are three different major zones: the superficial, 

the middle, and the deep zone. Each can be distinguished based on differences in cellu-

lar morphology (Kuettner et al., 1991), composition of collagen (Nieminen et al., 2001), 

content of glycosaminoglycans (Venn and Maroudas, 1977), and water content   

(Maroudas and Venn, 1977). Within all the layers, a pericellular, a territorial, and an 

interterritorial matrix (all ramifications of the ECM) are present. The pericellular matrix 

(PCM) encompasses the chondrocytes and is both biochemically and biomechanically 

distinct from the ECM.  



1 | Introduction                                                                         

 

 

Pg. 8                                                                                                 Marina Danalache 

While the ECM is mainly comprised of collagen type II, the PCM is primarily de-

fined by the presence of collagen type VI (Guilak et al., 2006) and proteoglycans. The 

PCM, together with the enclosed cell(s), have previously been termed the "chondron"-

also known as the metabolic unit of the tissue (Poole, 1997). The PCM is believed to act 

as a mechano-sensitive cell-matrix interface (Guilak et al., 2006), protecting the chon-

drocyte (Peters et al., 2011), and modulating its biosynthetic response (Larson et al., 

2002). Additionally, the PCM plays a functional role in initiating signal transduction 

within cartilage under load bearing (Eggli et al., 1985). The territorial matrix (TM) sur-

rounds the PCM, and is composed mostly of fine collagen fibrils, creating a basketlike 

network around the cells (Muir, 1995, Sophia Fox et al., 2009). It has been suggested 

that the TM protects the chondrocytes against mechanical stresses, and that it plays a 

role in the resiliency of articular cartilage (Sophia Fox et al., 2009). In addition to the 

TM, the interterritorial matrix (ITM) is comprised of randomly oriented bundles of large 

collagen fibrils that run parallel to the surface of the superficial zone, obliquely in the 

middle zone, and perpendicular to the joint surface in the deep zone of the tissue 

(Sophia Fox et al., 2009). The ITM has a high content of proteoglycans, and contributes 

to the biomechanical properties of the tissue (Mow and Guo, 2002). 

 OA onset is characterized by a biosynthetic phase, during which the chondrocytes 

attempt to repair the damaged ECM, followed by a later degradative phase, in which 

matrix synthesis inhibition and digestion by catabolic enzymes leads to collagen net-

work damage and subsequent matrix fissuring, erosion, and ultimately tissue loss 

(Sandell and Aigner, 2001, Mankin et al., 1971, Brama et al., 2000, Howell, 1986, 

Hamerman, 1989). Additionally, it must be borne in mind that articular cartilage is a 

load bearing tissue. The biomechanical properties are thus of crucial importance for 

normal functioning of the tissue, especially for the smooth gliding of its surfaces against 

one another under load. This function is greatly impaired after initial disruption of the 

tissue architecture, thus leading to increased friction, which in turn propagates tissue 

destruction in a vicious circle. Intact biomechanical properties of articular cartilage are, 

naturally, derived from its intact matrixes. OA progression is hence characterized by 

extensive proteolysis of the type II collagen network and the proteoglycans of the ECM, 

leading to a loss of mechanical properties (Plaas et al., 2007, Hollander et al., 1995).  
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 Interestingly, OA also triggers early changes in the presence and amount of col-

lagen type VI of the PCM (Felka et al., 2016b). Moreover, proteoglycan distribution 

within the chondron changes, which is in turn is followed by chondrocyte proliferation 

coupled with expansion and structural alterations of the pericellular microenvironment, 

and ultimately chondrocyte clustering (Poole et al., 1997). These changes affect the 

biomechanical signals perceived by the chondrocytes (Guilak et al., 2006), explaining 

how PCM damage potentially contributes to the ongoing OA-pathology. Recently, OA 

has even been characterized as being a disease of the PCM (Guilak et al., 2018). The 

mechanical properties of the cartilage (stiffness, hardness, dynamic Young’s modulus, 

etc.) therefore play an important role in OA initiation and progression. The mechanical 

properties of the cartilage have been investigated at all length scales (from macro to 

nano-scale), and all the results obtained notably and consistently illustrated that carti-

lage properties with respect to tension, compression, and shear forces decline with OA 

progression (Wilusz et al., 2014). 

 Several studies have indicated that the stiffness, and implicitly Young’s modulus-

of cartilage is a strong indicator of its material-bearing properties, crucial for joint lubri-

cation and function (Kiviranta et al., 2008, Korhonen et al., 2002). Young's modulus is 

thus an attribute of cartilage elasticity, indicating its stiffness. A decrease in qualitative 

stiffness of cartilage in the course of OA was highlighted in various studies by analyz-

ing the mechanical properties of both native and osteoarthritic cartilage in humans or 

animal models (Kleemann et al., 2005, Desrochers et al., 2010, Vinckier and Semenza, 

1998).  It must be noted, however, that all of the reported findings until now have been 

based on macroscopic classification systems for grading the osteoarthritic changes of 

the cartilage (Wilusz et al., 2012b, McLeod et al., 2013, Kleemann et al., 2005, Kiviran-

ta et al., 2008). As such, cartilage surface parameters were used to grade the tissue, thus, 

only allowing for the assessment of the micromechanical picture at an average level. 

The AFM-elasticity measurements guided by more specific OA markers on a cellular 

level-such as the cellular patterns can, therefore, provide new insights into the actual 

biomechanical changes occurring during OA. This may refine and improve our current 

understanding of OA physiopathology.  
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   Role of biomechanical properties in bone tissue 

engineering 

In the field of oral and maxillofacial surgery, bone defects in the oral cavity as a 

result of congenital anomaly, trauma, periodontal disease, chronic infection, or surgical 

resection following tumor treatment require extensive clinical attention. The current 

medical practice still faces several significant challenges (Smith et al., 2015), especially 

when attempting to regenerate the affected tissue and restore its initial function and aes-

thetics.  

Artificial bone tissue constructs represent an essential part of bone tissue engi-

neering (BTE). The basic principle of such artificial constructs is to create a porous 

scaffold functionalized with a cellular component. The biological functional unit of such 

constructs is therefore the selected cells, which adhere to and grow on the surface of the 

implanted scaffold. The goal of the scaffolds is to provide a tissue-like environment, 

which helps the cells generate the normal biological structural components of their tis-

sue-specific ECM. In both articular cartilage and bone, the ECM provides essential 

structural support for its cellular constituents, but it also modulates the mechanical 

properties and the overall performance and efficacy of the tissue. For the design of func-

tional scaffolds for osseous engineered tissues, cell-ECM mechanical properties, struc-

tural, and biological characteristics must be taken into consideration. In a native state, 

the ECM provides the structural support for cell attachment and subsequent tissue de-

velopment. The main challenge in engineering the constructs is to mimic these ECM 

properties. To date, the use of engineered scaffolds made of artificial or native materials 

often fails to allow for the formation of intact cell-cell junctions due to the unnatural 

cellular surface properties (Kim et al., 2016, Yang and Temenoff, 2009). To overcome 

this striking limitation, polymeric scaffolds can be replaced by an ECM, which is actu-

ally produced by the seeded cells as in native tissue. The final construct could thus 

closely mimic the ECM architecture of target tissues with respect to both structure and 

function. An extensive repertoire of scaffold materials ranging from metallic, synthetic, 

polymeric, bio-polymeric, and smart hydrogel in various forms and compositions have 

been investigated in the context of bone regeneration. The incorporation of cells and the 

application of growth factor delivery strategies can significantly influence the regenera-

tive outcome. In terms of cellular components, current strategies include different cell 

https://www.sciencedirect.com/topics/medicine-and-dentistry/edentulism
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types, such as osteoblasts, periosteal cells, bone-marrow stromal cells, and stem cell 

varieties, including mesenchymal stem cells (MSCs). MSCs represent a leading cell 

type for the majority of regenerative medical purposes due to their self-renewal and 

their potential for differentiation into different lineages (Fitzsimmons et al., 2018).  

When it comes to bone scaffolds, the current state of the art is, however, the use of 

periosteum progenitor cells (Chang and Knothe Tate, 2012). Particularly in the field of 

maxillofacial surgery and orthopaedics, a strong emphasis is placed on jaw periosteum 

derived progenitor cells (JPCs). These JPCs are suitable due to their easy availability 

and their multipotent capacity at a single cell level (De Bari et al., 2006), coupled with a 

high proliferation rate (Bruder et al., 1997). Clinically applicable cell-based therapies, 

particularly tissue constructs intended for maxillofacial reconstruction are focused on 

the use of patient derived JPCs. Especially in view of the requirements for good manu-

facturing practice (GMP) to ensure safety and efficacy (Fekete et al., 2012), a detailed 

characterization of the cells, their expression patterns, and formed matrix compositional 

signature, coupled with optimized culture conditions for differentiation are essential. In 

this context, the use of fetal calf serum (FCS) media supplementation is discouraged by 

regulatory authorities to limit the risk of immune reactions in the transplanted host, and 

also due to animal welfare concerns. Consequently, substantial efforts have been made 

in the last 15 years to identify a substitute for FCS supplementation. Recently, human 

platelets lysate (hPL) has been suggested to be a suitable and effective alternative, out-

performing  the former FCS supplementation (Tylek et al., 2019). It has been suggested 

that hPL superiority is due to various growth factors, including platelet-derived growth 

factor (PDGF), transforming growth factor (TGF), and epidermal growth factor (EGF) 

(Antoninus et al., 2015), which enhance the proliferation rate of the MSCs while main-

taining their multilineage differentiation potential under culture (Hemeda et al., 

2014). However, despite aforementioned significant progress in cell-based therapies, 

critical challenges remain in transitioning the in vitro use of JPCs into clinically-

applicable approaches. Our present understanding is still limited with respect to the pre-

cise biomechanical properties, the biological composition, and the functional perfor-

mance of the proposed procedures. Specifically, the repair or regeneration processes of 

tissues are not yet fully understood at a macroenvironment level (scaffold collapse and 
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on-the-shelf availability) as well as at a microenvironment level (e.g. cell migration, and 

qualitative ECM formation) (Yuksel et al., 2005).  

Although the biomechanical characteristics of the ECM in bone constructs (in-

cluding mechanobiology and mechanotransduction) have become an active research 

field, relatively few published studies have investigated the biomechanical properties of 

JPCs (Horimizu et al., 2013, Att et al., 2009). Especially the analysis of elastic adapta-

bility characteristics, as well as the corresponding biochemical signature (e.g. Raman 

spectroscopy) of JPCs cultured under hPL media supplementation comparing the results 

with those obtained with the standard FCS conditions, has not yet been investigated. 

Both AFM and Raman spectroscopy are methods used to obtain data about the 

surface properties of a sample. A combination of these methods could provide crucial 

correlated morphological and chemical information. While the AFM is based on tip-

sample interactions at discrete locations in a sequential manner, in RAMAN spectrosco-

py, monochromatic light is focused on the sample, and the inelastic scattered light (the 

Raman effect) is detected. The latter generates a molecular fingerprint of the investigat-

ed sample based on the detection of specific wavelength shifts caused by chemical bond 

vibrations (Kunstar et al., 2013). Raman spectral studies have already been performed 

for the identification of cell phenotype (Puppels et al., 1990), for assessment of malig-

nancy (Ramos et al., 2015), and for structural analysis of ECM components, such as 

collagen (Frushour and Koenig, 1975), sulfated glycosaminoglycans (sGAGs), and pro-

teoglycans (Ellis et al., 2009). In mineralized tissue, the technique can detect the vibra-

tions obtained from the collagenous matrix. Even more so, it can give valuable insights 

with respect to the biochemical structure of the bone, and more importantly the contri-

bution of various matrix proteins on the bone material properties (Bonewald et al., 

2003a). Using the combination of Raman microscopy with AFM, the high spatial and 

topographical resolution obtained with an AFM can be directly linked to the molecular 

information provided by the Raman spectroscopy. Such an experimental design com-

prised of AFM coupled with Raman spectroscopy-which may be employed for JPCs 

investigations, for example is shown in Figure 4. 
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Figure 4.  Experimental setup for biomechanical and biochemical characteriza-

tion of JPCs 

Biomechanical properties are assessed via AFM-contact mode technique (A/B/C). 

A polymeric bead (25µm) is attached to an AFM cantilever (A) in order to protect 

the analyzed cells (B) from contact damage, and to increase the surface area to be 

measured. By fitting the data generated from the resulting force-distance curve 

(C), the elastic modulus (EM) can be calculated using the Hertz fit model. Raman 

spectroscopy can be used for non-invasive sensing of the biochemical composition 

of the cells and the ECM. It generates a Raman spectrum, which features peaks-

each peak corresponds to a specific molecular bond vibration (D).                           

Abbreviations: AFM-atomic force microscopy, ECM-extracellular matrix, EM-

elastic modulus, JPCs-jaw periosteal cells.  

 

It can therefore be summarized that a better biochemical and biomechanical char-

acterization of the JPCs-ECM is still needed to improve the use of these cells for regen-

erative scaffolds. 

  Aim of the thesis  

The biomechanical characteristics of tissues and of regenerative tissue scaffolds are 

of crucial importance to their normal in vivo performance. Of note, their biological and 

mechanobiological characteristics are not just of a passive nature, but they are also criti-

cal for regulating cell behavior. Alterations in the mechanical characteristics can occur 
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as a result of aging, trauma, or disease. These changes directly translate into tissue dys-

function. For this reason, it is crucial to understand the role of the mechanical cues (e.g. 

elasticity) and their relationship with the structural composition of the tissue. Especially 

as the role and involvement of the different biomechanical properties in the successful 

outcome of regenerative processes is not yet fully understood (Guilak et al., 2014a). 

Manipulating biomechanical features may help to better understand, and in the long run 

to also produce improved regenerated tissues with high strength and endurance. In this 

setting, AFM has been emerging as a highly versatile, non-invasive, and interdiscipli-

nary technique that allows for a quantitative and qualitative biomechanical analysis of 

living cells, tissues, and engineered constructs at a very high resolution. In this study, a 

customized AFM approach was employed to investigate and quantitatively assess the 

biomechanical characteristics of:  

(1) pericellular matrix (PCM) degradation in early OA;              

(2) jaw periosteal cells (JPCs)-ECM quality under different media supplementation; 

 

The hypothesis of the first study (1) was that tissue changes in the cellular organi-

zational patterns during OA (strings, double strings, and small respectively big clusters) 

are associated with structural changes of the PCM and with a loss of elastic properties. 

Such an association between OA related spatial cellular organization and changes in the 

local EM accompanied by structural changes of the PCM would also underline the func-

tional role of spatial organization as an image-based biomarker for OA. A better insight 

into early OA mechanisms, particularly structural and mechanical changes of the PCM, 

may facilitate our understanding of the patho-mechanism of the disease, and would thus, 

help the development of better targeted therapies and diagnostic strategies. 

The hypothesis of the second study (2) was that hPL substitution leads to a better 

ECM quality in terms of biochemical composition and biomechanical characteristics in 

JPCs when compared to FCS. In order to evaluate the suitability of JPCs cultivated un-

der hPL supplementation for in vitro culturing and osteogenic differentiation, quantita-

tive and qualitative analysis of the ECM produced by the JPCs under hPL versus FCS 

supplementation was performed both biochemical (RAMAN spectroscopy) and biome-

chanical (AFM-elasticity measurements).  
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As the focus of this study was placed on bone tissue constructs, the ECM formed 

by JPCs should mimic a “bone-like” structure and show similar biochemical and biome-

chanical functions. 

The research projects presented in this thesis have already been published and will 

be presented in the following order: 

 

1. Danalache, M., Kleinert, R., Schneider, J., Erler, A.L., Schwitalle, M., Ries-

ter, R., Traub, F., Hofmann, U.K., 2019. Changes in stiffness and biochemical 

composition of the pericellular matrix as a function of spatial chondrocyte or-

ganisation in osteoarthritic cartilage. Osteoarthritis and cartilage 27, 823-832.  

2018 impact factor (IF): 4.9. 

 

2. Danalache, M., Kliesch, S.M., Munz, M., Naros, A., Reinert, S., Alexander, 

D., 2019a. Quality Analysis of Minerals Formed by Jaw Periosteal Cells under 

Different Culture Conditions. International journal of molecular sciences 20. 

2018 IF: 4.2. 
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2. Results 

  Biomechanical cues of pericellular matrix degradation 

in osteoarthritic cartilage 
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  Biomechanical and biochemical cues for customizing 

jaw periosteal cells for bone constructs 
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3. Discussion  

 Cells  are capable of adjusting their shape and function by altering their mechani-

cal properties through structural rearrangements in their biochemical composition at a 

nanometer scale. The mechanical properties of a tissue are the sum of the comprised 

cells and the vast matrix (i.e. ECM). There is a continuous interaction between the cel-

lular components and the surrounding ECM. On one side, these interactions actively 

dictate the physiological remodeling of the tissue, thus its regeneration-and on the other 

side, the catabolic degeneration of the tissue. Insights into the interaction between the 

cellular components and the ECM, and into actual ECM functional biomechanical 

transduction might hold a key for both the development of high-quality engineered tis-

sues, and clinical tools for early diagnostics. 

 In its physiological state, but even more in pathological conditions, the ECM is 

constantly subjected to either enzymatic or non-enzymatic remodeling processes, and its 

molecular components are subjected to a myriad of post-translational modifications 

(Frantz et al., 2010). It is these ongoing ECM remodeling characteristics that dictate the 

biochemical and mechanical properties of each organ, such as its tensile and compres-

sive strength and elasticity. So far, the ECM and its biomechanical properties have been 

the root of useful pieces of information with respect to the presence of specific protein 

biomarkers in a tissue e.g.: de novo collagen and proteoglycan synthesis. Moreover, the 

non-invasive determination of biomechanical attributes can be used as a biomarker ca-

pable differentiating between the physiological and pathological state (Rianna and 

Radmacher, 2016, Janmey and Miller, 2011). Correlating the biomechanical properties 

of tissue with its function is an emerging area of research with a potential impact on 

diagnostics and therapeutics, as well as on prognostics of pathological conditions. A 

common parameter evaluated with the aim of differentiating between normal and dis-

eased tissue is tissue elasticity (respectively stiffness), which is generally expressed as 

the EM. Malignant tumors, for example, are characteristically much stiffer than the 

normal surroundings. The reason for this increase in stiffness lies in the excess ECM 

deposition and the resulting increased rigidity (Cox and Erler, 2011). Measuring forces 

at micro- or even nanoscale levels is a critical approach for defining our understanding 

of cell-matrix interactions, and for understanding how the ECM regulates cellular func-

tion and how it contributes to the biomechanical functions of the tissue.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mammalian-cell
https://www.sciencedirect.com/topics/engineering/nanometer
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Among the available techniques for measuring the mechanical properties of bio-

logical tissues, AFM has emerged as a non-invasive and highly versatile technique. It is 

capable of quantifying and spatially mapping tissue and cellular mechanics, and physi-

cal properties, at a nanometer resolution. Information obtained from the AFM includes 

surface morphology, frictional force on the nanoscale, hardness of surfaces, stiffness 

and elasticity, load distribution, magnetization, yield stress, and elastic-plastic defor-

mation dynamics (Polini and Yang, 2017). In particular, the AFM-elasticity determina-

tion technique, sometimes referred to as force-distance analysis, is used to measure the 

EM of a sample at distinct and user-defined points as the probe indentations are done 

across a specified region.  

In the present thesis, the biomechanical elasticity of load bearing tissue and cells 

(cartilage and bone derived cells) were quantitatively assessed by means of AFM. The 

results obtained from the two analyses are further discussed individually and in detail. 

  Biomechanical cues in early osteoarthritis   

OA is a set of complex and difficult-to-identify processes leading to progressive 

and irreversible degeneration of articular cartilage. It has been suggested that OA  trig-

gers cellular remodelling processes which have been previously suggested to act as an 

image-based biomarker for early OA promoted degenerative processes occurring at a 

cellular level (Aicher and Rolauffs, 2014). The chondrocytes are fully surrounded by the 

PCM. This microenvironment is believed to play a critical role in the transduction of 

ECM compression into local physicochemical signals for the cell (Wilusz et al., 2014). 

Any direct interactions between cell surface receptors such as integrins and the tissue 

matrix are thus likely to occur first at the level of the PCM. In fact, evidence suggests 

that the PCM acts as a transducer for both biomechanical as well as biochemical signals 

for the cells it surrounds (Guilak et al., 2006, Chen et al., 2013, Vincent et al., 2007). 

The PCM has been primarily defined by the presence of collagen type VI  (Poole et al., 

1992) and perlecan, a large heparansulfate (HS) proteoglycan (Melrose et al., 2005). It 

is known that during OA, changes in the collagen type VI synthesis of the PCM and 

proteoglycan distribution within the chondron are followed by chondrocyte prolifera-

tion, expansion of the pericellular microenvironment, structural disruption, and chon-

drocyte clustering (Poole, 1997, Poole et al., 1996).  
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Changes in the PCM thus herald the upcoming degenerative processes and are as-

sociated with a significant loss of mechanical properties. Several technical challenges 

arise when aiming to investigate and quantify the biochemical properties of the PCM, 

such as the micrometer scale of the PCM (Youn et al., 2006), embedment of the PCM 

into the ECM of the cartilage, and the low cell density of articular cartilage (Stockwell, 

1971). Recent reports have, however, indicated that AFM-based microindentation al-

lows for direct quantification of PCM properties in situ with minimal disruption of the 

native matrix integration between the PCM and ECM (Darling et al., 2010, Wilusz et 

al., 2013, McLeod et al., 2013). 

 In this research study, the aim to evaluate whether the elasticity-EM (as measured 

via AFM) of the PCM decreases as a function of OA onset and progression.  OA tissue 

categorization was done by employing the spatial arrangement of chondrocytes as an 

image-based biomarker. EM was assessed by means of AFM on tissue selected accord-

ing to the locally predominant spatial chondrocyte pattern. Additionally, the pattern 

related changes of two major PCM components (collagen type VI and perlecan) were 

analyzed by ELISA (Enzyme-linked Immunosorbent Assay). The results obtained indi-

cate that there is a significant and stepwise EM decrease alongside each of the cellular 

pattern rearrangements. The Young’s modulus of the PCM of healthy cartilage (single 

strings) was about ~50 kPa (range 6-174 kPa). These results are comparable with those 

obtained from isolated chondrons by micropipette aspiration technique (~40-70 kPa) 

and in situ AFM measurements of the PCM from native human cartilage (range: 27-205 

kPa) (Darling et al., 2010, Wilusz et al., 2013). Similar observations were made when 

comparing the measured results of small clusters (early OA) with those obtained from 

macroscopically assigned early OA samples measured by Wilusz et al. (Wilusz et al., 

2013). Overall, our study shows that a decrease of approximately 40% was observed 

between healthy tissue and osteoarthritic cartilage, results which are again in line with 

those of measured chondrons extracted by the micropipette aspiration technique 

(Alexopoulos et al., 2005, Alexopoulos et al., 2003). Additionally, various computa-

tional models have also indicated similar values for EM reduction in OA, emphasizing 

that the PCM in cartilage is approximately 1 order of magnitude less stiff than that of 

the ECM. Also, while the hydraulic permeability of the PCM is 1-2 orders of magnitude 

lower than that of the ECM, it seems to double with OA (Alexopoulos et al., 2003, 

Alexopoulos et al., 2005).  
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It needs to be pointed out, however, that cartilage slices subjected to AFM inden-

tations in the present study were obtained in the horizontal plane with respect to the 

cartilage surface. In still intact cartilage areas where mostly strings are present, the main 

collagen fiber orientation is also horizontal. Thus, these fibers remained largely intact 

within the histologic sections. This was not the case in areas with already macroscopic 

cartilage damage. When obtaining tissue from these areas, the section was rather prefer-

ably obtained from the middle or deep zone of the cartilage. Especially in the deep zone 

of the cartilage, the collagen arcades are in their ascending/descending orientation 

(Mow and Guo, 2002), and thus they were cut perpendicularly when sectioning. Since it 

is in these areas with advanced local tissue degeneration where more pathologic cellular 

patterns are observed, such as small and big clusters, it is possible that the measured 

values bear a negative bias and appear worse than they would truly be without section-

ing. At the same time, it is known that osteoarthritis is a disease affecting the whole 

joint (Loeser et al., 2012), with the inflammatory processes also changing cartilage are-

as that still appear macroscopically intact (own data not shown). It can thus be assumed 

that in still intact and healthy cartilage, the values for the single strings would have still 

been higher than the ones measured in the present study.   

In terms of the structural composition of the PCM with OA onset and progression, 

two of its main components (collagen type VI and perlecan) became progressively 

structurally impaired. This structural impairment was coupled with a reduction in the 

total protein content of these components as measured by ELISA. The progressive im-

pairment of the PCM, particularly collagen type VI, with increasingly pathological spa-

tial organization had been described previously (Felka et al., 2016a). Changes in the 

perlecan expression in OA have also been documented before (Tesche and Miosge, 

2004), pinpointing its possible involvement in the pathogenesis of the disease. Both 

proteins have been suggested to dictate the overall biomechanical properties of the PCM 

(Wilusz et al., 2012b, Wilusz et al., 2012a). Collagen type VI, which was initially well 

defined pericellularly in strings and in double strings, showed a much more dispersed 

and unorganized signal in big clusters, where its intracellular signal was completely 

lost. In terms of perlecan staining, in strings it had a signal extra-and intracellularly, 

followed by the same diffuse signal loss with cellular rearrangement. It could also be 

noted that in advanced degenerative cartilage (as represented by big clusters), both 

components were destroyed. As OA is characterized by an upregulation of protein pro-
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duction of proteolytic enzymes (e.g. matrix metalloproteinase enzymes (MMPs)) 

(Martel-Pelletier et al., 1994), the loss of structural proteins (collagen type VI and per-

lecan) might represent the synergetic result of the catabolic activity of these enzymes. 

Another possible cause for inconsistent PCM destruction of observed cell clusters could 

be the consequence of nonhomogeneous matrix degradation, as already suggested by 

Söder et al (Soder et al., 2002). In terms of collagen type VI, no relevant changes in 

protein content and distribution could be observed between strings and double strings. 

Clear and significant differences were visible, however, between small and big clusters, 

as well as at the transition site from double strings to small clusters; this is the earliest 

time point where relevant OA-triggered changes take place in the PCM. It could also be 

noted that the earliest functional impairment with respect to the EM of the PCM was 

detected at the transition from strings to double strings. Importantly, this is still at a 

stage where the cartilage appears macroscopically to be intact. The EM decrease was 

observed simultaneously with the alteration and destruction of the PCM. This suggests 

that the two phenomena are linked to one another.  

Up until now, most studies investigating the OA-related degeneration of cartilage 

biochemically and/or biomechanically have based their grading of the severity of the 

disease on macroscopic assessment grading systems such as the International Cartilage 

Repair Society (ICRS) system (Kleemann et al., 2005), or the Collins grading system 

(Wilusz et al., 2013). These grading systems have, however, limited utility, reproduci-

bility, and validity, particularly for early OA stages (Pritzker et al., 2006). To the 

knowledge of the author, this is the first study to describe PCM structural and EM 

changes based on tissue categorization by spatial arrangement of chondrocytes. The fact 

that the EM decreases alongside the cellular rearrangement does not prove any causali-

ty. In a recently accepted manuscript from the author, the observed changes of the PCM  

could also be observed in the ECM (Danalache et al., 2019). This leads to the specula-

tion that the cellular rearrangement is not solely and strictly involved in the PCM 

changes and its microbiomechanical characteristics, rather that the processes of cellular 

rearrangement and tissue destruction either go hand in hand, or tissue destruction is a 

prerequisite for cellular rearrangement. Interestingly, changes in spatial organization are 

not just correlated with the biomechanical features in the pericellular region, but also 

with those of the ECM. It is indeed true that the decrease in EM of the PCM and ECM 

goes simultaneously, unidirectionally, and at a comparable speed, suggesting that the 
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underlying mechanisms are of the same nature (Danalache et al., 2019). This finding is 

further supported by previous theoretical models of cell-matrix interactions in cartilage, 

which suggest that the ratio of the two matrixes (ECM and PCM) with respect to their 

mechanical properties may significantly influence the mechanical environment of the 

chondrocyte (Alexopoulos et al., 2003, Guilak and Mow, 2000).  

Overall, the present data shows that the first OA-PCM related degenerative 

changes are already measurable at the cellular transition from single to double strings, 

where cartilage still appears macroscopically “intact”. This further strengthens the idea 

that the cellular spatial patterns play a measurable and functional role throughout the 

course of the disease, instead of just being the passive result of OA-related remodeling 

and rearrangement processes. As such there is potential to use an optical based bi-

omarker in the clinical setting for diagnosis of early stages of OA. 

  Biomechanical cues for customizing jaw periosteal cells 

for bone constructs  

The justification for the ongoing research efforts in BTE is founded on the fact 

that bone autografting is still the golden standard in treating bone defects, despite the 

invasiveness and traumatic nature of the procedure. In this respect, the ongoing demand 

for personalized therapeutic approaches has enhanced the scientific interest and research 

focus towards cell-based therapies and cell-enriched constructs for regenerative purpos-

es. In terms of a cell source, human jaw periosteum tissue contains osteoprogenitor cells 

(JPCs) that have potential for tissue engineering applications in oral and maxillofacial 

surgery. However, in order to bring such cell-based approaches into the clinical setting, 

defined animal free culture conditions coupled with a precise characterization of the 

cells and their formed ECM are a must. Hitherto, the benchmark in terms of media sup-

plementation for in vitro settings has been FCS. hPL has however been recently sug-

gested to be a suitable and “clinically acceptable” alternative.  

In a former study, Wanner et  al. 2017 showed that JPCs (to be precise: mesen-

chymal stromal cell antigen-1 (MSCA-1+) cells)) cultivated under hPL supplementation 

were characterized by a higher proliferation and mineralization potential than JPCs cul-

tivated under FCS settings (Wanner et al., 2017). In the present study, the aim was to 

further quantitatively analyze the biochemical composition as well as the biomechanical 

properties (particularly elasticity) of the ECM formed by JPCs under both hPL and FCS 
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supplementation. RAMAN spectroscopy was used to investigate the biochemical com-

position and the biomechanical elasticity ere assessed by AFM. In the present study, we 

observed higher proliferation rates of JPCs expanded under hPL conditions, results 

which are in accordance with the ones previously obtained by Wanner et al (Wanner et 

al., 2017). hPL is obtained via freeze-thaw cycles of platelets and subsequent centrifugal 

separation of the debris from all the bioactive platelet factors (Schallmoser and Strunk, 

2013). These platelets include various growth factors, such as PDGF, TGF-β1, VEGF, 

EGF, attachment factors, and enzymes (Antoninus et al., 2015). It is conceivable that 

such a potpourri of growth factors might indeed actually be the reason for the JPCs fast 

expansion and differentiation. 

The structural composition of the ECM determines the biomechanical properties. 

These properties depend on the abundance of collagen and other proteins (non-

mineralized components), as well as on matrix mineralized components (phosphates). 

Human bone minerals are constituted of a poorly crystallized apatite, comprised mainly 

of calcium-deficient apatite, hydrogen phosphate, calcium-carbonate, and other ions. 

The hydroxyapatite crystal structure exhibits a “hydrated layer”, where reactive ions 

form the non-apatitic domains, which surround the stable apatite domains of the bone 

crystals  (Farlay et al., 2010). With bone maturation, the size and number of crystals 

increase. Bone mineral maturity is expressed as the ratio of apatitic and non-apatitic 

domains. The mineral crystallinity depends on both the size and amount, as well as on 

the symmetry of the apatite crystalline domains and their size/strain (Farlay et al., 

2010). Even tough staining approaches such as Alizarin Red S and von Kossa are com-

monly used (Bonewald et al., 2003b, Gregory et al., 2004), when analyzing the mineral-

ization degree and bone quality formation, they fail to assess the quality of the mineral-

ized species. In this respect, RAMAN spectroscopy has already been successfully used 

to identify changes in bone composition in metabolic bone diseases such as osteoporosis 

and osteogenesis imperfecta (Roschger et al., 2008).  

The RAMAN spectra results of the present study showed a higher phosphate to 

protein ratio in the hPL group, indicative of higher phosphate ECM deposition. Moreo-

ver, the carbonate to phosphate ratio was higher in FCS containing culture conditions. 

Similar observations were made by Brauchle et al. in a study where in vitro formation 

of bone-specific matrixes by JPCSs was analyzed under serum free and FCS containing 

media culture conditions (Brauchle et al., 2017). The authors of that study actually indi-
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cated that a higher carbonate to phosphate ratio combined with a low mineral to matrix 

ratio  might be indicative of poor bone quality (Brauchle et al., 2017). An inverse pro-

portionality relationship was observed in the case of carbonate and crystal content; 

while carbonates exhibited a significant decrease in content, the crystal content in-

creased. This is indicative of a higher quality of the formed crystals. A lower carbonate 

content coupled with a higher mineralization potential is usually the result of higher-

quality bone. Also, in the here presented study, hPL conditions led to overall lower car-

bonate levels than those obtained under FCS settings. As already suggested by Young et 

al., FCS contains active components such as complement components 3 and 4A, fetuin-

A, and apolipoproteins A1 and B100, which are capable of accelerating crystallization 

of free phosphates (Young et al., 2009). The mineral crystallinity can also be estimated 

from the RAMAN spectra by using the width of the primary phosphate band, which is 

mathematically described as the reciprocal of the full-width-half-maximum (FWHM) 

(Freeman et al., 2001). According to the RAMAN data presented here, the mineral crys-

tallinity was significantly higher under hPL settings when compared to the one under 

FCS supplementation. A lower mineral crystallinity, as observed under FCS settings, 

might translate into altered bone mechanics by the occurrence of micro-strains within 

and around the crystal lattice. In fact, in human cortical bone, Yerramshetty and Akkus 

reported that the tissue-level strength and stiffness both increase with increasing crystal-

linity while ductility decreases (Yerramshetty and Akkus, 2008). In terms of collagen 

maturity and quality, the RAMAN data shows that collagen cross-linking was signifi-

cantly higher under hPL than under FCS conditions; hPL supplementation might thus 

induce a higher tensile strength of the matrix collagen. In support of this hypothesis, the 

proline to hydroxyproline (amino acids precursors) ratio was also significantly higher in 

hPL-JPCs than in FCS ones; hPL enriched media therefore seems to support mineraliza-

tion via maturation of collagens in JPCs. 

The next question to address was whether or not the aforementioned observed bi-

ochemical composition ECM variations under FCS and hPL supplementation actually 

translate into physical mechanical properties which reflect the JPCs’ mineralization ca-

pability. Until now, ample evidence suggested that biomechanical properties of the 

ECM, particularly its stiffness, are capable of regulating and dictating MSC differentia-

tion characteristics (Lv et al., 2017). Even more so, according to a 2018 study by Sun et 

al., the stiffness of the ECM actually seems to regulate MSC osteogenic differentiation 
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through mechanotransduction events mediated by integrin α5 (Sun et al., 2018). The 

AFM results of our study indicated an EM increase of the ECM for the control as well 

as the osteogenically induced JPCs under FCS settings as compared to the hPL setting. 

The opposite effect was noted for the JPCs formed precipitates, where a significant EM 

decrease was observed under FCS supplementation. Similar observations were made for 

tissue engineered cartilage, where hPL media enrichment led to a significantly higher 

EM (~ 45% increase), and a tissue with implicitly greater compressive mechanical 

properties overall as when compared to FCS conditions (Petrera et al., 2013). The ma-

trix remodeling capacities of tissues cultured in hPL might therefore be higher than 

those of tissues cultured in FCS.  

In a study conducted by van Geemen where the formation and mechanical proper-

ties of heart valve engineered constructs was analyzed, MMP levels were shown to be 

higher in the hPL group than in standard FCS culturing (van Geemen et al., 2011). 

MMPs are key players in both inflammatory and remodeling phases of wound healing. 

Their presence and upregulation might be indicative of an active remodeling process, 

similar to that occurring in wound healing and formation of scar tissue. As suggested by 

van Geerme, during wound healing, the presence of the scar, which can be recognized 

by a disorganized collagen network and high remodeling properties, might result in an 

initially weaker tissue (van Geemen et al., 2011). It is therefore conceivable that with 

time, tissue cultured in hPL could undergo a remodeling process which might ultimately 

lead to stronger and more organized tissue. This is in accordance with the AFM data 

from the present study on JPCs-ECM, as lower EM were observed in early stages (con-

trol and osteogenic monolayers), followed by a significant increase in the JPCs formed 

precipitates. In addition, even though FCS enhances early osteogenic differentiation, the 

presence of osteo-inductive agents such as all trans-retinoic acid, bone morphogenic 

protein 2 (BMP2), and dexamethasone are required for the expression of transcription 

factors governing osteogenesis and hence differentiation towards a mature osteoblast 

cell population (Roberts et al., 2011). Plasma platelets are known to be a rich source of 

growth factors (Weibrich et al., 2002), and are therefore more efficient in terms of cell 

differentiation capability and proliferation rates (Doucet et al., 2005) than using exoge-

nous recombinant growth factors and standard serum enriched media. The superiority of 

hPL supplementation is thus further supported. 
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 Biomechanical characteristics are attributed also, to the orientation of the colla-

gen fibrils, as well as to differences in collagen content and its spatial distribution (Silva 

et al., 2006). As observed in the here presented results and in accordance with previous 

studies, changes in medium supplementation determine changes in the collagen expres-

sion (Brauchle et al., 2017). As already suggested by Brauchle et al., structural changes 

in the orientation of collagen fibers might affect crystallization of phosphate along the 

collagen fiber, ultimately controlling the mineralization process (Brauchle et al., 2017). 

To the knowledge of the author, the here presented study is the first to investigate and 

quantify cell mineralization quality, both biochemically and biomechanically, under 

standard FCS and hPL settings. 

All in all, the study illustrates that JPCs cultured under hPL supplementation form 

an ECM of superior quality in terms of biochemical composition and elasticity.  

  Study limitations  

It has to be borne in mind that AFM analysis is generally restricted to analysis of 

the outer surface of cell membranes. As AFM is not capable of scanning the inside of a 

cell membrane, this implicitly means that it is not able to directly investigate intracellu-

lar structures. One solution for overcoming this limitation is suggested by Usukura et 

al., who employed a so called ”unroofing” method consisting of the breakage of cellular 

membrane and the removal of cytoplasmic-soluble components (Usukura et al., 2016). 

The focus of the both of studies presented here, however, was to investigate average 

matrix-EM changes rather than probing specifies cellular/intracellular components. Al-

so, values obtained from AFM measurements from both studies indicate consistent and 

individual ranges between groups; this might be explained by local variations in the 

biomechanical properties of the PCM and ECM. Due to the limited availability of hu-

man tissue samples, the trade-off of using such a procedure is the mixing of statistically 

dependent and independent data, which formally is not indicated. Even though the ob-

tained p-values thus need to be interpreted with the necessary caution, the measured 

tendency should still not be affected. Experimental AFM parameters used for mechani-

cal testing, such as indentation velocity and depth, indenter shape and size, microsphere 

size (25 µm), and accuracy of tip geometry in model fitting (Costa and Yin, 1999) might 

also impact the absolute values of the measured mechanical properties (Stolz et al., 
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2004, Park et al., 2009). These parameters should, however, not affect the results pre-

sented in both of the studies. 

  Conclusions  

It remains a persistent challenge to understand how complex molecules biosynthe-

sized by cells assemble and function within the context of living cells, tissues, and or-

gans. Cellular functioning is governed by a multitude of processes. Quantifying cell and 

tissue dynamics, particularly biomechanical features at multiple scales, is essential for 

comprehensive studies of cellular function, as well as for unveiling the structure-

function relationship. Tissue and cell stiffness as measured by AFM is a widely used 

parameter for fine cellular biomechanics, and it has been used to differentiate between 

healthy and diseased states, as well as to assess structural changes. In both studies in the 

present thesis, AFM was successfully used to asses the changes in elasticity, and to in-

vestigate whether structural changes translate into physical mechanical properties.  

In the first study, it was concluded that OA related changes occurring in the struc-

tural composition of PCM and EM are associated with changes in cellular organization 

as a biomarker for local tissue destruction. Early OA cellular changes represented by 

transition from single to double strings are characterized by a significant PCM-EM de-

crease. At this stage the articular cartilage still appears macroscopically intact. The EM 

decrease is accompanied by structural alterations of the PCM in its collagen type VI and 

perlecan content, suggesting that the degeneration of these components and functional 

disruption of the PCM are closely intertwined events in OA physiopathology. 

The second study demonstrated that hPL media supplementation of JPCs enhanc-

es the formation of an organic material of superior quality in terms of its biochemical 

composition and also of its biomechanical characteristic, as indicated by its elasticity. 

The combination of biochemical characterization by means of RAMAN spectroscopy 

coupled with AFM based-biomechanical elasticity assessment provided structural and 

functional information that might help classify and differentiate the formation of poor 

quality of bone tissue. 
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4. Summary  

Mechanical features influence nearly every aspect of cell biology and function. 

However, the underlying mechanisms of the role and how mechanical properties and 

biochemical signals are interconnected is not clearly understood. The advent of atomic 

force microscopy (AFM) provides a powerful tool for quantifying mechanical proper-

ties of living cell, typically the elastic modulus (EM). In the present study, a customized 

AFM approach was applied on load connective tissues to address and investigate two 

aspects of the musculoskeletal system. The first study investigated the EM changes that 

occur in the pericellular matrix (PCM) as a function of the cellular pattern reorganiza-

tion throughout the course of osteoarthritis (OA). The second study investigated the 

effect of human platelet lysate (hPL) supplementation on EM and biochemical composi-

tion of jaw periosteum derived progenitor cells (JPCs). 

 During osteoarthritis (OA) triggered cartilage degeneration, the chondrocytes in 

the tissue spatially rearrange from single to double strings, and then to small and finally 

big clusters. The spatial patterns act as an image-based biomarker for tissue degenera-

tion during OA. In a physiological state, chondrocytes are surrounded by a specialized 

form of extracellular matrix (ECM) termed the PCM. The PCM, which also dictates the 

biomechanical properties of the tissue, is also being progressively degraded throughout 

the course of OA. The hypothesis of this study was that OA related changes in the cellu-

lar organizational patterns (strings, double strings, and clusters) are associated with 

structural changes of the PCM and with a loss of elastic properties.  The biomechanical 

properties were measured by AFM on specific pattern selected tissue. Biochemical 

changes of the main components of the PCM (collagen type VI and perlecan) were in-

vestigated by protein analysis techniques. The results indicated that there is a significant 

and stepwise EM decrease alongside each of the cellular pattern rearrangements. At the 

same time, the initially compact PCM was degraded progressively, losing its structural 

integrity. The earliest point with a significant reduction in protein content was at the 

transition from single strings to small clusters for collagen type VI, and from double 

strings to small clusters for perlecan.  Interestingly, the first significant EM decrease 

was observed at the transition from single strings to double strings. It must be noted that 

at this stage, articular cartilage appears macroscopically intact. Both biomechanical 

properties (EM) as well as biochemical composition (protein content) were the lowest in 



                            4 | Summary 

   

 

Marina Danalache                    Pg. 55 

big clusters. This study is the first to describe the EM as well as structural changes of 

the PCM in relation to the OA related chondrocyte rearrangement, confirming the role 

of these patterns as an image-based biomarker for early OA events. 

The hypothesis of the second study was that human plasma lysate (hPL) media 

enrichment leads to a higher quality of the ECM in JPCs when compared with the 

standard fetal calf serum (FCS) condition. For this purpose, JPCs cultured with the 

aforementioned media supplementations were analyzed in two study arms.  RAMAN 

spectroscopy was used for biochemical characterization, and AFM was employed for 

biomechanical analysis. Raman spectroscopic measurements showed significantly high-

er phosphate to protein ratios and lower carbonate to phosphate ratios under hPL in 

comparison to FCS culturing. With respect to the ECM collagen maturity, higher ratios 

of proline to hydroxyproline as well as higher levels of collagen cross-linking were de-

tected in hPL-cultured JPCs. This indicates that hPL induces a higher degree of collagen 

maturation in JPCs. AFM data showed a significant increase in EM of the ECM under 

hPL conditions. This study hence demonstrates that hPL media supplementation of 

JPCs leads to the formation of a higher ECM quality as when compared to the FCS 

standard settings. 

In summary, both studies employed AFM-based elasticity measurements to inves-

tigate biomechanical features of load-bearing tissues. In both studies, the results ob-

tained were significant and provide further insights which may now be fused into exist-

ing axioms of biochemical processes. Integration of both biomechanical and biochemi-

cal features will play a vital role in future scientific endeavors and will serve to establish 

an in-depth understanding of cellular biology.  
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5. Zusammenfassung  

Mechanische Eigenschaften beeinflussen nahezu jeden Aspekt der Zelle in Bezug 

auf ihre Biologie und Funktion. An welchen Schaltstellen mechanische Eigenschaften 

und biochemische Signale jedoch miteinander verknüpft sind ist bisher nur wenig ver-

standen. Die Rasterkraftmikroskopie bietet hier die interessante Möglichkeit mechani-

sche Eigenschaften von lebenden Zellen zu untersuchen. Am gebräuchlichsten ist hier-

bei die Untersuchung des Elastizitätsmoduls (EM), welches Aussagen über die Steifheit 

des Gewebes zulässt. In der hier präsentierten Arbeit wurden mittels Rasterkraftmikro-

skopie zwei Fragestellungen zum muskuloskelettalen System untersucht: Die erste Stu-

die untersuchte die auftretenden EM-Veränderungen der Perizellulären Matrix (PZM) 

im Rahmen der räumlichen Umorganisation der Chondrozyten im Zuge der Knorpelde-

generation. In der zweiten Studie wurde der Einfluss von humanem Plättchenlysat 

(hPL) auf das EM sowie auf den biochemischen Aufbau von aus Kieferperiost gewon-

nenen Progenitorzellen gemessen.  

Im Zuge der Knorpeldegeneration bei Arthrose verändert sich die räumliche Or-

ganisation der Knorpelzellen hin von einfachen Zellsäulen (Engl. "single strings") zu 

Doppelsäulen (Engl. "double strings") und schließlich zu kleinen (Engl. "small clus-

ters") und großen Zellhaufen (Engl. "big clusters). Diese Zellmuster dienen als bildba-

sierter Biomarker der degenerativen Veränderungen im Knorpel im Rahmen von Arth-

rose. Knorpelzellen sind im physiologischen Zustand unmittelbar von einer Sonderform 

der Extrazellularmatrix (EZM) umgeben, der sogennanten perizellulären Matrix (PZM). 

Die PZM, die die Biomechanik der Zellen maßgeblich mitdiktiert, degradiert zuneh-

mend während der Arthrose. Die Hypothese der hier durchgeführten Studie war, dass es 

im Rahmen der zellulären Musterveränderungen von einfachen Zellsäulen zu großen 

Zellhaufen auch zu strukturellen Veränderungen der PZM kommt, was ebenso einen 

Verlust der elastischen Eigenschaften mit sich zieht. Die Elastizität der PZM wurde 

dabei für jedes der zellulären Muster separat mittels Rasterkraftmikroskopie gemessen. 

Gleichzeitig wurden biochemische Veränderungen von zwei wesentlichen Bausteinen 

der PZM (Kollagen Typ VI und Perlekan) mittels Proteinanalysetechniken untersucht. 

Es konnte dabei gezeigt werden, dass es im Rahmen der Musteränderungen zu einer 

schrittweisen und signifikanten Reduktion des EM kommt. Der früheste Zeitpunkt einer 

signifikanten Reduktion an Proteingehalt wurde am Übergang von einfachen Zellsäulen 
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zu kleinen Zellhaufen für Kollagen Typ VI und von Doppelsäulen zu kleinen Zellhaufen 

für Perlekan beobachtet. Interessanterweise konnte der erste signifikante Rückgang des 

EM bereits am Übergang von einfachen zu doppelten Zellsäulen gemessen werden. Dies 

ist ein Zustand, in welchem der Knorpel makroskopisch noch intakt erscheint. Erwar-

tungsgemäß zeigte sich bei großen Zellhaufen die größte Beeinträchtigung, sowohl pro-

teinbiochemisch wie auch biomechanisch. Zusammenfassend ist dies die erste Studie, 

welche das EM der PZM, wie auch einige ihre Komponenten in einen direkten Zusam-

menhang mit der räumlichen Knorpelzellanordnung setzt, was somit die Bedeutung 

dieser als bildbasierten Biomarker für frühe Arthrose unterstreicht.  

Die Hypothese der zweiten Studie war, dass die Anreicherung von Zellkulturme-

dium mit hPL eine bessere Qualität der EZM bei aus Kieferperiost gewonnenen Proge-

nitorzellen erzielt, als wenn das Medium mit fetalem Kälberserum versehen wird. Hier-

zu wurde in zwei Studienarmen eine jeweilige Zellkultur mit den unterschiedlichen 

Nährlösungen durchgeführt. Sodann wurde die EZM biochemisch mittels RAMAN-

Spektroskopie charakterisiert und das EM mittels Rasterkraftmikroskopie gemessen. In 

der Spektroskopie konnte ein signifikant höheres Phosphat-zu-Protein Verhältnis und 

ein niedrigeres Carbonat-zu-Phosphat Verhältnis unter hPL im Vergleich zur Kultur mit 

fetalem Kälberserum festgestellt werden. Auch in Bezug auf Reife des EZM-Kollagens 

konnten unter hPL höhere Verhältnisse von Prolin-zu-Hydroxyprolin und höhere Spie-

gel an Kollagen-Quervernetzung beobachtet werden. In der Rasterkraftmikroskopie 

zeigte sich weiterhin eine signifikante Zunahme des EM unter hPL-Bedingungen. Inso-

fern zeigt die hier präsentierte Studie, dass Anreicherung von Zellkulturmedium mit 

hPL zur Ausbildung einer höherqualitativen EZM führt als die bisherige Standardbeimi-

schung von fetalem Kälberserum.  

Zusammenfassend konnten so in beiden Studien anhand von Elastizitätsmessun-

gen lasttragenden Gewebes biomechanische Untersuchungen durchgeführt werden. In 

beiden Fällen ergab sich aus den Messergebnissen ein Informationsgewinn mit eindeu-

tigen Ergebnissen, welche nun in ihrer biomechanischen Dimension in das übliche bio-

chemische Verständnis integriert werden können. Die Schnittstelle von biomechani-

schen zu biochemischen Vorgängen in Geweben und Zellen wird auch in künftigen Un-

tersuchungen von hoher Bedeutung für ein fundiertes funktionelles Verständnis der Bio-

logie auf zellulärer Ebene sein. 
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