

Source Mineral Controls on the Transport of Pesticides in Agricultural Catchments

W.A. House, I.S. Farr, J.E. Rae, A. Parker and J.D.R. Talbot

Report To: IFE Report Ref. No:

ADAS/MAFF RL/T11059M5

INTELLECTUAL PROPERTY RIGHTS

CONFIDENTIALITY STATEMENT

'In accordance with our normal practice, this report is for the use only of the party to whom it is addressed, and no responsibility is accepted to any third party for the whole or any part of its contents. Neither the whole nor any part of this report or any reference thereto may be included in any published document, circular or statement, nor published or referred to in any way without our written approval of the form and context in which it may appear.'

River Laboratory East Stoke WAREHAM Dorset BH20 6BB

Tel: 01929 462314 Fax: 01929 462180

Source Mineral Controls on the Transport of Pesticides in Agricultural Catchments

Project Leader: Report Date: Report To: IFE Report Ref. No: W.A. House 17 June 1996 ADAS/MAFF RL/T11059M5

Source Mineral Controls on the Transport of Pesticides in Agricultural Catchments

Progress Report: June 1996

W.A. House, I.S. Farr, J. E. Rae*, A. Parker* and J. D. R. Talbot

Institute of Freshwater Ecology, River Laboratory, East Stoke, Wareham, Dorset, BH20 6BB

* Postgraduate Research Institute for Sedimentology, University of Reading, Whiteknights, Reading, RG6 2AB

Project Leader: W.A. House Report Date: June 17, 1996 Report To: ADAS/MAFF Project Number: T11059M5 ROAME: PL0513

Summary

1.0 Objectives
2.0 Introduction
3.0 Mineral and Particle-Size Analysis
3.1 Mineral Analysis
3.2 Particle-size Analysis
4.0 Contribution of Suspended Solids to the Transport of the Selected Pesticides
5.0 Results From the Suspended Solids Measurements and Pesticide Analysis of the
1995/96 Storm Samples.

Table 1. Results of the mineralogical analysis of the suspended sediments from storm sampling during the autumn/winter of 1994/95.

Table 2. Regression analysis of the distribution coefficient, the amount of pesticide on the suspended material and the mineral components. Table 3. Regression equations for the relationships between the Kd's and the mineral components shown in Fig. 1.

Table 3. Regression equations for the relationships between the K_d 's and the mineral components shown in Fig.1.

Table 4. Correlation between the amount of pesticide associated with suspended solids $(\mu g/kg)$ and size-fraction.

Table 5. Correlation between the K_d 's associated with suspended solids (l/kg) and size-fraction

Figure 1. Illustration of the correlation between propiconazol and expandable clays/haematite, kaolinite and trifluralin, mica and flutriafol and calcite and isoproturon. The corresponding regression equations are given in Table 3.

Figure 2. Volume composition of the different particle-size fractions

Figure 3. Comparison of the percentage of the pesticides transported by suspended solids with the suspended solids concentration in the storm samples.

Figure 4. Detailed comparison between the predicted transport of trifluralin on suspended solids using a $K_d=261$ l/kg, with the measured values.

Appendix 1: Summary of results of the analysis for particle-size distributions by laser granulometry of suspended sediments sampled during the 1994/95.

Appendix 2: Details of the regression between the particle-size fraction (clay, silt and sand) and either: (a) the amount of pesticide associated with the suspended solid or (b) the K_d 's of the suspended solid.

Appendix 3. Results of the suspended solids measurements and pesticide analysis of the storm water and sediment samples for the 1995/96 autumn/winter period.

•

.

. 19

SUMMARY

This report is concerned with progress from August 1995 to June 1996 in PHASE I of the programme. Measurements are reported of the concentration of selected pesticides: isoproturon (IPU), trifluralin, flutriafol and propiconazol, associated with suspended solids and dissolved in drainage water during storm events in 1994/95 and initial results from storm events in 1995/96. The mineral and particlesize analysis of the sediments collected in the autumn/winter of 1994/95, which were previously analysed for pesticides, are also reported in detail. Regression analysis of the results indicates some correlation between the various size fractions and mineral components and the pesticide concentrations in the whole¹ sediment.

1.0 OBJECTIVES

To determine which soil/sediment components are most active in the transport of pesticides applied to agricultural catchments and how these components are likely to vary in different soil types. In addition, the results will lead to a better understanding of the role of buffer zones in the control of pesticide runoff.

2.0 INTRODUCTION

This report is concerned with progress from August 1995 to June 1996 in PHASE I of the programme. Measurements are reported of the concentration of selected pesticides: isoproturon (IPU), trifluralin, flutriafol and propiconazol (1 & 2), associated with suspended solids and dissolved in drainage water during storm events. The main objective of the research is the investigation of the relationships between the concentration of the compounds associated with the suspended solids, the distribution coefficients and sediment properties including their mineralogy and particle-size distributions. Initial results are included of the pesticide concentrations in waters and sediments sampled in storm events during last winter (1995/96). All samples and their codes were supplied by ADAS.

3.0 MINERAL AND PARTICLE-SIZE ANALYSIS

Following the isolation of suspended solids, soxhlet extraction and analysis of the extracts by GC/MS, the samples collected during the autumn/winter 1994/95 were subject to mineralogical (X-ray diffraction) and particle-size analysis (laser granulometry) at PRIS (Postgraduate Research Institute for Sedimentology, University of Reading). The results from the mineralogical analysis are shown in Table 1 and the particle-size distributions are submitted in Appendix 1.

3.1 Mineral Analysis

41 samples were analysed for a range of mineral components listed in Table 1. Some samples were too small to be separated from the filter pads and so were not included in the analysis. Only the samples with codes: BRN, FS and NAP contained appreciable calcite. All the samples contained expandable clays (including montmorillonite) and mica (containing illite). The highest concentrations of kaolinite were found in samples

coded LLf1. Siderite (FeCO₃) was also found in some samples, probably as a results of the resuspension of anoxic materials during transit. This mineral has been found in anoxic stream sediments. No attempt has yet been made to relate the mineral composition to the storm hydrographs or sources within the catchments.

The results have been analysed for correlations between the K_d's (calculated in the last report), the amount of pesticide associated with the suspended solids and the various mineral components. The data are summarised in Table 2 and the best correlations are illustrated in Figure 1. The corresponding regression equations are listed in Table 3. As shown, the best correlations are obtained between the K_d 's (rather than the amount of pesticide associated with the suspended solids) and particular mineral components in sediment. Poor correlations are observed with the quartz content (likely to be the predominant mineral in the coarser fraction) with generally better relationships with the finer clay fractions such as the expandable clays mica and kaolinite. It is possible that propiconazol interacts with the interlayers of the expandable clay whereas trifluralin adsorbs on the edge-sites of kaolinite. The regression of mica with flutriafol indicates a $K_d = 0$ with about 25 % mica in the sample whereas the other correlations indicate Kd's closer to zero when none of the mineral component is present. Combining the clay fractions, e.g. expandable clays+mica+kaolinite, does not produce better correlations than those found with the individual components essentially because very low Kd's were measured in some samples containing over 60 % of these clays.

3.2 Particle-size Analysis

Information on the particle-size distributions of the sediments in the size range of 0.1 to 1000 μ m are tabulated in Appendix 1. The sediments were dispersed in Calgon and ultrasonicated during the processing to ensure only the primary particles were measured. The original particle structures and degree of aggregation of the sediment in the field is unknown. The compactation during filtration and subsequent solvent extraction of the sediment, is likely to have destroyed the aggregate structure and thus particle-size distribution of suspended solids in the original samples. However, the size-distributions shown in the Appendix 1 are a fundamental property of the suspension which is independent of the aggregate structure.

The results are also summarised in Fig. 2 in terms of the size groups: clay (< 2 μ m), silt (2-63 μ m) and sand (63-900 μ m). Silt is the major size-fraction in all the samples with most containing between 10 and 20 % (by volume) of the smaller clay component. As shown, the sand fraction is a relatively minor component (< 5%). These results are in contrast with river bed-sediments which generally contain mineral components dominated by the sand size-fraction. In contrast to the other sediments, both the FS samples which were analysed contained similar volumes of the silt and clay fractions.

The correlations between the various size-fractions and the amount of pesticide associated with the suspended solids or K_d 's are shown in Table 4 and 5 respectively. Generally, the best correlations were found for the K_d 's, especially for IPU and trifluralin with the clay fraction as well as flutriafol and propiconazol with the sand fraction. The silt fraction shows poor correlations with all the pesticide K_d values. All the regression relationships listed in Tables 4 and 5 are illustrated in Appendix 2.

4.0 CONTRIBUTION OF SUSPENDED SOLIDS TO THE TRANSPORT OF THE SELECTED PESTICIDES.

Assuming a linear sorption isotherm, the percentage of the pesticides transported in association with suspended solids is given by:

% transport of pesticides with suspended solids= 100. K_d . SS/(K_d . SS + 10⁶) [1]

where SS is the suspended solids concentration (mg/l) and K_d, the distribution coefficient in l/kg. The experimental data from the 1994/95 sampling are shown in Fig 3 for the four pesticides which were considered. Figure 4 shows the data for trifluralin in more detail with the optimised value of K_d (by numerical optimisation to obtain the minimum least-squares deviation between the calculated results from eqn.(1) and the observed data). The results show the low transport of the IPU and flutriafol with suspended solids (<10 %). In contrast, both trifluralin and propiconazol are associated with solids so that for trifluralin, at high values of suspended solids, the majority of the compounds is transported in suspension. The deviations from the form of eqtn.(1) indicate the variability in K_d's associated with the different composition and mineralogy of the solids. The results from the more detailed analysis of the 1995/96 data will help in the further understanding of the important factors controlling the variability in the distribution coefficients for these sediments.

5.0 RESULTS FROM THE SUSPENDED SOLIDS MEASUREMENTS AND PESTICIDE ANALYSIS OF THE 1995/96 STORM SAMPLES.

Some effort was made to investigate methods to reduce the length of the extraction and filtration procedure of the suspended solids intended for pesticide analysis. This involved centrifugation of suspended solids prior to filtration. However this proved inappropriate for trifluralin because of its loss during processing, caused by the sorption to the container. Hence, the method of separation and extraction remained essentially unchanged from the previous analysis for the 1994/95 samples. The only modification was that the filter pads were not pre-equilibrated with the sample prior to filtration.

The results of measurements of the suspended solids are listed in Appendix 3. The analysis of the water and sediments for the third event (1995/96) are also shown in the Appendix 3 together with the calculated distribution coefficients, K_d . These results will be examined in detail once the remaining batches from the 1995/96 storm sampling have been analysed. The first event is currently being analysed on GC/MS and the second event samples have been extracted and concentrated but have not yet been analysed by GC/MS. Once the pesticide results are available, the mineralogy and particle-size distributions will be determined by PRIS (University of Reading). It is however clear that insufficient sediment is available for some samples to permit separation from the filter pads and if possible, these will have to be analysed *in-situ*.

Sample	Expandable	Mica	Kaolinite	Chlorite	Quartz	K-feld	Plag Feld	Calcite	Siderite	Haematita
BRN1 189	7	14	6	1	27	0	0	44	0	macmanie
S3 407	33	24	13	3	12	1	2	10	Õ	
S4 408	29	24	14	2	12	t	2	15	0	
S5 409	26	21	13	0	18	1	1	19	0	
x 1006	34	31	6	8	17	0	2	0	0	
xd 1248	23	34	5	9	22	1	2	1	1	
xd 1252	33	36	5	9	12	1	1	0	0	
xd 1254	37	34	8	4	10	0	2	0	0	
xd 1331	33	33	5	8	19	1	1	0	0	
xd 1337	46	31	4	7	6	0	I	0	0	
BS 1271	13	36	5	10	26	1	5	1	1	
BS 1275	23	34	4	9	22	1	3	t	Ì	
BS 1351	26	33	5	8	22	0	3	0	Ō	
BS 1354	15	35	4	9	29	1	3	1	Ĩ	
BS 1356	27	31	5	9	23	0	2	0	0	
Ld 1025	24	35	9	8	19	0	2	0	0	
Ld 1028	34	31	8	6	13	0	2	0	0	
Ld 1319	28	28	7	6	24	0	2	0	Ő	
Ld 1321	34	31	7	7	15	0	2	0	0	
Ld 1323	39	28	7	6	12	0	2	0	0	
Ld 465	27	32	9	8	16	0	3	0	ů	
Ld 468	21	32	10	9	24	0	2	0	Ő	
Ld 473	32	36	8	8	8	0	2	ů	Ő	
Ld 476	34	34	8	7	10	0	2	Ő	Ő	1
Ld 478	37	33	6	7	9	0	2	Õ	Ő	
Lfl 1049	28	28	10	8	23	0	2	1	Ő	
LFI 1050	17	32	12	9	23	1	2	0	ů ř	
LFI 1051	19	30	14	8	21	1	2	ĩ		
Lf1 1052	22	33	12	9	18	1	2	0	1	
LFT 1053	19	31	12	9	23	1	2	0	0	
LfI 1054	19	33	13	8	20	1	2	0	1	
_f1 1289	12	35	12	10	26	1	2	0	0	-
_F1 1291	16	32	12	9	26	0	2	0	1.	-
.ft 1293	19	27	14	8	25	1	3	0	1	-
.ft 1297	10	33	12	8	27	I	4	2	1	-
fft 96t	27	29	6	8	23	Ī	2	-	t	1
fs 1277	17	36	5	• 9	25	0	2	1	, I	-
fs 1279	8	40	4	8	35	0	3	0		
fs 1281	18	44	0	10	23	0	2	ů 0	Õ	1
API 230	29	20	15	0	12	ī	-	21	õ	-
AP2 366	29	20	16	0			-		õ	

TABLE 2

Regression a	nalysis of t	he pe	sticide o	distribu	tion co	oeffic	ients, K	d, pest	icide ar	nounts (ug/kg) and	mineral	
composition	,												
	Expandable	Mica	Kaolinite	Chlorite	Quartz	K-feld	Plag Feld	Calche	Siderite	Haematite	Kd, IPU	Kd.trifturalin	Kd.flutriafol
Expandable	8												
Mica	-0.12	8											
Kaolinite	60 .0-	0.0 42	5- 1- 1-										
Chlorite	-0.26	0.82	ð 4	,									
Quartz	-0.87	0.20	-0.14	0.41	8								
K-feld	-0.27	0.19	0,45	8 9	0.13	<u>8</u>							
Plag Feld	8.0	0 8	-0.13	0.51	0 6	80	8						
Calcite	-0.17	9 8 8	0.28	0 80 0	9 9	0.14	-0.51	.					
Siderite	0:0	0.19	0.10	0.40	0. 8	0.40	0 4	-0.22	8				
Haematite	0.55	0.31	800	0.18	-0.51	92:0	0.02	сі А	-0.25 -0.25	8.1			
Kd,lsoproturon	0.10	Ó.18	8 9	-0.26	-0.32	-0.32	82.0		6.0	0.29	1 .		
Kd,trifiuralin	-0.18	0.07		0.06	8 9	0.23	0.02	80.0 0	0.14	-0.14 4	0.45	1.8	
Kd,flutriafol	0.10		-0.57	0.14	80.0-	6 4	0 0;0	0.14	-0.31	0.33	0.20	-0. 148	8
Kd, propiconazol		0.18	-0.37	8 9	8 Q	-0.27	0.16	0.02	9.25		0.78	0.31	0.68
SS, IPU	024	0.18	89	0.11	8. 9	<u>6.34</u>	0.06	-0.16	87 9	830		0.47	0.05
SS, trifluralin	-0.19	0.11	054	<u>0</u>	0.10	0.16	-0.02	0 .02	0.07	0.21	0.01		6 6 7
SS, flutriafol	0.14	0. 12	6 6	9 0 0	-0.21	¢ ₽	-0.18	0.06	-0.37	9 9 9	0.48	80.0- 0-	
SS, propiconazol	-0.01	0.36	-0.36	0.13	-0. 10	-0.32	-0.05	-0.04	-0.27	0.22	0.22	0.32	0.75
	Expandable	Mica	Kaolinite	Chlorite	Quartz	K-feld	Plag Feld	Calcite	Siderite	Haematite	Kd, IPU	Kd,trifiuralin	Kd,flutriafol

Regression analysis of the pesticide distribution coefficients, Kd, pesticide amounts (ug/kg) and mineral composition

	Kd, propiconazol	SS IPU	SS trifluralin	SS flutriafol	SS propiconazol	
Expandable					•	Expandable
Alca						Mica
(aolinite						Kaolinite
Chlortte						Chlorite
Quartz						Quartz
(-feld						K-feld
Plag Feld				•		Plag Feld
Calcite						Calcite
Siderite						Siderite
faematite						Haematite
<pre><d,isoproturon< pre=""></d,isoproturon<></pre>						Kd, IPU
(d,trifiuralin						Kd,trifluralln
(d,flutriafol						Kd,flutriafol
(d.propiconazol	8					Kd, propiconazoi
ss, IPU	•	5 8				SS IPU
is, trifiuralin	-0.25	0.24	8.1			SS trifluratin
is, flutriafol	67.0	0.31	-0.31	8		SS flutriafol
S, propiconazoi		0.23	0.42		£.) SS propiconazol
	Kd,propiconazol	SS ,IPU	SS, trifluratin	SS, flutriafol	SS, propiconazol	

Table 3. Regression equations for the relationships between the K_d 's and the mineral components shown in Fig. 1. K_d in units of 1/kg and composition in mass %. Equation: $K_d=m^*(\%mineral)+c$

clay	pesticide	slope, m	intercept, c	R ²
expandable	propiconazol	1.36	-6.90	0.17
haematite	propiconazol	10.39	-3.59	0.32
kaolinite	trifluralin	21.55	66.48	0.27
mica	flutriafol	5.09	-126.65	0.21
calcite	isoproturon	1.63	13.71	0.15

sizeamnt

TABLE 4

Amount of	l pestici	de associa	ted with s	uspended sol	lids/ ug/kg]	
							Clay Fraction		
	IPU	Trifluralin	Flutriafol	Propiconazol-1	Propiconazol-2	Propiconazol 1+2	Clay	Sih	Sand
LLD/468	8013.9	1248.2		188.85	99.256	288.11	14.84	83.22	1.93
LLF1/1049	642.64	1163	10.172	24.811		17.062	19.36	79.58	1.06
LLF1/1050		1192.2	42.829	28.785		20.836	21.35	11.07	1.58
LLF1/1053		1095.8	46.319	41.438		34.171	19.51	78.82	1.67
LLF1/1054		1154.4	22.428	25.945		19.808	19.73	78.55	1.72
MFF1/961	3.796	232.28	29,904	22.521		7.202	22.61	75.59	1.81
LLD/289	61.757	507.46		21.333	8,128	29.46	15.57	82.94	1.49
LLI/1293	142.06	503.94	30.86	182.33	70.29	252.62	19.7	78.65	1.66
JBs/1271	120.62	272.29	26.046	122.51	31.101	153.61	17.3	79.4	3.31
JBs/1275	58.402	66.934	33.304				13.78	82.28	3.95
JBs/1354	29.509	62.058	25.272				18.08	77.62	4.3
FXd/1248	110.54		33.556				16.32	81.92	1.76
FXd/1252	54.285		41.462	182.5	11.212	193.72	20,45	77.4	2.15
FXd/1331	81.892	114.84	32.312			10.371	19.57	78.42	4
FS4/408	10.985	710.77	33.017	353,65	47.062	400.71	43.9	54.44	1.66
FS6/409	36.36	1848.2	9.436	70.903	37.141	108.04	47.44	51.8	0.76
Regression	analysis	s of pestici	ide amoun	t (ug/kg) and	size composi	tion of the sedi	ment		
	Nai	Trifluralin	Flutriafol	Propiconazol-1	Propiconazol-2	Propiconazol 1+2	Clav	, His	Send
UAI	1.00				4	•	Ì		
Trifluralin	0.39	1.00							
Flutriafol	-0.55	-0.31	1.00						
Propiconazol-1	0.18	-0.15	0.20	1.00					
Propiconazol-2	0.76	0.27	-0.19	0.39	1.00				
Propiconazol 1+2	0.34	0.02	0.11	0.98	0.60	1.00			
Clay	-0.22	0.46	-0.34	0.39	-0.08	0.35	1.00		
Sih	0.24	-0.41	0.33	-0.41	0.08	-0.37	-1.00	1.00	
Sand	-0.08	-0.71	0.18	0.24	-0.06	0.19	-0.43	0.34	-

TABLE 5

	oution c	oefficient	s, Kd, ii	n l/kg					
	IPU	Trifluralin	Flutriafol	Propiconazol-1	Propiconazol-2	Propiconazol 1+2	Clay	Silt	Sand
LLD/468	8.7	256.8		4.5	2.9	3.8	14.84	83.22	1.93
LLF1/1049	2.1	343.8	0.4	4.1		5.1	19.36	79.58	1.06
LLF1/1050		349.9	1.6	4.7		1.8	21.35	77.07	1.58
LLF1/1053		366.5	1.7	6.7		£	19.51	78.82	1.67
LLF1/1054	1.8	385.4	0.8	4.4		1.8	ET.91	78.55	1.72
MFF1/961	0.7	203.8	I.1	3.5		0.6	22.61	75.59	1.81
LL.A/289		247.2		6.6	2.8	4.8	15.57	82.94	1.49
LLA/1293	1.3	258.3	3.8	55.4	25.1	41.5	19.7	78.65	1.66
JBs/1271	4	351.2	14	114.6	30.7	73.8	17.3	79.4	3.31
JBv1275	4.7	88.3	27.6				13.78	82.28	3.95
JBv1354	2.3		21.7				18.08	77.62	4.3
FXd/1248	2.4		10.8				16.32	81.92	1.76
FXd/1252	2.2		25.4	174.1	12.5	99.4	20.45	77.4	2.15
FXd/1331	s	151.6	22.5			5.7	19.57	78.42	7
FS4/408	4	412.6	3.4	22	13.4	54.6	43.9	54.44	1.66
FS6/409	41.2	365.2	3.1	24.9	13.8	19.5	47.44	51.8	0.76
Regressi	on analy	sis of pes	ticide di	stribution co	efficients, Kd	l, (ug/kg) and s	size con	nposit	по
of the set	diment								
		Γrifturalin	Flutriafol	Propiconazol-1	Propiconazol-2	Propiconazol 1+2	Clay	Silt	Sand
IPU	1.00								
Trifluralin	0.23	1.00							
Flutriafol	-0.17	-0.75	1.00						
Propiconazol-1	-0.18	0.33	0.92	1.00					
Propiconazol-2	-0.23	0.33	-0.06	0.47	1.00				
Propiconazol 1-	-0.13	0.31	0.61	0.99	0.57	1.00			
Clay	0.68	0.50	-0.38	0.13	0.02	0.16	1.00		
Sih	-0.67	-0.47	0.32	-0.17	-0.05	-0.19	-1.00	1.00	
Sand	-0.36	-0.52	0.73	0.55	0.52	0.53	-0.43	0.34	1.00

sizekd

.

Figure 2. Particle-size fractionation by groups

1

kds

% fransport on suspended solids

Figure 4

APPENDIX 1

ԵՍԱ ՐԸ ՒԲ Լօ Ի	aturic oize musiysis	· - ·	
	·	maff.\$01	
File name: Sample ID: Operator:	MAFF.001 LLD 468 DMT	Group (D: Run number:	MAFF Z
Comments: Start time: Pump Speed: Obscuration:	MAFF PROJECT : PLO513 DISPERSED IN CALGON 9:46 29 Apr 1996 48 9%	Run length:	60 Seconds
Optical model: LS 130 Software:	Fraunhofer Fluid module 1.50	Firmware:	1.3 1.8

Volume Statistics (Arithmetic)

maff.\$01

8.4+

49 Wht 1999

Calculations from 0.10 um to 900.00 um

26

Volume Mean: Median: Mean/Media	ın Ratio:	100.0% 15.19 um 6.818 um 2.228	95% (Std. D	onf. Limit ev.:	s: 4.497-25.88 um 54.56 um
Mođe:		9.065 um	Coef. Skewn Kurtos	var.: Var.: Iess: Is:	2976 um² 359.2% 11.18 Right skewed 138.5 Leptokurtic
%> Size um	5.000 34.66	16.00 17.51	50.00 6.818	84.00 2.144	95.00 0.697

maff.\$02

ic atlons from 0.10 um to 900.00 um

ume an: d⊢a: a⊾,Media	n Ratio:	100.0% 8.045 um 5.136 um 1.566	95% C Std. D Varian	onf. Limit cv.: cce:	s:	4.943-11.15 ur 15.83 um 250 5 um ²	n
d e:		7.556 um	Coef. N Skewn Kurtos	Var.: Iess: Is:	9.167 103.4	196.7% Right skewed Leptokurtic	
γ βiz e um	5.000 19.06	16.00 11.42	50.00 5.136	84.00 1.661		95.00 0.515	

maff.\$03 ·

tions from 0.10 um to 900.00 um

Ratio:	100.0% 8.782 um 4.943 <u>um</u> 1.777 7.556 um	95% C Std. D Varian Cocf. V Skewn Kurtos	onf. Limit ev.: ice: Var.: iess: ils:	s: 4.957-12.61 um 19.51 um 380.7 um ² 222.2% 7.878 Right skewed 73.31 Leptokurtic	
5.000 21.44	16.00 11.59	50.00 4.943	84.00 1.492	95.00 0.494	
	5.000 21.44	100.0% 8.782 um 4.943 <u>um</u> 1 Ratio: 1.777 7.556 um 5.000 16.00 21.44 11.59	100.0% 8.782 um 95% C 4.943 um <u>Std. D</u> 1 Ratio: 1.777 Varian 7.556 um <u>Cocf. V</u> Skewn Kurtos 5.000 16.00 50.00 21.44 11.59 4.943	100.0% 8.782 um 95% Conf. Limit 4.943 um Std. Dev.: 1 Ratio: 1.777 7.556 um Cocf. Var.: Skewness: Skewness: Kurtosis: 5.000 16.00 50.00 84.00 21.44 11.59 4.943 1.492	100.0% 8.782 um 95% Conf. Limits: 4.957-12.61 um 4.943 um Std. Dev.: 19.51 um 1.777 Variance: 380.7 um ² 7.556 um Coef. Var.: 222.2% Skewness: 7.878 Right skewed Kurtosis: 73.31 Leptokurtic 5.000 16.00 50.00 84.00 95.00 21.44 11.59 4.943 1.492 0.494

į. :

I CITTE CONTRACTOR OF CONTRACTOR

maff.\$05

n ame: nple ID: trator:	MAFF.905 LLF1 105Z DMT	Group ID: Run number:	MAFF 6
aments:	MAFF PROJECT : PLO513 DISPERSED IN CALGON		
rt ti me: np Speed:	10:37 29 Apr 1996 48	Run length:	60 Seconds
curation:	11%		
cal model:	Fraunhofer		
130	Fluid module		
ware:	1.50	Eirmware'	1 2 1 0

Volume Statistics (Arithmetic)

maff.\$05

.

lations from 0.10 um to 900.00 um

.

ne i: an: i/Media i:	n Ratio:	100.0% 15.40 um 6.251 um 2.463 9.065 um	95% C Std. D <u>Varian</u> Coef. V Skewn	conf. Limit cv.: icc: Var.: icss: its:	s: 2.982-27.82 um 63.35 um 401.4 um ² 411.4% 10.22 Right skewed 112.4 Leptokurtic
	5.000	16.00	50.00	84.00	95.00
េ បាកា	29.67	15.13	6.251	1.877	

COULTER^R LS Particle Size Analysis

10:52 29 Apr 1996

maff.\$06

File name: Sample ID:	MAFF.\$06 LLF1 1053	Group ID: Run number:	MAFF 7
Operator.	DMT		
Comments:	MAFF PROJECT : PL0513		
	DISPERSED IN CALGON		
Start time:	10:50 29 Apr 1996	Run lenath:	60 Seconds
Pump Speed:	48	· · · · · · · · · · · · · · · · · · ·	
Obscuration:	12%		
Optical model:	Fraunhofer		
LS 130	Fluid module		
Software:	1.50	Firmware:	1.3 1.8
			,

Volume Statistics (Arithmetic)

maff.\$06

Calculations from 0.10 um to 900.00 um

Volume		100.0%	•			
Mean:		10.23 um	95% C	onf. Limit	s:	4.507-15.96 um
median: Mean/Median Ratio: Mode:		5.412 um 1.891 8.276 um	Std. D	ev.:		29.22 um
			Variance: Coef Var			854.1 um ² 285 5%
			Skewn Kurtos	ess: ls:	11.91 185.6	Right skewed Leptokurtic
% >	5.000	16.00	50.00	84.00		95.00
Sizc um	24.35	12.01	5.412	1.631		0.510

: J:	MAFF.907 LLFI 1054	Group ID: Run number:	MAFF ช
S.	DMT MAFF PROJECT : PL0513		
-	DISPERSED IN CALGON 10:59 29 Apr 1996	Run length:	60 Seconds
e d:	48		
odel:	Fraunhofer		
	1.50	Firmware:	1.3 1.8

maff.\$07

6

Ē

£

ons from 0.10 um to 900.00 um

edi an	Ratio:	100.0% 11.52 u <u>m</u> 5.550 um 2.075 6.276 um	95% Co Std. Do Varian Co ct. V Skewn Kurtos	onf. Limit :v.: ce: /ar.: ess: is:	6: 13.05 221.6	4.432-18.60 ur 36.15 um 1307 um ² 313:9% Right skewed Leptokurtic	n
	5.000	16.00	50.00	84.00		95.00	
i mi	29.39	14.08	5.550	1.605	• .	0.507	

maff.\$08

File name: Sample ID: Operator:	MAFF.\$08 MFF1 961 DMT	Group ID: Run number:	MAFF 9
Comments:	MAFF PROJECT : PLO513 DISPERSED IN CALGON		
Start time: Pump Speed: Obscuration: Optical model:	11:23 29 Apr 1996 48 9% Fraunhofer	Run length:	61 Seconds
LS 130 Software:	Fluid module 1.50	Firmware:	1.3 1.8

Volume Statistics (Arithmetic)

maff.\$08

Calculations from 0.10 um to 900.00 um

ьнистекЯ со нашие вісе миліуятя

e

.

9

>

3

ş

Volume		100.0%			
Mean:		9.381 um	95 % C	onf. Limit	s: 5.288-13.47 um
Median:		4.859 um	Std. D	ev.:	20.88 um
Mcan/Media Mode:	n Ratio:	1.931 5.249 um	Varian Coef. ¹ Skewn Kurtos	ice: Var.: iess: ils:	436.1 um ² 222.6% 7.483 Right skewed 67.10 Leptokurtic
%>	5.000	16.00	50.00	84.00	95.00
Size um	26.51	12.29	4.859	1.402	0.486

 ${\sf R}^{R}$ LS Particle Size Analysis

11:35 29 Apr 1996

4. 2

maff.\$89

m e:	MAFF.\$09	Group ID:	MAFF
: ID:	LLf1 1289	Run number:	10
o r:	DMT		
:n ts:	MAFF PROJECT : PL0513		
	DISPERSED IN CALGON		
n e:	11:33 29 Apr 1996	Run length:	60 Seconds
peed:	48	-	
ation:	11%		
model:	Fraunhofer		
	Fluid module		
e:	1.50	Firmware:	1.3 1.8

Volume Statistics (Arithmetic)

maff.\$09

tions from 0.10 um to 900.00 um

: {ediar	n Ratio:	100.0% 11.80 um 5.962 um 1.979 9.065 um	95% C Std. D Varian Coef. V Skewn	onf. Limit ev.: ce: /ar.: ess:	s: 12.93	3.083-20.51 u 44.47 um 1977 um ² 376.9% Right skewed	m
			Kurtos	ls:	192.4	Leptokurtic	
	5.000	16.00	50.00	84.00		95.00	
um	23.05	13.05	5.962	2.051		0.612	

maff.\$10

Calculations from 0.10 um to 900.00 um

Volume Mean: Median:		100.0% 11.65 um 5.617 um	95% C Std. D	onf. Limits ev.:	: 3.768-19.54 um 40.22 um
Mean/Media Mode:	n Ratio:	2.074 8.276 um	Varian Cocf. Skewn Kurtos	ice: Var.: ness: 1 sis: 1	1618 um ² 345.2% 0.63 Right skewed 25.2 Leptokurtic
% > Sizc um	5.000 2 4.6 3	16.00 12.93	50.00 5.617	84.00 1.055	95.00 0.501

3

3

. }

Ĵ,

\$

÷

 $\frac{2}{2}$

:

D

1.50 00 1 10

File name:	MAFF.912	Group ID:	MAFF
Sample ID:	LLf1 1297	Run number:	13
Operator:	DMT	·	
Comments:	MAFF PROJECT : PL0513		
	DISPERSED IN CALGON		
Start time:	12:03 29 Apr 1996	Run length:	61 Seconds
Pump Speed:	48	5	
)bscuration:	11%		
)ptical model:	Fraunhofer		·
LS 130	Fluid module		
Goftware:	1.50	Firmware:	1.3 1.8

maff.\$12

alculations from 0.10 um to 900.00 um Volume 100.0% lean: 10.58 um 95% Conf. Limits: 6.817-14.34 um ...ledian: 6.579 um Std. Dev.: 19.18 um Mean/Median Ratio: 1.608 367.8 um² Variance: lode: 9.929 um Coef. Var.: 181.3% Skewness: 8.496 Right skewed Kurtosis: 96.69 Leptokurtic %> 5.000 16.00 50.00 84.00 95.00 Size um 28.46 15.40 6.579 2.040 0.611 ۰.

iame: ile ID: itor:	MAFF.\$13 JBs 1271 DMT	Group ID: Run number:	MAFF 14
nents:	MAFF PROJECT : PLO513 DISPERSED IN CALGON		
time: Speed:	12:12 29 Apr 1996 48	Run length:	60 Seconds
uration: al model:	9% Fraunhofer		
0	Fluid module		
are:	1.50	Firmware:	1.3 1.8

maff.\$13

ations from 0.10 um to 900.00 um

: Vedia	in Ratio:	100.0% 17.11 um 6.192 um 2.764 8.276 um	95% (Std. D Variar Coef. Skewr Kurtos	Conf. Limits: lev.: nce: Var.: ness: 9.7 sis: 106	5.098-29.13 u 61.30 um 3758 um ² 358.2% 34 Right skewed 5.5 Leptokurtic	ភា
	- 5:880	16:00	50.00	84.00	95.00	
um	44.02	18.20	6.192	1.856	0 617	

.... ; "

46.68 68 MUC 1881

		maff:\$14			
File name:	MAFF.\$14	Group ID:	MAFF		
Sample ID:	JBS 1215	Ruit humber.	15		
Operator:	DMT				
Comments:	MAFF PROJECT : PL0513				
Start time:	12.21 29 Apr 1996	Run length:	61 Seconds		
Start unic.	AQ	3			
Pump Specu.	102				
Obscuration:	10%				
Optical model:	Fraunhoter				
LŠ 130	Fluid module				
Software:	1.50	Firmware:	1.3 1.8		

Volume Statistics (Arithmetic)

maff.\$14

Calculations from 0.10 um to 900.00 um

.

BRUTHERR TO RATICLE DISE WARKERS

\$ •	Volume Mean: Median: Mean/Media Mode:	n Ratio:	100.0% 16.21 um 7.752 um 2.092 9.929 um	95% C Std. D Varian Coef. V Skewn Kurtos	onf. Limits: ev.: ce: Var.: ness: 6.5 sis: 56	9.706-22.72 33.20 um 1102 um ² 204.8% 69 Right skewed 55 Leptokurtic	UM
	%≻ Size um	5.000 52.10	16.00 22.98	50.00 7.752	84.00 2.315	95.00 0.681	

Ś

÷

15

|--|--|

matt.\$15)
-----------	---

amé: Ne ID:	MAFF.915 JBs 1354 (1354)	Group ID: Kun number:	MAFF 10
ator: nents: time: p Speed: uration:	DMT MAFF PROJECT : PLO513 DISPERSED IN CALGON 12:33 29 Apr 1996 48 11%	Run length:	60 Seconds
:al model: 30 √a re:	Fraunhoter Fluid module 1.50	Firmware:	1.3 1.8

maff.\$15

ulations from 0.10 um to 900.00 um

ime in: di an: an /Media r de:	n Ratio:	100.0% 15.89 um 6.681 um 2.378 -9.065 um	95% Co Std. De Variano Cocf. V Skewn Kurtos	onf. Limits :v.: ce: /ar .: ess: ls:	5.918 45.61	9.493-22.28 un 32.62 um 1064 um ² -205.3% Right skewed Leptokurtic	n
% > Jizc um	5.000 55.94	16.00 23.74	50.00 6.601	84.00 1.751		95.00 0.540	

- 化基本定义
ьнистемВ са нашси агсе визихия

¢

3

Ŷ

maff.\$16

MAFF.\$16	Group ID:	MAFF
FXd 1248	Run number:	17
DMT		
MAFF PROJECT : PL0513		
DISPERSED IN CALGON		
12:41 29 Apr 1996	Run length:	61 Seconds
48	J	
12%		
Fraunhofer		
Fluid module		
1.50	Firmware:	1.3 1.8
	MAFF.\$16 FXd 1248 DMT MAFF PROJECT : PLO513 DISPERSED IN CALGON 12:41 29 Apr 1996 48 12% Fraunhofer Fluid module 1.50	MAFF.\$16Group ID:FXd 1248Run number:DMTRun presserMAFF PROJECT : PLO513DISPERSED IN CALGON12:4129 Apr 1996Run length:4812%FraunhoferFiraunhoferFluid moduleFirmware:

Volume Statistics (Arithmetic)

maff.\$16

Calculations from 0.10 um to 900.00 um

Volume Mean: Median: Mean/Median Ratio: Mode:		100.0% 13.53 um 6.016 um 2.249	95% Conf. Limits: Std. Dev.: Variance:			3.364-23.69 um 51.85 um 26992
		9.065 um	Coef. Var.: Skewness: Kurtosis:		383.3% 11.89 Right skewed 158.1 Leptokurtic	
%> Size um	5.000 30.07	16.00 14.67	50.00 6.016	84.00 1.964		95.00 0.634

maff.\$17

name: nte iD:	MAFF.017 FXd 1252	Group ID: Run number:	MAFF 18
ator:	DMT		
ments:	MAFF PROJECT : PLOS13 DISPERSED IN CALGON		
time:	12:50 29 Apr 1996	Run length:	60 Seconds
p Speed:	48		
uration:	10%		
:al model:	Fraunhofer		
30	Fluid module		
va re:	× 1.50	Firmware:	1.5 1.8

Volume Statistics (Arithmetic)

maff.\$17

ulations from 0.10 um to 900.00 um

im e		100.0%		- of Limito	• 5 781-18 <i>A</i> 1 m	n
in: 12.10 um lian: 5.543 um in/Median Ratio: 2.182 le: 8.276 um		95% Com, Linnes. Std. Dev :		32.23 um		
		5.343 um 2.182 8.276 um	Variance: Coef. Var.: Skewness: 9.8 Kurtosis: 122		1039 um ² 266.4%	1
					9.841 Right skewed 122.6 Leptokurtic	
<	5 000	16.00	50.00	84.00	95.00	
ize um	34.46	15.70	5.543	1.538	0.493	

Volume Statistics (Arithmetic)

maff.\$18

Calculations from 0.10 um to 900.00 um

.....

4

Volume Mean: Median: Mean/Median Ratio: Mode:		100.0% 11.57 um 5.719 um 2.023	95% (Std. D	Conf. Limit ev.:	ts: 5.834-17.30 um 29.25 um
		8.276 um	Coef. Skewr Kurtos	ice: Var.: iess: iis:	855.6 um² 252.9% 10.14 Right skewed 140.0 Leptokurtic
% > Size um	5.000 32 .2 3	16.00 15.05	50.00 5.719	84.00 1.611	95.00 0.502

maff.\$19

12010-002-00

nme: le ID: tor:	MAFF.\$19 FS4 408 (FS4.408) DMT	Group ID: Run number:	MAFF ZU
ients: ime: Speed: ration:	MAFF PROJECT : PLO513 DISPERSED IN CALGON 13:11 29 Apr 1996 48 12%	Run length:	60 Seconds
il model:	Fraunhofer		
0	Fluid module		
Fre:	1.50	Firmware:	1.3 1.8

Volume Statistics (Arithmetic)

maff.\$19

tions from 0.10 um to 900.00 um

ii Aedian	Ratio:	100.0% 7.274 um 2.480 um 2.934 1.467 um	95% C Std. D Varian Coef. V Skewn Kurtos	onf. Limit ev.: ce: /ar.: less: is:	s: 5.830 42.11	4.096-10.45 u 16.22 um 262.9 um ² 222.9% Right skewed Leptokurtic	T
	5.000	16.00	50.00	84.00		95.00	
u m	28.07	10.00	2.480	0.754		0.369	

111

Volume Statistics (Arithmetic)

maff.\$23

 ϵ contains from 0.10 um to 900.00 um

Cime 100.0% fean: 4.064 um 95% fian: 2.129 um Std. fin/Median Ratio: 1.909 Varia fode: 1.928 um Coef Skev Kurte		100.0% 4.064 um 2.129 um	95% C Std. D	onf. Limit: ev.:	s: 2.372-5.757 um 8.633 um
		Varian Coef. V Skewn Kurtos	Variance: 74.5 Coef. Var.: 212 Skewness: 7.463 Right Kurtosis: 64.99 Lepto		
;>	5.000	16.00	50.00	84.00	95.00
_ize um	10.26	5.455	2.129	0.061	0.405

Isoproturon

Isoproturon

¥

ઝ Propiconazol 1

Isoproturon

•

Trifluralin

ł

,

Trifluralin

•.

•. •

,

t

•

Kd (sediment/water)

APPENDIX 3

.

Nominal 1 Litre samples

.

Sample Code:	SS conc	Sample Code:	SS conc	Sample Code:	SS conc
S406001	g/i	S406001	g/l	\$406001	g/l
First Event		Second Event		Second Event	······································
		1st part		2nd part	
FXd/427	0.062	BRN1/44	0.054	BRN1/185(6)	n.d
FXd/478	0.032	BRN1/80	0.057	BRN2/198	0.023
FXd/480	0.027	BRN1/86	0.121	BRN2/200	0.083
				BRN2/203	0.032
		BRN2/53	0.149		
MFs/407	1.246	BRN2/101	0.114	NAP1/145	0.012
MFs/409	0.544			NAP1/149	n.d
MFs/411	0.081	NAP1/17	0.191	NAP1/151	0.008
MFs/414	0.075	NAP1/20	0.159	NAP1/155	0.009
MFs/417	0.060	NAP1/23	0.227	NAP 1/159	0.014
MFs/468	0.073	NAP1/27			
		NAP1/58		NAP2/165	0.041
		NAP1/61		NAP2/169	0.018
				NAP2/171	0.024
				NAP2/174	0.019
				NAP2/179	0.020

. .

Nomina	100ml san	noles										
Sample Code	Wt. Foil +	Wt. Filters	Wt Sample +	Container Wt.	Sample Wt.	Wt Foil + Filter	Wt. dry Sedt.	Sedt. Concn.	Batch corr.n	Corr.d sed.t	Corr.d sed t	Sample Code
**95/1	Filters (g)	(g)	container (g)	(g)	(g)	& dry Sed.t	(g)	(g/l)	factor (g/filter)	dry wt. (g)	conc.n (g/l)	r-95/1
RM/95/												3M/95/
FXd/389	0.3128	0.0924	105.96	23.57	82.39	0.3568	0.0440	0.5340	0.0002	0.0442	0.5365	FXd/389
FXd/390	0.3185	0.0776	111.71	23.58	88.13	0.3483	0.0298	0.3381	0.0002	0.0300	0.3404	FXd/390
FXd/391	0.3059	0.0708	120.19	23.65	96.54	0.3446	0.0387	0.4009	0.0002	0.0389	0.4029	FXd/391
FXd/392	0.3167	0.0803	126.42	23.69	102.73	0.3359	0.0192	0,1869	0.0002	0.0194	0.1888	FXd/392
FXd/393	0.2838	0.0777	124,36	23.63	100.73	0.2907	0.0069	0.0685	0.0002	0.0071	0.0705	FXd/393
FXd/400 ?	0.3033	0.0864	108.23	23.71	84.52	0.3493	0.0460	0.5442	0.0002	0.0462	0.5466	FXd/400 ?
FXd/475	0.2957	0.0788	122.30	23.61	98.69	0.2974	0.0017	0.0172	0.0002	0.0019	0.0193	FXd/475
FXd/479	0.2906	0.0756	111.98	23.64	88.34	0.2923	0.0017	0.0192	0.0002	0.0019	0.0215	FXd/479
• FXd/481	0.2789	0.0785	69.91	23.63	46.28	0.2798	0.0009	0.0194	0.0002	0.0011	0.0238	• FXd/481
MFfd/516	0.2759	0.0754	118.53	23,73	94.80	0.2768	0.0009	0.0095	0.0003	0.0012	0.0127	MFfd/516
MFtd/517	0.3258	0.0736	95.68	23.64	72.04	0.3266	0.0009	0.0118	0.0003	0.0012	0.0160	MFId/517
MFtd/518	0.3321	0.0756	112.04	23.68	88.36	0.3337	0.0016	0.0181	0.0003	0,0019	0.0215	MFfd/518
MFs/405	0.3302	0.0728	106.71	23.60	83.11	0.36815	0.0380	0.4566	0.0003	0.0383	. 0.4602	MFs/405
MFs/406	0.3320	0.0798	128.86	23.72	105.14	0.3344	0.0024	0.0233	0.0003	0.0027	0.0262	MFs/406
MFS/408	0.2998	0.0722	114.01	23.68	90.33	0.3028	0.0030	0.0332	0.0003	0.0033	0.0365	MFs/408
MFs/410	0.3109	0.0703	102.97	23.68	79.29	0.3168	0.0059	0.0744	0.0003	0.0062	0.0782	MFs/410
MHS/412	0.3116	0.0788	121.76	23.65	98.11	0.3162	0.0046	0.0469	0.0003	0.0049	0.0499	MFs/412
MFs/416	0.3056	0.0796	125.34	23.69	101.65	0.3125	0.0070	0.0684	0.0003	0.0073	0.0713	MFs/416
MFs/467	0.2924	0.0784	114.38	23.64	90.74	0.2944	0.0020	0.0220	0.0003	0.0023	0.0253	MFs/467
LLd/436a	0.2942	0.0728	111.50	23.71	87.79	0.2983	0.0041	0.0467	0.0003	0.0044	0.0501	LLd/436a
	0 0000	2) 		_						3W/94
	0.3083	0.07/4	120.30	23,63	96.67	0.3076	0.0013	0.0134	0.0003	0.0016	0.0166	BRN1/5
	0.3041	0.0750	116.82	23.62	93.20	0.3055	0.0015	0.0156	0.0003	0.0018	0.0188	BRN1/6
	0.2996	0.0/48	117.66	23.58	94.08	0.30165	0.0021	0.0218	0.0003	0.0024	0.0250	BRN1/7
BHN1/10	0.2797	0.0738	117.77	23.64	94.13	0.28005	0.0004	0.0037	0.0003	0.0007	0.0069	BRN1/10
BRN2/8	0.2/48	0.0742	Blank	blank		0.2745	-0.0003		0.0003	0.0000		• BRN2/8
BHN2/9	0.2984	0.0738	116.98	23.63	93.35	0.3001	0.0017	0.0182	0.0003	0.0020	0.0214	BRN2/9
BRN2/15	0.2901	0.0738	118.14	23.69	94,45	0.2904	0.0003	0.0032	0.0003	0.0006	0.0064	BRN2/15
NAPI/I	0.28/5	0.0711	114.17	23.64	90.53	0,2983	0.0109	0.1198	0.0003	0.0112	0.1232	NAP1/1
NAP1/2	0.2768	0.0772	118.67	23.65	95.02	0.28565	0.0089	0.0931	0.0003	0.0092	0.0963	NAP1/2
NAP1/3	0.3027	0.0740	118.77	23.56	95.21	0.3107	0.0081	0.0845	0.0003	0.0084	0.0877	NAP1/3

			-	-		<u> </u>												_		- ω	ω	r		<u> </u>	. —	n	TT.		٦.
Dirak In	Blank4/d	Blank4/c	Blank4/b	Blank4/a			MFd/1420	MFd/1417	MFd/1389	MFd/1386	MFd/1383	MFd/1382	FXd/1373	FXd/1372	FXd/1370	FXd/1368	MFs/1351	MFs/1349	7M95/	RN(NAP)1/499	RN(NAP)1/498	NAP1/480	NAP1/479	NAP1/474	NAP1/468	3W95/	95/4/	Sample Code	Nomina
0 2072	0.3206	0.3194	0.3019	0.2863			0.2906	0.2868	0.3037	0.3141	0.3260	0.3055	0.3037	0.2922	0.2981	0.2998	0.3321	0.3154		0.3925	0.3122	0.2811	0.2834	0.3002	0.2871		Filters (g)	Wt. Foll +	l 100ml san
							0.0730	0.0661	0.0761	0.0925	0.0797	0.0852	0.0815	0.0787	0.0810	0.0798	0.0900	0.0794		0.1773	0.0778	0.0765	0.0766	0.0740	0.0689		(<u>6</u>)	Wt. Filters	npies
							120.14	117.27	123.54	131.17	125.63	125.61	116.77	116.68	114,49	118.09	104.03	112.08		124.41	123.19	123.33	123.75	122.22	118.81		container (g)	Wt Sample +	
							23.47	23.59	23.50	23.69	23.58	23.66	23.60	23.61	23.60	23.67	23.66	23.55		23.61	23.56	23.60	23.66	23.64	23.62		(g)	Container Wt.	
							96.67	93.68	100.04	107.48	102.05	101.95	93.17	93.07	90.89	94.42	80.37	88.53		100.80	99.63	99.73	100.09	98.58	95.19		(g)	Sample Wt.	
0.2969	0.3201	0.3191	0.3010	0.2853	1		0.2899	0.2859	0.3028	0.3140	0.3267	0.3044	0.3060	0.2975	0.2998	0.3053	0.3324	0.3162		0.2954	0.3142	0.2809	0.2836	0.3030	0.2885		& dry Sed.t	Wt Foil + Filter	
-0.0003	-0.0005	-0.0003	-0.0009	-0.001	wt change		-0.0007	-0.0009	-0.0009	-0.0001	0.0007	-0.0011	0.0023	0.0053	0.0017	0.0055	0.0003	0.0008		-0.0971	0.0020	-0.0002	0.0002	0.0028	0.0014		(g)	Wt. dry Sedt.	
		0.00058		factor	mean correction		-0.0072	-0.0096	-0.0090	-0.0009	0.0069	-0.0108	0.0247	0.0569	0.0187	0.0583	0.0037	0.0090		-0.9633	0.0201	-0.0020	0.0020	0.0284	0.0147		(g/l)	Sedt. Concn.	
		0.00031			sd		0.00058	0.00058	0.00058	0.0003	0.00058	0.00058	0.00058	0.00058	0.00058	0.00058	0.0003	0.00058		0.00058	0.00058	0.00058	0.00058	0.00058	0.00058		factor (g/filter)	Batch corr.n	
							-0.0001	-0.0003	-0.0003	0.0002	0.0013	-0.0005	0.0029	0.0059	0.0023	0.0061	0.0006	0.0014		-0.0965	0.0026	0.0004	0.0008	0.0034	0.0020		dry wt. (g)	Corr.d sed.t	
							-0.0012	-0.0034	-0.0032	0.0019	0.0125	-0.0051	0.0309	0.0632	0.0251	0.0644	0.0075	0.0156	•••	-0.8575	0.0259	0.0036	0.0078	0.0343	0.0208		conc.n (g/l)	Corr.d sed.t	
Riank4/a	Alank4/d	Blank4/c	Blank4/b	Blank4/a			MFd/1420	MFd/1417	MFd/1389	MFd/1386	MFd/1383	MFd/1382	FXd/1373	FXd/1372	FXd/1370	FXd/1368	MFs/1351	MFs/1349	RM95/	BRN(NAP)1/49	BRN(NAP)1/49	NAP1/480	NAP1/479	NAP1/474	NAP1/468	BW95/	**95/4/	Sample Code	

.

	Isoproturon			Trifluralin			Flutriafol		
Sample name	Water Concn	Corrected Conc.n	K _d Isoproturon	Water Concn	Corrected Conc.n	Ka Trifluralin	Water Concn	Corrected Conc.n	K d Flutriafol
	lên	In Sed.t ug/kg	[sed]/[wat]	ngn	in Sed.t ug/kg	[sed][wat]	<i>l</i> ∕ðn	in Sed.t ug/kg	[sedV[wat]
BRN1/185	0.3139	n.d	?	0.0000	n.d	?	0.0496	n.d	<u>،</u>
BRN2/198	2.5965	n.d	?	0.0000	0.00	~>	0.0422	887.68	21032.6
BRN2/200	8.7679	n.d	~2	0.0000	0.00	?	0.0588	227.59	3870.6
BRN2/203	4.7939	n.d	7	0.0000	0.00	~?	0.0277	399.36	14442.3
NAP1/145	16.6799	n.d	?	0.0124	n.d	?	0,1397	n.d	~
NAP1/151	45.7065	1539.48	33.6817	0.0143	n.d	7	0.2092	247.50	1183.2
NAP 1/155	55.3145	n.d	?	0.0253	n.d	?	0.1989	83.22	418.3
NAP1/159	63.6119	n.d	?	0.0344	252.67	7355.7	0.2006	171.65	855.9
NAP2/165	2.9269	n.d	?	0.0000	0.00	~ ?	0.1194	65.70	550.0
NAP2/169	3.2553	n.d	?	0.0097	n.d	~>	0.1577	89.78	569,3
NAP2/171	2,9907	n.d	ç	0.0000	0.00	?	0.2011	208.39	1036.2
NAP2/174	1.4211	n.đ	?	0.0000	0.00	?	0.1921	433.82	2257.9
NAP2/179	3.8861	n.d	?	0.0000	272.48	?	0.1353	299.17	2211.1
	Propiconazol 1			Propiconizol 2					ł
Sample name	Water Concn	Corrected Conc.n	K _d Isoproturon	Water Concn	Corrected Conc.n	Ka Trifluralin			
	hôn	in Sed.t ug/kg	[sed]/[wat]	ugh	in Sed.t ug/kg	[sed]/[wat]			
BRN1/185	0	0.00	~>	0	0.00	~			
BRN2/198	0	0.00	~>	0	0.00	?			
BRN2/200	0	0.00	··	0	0.00	~>			
BRN2/203	0	0.00	·~)	0	0.00	~>			
NAP1/145	0	0.00	~>	0	0.00	~>			
NAP1/151	0	0.00	~	0	0.00	~>			
NAP1/155	0	0.00	~>	0	0.00	~>			
NAP1/159	0	0.00	->	0	0.00	÷			
NAP2/165	0	0.00	?	0	0.00				
NAP2/169	0	0.00	7	0	0,00	~>			
NAP2/171	0	0.00	Ŷ	0	0.00	?			
NAP2/174	0	0.00	?	0	0.00	2			
NAP2/179	0	0.00	?	0	0.00	7			

,

Natural Environment Research Council

¥.

 \cap

ł

ŧ