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The effect of Mediterranean exchange flow on European time
mean sea level
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1School of Environmental Sciences, University of Liverpool, Liverpool, UK, 2National Oceanography Centre, Liverpool, UK,
3School of Geographical Sciences, University of Bristol, Bristol, UK

Abstract Using a suite of ocean model simulations and a set of dedicated twin experiments, we show
that the exchange flow between the Mediterranean and the North Atlantic leads to a drop in time mean
European coastal sea level along the Atlantic coast north of Gibraltar. The drop is about 7 cm along the
Portuguese coast and remains apparent (though reduced) as far north as the Norwegian coast. We also
show that Mediterranean time and spatial mean sea level is about 9 cm lower than it would be without
the exchange flow (but assuming a small supply from the Atlantic to balance evaporation). Each of these
relationships makes possible an estimate of the magnitude of the exchange flow based on sea level
measurements, and estimates of 0.8 and 0.91 sverdrups are made consistent with previous determinations
based mainly on current measurements in the Strait of Gibraltar.

1. Introduction
The slope in mean sea level along the coast is subject to stronger constraints than that in open ocean
regions. The zero-order balance in the open ocean is geostrophic balance, in which sea level variations (after
correction for the inverse barometer effect) are associated with a flow perpendicular to the sea level gradi-
ent. There can, however, be no mean flow perpendicular to the coast, so the zero-order balance would imply
that there is no sea level slope along the coast. Any such coastal sea level slope must therefore result from
ageostrophic processes. As a result, simple analytical models [e.g., Johnson and Marshall, 2002; Huang, 1988]
tend to assume that sea level is constant along eastern boundaries, while being formulated in a way which
avoids the more complex question of dynamics near western boundaries. Alternatively, Godfrey [1988] and
Godfrey and Dunn [2010] assume a balance between the wind-driven Ekman transport into the coast and a
balancing geostrophic flow away, which suggests that the wind stress controls the eastern boundary slope
of depth-integrated dynamic topography, though not directly sea level. However, this assumes an ocean
with vertical sidewalls, thus ignoring the possibility of eastern boundary currents, which are known to rep-
resent an important component of the temporal variability of coastal sea level [Bingham and Hughes, 2012;
Calafat et al., 2012].

In reality, the eastern boundary sea level is certainly not level, although it shows a smaller range than that
which is observed in deep water near to western boundaries, which can exceed 1 m between tropical and
subpolar latitudes. In fact, both observations and models show a drop of about 35–45 cm between a high
near the equator and lows at higher latitudes, in both the Pacific and Atlantic oceans [Woodworth et al.,
2012]. As we consider the impact of future climate change on coastal flooding, we need to understand the
origin of this slope, and the ability of models to maintain it. This is necessary if we are to have confidence
that models used in climate projections can give useful information about the boundary response to ocean
warming and circulation changes. Furthermore, if we consider the eastern boundary to form the boundary
condition with respect to which the open ocean transport can be found by a Sverdrup balance integral, as
has been found to work well for low to middle latitudes [Wunsch, 2011; Gray and Riser, 2014; Thomas et al.,
2014], the eastern boundary sea level slope may also have important implications for the ocean’s general
circulation and its transport of heat and tracers.

A particular exception to the geostrophic constraint, in the case of the eastern Atlantic, is the exchange
with the Mediterranean through the Strait of Gibraltar at approximately 36◦N. Water can flow through this
gap in the eastern boundary, permitting the formation of a step in eastern boundary sea level between the
southern side in Morocco and the northern side in Spain. The Strait is less than 15 km across at its narrowest,
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Table 1. Ocean Models Used and Their Main Characteristics

Label Heritage Run Resolution (deg) Grid Reference

GECCO MITgcm 1 × 1 C, no Arctic Köhl and Stammer [2008]
Occq OCCAM 202 1∕4 × 1∕4 B, rotated Atlantic Marsh et al. [2008]
Occ12 OCCAM 401 1∕12 × 1∕12 B, rotated Atlantic Marsh et al. [2009]
Nemoq OPA N206 1∕4 × 1∕4 C, tripolar ORCA Blaker et al. [2014]
Nemo12 OPA N001 1∕12 × 1∕12 C, tripolar ORCA Blaker et al. [2014]
Livc MITgcm 1 × 1 C, no Arctic Williams et al. [2014]
Livst MITgcm 1∕5 × 1∕6 a Cb, no Arctic Woodworth et al. [2012]
Livnd MITgcm 1∕5 × 1∕6 a Cb, no Arctic This study
Livwd MITgcm 1∕5 × 1∕6 a C, no Arctic This study

aIn the North Atlantic, elsewhere spreads gradually to 1 × 1.
bOnly one grid point in the Strait, other models have two grid points.

or less than a seventh of a degree of latitude, with a sill depth of about 280 m, making it poorly resolved in
even the best of global ocean models.

The circulation in the Strait is a complicated exchange flow, with hydraulic control being modulated by
strong barotropic and internal tidal currents [Armi and Farmer, 1985; Farmer and Armi, 1989]. The mean flow
is into the Mediterranean near the surface and out at depth. Estimates of the exchange transport range from
0.72 to 1.2 Sv (1 Sv = 1 sverdrup = 106 m3 s−1), with strong evaporation over the Mediterranean leading
to the outflow being some 4–7% smaller than the inflow [Criado-Aldeanueva et al., 2012]. In one set of
measurements, Tsimplis and Bryden [2000] found that the mean exchange interface depth lies at 147 m,
although the mean flow reverses direction at a shallower depth of about 127 m. This difference reflects the
importance of tidal correlations between flow and interface depth, which in their calculation account for
over 40% of the exchange flow, a value consistent with observations of transport by internal waves some
distance into the Mediterranean [Kinder, 1984], though it is unlikely that such a large wave transport also
occurs on the Atlantic side of the Strait as internal tides there are much more linear [Morozov et al., 2002].

We can estimate the sea level signal associated with this inflow if we assume that the depth-integrated
transport is given by the surface flow multiplied by a depth H, which would typically be somewhat smaller
than the exchange interface depth because the flow must decrease as it approaches that depth. Taking,
for example, H = 100 m, geostrophic balance then leads to a total transport T = (𝜂S − 𝜂N)(gH∕f ), where
𝜂S and 𝜂N are sea level (inverse barometer corrected) to the south and north of the Strait, respectively, g is
acceleration due to gravity, and f is the Coriolis parameter at 36◦N. Substituting values for g, H, and f , this
leads to (𝜂S − 𝜂N)∕T = 8.75 cm Sv−1. In other words, a 1 Sv inflow would lead to eastern boundary sea
level being 8.75 cm lower on the Spanish and Portuguese coast than on the Moroccan coast. This represents
a substantial fraction of the total eastern boundary sea level fall between the equator and high latitudes.
This step in sea level would be smaller for a larger effective depth H, or if a substantial part of the exchange
resulted from tidal correlations rather than appearing in the Eulerian mean.

The purpose of this paper is to look at how coastal sea level is influenced by the Mediterranean exchange
flow, by investigating the representation of this step in sea level in a variety of global ocean models. We find
a strong relationship between the step and the exchange transport across a group of nine ocean models,
an associated drop in Mediterranean mean sea level compared to the North Atlantic, and an influence on
coastal sea level which extends thousands of kilometers northward along the coast. We show that these
relationships are consistent with sea level observations if the exchange flow is within a few tenths of a
sverdrup of 0.85 Sv, consistent with previous determinations.

2. Model Intercomparison

We have assembled results from nine ocean models, with resolution ranging from 1◦ to (1/12)◦. All have
a representation of the Strait of Gibraltar, together with an exchange flow, but the Strait is at most two
grid points wide (and in two cases is only one grid point, precluding any geostrophic balance in the Strait
itself ). The models encompass both B-grid and C-grid horizontal discretizations and include free-running
simulations, runs with relaxation of the density field (the “Liv” models), and one run (GECCO) which assimi-
lates multiple ocean observations. The salient properties of the different models are summarized in Table 1.
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Transports and sea levels were averaged over a common 5 year period, 1996–2000 inclusive, except in the
case of three comparison runs (labeled Livst, Livnd, and Livwd in the table), which represent 1 year averages.

Sea level fields from the models were first regridded onto a common, quarter-degree grid, using a simple
nearest grid point scheme. The coast was identified using quarter-degree averages of the General Bathy-
metric Chart of the Oceans bathymetry [IHO IOC and BODC, 2003], and any ocean points not initially filled by
the regridding scheme were filled by an iterative method which fills missing points with the average of sur-
rounding valid ocean points. All points neighboring the continental eastern boundary of the Atlantic were
identified (excluding the Mediterranean Sea, and following the western coast of the British mainland at the
latitudes of the North Sea, as this was found to produce cleaner curves), and profiles of eastern boundary
sea level were extracted. A vertical offset was applied to make the mean eastern boundary value over the
latitude range 30–35◦N equal to zero. The resulting sea level profiles are plotted in Figure 1a.

The 30–35◦N reference range was chosen to show clearly the wide range of steps at the latitude of the Strait
of Gibraltar, and it is clear that the variation in size of this step is responsible for a large part of the overall
variation between models. Using a reference region south of 20◦N (Figure S1 in the supporting information),
the models show good agreement on the profile over practically all the African coast south of about 24◦N,
demonstrating a degree of robustness in representing the process controlling boundary slopes in this
region. However, they diverge dramatically farther to the north.

For these nine models, we have also determined the strength of the Mediterranean inflow, integrated down
to the depth at which the mean flow reverses (the models do not have tides, and we find little sensitivity
to using a time-dependent reversal depth). There is a strong correlation of 0.97 (p = 1.2 × 10−5) between
this transport and the difference between southern and northern sea level, averaged along the eastern
boundary over latitude bands 30◦N to 35◦N and 37.5◦N to 42.5◦N, respectively (the two grey bands in
Figure 1a). The relationship is shown in Figure 1b, together with the best-fitting linear relationship. This
includes a positive offset, consistent with the general poleward fall in sea level which may be seen in most
regions away from the Strait, and a gradient of 7.9 cm Sv−1, which would correspond to an effective current
depth H = 112 m in the simple calculation given above. It is clear that the size of the step at the Strait is
strongly determined by the strength of the Mediterranean exchange transport.

The impression given by the curves in Figure 1a is that the step at Gibraltar influences sea level everywhere
to the north of the Strait. However, there are many other factors distinguishing the models, and it is
impossible to isolate the Mediterranean exchange flow from other influences as the distance from the Strait
increases. In order to address this point, we have performed a set of model runs which are identical except
for the geometry of the Strait.

3. Twin Experiments

Two of the model runs in Table 1 (Livc and Livst), which have very different exchange flows, were
performed as part of investigations into the dynamics of North Atlantic heat content and sea level changes
[Williams et al., 2014; Woodworth et al., 2012] and represent a method of calculating fields in dynamic
equilibrium with the density field produced by a Met Office analysis of historical temperature and salinity
measurements [Smith and Murphy, 2007]. For this purpose, the best compromise between allowing time
for dynamical adjustment and preventing the model from drifting too far from the input data was found
to involve initialising with the annual mean temperature and salinity analysis, running for 13 months while
maintaining a relaxation to the initial fields with a 3 year time constant, and calculating the average over
months 2–13.

Livc model run was run at coarse resolution (1◦) but had an artificially widened Strait of Gibraltar to allow
there to be two grid points across the Strait. Livst represented a similar run, but at (1∕5 × 1∕6)◦ (longitude
× latitude) resolution in the North Atlantic, and with no special consideration given to the Strait, with the
result that it was represented by a single grid point with depth of only 135 m, and permitted only a small
exchange flow, as seen in Figure 1b. In order to address purely the question of the geometry of the Strait,
two runs twinned with Livst were performed: Livnd (narrow, deep) in which the depth in the Strait was
increased to 260 m and Livwd (wide, deep) in which the deeper Strait was extended to two grid points wide.
These runs were otherwise identical to Livst. It is clear from Figure 1b that including two grid points was the
key to producing a realistic exchange flow.
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Figure 1. (a) Mean sea level measurements extracted from nine ocean models (colors), one observational product (thick
black line), and tide gauges (thin black line with diamonds), showing profiles of coastal sea level along the eastern
boundary of the Atlantic, excluding the Mediterranean and North Sea, aligned to have zero mean over the latitude
range marked by the left-hand grey band. The Strait of Gibraltar is highlighted with a vertical line. (b) The sea level step
across the Strait, determined by the differences of averages over the two grey bands in Figure 1a, plotted as a function
of Mediterranean exchange transport in the models. (c) Difference between sea level averaged over the Mediterranean
and over a region of the tropical North Atlantic (see text) as a function of model exchange transport. Black crosses in
Figures 1b and 1c represent observational estimates, based on heights from this study (Archiving, Validation, and
Interpretation of Satellite Oceanographic data (AVISO) data), and transport estimates listed in Criado-Aldeanueva
et al. [2012].

Comparing the Livst and Livwd model runs therefore allows us to isolate the effect of a change in just the
Strait of Gibraltar. The resulting difference in sea level, normalized to represent the effect of a 1 Sv increase in
the Mediterranean inflow (assuming a linear response), is shown in Figure 2a (the models are quasi-global,
but changes are very small outside the area shown). The response is confined mainly to the Mediterranean
and to the continental shelf and slope farther north, although it extends some distance into the deep ocean
west of Portugal. The coastal response north of Gibraltar decreases from almost 8 cm Sv−1 immediately
north of the Strait, to about 3 cm Sv−1 on the west coast of Great Britain, and less than 2 cm Sv−1 along the
Norwegian coast.
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Figure 2. (a) The sea level change which would result from a 1 Sv Mediterranean exchange flow, from a twin experiment run for 13 months as described in the
text. (b) As for Figure 1a, but for the Mediterranean coast, plotted as a function of anticlockwise distance from the Strait of Gibraltar, as marked by white circles
in Figure 2a.

In addition to the coastal sea level drop north of the Strait, the twin experiment also highlights a fall in
Mediterranean mean sea level when an exchange flow is present. In this particular case, the Mediterranean
area mean sea level falls by 9.0 cm per sverdrup of exchange flow (the falls in Mediterranean and coastal
European sea level are balanced by a near-uniform far-field global rise of 0.082 cm Sv−1). The models with
a significant exchange flow also consistently show Mediterranean coastal sea level to be lower than that
in the nearby Atlantic (Figure 2b), suggesting a correlation across the nine models between the exchange
flow and Mediterranean mean sea level measured relative to an appropriate North Atlantic reference region.
Since information propagates northward along the continental slope and westward from the boundary into
the interior (faster at lower latitudes), it makes dynamical sense for this reference region to be in the eastern
basin, south of the Strait. Choosing for reference the triangular region north of 10◦N and south of a line
connecting (10◦N, 45◦W) and (25◦N, 15◦W), we find a correlation of −0.94 (Figure 1c). A linear regression
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based on these points yields a Mediterranean response of −10.7 cm Sv−1, similar to that seen in the twin
experiment. Although this triangular region was chosen for the high correlation it produced, we found
correlations stronger than −0.9 to be robust to the choice of reference region, considering the entire basin
east of 30◦W and a variety of latitude ranges between the equator and 25◦N.

4. Comparison With Observed Sea Level

Given a good global map of sea level (by which we mean inverse barometer-corrected mean dynamic
topography), the model relationships suggest two ways of using sea level to calculate the strength of
Mediterranean exchange flow: using either the step in sea level between the African and European eastern
Atlantic coasts or the difference between mean sea level in the Mediterranean and averaged over a
region of the North Atlantic. Accordingly, we consider a 1996–2000 5 year average of the Duacs-2014
(V15.0) reprocessing of gridded satellite altimetry data from AVISO (http://www.aviso.altimetry.fr/), which
incorporates geoid information from the Gravity field and steady-state Ocean Circulation Explorer (GOCE)
satellite gravity mission. We use daily fields of the all-satellite, delayed processing, merged absolute dynamic
topography product on the same quarter-degree grid as used for the model data. The black line without
symbols in Figures 1a and 2b shows the coastal profile from this product, and the black crosses in Figures 1b
and 1c show the corresponding coastal step and Mediterranean minus Atlantic sea level, together with the
eight estimates of Mediterranean inflow summarized by Criado-Aldeanueva et al. [2012]. The black lines in
Figures 1a and 2b show generally good agreement with the models, although the step at Gibraltar is spread
out so that its step-like nature is not apparent (there may be a similar, spread-out step at about 25◦N, just
south of the Canaries; spreading of the steps at the coast may be expected from the need for extra
smoothing of satellite-derived geoid data near ocean boundaries). There are also suggestions of different
behavior north of about 44◦N (the north coast of Spain). The observed Gibraltar step suggests an exchange
flow of about 0.8 Sv. A formal fit based on the model data gives a transport of 0.80 ± 0.15 Sv (one standard
deviation statistical error). Similarly, applying the model fit for exchange transport on sea level difference
between the Mediterranean and the southeastern North Atlantic, the observed sea level predicts a transport
of 0.91± 0.20 Sv. Both observational measures are therefore consistent with a Mediterranean exchange flow
within the 0.72–1.2 Sv spread of in situ observational estimates.

Since altimetry and geoid measurements become less reliable near the coast, it is also worthwhile to look at
the coastal dynamic topography based on tide gauge measurements. The ellipsoidal heights of tide gauge
datums have been determined for 113 tide gauges around the North Atlantic and the Mediterranean. Mean
sea surface heights for these gauges have been determined using data from the Permanent Service for
Mean Sea Level [Holgate et al., 2013]. These were adjusted for the inverse barometer effect using air pres-
sure information from the National Centers for Environmental Prediction-National Center for Atmospheric
Research reanalyses [Kistler et al., 2001] and converted to mean dynamic topographies by subtracting the
TUM2013C geoid [Fecher et al., 2014] extended beyond spherical harmonic degree 720 with the EGM2008
coefficients [Pavlis et al., 2012]. Tide gauge measurements within 1993–2012 were employed, adjusted to
the epoch 1996–2000 using nearby satellite altimetry data. More detailed information on the methodology
of this calculation is given by [Woodworth et al., 2012], and a discussion of the Mediterranean tide gauge
analysis and Mediterranean mean dynamic topography can be found in P. L. Woodworth et al. (The Mean
Dynamic Topography of the Mediterranean Sea, submitted to Journal of Geodesy, 2014).

A vertical offset was applied to the tide gauge dynamic topography so that it can be treated as being mea-
sured relative to the 30–35◦N eastern boundary average, in the same way as the model data in Figures 1a
and 2b. In the absence of any tide gauges in this reference region, this was achieved by aligning the average
of the tide gauge data with the model and observational data at the same 113 points. The alignment was
made to an average of the AVISO data and the two Nemo models, since these three data sets were found to
agree best with the spatial variations in dynamic topography from the tide gauges, the two Nemo models
being the only ones to agree better with the tide gauges than the AVISO data. Root-mean-square differences
relative to the tide gauges were 8.5 cm for AVISO, 8.4 cm for Nemo12, and 7.8 cm for Nemoq, reducing to
7.3 cm for the mean of all three, and to below 5 cm if the 10 largest outliers are then successively removed.
The full tide gauge set, following application of the vertical offset, is summarized in Figure S2. This allowed
us to plot the tide gauge data (diamonds) in Figures 1a and 2b, with meaningful absolute values, for the
subset of tide gauges which lie along the particular coasts depicted in the figures.
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Although the tide gauge data are somewhat noisy, particularly on the Mediterranean coasts of North Africa,
Israel, and Turkey, they are good enough to confirm the general picture of a Mediterranean level signifi-
cantly lower than the European coastal sea level and suggest that the AVISO data north of Spain (about
43◦N) may be somewhat lower than the true coastal sea level, which would then be more in line with most
of the model predictions.

5. Discussion

While the relationship between exchange flow and the sea level drop between African and European coasts
can be anticipated in a straightforward manner from geostrophic balance, the drop in Mediterranean mean
sea level exposed by the twin experiment is a more subtle matter. It was first suggested more than 40 years
ago, when Levallois and Maillard [1970] used the results of leveling, together with tide gauge records from
1950, to identify a 15 cm sea level fall between Cádiz (Atlantic coast) and Málaga (north Mediterranean
coast). Such a fall is actually predicted by invoking hydraulically controlled flow through the Strait; assuming
a state of maximal exchange producing a 1.1 Sv exchange flow, Bormans and Garrett [1989] predicted a sea
level drop on entering the Mediterranean of 10 cm along a central streamline, and a drop of 21 cm along
the northern boundary. Garrett et al. [1989] argue that tide gauge measurements suggest a maximal flow in
the year 1981–1982, and Timmermans and Pratt [2005] support their argument for October 1984. However,
later papers [Garrett et al., 1990; Ross et al., 2000] argue for an alternation between maximal and submaximal
flow, the latter resulting in a much smaller midstream sea level fall. There are, therefore, theoretical
arguments to support a difference between Mediterranean and Atlantic mean sea level of size similar to
that which is observed. At seasonal and shorter timescales the fluctuations in Mediterranean mean sea level
are clearly controlled by atmospheric pressure and wind stress changes, heat fluxes, and freshwater fluxes
[Fukumori et al., 2007].

The strong relationship between exchange transport and Mediterranean mean sea level, seen across nine
very different models, combined with the reasonable transport predicted by comparing this relationship to
sea level measurements, suggests that it may be a robust relationship. However, all of the models may be
considered to be very low resolution in the Strait of Gibraltar. It might be possible to relate the exchange
flow to the sea level drop using integral arguments which hold irrespective of resolution, but this cannot
be guaranteed.

Another issue worth addressing is the relatively short length of model runs in the twin experiment. The
runs are long enough for boundary waves, with speeds of 1 m s−1 or faster, to propagate round the entire
North Atlantic basin. On longer time scales, the Mediterranean exchange flow is known to influence
regions far from the eastern boundary. For example, the Azores current, a zonal jet which flows east
to the Mediterranean from about 37◦W, is known to take about 5 years to develop in response to the
Mediterranean exchange flow [Volkov and Fu, 2010; Jia, 2000; Özgökmen et al., 2001]. The early stages
of development of this current can be seen in Figure 2a, although the final current has a much stronger
central jet of around 10 Sv transport, with only about 1 Sv entering the Mediterranean while the remainder
recirculates in nearby counterjets driven by instability of the central current and in deeper flows as water is
entrained by the Mediterranean overflow water [Volkov and Fu, 2010].

In our case, short model runs are necessary to avoid the confounding influence of sensitivity to eddy
variability, which develops after approximately a year. An expensive ensemble run, beyond the scope of this
study, would be necessary to separate the deterministic results of a changed Mediterranean flow from the
stochastic changes due to perturbation of instabilities. However, we did investigate this issue by extending
the Livwd model run to 5 years. By the fifth year, significant sea level differences were seen globally
(including as far away as the tropical Pacific). On the Atlantic eastern boundary, we found that the sea level
drop at the Strait penetrated farther north, with the Livwd line (pink) in Figure 1a shifting down between
about 43◦N and 58◦N so that it almost covered the Livc line (pale green), despite an 11% drop in the
Mediterranean exchange flow. However, the interior Atlantic changes degraded the fit between exchange
flow and Mediterranean minus southeast Atlantic sea level, and we would caution against overinterpreta-
tion of this single, eddying model run.
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6. Conclusions

Model comparisons have led to the identification of two mean sea level signals associated with the
Mediterranean exchange flow through the Strait of Gibraltar: a step in sea level between the European
and African coasts, and a lowering of the Mediterranean as a whole. Using measured sea level, these two
relationships both lead to reasonable estimates for the exchange flow. Considering a central estimate of
0.85 Sv, the linear relationships shown in Figure 1 would mean the Mediterranean mean sea level is 9.1 cm
lower and Portuguese coastal sea level is 6.7 cm lower than they would have been without such a flow
(although there is a lower bound on the inward flow necessary to balance the net evaporation over the
Mediterranean). Twin experiments suggest that the sea level step across the Strait of Gibraltar influences sea
level along European coasts as far north as Norway, to an extent which decays with distance from Gibraltar.
It is possible that, on longer time scales, this northern influence decays more gradually with distance from
the Strait.

The large influence of the Mediterranean exchange flow highlights the importance of its representation in
models if they are to be used to understand Atlantic eastern boundary mean sea level. Such understanding
is a prerequisite for building trust in projections of long-term coastal sea level change. European coastal sea
level variability on decadal time scales is dominated by a response to integrated longshore wind stress with
typical amplitudes of 3–5 cm [Calafat et al., 2012], but this is the longest time scale on which we can use
time series observations from tide gauges and altimetry to test models. The spatial pattern of mean sea level
gives access to a method for investigating the longer time scale processes responsible for maintaining the
decimeter-scale alongshore slopes which exist in the mean.
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