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Abstract 

The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern 

England, were monitored at hourly interval between January 2010 and December 2011.  The 

relationships between these high-frequency nutrient concentration signals and flow were used to infer 

changes in nutrient source and dynamics through the annual cycle and each individual storm event, by 

studying hysteresis patterns.  TRP concentrations exhibited strong dilution patterns with increasing 

flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment 

being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related 

inputs from sewage treatment works (STW) for the majority of the year, producing the highest 

phosphorus concentrations through the spring-summer growing season.  At higher river flows, the 

majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed 

sediment, much of which was also derived from STW inputs.  Therefore, future phosphorus 
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mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only 

evident during storms in the May of each year, probably relating to manure application to land.  The 

nitrate concentration-flow relationship produced a series of dilution curves, indicating major inputs 

from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with 

anticlockwise hysteresis trajectories were observed during the first major storms of the winter period.  

The simultaneous investigation of high-frequency time series data, concentration-flow relationships 

and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and 

innovative approach for providing new insights into nutrient sources and dynamics. 

Key words 

Point source, Diffuse source, Hysteresis, Nutrient dynamics, Eutrophication, Source tracking.  

1 Introduction 

Reducing the concentrations of the major plant nutrients, phosphorus (P) and nitrogen (N), is often 

considered the principal means of delivering improved ecological status of rivers.  It is a key 

requirement for complying with national and international environmental legislation, such as the 

European Union’s Water Framework Directive (CEC., 2000) and nutrient criteria in the USA (Evans-

White et al., 2013).  Accurate apportionment of P and N inputs from sewage treatment works (STW) 

and from agricultural and other diffuse catchment sources is a vital component in combating the 

eutrophication of rivers, estuaries and coastal waters in a cost-effective manner (Withers et al., 2009).  

Characterising these nutrient source inputs is complex, given seasonal variations in the hydrological 

stores and pathways, and the superimposed storm event responses.  The effects that these changing 

source inputs have on river nutrient concentrations are further complicated by complex and rapid 

within-river nutrient dynamics and chemical and biological retention/release processes (Bowes and 

House, 2001; Jarvie et al., 2012) and these also need to be understood to allow effective catchment 

management (Jarvie et al., 2013).   
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Water quality time series data provide a principal means of investigating river nutrient source 

dynamics.  Many chemical and physical parameters, such as pH, dissolved oxygen, turbidity and river 

flow, have been widely available at near-continuous monitoring interval for many decades, owing to 

the availability of in situ probes. However, nutrient concentration data have traditionally relied on 

laboratory assays and relatively low temporal resolutions; typically with monthly or at best weekly 

sampling interval, or daily or storm event data for short durations.  Sampling at low (weekly or 

longer) frequency fails to capture many of the complex and potentially rapid changes in river nutrient 

signals linked to hydrological and in-stream biogeochemical drivers (Bowes et al., 2009b; Halliday et 

al., 2012; Kirchner et al., 2004), and often results in large errors in load estimations due to missing 

intermittent high or low nutrient concentrations during storm events (Bowes et al., 2009b; Johnes, 

2007; Rozemeijer et al., 2010).  Over the last decade, technological advances in auto-analyser and 

probe design have allowed high-frequency long-term nutrient concentration data to be produced for 

the first time, giving new insights into riverine P and N dynamics and sources (Bieroza et al., 2014; 

Bowes et al., 2012b; Gkritzalis-Papadopoulos et al., 2012; Jordan et al., 2007; Palmer-Felgate et al., 

2008; Rozemeijer et al., 2010; Wade et al., 2012).  This monitoring has revealed the presence of 

diurnal nutrient cycling, and rapid concentration changes through individual storm events (Bowes et 

al., 2012b; Jordan et al., 2005; Palmer-Felgate et al., 2008; Wade et al., 2012).   

The coupling of nutrient concentration and river flow data has been successfully used in recent years 

to develop two separate approaches for inferring nutrient source inputs: nutrient concentration-flow 

relationships and hysteresis studies.  Although the input data is the same (paired nutrient 

concentration and flow data), the two approaches are subtly different.  Nutrient concentration–flow 

relationships (usually at weekly temporal resolution) have been used in previous studies to infer the 

relative nutrient contributions to the river from constant and rain-related inputs (Bowes et al., 2014), 

using the Load Apportionment Modelling approach (Bowes et al., 2008; Bowes et al., 2009a; Chen et 

al., 2013; Greene et al., 2011; Jarvie et al., 2012; Jarvie et al., 2010).  A river dominated by constant 

nutrient inputs (largely equivalent to STW effluent inputs in the UK) will form a dilution curve with 

negative gradient as flow increases.  Conversely, a river dominated by rain-related inputs (equating to 
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agricultural and septic tank inputs and within-channel mobilisation) will have an increasing nutrient 

load and/or concentration with increasing flow (Jordan et al., 2007; Wood et al., 2005).  Therefore, 

these fundamental differences in the concentration-flow relationship can be used to infer nutrient 

source inputs.  To date, nutrient concentration-flow relationship studies have largely been limited to 

applications with weekly nutrient data, which is only capable of providing information on seasonal 

inputs.  High-frequency nutrient concentration and flow data also allow hysteresis effects during 

individual storm events to be observed.  Hysteresis studies examine the differences in nutrient 

concentrations on the rising and falling limb of the storm hydrograph.  If nutrient concentrations are 

greater on the rising limb, this produces a clockwise loop in the concentration / flow relationship, 

indicating that the nutrient load is being transported rapidly to the monitoring point.  Conversely, 

anticlockwise loops are produced when highest nutrient concentrations are observed on the falling 

limb of the storm hydrograph, indicating a slower delivery to the river monitoring point. This 

approach has yielded valuable information on potential nutrient source inputs to the river, based on 

how fast the nutrients are delivered in response to rainfall, and whether sources are adjacent to or 

distant from the monitoring site (Bowes et al., 2005a; Bowes et al., 2009b; Ide et al., 2008; Stutter et 

al., 2008).   

The aim of this study was to generate high-frequency nutrient concentration and flow data to 

investigate the changing sources of P and nitrate (NO3) to the River Enborne in response to short-term 

weather-induced variations throughout a two year monitoring period.  This data set has been 

examined in previous studies, which have highlighted the complex nature of the nutrient signals in 

response to changes in flow, and the presence of diurnal nutrient cycles at low flows (Halliday et al., 

2014; Wade et al., 2012). The aim of this paper is to increase our understanding of these complexities 

by the simultaneous application of three data interpretation methodologies; analysis of traditional 

high-frequency time series data, concentration-flow relationships and hysteresis behaviour through all 

storm events for both phosphorus and nitrate.  The simultaneous application of these three 

methodologies to this high-frequency data set provides a novel approach to providing new insights 
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into the sources and timings of nutrient inputs at different temporal resolutions: annually, seasonally, 

monthly and during individual storm events.  

1.1 Study area 

The River Enborne is a small tributary of the River Kennet; a major tributary of the River Thames in 

southern England (Figure 1).  The River Enborne has a catchment area of 148 km
2
 and a total length 

of approximately 30 km.  Most of the rivers of the western Thames basin region are groundwater–

dominated Chalk rivers, but much of the Enborne catchment is underlain by a layer of low 

permeability Tertiary clays (Evans and Johnes, 2004), which means that the river is much more 

hydrologically responsive to rainfall, with a base flow index of 0.54 (Marsh and Hannaford, 2008).  

The Enborne catchment is relatively rural, being mainly comprised of arable (39 %) improved 

grassland (27 %) and woodland (23%). Only 6.5 % of the land cover is designated as urban or semi-

urban development (Fuller et al., 2002), which is mainly around the outskirts of Newbury and the 

town of Kingsclere.  The total population within the catchment was approximately 18,000 people, 

with a density of 123 people km
-2

. This was much lower than the average of 450 people km
-2

 in 

southern England (excluding London) (Halliday et al., 2014) and the 960 people km
-2

 in the entire 

Thames basin (Merrett, 2007).   There are five STWs in the catchment, with a total population 

equivalent (PE) of 11360. The largest STW serve the villages around the  Wash Common area (PE = 

7000), Kingsclere (PE = 2500) and Greenham Common (PE = 1700) (Halliday et al., 2014). The 

mean annual rainfall and river flow at Brimpton for the period 1967 to 1995 is 810 mm and 1.33 m
3
 s

-

1
 respectively (Marsh and Hannaford, 2008).   The high-frequency water quality monitoring station 

was sited near the village of Brimpton (British National Grid: SU569649) in the lower part of the 

catchment, a few km from the confluence with the River Kennet at the village of Aldermaston (Figure 

1).  The monitoring station was established as part of the LIMPIDS project (Wade et al., 2012).  River 

flow data at 15 minute resolution was measured at the adjacent Environment Agency flow gauging 

station, and data was supplied through the Centre for Ecology’s National River Flow Archive.  More 
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detailed descriptions of the River Enborne catchment are given elsewhere (Evans and Johnes, 2004; 

Halliday et al., 2014; Wade et al., 2012). 

2 Methods 

2.1 Chemical analysis 

2.1.1 High-frequency automated nutrient analysis 

High frequency monitoring was carried out within a heated and insulated monitoring station adjacent 

to the River Enborne near Brimpton (Figure 1). The data used in this study were gathered between 

January 2010 and December 2011. A detailed description of the monitoring facility and instruments 

are given elsewhere (Halliday et al., 2014; Wade et al., 2012), and so only a brief overview will be 

presented here. In situ hourly P analysis was carried out using a Systea Micromac C autosampler / 

analyser (Systea S.P.A., Anagni, Italy).  This instrument measured the total reactive phosphorus 

(TRP) concentrations of an unfiltered river water sample, using the molybdate-blue colorimetric 

methodology of Murphy and Riley (1962).  To avoid problems of instrument drift the instrument 

auto-calibrated once per day using a certified quality control standard.  The limit of detection (LOD) 

was 25 µg P L
-1

.  NO3 concentration was measured at hourly interval by ultraviolet absorption using a 

Nitratax Plus probe (Hach Lange GmbH, Düsseldorf, Germany) (LOD = 0.07 mg N / L
-1

).  The NO3 

and TRP data were validated against laboratory-based analytical data from weekly manual samples. A 

full statistical assessment of the quality of the high-frequency data compared against the traditional 

laboratory data is given in Halliday et al. (2014). 

2.1.2 Laboratory analysis of manual samples 

Water samples were taken from the main flow of the River Enborne at Brimpton at weekly intervals 

throughout the two year monitoring period, as part of the Centre for Ecology and Hydrology’s 

Thames Initiative research platform (Bowes et al., 2012a).  These data were used to investigate P and 
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N speciation in the River Enborne and also to validate the automated high-frequency data sets.  

Soluble reactive phosphorus (SRP) and TRP were determined spectrophotometrically by the 

phosphomolybdenum-blue complexation of a filtered and unfiltered water sample respectively 

(Murphy and Riley, 1962).  Total phosphorus (TP) and total dissolved phosphorus (TDP) 

concentrations were determined by acid-persulphate digestion of unfiltered and filtered water samples 

respectively, followed by complexation using acidified ammonium molybdate (Eisenreich et al., 

1975).  NO3 and nitrite concentrations were determined by ion chromatography (Dionex DX500).  

Ammonium and dissolved reactive silicon (Si) concentrations were also determined by 

spectrophotometry, using the methods of Krom (1980) and Mullin and Riley (1955). Total dissolved 

nitrogen (TDN) and dissolved organic carbon concentrations were determined by thermal oxidation. 

All samples were run alongside external quality control standards (LGC, Bury, UK).  Full details of 

the analytical methods used in this study are given in Neal et al. (2012).   

2.2 Characterisation of hysteresis trajectories 

There were 36 distinct storm events identified from the River Enborne hydrograph throughout the 

two-year monitoring period (Figure 2).  Through the high flow months (December to April) within the 

monitoring period, all events resulting in a > 60% increase in flow were selected.  During the low 

flow periods (May to November), events resulting in a > 40% increase in flow were selected, as these 

events were preceded by long periods of dry weather, and therefore more likely to make important 

contributions to nutrient inputs.  The TRP and NO3 concentrations through each of these storm events 

were investigated for the presence of hysteresis patterns.  Hystereses in the concentration-flow 

relationships are often observed during storm events, i.e. the concentration of a determinand, at a 

given river flow, is different on the rising and falling limb of a hydrograph (Hall, 1970). When 

plotted, such concentration/flow relationships result in ‘‘loop trajectories’’, with a clockwise 

hysteresis loop produced when the concentration is higher on the rising limb of the hydrograph, and 

an anticlockwise loop when the concentration is higher on the falling limb.  The high-frequency TRP 

and NO3 concentration data were plotted against river flow for each of the individual storm events, to 
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determine the direction of the hysteresis trajectory (clockwise, anticlockwise, no hysteresis or a more 

complex pattern).  The size of the loop trajectories were quantified by determining the difference in 

concentration on the rising and falling limbs of the hydrograph, at the midpoint river discharge of the 

storm peak (Lawler et al., 2006). 

3 Results and Discussion 

3.1 Nutrient concentrations  

3.1.1 Phosphorus 

The high-frequency TRP concentration data for the River Enborne at Brimpton are presented in 

Figure 2(a), with accompanying rainfall and river flow data.  The average TRP concentration 

throughout the two year monitoring period was 178 µg P l
-1

 (based on 13343 observations) (Table 1), 

which means that the River Enborne is classified as eutrophic (Dodds et al., 1998).  Similar mean SRP 

concentrations for the River Enborne were observed at the Brimpton study site between 1998 to 2000 

(Evans and Johnes, 2004), indicating that there has been no improvements in water quality over this 

time.  Weekly water quality monitoring data throughout 2010 and 2011 demonstrated that 67% of the 

TP load was in a soluble reactive form (Table 1).  Mean TRP concentrations were on average 17% 

higher than SRP concentrations, indicating the presence of a significant particulate-bound reactive P 

fraction in the River Enborne. 

TRP concentrations followed a clear annual cycle throughout the monitoring period (Figure 2), with 

lowest TRP concentrations through the January to May period, followed by a steady increase from 

May to August.  The highest TRP concentrations of approximately 590 µg l
-1

 occurred during August 

and October 2010, at times of very low flow (<0.25 m
3
 s

-1
).  The lowest TRP concentrations of <10 

µg l
-1

 occurred in early March 2010, and are likely to be due to biological uptake at the onset of the 

spring  diatom bloom that occurred in many rivers across the Thames basin at that time, as indicated 

by increases in chlorophyll concentration and decreases in dissolved reactive silicon concentrations 
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(Bowes et al., 2012a).  Weekly water quality monitoring data from the River Enborne at Brimpton 

showed reductions in dissolved reactive silicon concentrations of approximately 3.5 mg Si l
-1

 during 

March 2010 and 2011, compared to concentrations of approximately 8 mg Si l
-1

 during the winter 

months.  This seasonal pattern appears to be principally driven by the hydrology, with high TRP 

concentrations coinciding with low flow periods in summer and autumn, and low TRP concentrations 

during the high flow winter and spring periods, indicative of dilution of dominant point sources.  For 

the River Enborne, these point sources will mainly consist of STW inputs (Halliday et al., 2014)The 

impact of hydrology is further confirmed by the sudden short-term reductions in TRP concentration 

that coincide with short periods of rainfall during the summer periods, as shown during storm peaks 

16, 18 and 19 in 2010 and peaks 29 and 30 in 2011 (Figure 2(d)).  Conversely, some of the smaller 

storm events (peaks 13, 14, 21 and 33) caused sudden increases in TRP concentration.  This 

demonstrates the complex nature of phosphorus dynamics that are operating within this catchment, 

which can only be observed and investigated when high temporal resolution data are available.   

3.1.2 Nitrogen 

The total dissolved nitrogen (TDN) load of the River Enborne was predominantly present in the form 

of nitrate (90 %), with nitrite and ammonium contributing only 0.5 % and 1.3 % of the average TDN 

load respectively, based on the weekly water quality data (Table 1).  The high-frequency NO3 

concentrations throughout the monitoring period were less variable than TRP, ranging from maximum 

concentrations of 6.24 mg N l
-1

 NO3–N through the late spring and summer periods, and falling to 

between 2 and 4 mg N l
-1

 in the winter months, with an average concentration of 4.0 mg N L
-1

 (from a 

total of 15752 data points).  Again, there is a clear hydrological effect, with sudden reductions in NO3 

concentration coinciding with periods of intensive rainfall, particularly during storm 16, 19, 29, 30 

and 33 (Figure 2(d)).  There was close agreement between the high-frequency nitrate data and the 

nitrate concentrations of the accompanying weekly manual samples analysed by standard laboratory 

assays (Figure 2(b)), showing that the Hach Lange Nitratax probe was producing high quality, 
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accurate data throughout the monitoring period. A full statistical assessment of the quality of this data 

against the traditional laboratory analysis is given in Halliday et al. (2014).   

3.2 Nutrient concentration-flow relationships 

3.2.1 Total reactive phosphorus  

The TRP concentrations in the River Enborne throughout the two year monitoring period 

demonstrated a clear relationship with flow (Figure 3(a)).  Highest TRP concentrations occurred at 

low flows, with all concentrations greater than 300 µg P l
-1

 occurring at flows less than 2.1 m
3
 s

-1
.   

These high TRP concentrations decreased rapidly with increasing flows, producing a dilution curve.  

The lowest TRP concentrations occurred at flows ranging from 2 to 3.5 m
3
 s

-1
.   These data points 

coincide with high chlorophyll concentrations and low silicon concentrations, indicating they were 

due to biological uptake by biofilms.  At flows above 2.5 m
3
 s

-1
, TRP concentrations were consistently 

between 30 and 100 µg P l
-1

.     Similar P concentration-flow relationships were observed in the River 

Enborne in the late 1990s (Evans and Johnes, 2004), and at multiple sites along the River Thames  

and many of its tributaries since 2009 (Bowes et al., 2014).  These relationships are indicative of 

mixed urban / rural catchments with dominant point source inputs from STW (Bowes et al., 2010; 

Bowes et al., 2008; Bowes et al., 2009a; Jarvie et al., 2006; Jordan et al., 2007).   

The vast majority of TRP data points conformed to this well defined pattern with flow.  However, 

there were some data points at higher than expected TRP concentrations for a given river flow.  Many 

of these (at flows less than 2.5 m
3
 s

-1
) are probably either due to analytical noise and short term errors 

with the Systea TRP analyser or flow gauging data, or possibly due to localized, short term pollution 

incidents that were not related to rainfall (Jordan et al., 2005).  At flows greater than 2.5 m
3
 s

-1
, these 

higher, “non-conforming” TRP concentrations were all associated with hysteresis patterns during 

storm events (Figure 3(a)).  The largest deviations from the standard TRP / flow pattern occurred 

during flow peaks 16, 19, 22 and 26 (Figure 2(d)), which were all storm events following long periods 
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of dry antecedent conditions, indicating that there had been a build up of a transportable TRP supply 

within the catchment during these dry periods, followed by flushing during the subsequent storms.      

3.2.2 Nitrate 

The relationship between NO3-N concentration and flow was more complex than that of TRP.  Again, 

the highest concentrations occurred at the lowest flows, with almost all NO3–N concentrations greater 

than 5 mg N l
-1

 occurring at flows less than 1 m
3
 s

-1 
(Figure 3b).  There was a pronounced series of 

dilution curves with increasing flow, reducing the NO3 concentration to below 3 mg N l
-1

 as flow 

increased to above approximately 4 m
3
 s

-1
.  Some of these dilution curves were directly related to 

individual large storm events (peaks 1 and 8; Figure 2d).  These reductions in NO3 concentration with 

increasing flow suggest that rainfall events were diluting a relatively constant input of NO3. The rate 

of dilution was much less than for TRP concentration, and produced a series of curves, rather than the 

single dilution curve observed in the TRP concentration/flow relationship.  These observations 

suggest that there are multiple sources of NO3 that are being diluted by storm events, some of which 

are constant (e.g. STW inputs) and others that continually supply NO3 through the annual cycle, but at 

a rate that varies with river flow and rainfall (e.g. groundwater inputs) (Halliday et al., 2014).  The 

relationship is further complicated by varying rates of diffuse inputs and exhaustion of catchment 

supply through different storm events at different times of the year.    

Another characteristic of the NO3 concentration-flow relationship for the River Enborne was the 

cluster of low NO3 concentrations (< 3 mg N l
-1

) at very low river flow (< 1 m
3
 s

-1
) (Figure 3(b)).  

These data points occurred throughout the annual cycle, and so are unlikely to be due principally to 

within-stream biological processes such as bioaccumulation and denitrification.  This data cluster was 

almost entirely comprised of data points that occurred during small storm peaks during low flow 

periods (storm peaks 16, 21, 29, 31, 32 and 33; Figure 2d), and following dry antecedent conditions.  

This suggests that the rainfall associated with these small flow peaks was sufficient to dilute the NO3 

concentration in the river (potentially from low-NO3 concentration sources such as direct precipitation 
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to the river and run-off from roads and paved areas) , without mobilising and transporting the nitrate 

stores within the catchment.  This is probably related to the dry soil conditions preceding these storms 

minimising rates of overland flow and through-flow as the catchment begins to wet-up, and this will 

thereby minimise diffuse nitrate inputs.  This is further supported by the lack of river flow response 

following some of the most intensive rainfall events observed through the monitoring period, 

particularly associated with storm peaks 16, 29 and 31.   

In contrast, there were four major hysteresis loops that did not conform to the regular dilution patterns 

observed through the majority of the annual cycle.  These hysteresis loops occurred during some of 

the largest storm events observed throughout the monitoring period (peaks 1, 22, 24 and 34; Figures 

2a and 3b).  This indicates that it is only these major storm events that were able to mobilise and 

transport significant quantities of catchment-stored diffuse nitrate to the river, relative to the STW 

inputs.  

3.3 Seasonal and monthly changes in nutrient sources 

3.3.1 Total reactive phosphorus 

The seasonal patterns in the TRP concentration-river flow relationship are given in Figure S.1.  The 

large quantity of data generated by the hourly monitoring frequency also allowed TRP concentration / 

flow relationships to be investigated at monthly resolution (Figure 4).  During the summer periods 

(June to August 2010 and 2011), constant non-flow-related inputs dominated the TRP load, with over 

98% of all data points following a clear dilution curve pattern (Figure S.1).  STW P inputs were 

therefore clearly dominant throughout this summer period.  When river flows increased above 0.7 m
3
 

s
-1

 in August 2010 and 2011 (Figure 4), the TRP concentrations deviated from this dilution curve, 

indicating the input of rain-related P, potentially from diffuse catchment sources and within-channel P 

remobilisation in response to minor storm events.  However, these data represented less than 2% of 

the total observations throughout this period, producing a maximum concentration of 350 µg TRP l
-1

, 

compared to a maximum of 577 µg TRP l
-1

 during the periods of lowest flow.  
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The rainfall-related diffuse signal increased through the autumn (Figure 4; Figure S.1), in response to 

the increasing magnitude of the flow peaks that occurred in October and November 2010 and 

November 2011 (Figure 4).  However, the majority of the data points were still on the dilution curve, 

indicating a continued dominance from constant source STW inputs for the majority of the time.   

During the winter and spring periods, diffuse TRP sources began to dominate the inputs to the river.  

During the winter periods, TRP concentration changed little as flows increased above approximately 

1.5 m
3
 s

-1
, remaining between 30 and 110 µg P l

-1
 (particularly in January and February 2010 and 

January 2011; Figure 4).  This suggests that the additional water entering the river during these storm 

events (through through-flow and overland flow) was a similar TRP concentration to that in the river, 

due to it mobilising diffuse phosphorus sources from the catchment.  Also, the input of low-P-

concentration rainwater would reduce the soluble P concentration in the river, and this could promote 

the release of particulate-bound P from the bed-sediment into the overlying water column (Bowes and 

House, 2001; House, 2003).  The shift in this sediment–water equilibrium would explain why TRP 

concentrations are relatively constant with increasing flow during this period.   

During the spring period, (particularly March and April 2010), the TRP concentrations again 

remained relatively constant, irrespective of flow (Figure S.1; Figure 4), indicating diffuse source 

inputs from the catchment and within-channel remobilisation.  The variation in TRP concentration in 

spring was higher than observed during the winter period, due to some significant storm events 

causing increases in TRP concentration, and a short-term decrease in TRP concentration due to 

biological uptake during a diatom bloom (with dissolved reactive silicon concentrations falling by 

25% (Bowes et al., 2012a)), both of which occurred in March 2010 (Figure 4).  However, even during 

the winter and spring periods, all of the highest observed TRP concentrations (>300 µg P l
-1

) occurred 

at low river flows (less than 1.2 m
3
 s

-1
), and clear dilution curves were produced. This indicated that 

constant, non-rain-related input of TRP were still an extremely important source to the river, and the 

most likely source of these constant inputs in the Enborne catchment will be from STW effluent.  
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In a previous study, Load Apportionment Modelling of weekly total phosphorus concentrations at 

Brimpton estimated that 68% of the P load in the River Enborne came from rain-related diffuse 

sources (Bowes et al., In press).  However, the seasonal and monthly TRP patterns clearly show that, 

even in this predominantly rural catchment with relatively low population density for southern 

England, there is a major dominance of constant STW P inputs at low flows, particularly through the 

ecologically-sensitive late spring to early autumn period (Figure 4) when the risk of algal blooms is at 

its greatest (Jarvie et al., 2006).  In the winter to early spring period, there is an increase in rain-related 

diffuse inputs, but there continues to be a clear point source signal, and the highest TRP 

concentrations still occur at the lowest flows at all times of the year.  Introducing improved P removal 

at STW within the catchment would therefore be the most effective way of improving water quality 

and ecological status of the River Enborne, as it would reduce peak TRP concentrations during the 

growing period.  These monthly TRP concentration-flow relationships highlight that P source inputs 

are controlled primarily by rainfall and river flow, rather than changes in land use (e.g. crop type, 

vegetation cover) and management (e.g. manure and fertiliser application) through the annual cycle.   

3.3.2 Nitrate  

NO3 concentrations during the winter months remained relatively constant in response to increasing 

river flows (Figure 4, Figure S.2).  The data clearly formed a series of distinct trajectories for 

individual storm events.  Some storms resulted in an increase in concentration with increasing flow 

(January and December 2011; Figure 4) indicating that the storm water was mobilising significant 

diffuse N load from the catchment, potentially via through-flow or overland flow.  This diffuse storm 

water input must have had a higher NO3 concentration than the river water prior to the storm.  This 

large quantity of NO3 input to the river probably related to the dry antecedent conditions that existed 

prior to these particular storm events, allowing significant quantities of N to accumulate within the 

floodplain.  The other winter storm events produced trajectories that remained at relatively constant 

NO3 concentrations through each particular storm (January 2010; Figure 4), indicating that the diffuse 

input must be approximately the same concentration as the river water of the River Enborne at the 
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time (approximately 3 mg N l
-1

).  In the subsequent months to April 2010, the NO3 concentration-flow 

relationships became progressively more negative in gradient, indicating that diffuse sources of 

catchment N were probably becoming depleted through the winter to spring period (Figure 4; Figure 

S.2).  From the late spring to early autumn of both years, there were no significant flow peaks, and the 

NO3 concentrations consistently formed dilution curves for each month, indicating a dominance of 

constant inputs (Figure 4).  For the River Enborne, these constant NO3 sources equate to both STW 

effluent inputs and groundwater sources.  In October and November 2010, and August and November 

2011, small flow peaks caused a marked increase in river NO3 concentration with increasing flow, 

again indicating the mobilising of the large store of NO3 that had accumulated across the catchment 

through the dry antecedent conditions. 

The highest NO3 concentrations occurred between April and October of each year, during low flow 

periods, indicating a dominance of constant, non-rain-related inputs.  Some of the lowest 

concentrations also occurred during these low-flow periods.  Almost all of these low concentration 

data points were associated with minor storm events (Peaks 16, 21, 29, 31, 32 and 33; Figures 2 and 

3), which implies that these events dilute the NO3 load in the river without mobilising any substantial 

diffuse NO3 inputs from the catchment, and it is this rainwater input that is diluting the NO3 

concentration in the river.    

3.4 Changes in nutrient concentrations through individual storm 

events 

The nutrient concentration-flow hysteresis patterns through all 36 storms are given in Table 2 and 

Figure 5, with an example of typical TRP and NO3 hysteresis trajectories given in Figure S.3.  

3.4.1 Total reactive phosphorus hystereses 

TRP concentrations produced clockwise hystereses for 21 of the 30 storm peaks that had 

accompanying P data (i.e. TRP concentration was greater on the rising limb of the hydrograph than at 
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the same flow on the falling limb of the hydrograph).  Previous studies of lowland UK rivers have 

also observed a general predominance of clockwise P hysteresis (Bowes et al., 2005a; House and 

Warwick, 1998; Jordan et al., 2005; Stutter et al., 2008).  Most of the largest storm events tended to 

produce clockwise trajectories, but the largest clockwise loop trajectories usually occurred following 

periods of relatively dry conditions (August 2010 and January 2011; Figure 5).  The predominantly 

clockwise trajectories indicated that TRP sources in the River Enborne were rapidly mobilised and 

transported to the monitoring site during storm events.  Potential sources would include near-channel 

stored phosphorus along the river channel margins (in the form of septic tanks, animal faeces, 

soil/bank erosion and dead organic material) that would be intercepted, entrained and delivered to the 

channel as water levels rise through a storm event.  Field drains would also potentially provide a rapid 

route of P inputs to the river.  Another significant potential source of rapidly mobilised TRP would 

include phosphorus that had been stored within the bed sediment of the river, and was entrained into 

the water column as flow velocity increased through the storm event (Bowes and House, 2001; Jarvie 

et al., 2012).  Many of the largest clockwise hysteresis storm events (Peaks 10, 16, 19, 22 and 26; 

Figure 2) were responsible for producing the scatter in the TRP concentration-flow relationship 

(Figure 3), suggesting that most of this additional P producing the scatter is due to these rapidly-

mobilised P sources.   

The series of storm events from December 2010 to March 2011 shows a transition from large 

clockwise loops during the early storms, to decreasing clockwise loop trajectories in January and 

February, and by the end of February, the final storm event did not produce a hysteresis pattern.  

Similar trends through a series of storm events have been observed in previous studies (Bowes et al., 

2005a; Stutter et al., 2008), and been attributed to a gradual depletion of these rapidly-mobilised, 

within-channel and near-channel P sources.  Only four anticlockwise TRP hysteresis loops were 

observed during the two year monitoring period, and were all associated with relatively small storm 

events with a maximum river flow of < 3 m
3
 s

-1
 (Table 2, Figure 5).  Anticlockwise trajectories occur 

when the P load through the storm event is dominated by TRP sources that are slow to reach the 

monitoring site, implying that these sources may be some distance from the river channel.  Potential 
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sources are diffuse agricultural inputs from throughflow and overland flow, derived from the wider 

catchment.  Three of the four anticlockwise hysteresis patterns occurred in May, and could be 

potentially related to fertiliser and slurry applications that occur during this period across the UK 

(Figure 6). 

3.4.2 Nitrate hystereses 

The NO3 hysteresis patterns were also predominantly clockwise in trajectory, accounting for 21 of the 

36 storm events monitored (Table 2; Figure 5).  All of these clockwise trajectories were associated 

with relatively small storm events (with maximum flows ≤ 7.5 m
3
 s

-1
).  They occurred throughout the 

annual cycle, but were more common during the summer periods.  All nine storm events during the 

relatively dry May to December 2010 period produced clockwise hysteresis patterns.  The largest 

clockwise hysteresis trajectories occurred between May and November, following long periods of dry 

antecedent conditions.  Clockwise hysteresis indicates a rapid delivery of nitrate to the river in 

response to rainfall, and in a catchment such as the River Enborne, potential sources of this rapidly-

mobilised N could be from mobilisation along river margins and delivery through field drains.  

However, half of these storms produced hysteresis trajectories with negative gradients, indicating that 

the storm events were primarily diluting the nitrate concentration in the river. 

Only six of the 36 storm events produced anticlockwise NO3 hysteresis trajectories.  These all 

occurred between November and January, and tended to be associated with large storm events with 

flows ≥7.5 m
3
 s

-1
.  Four of the five largest storm events during the monitoring period produced 

anticlockwise hysteresis patterns.  This indicates that slowly-mobilised catchment-wide diffuse 

sources only become dominant during these large storm events (particularly after the catchment has 

started to wet-up through the winter period) (Figure 6).  This input of large quantities of additional 

catchment-wide nitrate to the river system creates most of the “non-conforming” data from the nitrate 

concentration-flow relationship, shown in Figure 3, with peaks 1, 22, 24 and 34 all producing large 

anticlockwise hysteresis trajectories.  Nine of the 36 storm events produced either no hysteresis, or 

complex, multi-loop trajectories.  This suggests that the NO3 loading to the River Enborne is more 
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complex than for phosphorus, probably due to the significant and complex role that NO3-rich Chalk 

groundwater plays (Neal et al., 2002a), in combination with the rapid, lower nitrate concentration 

surface run-off from the impervious Tertiary clays of the catchment.    

3.5 Synthesis of approaches 

Generating this high-frequency dataset has allowed nutrient sources to be simultaneously investigated 

using three different approaches.  Firstly, the raw time series data provides background information 

about seasonality and response to rainfall (Figure 2), which can be directly compared with other time 

series (such as chlorophyll or dissolved silicon concentration) to identify periods of nutrient depletion 

due to biological productivity (Figure 6).  Secondly, when combined with high-frequency river flow 

data, the resulting concentration-flow relationship provided information on the relative inputs of 

nutrient sources, based on whether their delivery is constant or related to rainfall.  The vast quantity of 

data generated in this study has allowed the nutrient concentration-flow relationship to be further 

investigated at higher temporal resolution, both seasonally (Figure S.1; Figure S.2), and, for the first 

time, down to a monthly resolution (Figure 4). Thirdly, the hourly chemistry and associated flow data 

allowed changes in nutrient concentration to be investigated through each individual storm event, and 

the interpretation of the hysteresis trajectories provided detailed information on the speed of 

mobilisation and delivery of the nutrient sources to the monitoring site.  These three approaches 

provide subtly different interpretations, and when brought together, can provide new understanding of 

nutrient sources and catchment management guidance. 

3.5.1 Phosphorus sources 

TRP concentrations show a clear seasonal pattern.  This appears to be driven by rainfall and river flow 

rather than short term variations in land use, as months with similar flow range produce almost 

identical concentration-flow relationships, irrespective of the time of year (e.g. August and October 

2010; May and December 2010; Figure 4). The presence of clear dilution curves through the seasons 

shows that constant sources of P dominate for the majority of the annual cycle, producing the highest 

observed TRP concentrations.  The only plausible source of these constant inputs in the River 
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Enborne is from sewage effluent from its five STW and, to a lesser extent, septic tank discharges 

direct to the watercourse (Figure 6).  Similar conclusions of sewage dominance in the River Enborne 

have also been deduced from examining the diurnal patterns in TRP concentration (Halliday et al., 

2014).  Relatively constant TRP inputs from groundwater will be negligible, due to low P 

concentrations in the Chalk groundwater matrix, resulting from the co-precipitation of P with CaCO3 

within the Chalk aquifer (Bowes et al., 2005b; Neal et al., 2002b).  However, the annual TRP 

concentration-flow relationship also showed that a significant proportion of the TRP load was derived 

from rain-related inputs (Figure 3).  This could be from inwash of diffuse agricultural pollution from 

across the entire catchment, via through-flow, overland flow, shallow groundwater flow, field drains 

and direct entrainment of nutrients along the river margins, along with septic tank inputs and 

mobilisation of P from river bed sediment.  However, the hysteresis study has shown that storm 

events produced predominantly clockwise hysteresis throughout the year (Figure 5), which means that 

the rain-related sources are being rapidly delivered to the monitoring site.  This strongly suggests that 

the majority of the rain-related load can only be derived from sources that are predominantly rapidly 

transported, such as field drains, river margins and bed-sediment mobilisation, and not via 

predominantly slower delivery routes such as through-flow, or from distant parts of the catchment.   

3.5.2 Nitrate sources 

The NO3 concentration-flow relationship was more complex, consisting of a series of dilution curves 

(Figure S.2).  This indicated a major continual input from constant (STW effluent) and relatively-

constant (groundwater) sources.  The rate of ‘constant’ input varied with rainfall, producing this series 

of dilution curves, which strongly suggests that it is groundwater, rather than STW effluents, 

providing the major load input to the River Enborne.  Similar conclusions have been reached based on 

mass-balance studies of the River Enborne catchment (Halliday et al., 2014), and many previous 

studies of Chalk catchments in southern England have shown the high concentrations of nitrate 

groundwater contamination (Jarvie et al., 2005; Smith et al., 2010).  Most of the smaller storm events 

produced clockwise hysteresis (Table 2, Figure 5), indicating a predominance of rapidly delivered 

NO3 sources.  Many of these storm events producing hysteresis loops with a very negative gradient 
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(peaks 16, 21, 29, 32 and 33; Figure 3), indicating that the major impact of small storm events during 

dry periods was actually to dilute the NO3 concentration, rather than to mobilise and supply large 

quantities of extra N to the river.  The only time that substantial quantities of additional NO3 (relative 

to the constant inputs from groundwater and STW) were supplied to the river was during major winter 

storm events (e.g. peaks 1 and 8; Figure 3).  These deductions of potential NO3 sources are 

summarised in Figure 6.    

3.5.3 “Non-conforming” data points 

The TRP concentration-flow relationship for the River Enborne was extremely robust, with the vast 

quantity of data lying along the dilution curve at low flow, and then levelling out at between 30 and 

100 µg P l
-1

 at higher flows (Figure 3).  There was also a strong relationship between NO3 

concentration and flow, although it was more complex, due to serial dilution curves (Figure 3, Figure 

S.2).  However, for both TRP and NO3, there were some scattered data points that had much higher 

nutrient concentrations than expected, deviating from the usual nutrient concentration-flow 

relationships.  In previous studies based on lower frequency sampling, these “non-conforming” data 

points would either have been wrongly identified as erroneous observations and rejected from the data 

set, or would have been interpreted as being due to sporadic pollution incidents (Jordan et al., 2007), 

and attributed to large scale agricultural diffuse pollution.   It has been widely inferred that such 

events will be greatly underrepresented by traditional monitoring programmes, thereby 

underestimating the potential impact of agricultural nutrient pollution within catchments.  However, 

combining this concentration-flow approach with hysteresis studies clearly demonstrated that almost 

all of these data points consist of large hysteresis loops associated with individual storm events, rather 

than being erroneous data points.  The generation of high quality, high frequency datasets are the only 

way of identifying and quantifying these potentially important nutrient sources. 

The “non-conforming” scattered TRP concentration data are exclusively associated with large 

clockwise hysteresis trajectories, whereas the non-conforming NO3 concentration data were all 

associated with large anticlockwise hysteresis (Figure 3).  This strongly suggests that these major 
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nutrient inputs are derived from different areas of the catchment.  Most of the additional TRP was 

derived from rapidly mobilised sources and the additional NO3 was derived from slowly mobilised 

sources.  It is also important to note that these non-conforming TRP and NO3 hysteresis loops were 

not produced by the same storm events (with the exception of Peak 22, Figure S.3).  This means that 

the significant quantities of additional TRP load must be largely derived from a rapidly-mobilised 

source that was not associated with additional NO3 inputs of a similar magnitude.  If they were, the 

resulting NO3 hysteresis loop from that storm event would also be represented in the ‘non-

conforming’ data in the NO3 concentration-flow relationship.  This shows that the additional TRP 

loading could only be derived from the remobilisation of within-channel phosphorus stored within the 

bed-sediment, as remobilisation of P along the river margins and inputs from septic tanks and field 

drains would be expected to also have significant NO3 inputs associated with them.  This deduction 

was further confirmed when the timing of these major non-conforming loops was taken into account.  

They almost always occurred following a proceeding dry spell, implying that phosphorus is being 

accumulated within the bed sediment until it is remobilised during the next storm event.  During these 

antecedent dry periods, diffuse agricultural P inputs will be at a minimum, and so the most significant 

source of P input to the River Enborne will be from STW effluent.  Therefore, the majority of the 

rain-related “diffuse” signal observed in these non-conforming TRP concentration data will actually 

originate from sewage effluent point sources (Figure 6).   

In contrast, the non-conforming NO3 inputs were exclusively associated with large anticlockwise 

hysteresis trajectories, and so the major NO3 source was primarily delivered during the falling limb of 

the storm hydrograph.  As these particular storm events produced major non-conforming NO3 

hysteresis loops, and the associated TRP loops were clockwise and didn’t deviate significantly from 

the standard TRP concentration-flow relationship, the source supplying the additional NO3 could not 

be a significant source of P.  This discounts major overland flow and delivery via farm tracks, tractor 

wheel tracks and other rapid pathways as the source, as these would also be associated with major 

sediment mobilisation, with its large quantities of associated P.  All of the non-conforming NO3 

hysteresis loops occurred in December and January, and were associated with some of the largest 
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storm events within the monitoring period.  This suggests that the source of this additional NO3 was 

either a catchment-wide agricultural N input distant from the river channel, via through-flow (rather 

than via field drains, as this would also deliver phosphorus), or from slowly-responding groundwater 

inputs, as these would not contain significant quantities of P, due to precipitation within the Chalk 

(Figure 6).     

Storm event 22 was the only flow peak that produced both TRP and NO3 non-conforming hysteresis 

loops (Figure 3, Figure S.3).  It was the first large storm event of the 2010 – 2011 winter season, and 

produced a large clockwise TRP hysteresis trajectory and a large anticlockwise nitrate trajectory.  

Therefore, although this storm mobilised significant additional P and N, they were derived from 

different sources, with phosphorus largely derived from rapidly mobilised sources (from within-

channel and river margin sources) and the NO3 mostly derived from slowly-mobilised  sources.  

4 Conclusions  

The monitoring of P and N concentrations at hourly sampling intervals throughout two annual cycles 

has produced new understanding of the timing and relative quantities of nutrient source inputs to the 

River Enborne.  The combined investigation of P and N time series information, concentration-flow 

relationships and hysteresis behaviour through individual storm events allowed nutrient sources to be 

identified through the annual cycle and during specific flow conditions.   

 The P inputs to the River Enborne were dominated by STW effluent for the majority of the 

year, and were responsible for producing the highest TRP concentrations during periods of 

low flow.   

 Increasing river flow through the annual cycle increased the TRP load, but had little effect on 

TRP concentration, which remained between 30 to 110 µg P l
-1

. The majority of this rain-

related load was derived from within-channel remobilisation of P from the bed sediment, 

entrainment of P along the river margins and field drain inputs.  A number of storm events 
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produced large clockwise hysteresis patterns that deviated from the usual TRP concentration-

flow relationship, and this additional P must be predominantly from bed sediment 

remobilisation, which would have largely be derived from sewage inputs through the 

preceding dry periods. 

 Future P mitigation of the River Enborne should focus on reducing sewage inputs, as this 

would reduce TRP concentrations through the ecologically sensitive spring – summer period, 

and reduce the major hysteresis trajectories associated with bed sediment remobilisation.  

Diffuse P mitigation should primarily focus on reducing the significant inputs that occur each 

May, which are probably linked with fertiliser and manure applications and specific land 

management at that time. 

 The NO3 load of the River Enborne was dominated by constant inputs throughout most the 

year, primarily derived from groundwater, and to a lesser extent, STW.   

 The first major storm events of the winter produced major inputs from catchment-wide 

diffuse NO3 sources, probably delivered via throughflow pathways.  Diffuse N inputs 

declined through the subsequent winter and spring storm events, indicating depletion of 

catchment nitrogen sources.  

 Minor storm events during summer produced large inputs of rapidly-mobilised diffuse nitrate 

(most probably from field drains and river margins), indicating the importance of dry 

antecedent conditions.   

 

This study has important implications for nutrient studies of other catchments, monitored at the 

traditional weekly or monthly sampling intervals.  Firstly, single data points that can easily be rejected 

as outliers in low-frequency data sets could often be genuine data points associated with large 

hysteresis events.  Capturing these sporadic hysteresis events can provide fresh insights into nutrient 

sources and behaviour within the river and its catchment. This study also clearly highlights that 

nutrient behaviour during storms can vary dramatically through the annual hydrological cycle.  This 
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has important ramifications for the many previous studies that focus on a small subset of storm events, 

and whether these storms are truly representative of all storm events needs to be carefully considered.   

 

High frequency river nutrient data is becoming more widely available and easier to generate, due to 

recent developments in field autoanalyser / probe technology and telemetry.  This study has shown the 

great utility of these high frequency water quality and flow data sets, and presents a simple, integrated 

methodology that can be used to disentangle the complex nutrient signals that routinely occur in river 

systems.  Determining nutrient sources and behaviour, at high temporal resolution, provides vital 

information to allow the most appropriate mitigation options to be selected to combat eutrophication, 

thereby providing the most effective and cost-effective management of river catchments in the future.   
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Tables and Figures 

Table 1.  Summary of nutrient species concentrations of the River Enborne (January 2010 to 

December 2011), based on weekly sampling data.  Total reactive phosphorus data based on a 14 day 

sampling interval. 
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Table 2.  Summary of phosphorus and nitrate hysteresis trajectories observed in the River Enborne 

between January 2010 and December 2011. 
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Figure 1.  Map of River Enborne catchment. 

 

  



28 

 

Figure 2.  High-frequency monitoring data for the River Enborne at Brimpton: (a) Total reactive 

phosphorus hourly data, with TRP and SRP manual ground-truthing data; (b) Nitrate hourly data, with 

weekly manual ground-truthing data; (c) Rainfall data (from CEH Wallingford meteorological 

station); and (d) River flow at Brimpton, with each storm event numbered consecutively (supplied by 

the Environment Agency and CEH National River Flow Archive).   
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Figure 3.  Nutrient concentration-flow relationships in the River Enborne from January 2010 to 

December 2011.  Major hysteresis loops identified by their associated storm event numbers (Figure 

2d). 
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Figure 4.  Total reactive phosphorus  (x) and nitrate (□) concentration-flow relationships at monthly 

resolution throughout the two year monitoring period. 
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Figure 5.  Total reactive phosphorus and nitrate-N hysteresis trajectories throughout the two-year 

monitoring period (nd = no data). 
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Figure 6.  Summary of the predominant total reactive phosphorus and nitrate sources to the River 

Enborne, determined by a combined investigation of the time series, concentration-flow relationships 

and nutrient hysteresis patterns during storm events.  Filled arrows indicate depletion of slowly-

mobilised diffuse nitrate sources through the series of winter storms.  The unfilled arrows indicate 

increases in the proportion of rapidly-mobilised rain-related nitrate inputs to the river. 
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