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Abstract

At global scale there is no evidence for synchronous multi-decadal warm (Medieval Warm Period,
MWP) or cold (Little Ice Age, LIA) periods in the late Holocene. On the other hand, globally there
is good correspondence in timing between MWP or LIA and phases of glacier retreat and advance,
respectively, with local exceptions mainly explained by the precipitation regime. Antarctica exhibits
contrasting patterns, both regarding the existence of these two historical climatic periods in the
records and, the glacial responses to climatic forcings.

Here we present evidence for glacial retreat corresponding to the MWP and a subsequent LIA
advance at Rothera Point (67°34'S; 68°07'W) in Marguerite Bay ,Western Antarctic Peninsula.
Deglaciation started ca. 961-800- cal yr BP cal or before, reaching a position similar to or even
more retreated than the current state, with the subsequent period of glacial advance commencing
between 671 and 558 cal yr BP, and continuing at least until 490 to 317 cal yr BP. Based on new
radiocarbon dates, during the MWP the rate of glacier retreat was 1.6 m y!, which is comparable
with recently observed rates (respectively, ca. 0.6 m y! between 1993 and 2011 and 1.4 m y!
between 2005 and 2011). Moreover, despite the recent air warming rate being higher, the glacial
retreat rate during the MWP was similar to the present, suggesting that increased snow

accumulation in recent decades may have counterbalanced the higher warming rate.

Introduction

Several global scale recent studies have emphasised the absence of evidence for globally
synchronous multi-decadal warm or cold intervals.

Paleoclimatic reconstructions show generally cold conditions between ca. 370 and 70 years BP,
interrupted in some regions by warm decades during the Eighteenth Century (e.g. Masson-Delmotte
et al., 2013) However, other studies have identified a relatively warm period referred to as the
Medieval Warm Period (MWP) between ca.1200 and 700 BP, followed by a cold phase referred
to as the Little Ice Age (LIA) between ca.550 and 250 BP (e.g. Mann et al., 2009) and, finally, by
the recent warming period (since 1950 AD, Table 1).

Synchronicity in the timing of temperature anomalies is not always apparent between the two
Hemispheres. During the warm MWP temperature anomalies were notably cooler in the Southern
than the Northern Hemisphere before 850 cal yr BP as well as around 550 cal yr BP, but warmer
between 720 and 600 cal yr BP (Neukom et al., 2014). In contrast, synchronicity of cold
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temperature anomalies in both Hemispheres was present between 356 and 273 cal yr BP (Neukom
etal., 2014).

Other studies have also suggested that a ‘bi-polar seesaw’ pattern, whereby as the Arctic warms the
Antarctica cools and vice versa, is apparent in the 20th Century Arctic and Antarctic temperature
records (Chylek et al., 2010). This phenomenon has also been reported at millennial scale in ice
core studies since the last glacial maximum (e.g. Blunier et al., 2001, 2010).In the Antarctic
Peninsula (AP) region studies have used different proxies (e.g. ice core isotopes; diatoms, TEX86)
to suggestthe absence of a warmer period during the last millennium corresponding to the MWP
and, rather, that a gradual cooling period that started ca. 3500 cal yr BP (Shevenell et al.,1996;
Mulvaney et al., 2012). In contrast, Domack et al. (2006) identified an MWP ending at about 700
cal. yr BPwhilst Khim et al. (2002) suggested a period of warmer surface ocean temperatures
existed betweenca. 735-560 cal. yr BP, and Shevenell et al. (2011) showed a pronounced late
Holocene warming (cal 1,600 to 500 yr BP) reaching temperatures higher than those seen currently.
The subsequent cold phase (LIA) is also not well defined or synchronous among Antarctic studies,
especially on both sides of the AP.

On the western Antarctic Peninsula (WAP), evidence from several proxies indicates a colder phase
with glacier advance occurring broadly between 700 and 150 cal yr BP (Domack et al., 1995;
Bentley et al., 2009). However, other paleoclimatic datasets are contradictory, with Liu et al.,
(2005) showing the existence of a warming period between 450 and 200 yr BP in the South
Shetlands while other studies have found no compelling evidence for the LIA in this region (Heroy
et al., 2008; Milliken et al., 2009).

On the eastern AP (EAP), an ice core from James Ross Island displayed evidence for warming
exceeding rates of 1.5°C per century (similar to the rate of warming recorded in the Twentieth
Century) between 432-319 yr BP and 279-173 yr BP (Mulvaney et al., 2012). The absence of
evidence for either a clear MWP or a widespread LIA on the EAP is also apparent in lake sediment

analyses (Hodgson et al., 2013; Sterken et al., 2012).

At a global scale, there is good correspondence in timing between the MWP and a phase of glacier
retreat, as well as between the LIA cold phase and a period of glacier advance that represented the
Holocene glacier advance peak (Table 1; Nesje et al., 2011; Humlun et al., 2005).

Glacier response to climate variation was heterogeneous and complex during the MWP because
glaciers were more restricted in extent than at present in the WAP (Hall et al., 2010), Southern

Greenland (Larsen et al. 2011), Spitsbergen (Humlun et al., 2005) and Norway (Nesje et al., 2011).
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However, in other regions such as Patagonia (Strelin et al., 2008), New Zealand (Schaefer et al.,
2009) and East Greenland (Lowell et al., 2013), glaciers advanced during this period.

The heterogeneity of glacier response to climate variability emphasises that glacier mass balance is
determined by several factors, including air temperature, precipitation regime, radiative balance of
the glacier surface and other dynamic characteristics (e.g., glacier size, thickness, slope, surging

behaviour, debris coverage, etc)

In the AP region there are few specific terrestrial records of glacial advance and/or retreat over the
last millennium. Dating of peat adjacent to the present ice front in the South Shetland Islands (Hall,
2007) indicated that, between ca. 790 and 664 cal yr BP, the ice cover was no more extensive than
now. Similarly, Hall et al. (2010), dated moss fragments in organic-rich sediments found in areas
deglaciated in ca. 2004, suggesting that the glacier was at or behind its present position over the
period 924-740 cal year BP.

Here we present a record of terrestrial organic material re-exposed by recent glacier retreat at a
location in the WAP regionthat provides evidence for events that are consistent with (a) MWP
glacial retreat, (b) subsequent LIA advance, and (c) glacial retreat associated with the rapid regional
warming in recent decades.

Further, we attempt comparison of past rates of glacial retreat with contemporary rates in order to
assess whether the impacts of recent climate warming on local glacial dynamics are comparable

with those over the past millenium.

Material and Methods

The study site is located in the southern WAP, at Rothera Point (67°34’S; 68°07°W) in Marguerite

Bay at the southern limit of the Wormald Ice Piedmond. This part of the glacier, locally known as
the ‘ice ramp’, is located between 10 and 110 m a.s.l., and has been monitored since 1989 (Fig. 1).
This glacier has retreated rapidly in recent decades, experiencing a surface lowering of 0.32 m
water equivalent (w.e.) between 1989 and 1997 (Smith et al., 1998).

In order to minimise impact on the sparse vegetation found in the study area only the minimum
quantity of moss and underlying soil required for dating were collected.

The mosses and the underlying organic sediment were separated with a pipette under magnifying
glasses and a binocular microscope, in the Bonner Laboratory at the British Antarctic Survey
Rothera research station, before being sealed in polyethylene bags and frozen at -20°C. They were
kept frozen until being sent to Beta Analytic laboratories (Miami, USA) for radiocarbon dating.

4
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There, moss samples were subjected to an acid-alkali-acid pre-treatment while the two sediment
samples were given acid washes according to Beta Analytic standard procedures. After pre-
treatment, samples for radiocarbon dating were prepared for AMS by converting them into solid
graphite form.

Calibrated ages were calculated with the software OxCal 4.2 (Bronk Ramsey, 2009) using the
SHCal13'*C Southern Hemisphere atmosphere dataset (Hogg et al., 2013). Radiocarbon age data
are reported as conventional radiocarbon years BP (1*C yr BP) +c and as calibrated age ranges with
a 2c error (95.4%) (cal yr BP; relative to AD 1950) (Table 1).

Taxonomic nomenclature of moss species follows Ochyra et al. (2008).

Results

The area deglaciated between 1988 and 2010 was surveyed in February 2009 and January 2010
(Fig. 1) to document the vegetation exposed after ice retreat. Scattered mosses were found amongst
the boulders in this area underlain by, in some cases, 1-2 cm of moss-rich peat. Two of these sites
(M11 and A) were located adjacent to the current ice front (Fig. 2a-f). Moss samples were collected
along a transect from the glacier front to a distance of c. 100 m, on surfaces recently deglaciated
after 2011, 2011-2005, and before 1993 (Fig. 1) All moss samples were identified to be Andreaea
depressinervis Cardot orPolytrichastrum alpinum (Hedw.) G.L.Sm., typical fellfield species well
represented in the local area (Convey and Smith, 1997). At all sampling locations along the transect
the mosses showed no apparent damage, and were in life position and apparently living as
illustrated in Fig. 2g. No epilithic lichens were apparent along the transect, in striking contrast to
their widespread colonization of the rocky knolls adjacent to Rothera Point (with communities
dominated by Usnea sphacelata and Umbilicaria decussata). The organic-rich sediments
immediately underlying the re-exposed mosses were also sampled. At each sampling location the
ages of the mosses and the underlying sediments were assessed using AMS radiocarbon dating
(Table 2).

The C ages obtained allowed reconstruction of the late Holocene to recent evolution of the
Wormald Ice Piedmont glacier front. The organic-rich sediments from points A and B provide
minimum ages of deglaciation (745-574 cal yr BP and 961-800 cal yr BP, respectively) indicating
that the period of deglaciation started around 961-800- cal yr BP cal or before, reaching a position
similar to or even more retreated than that of the contemporary glacier. The subsequent glacial

advance commenced between 671 and 558 cal yr BP (indicated by the burial age of the mosses in
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site A), and continued at least until 490 to 317 cal yr BP, when the moss at site B was over-run by

the glacier.

Discussion and conclusions

The timing of deglaciation recorded here (961-671 cal yr BP) is consistent with the ages of
deglaciation reported by Hall et al. (2010) at Anvers Island (924-740 cal yr BP). Hodgson et al.
(2013), working on sediments from Narrow Lake, Pourquoi-Pas Island (67°37S), reported enhanced
nutrient enrichment evident after 1150 (1230-1080) cal yr BP, interpreted as indicating a period of
warming that is also consistent with the results of the current study.

The subsequent glacial advance after 671 cal yr BP that is inferred from our data is comparable with
Hall’s (2007) interpretation of the timing of renewed glacier advances in the South Shetland Islands
associated with the LIA, and also coincides with the colder phase documented on the WAP broadly
between 700 and 150 cal yr BP (Bentley et al., 2009; Domack et al., 1995; Liu et al., 2005). In
contrast, Hodgson et al. (2013) did not find any indication of cooling between 1150 and 400-410 cal
yr BP.

Our new '“C ages indicate that deglaciation during the MWP at Rothera was almost synchronous
with that which occurred at Anvers Island and with deglaciation recorded in southern Alaska
(Wiles et al., 2008), but in antiphase with mot records from the Northern Hemisphere (e.g.
Holzhauser et al., 2005; Humlun et al., 2005; Matthews and Dresser, 2008). However, the onset of
the LIA based on our new data was almost contemporary with most evidence from the Northern
Hemisphere (e.g. Holzhauser et al., 2005), although do not permit estimation of the duration of the
LIA at this location.

Our new 'C ages also allow estimation of the rate of glacier retreat during the MWP and
comparison of this with recent glacier dynamics over the last 20 years. During the MWP the rate of
glacier retreat was 1.6 m y’!, which is higher and/or comparable with the rates measured in recent

years (respectively ca. 0.6 m y! between 1993 and 2011 and 1.4 m y! between 2005 and 2011).

Of the available proxy data for air temperature during the MWP in the WAP, it is likely that the best
paleotemperature profile is provided by the sea surface temperature (SST) record inferred at Palmer
for the period 1600 and 500 cal yr BP®. The rate of SST increase during the first centuries of this

period was ca. 0.3°C decade!, somewhat lower than the recent air temperature warming rate of
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0.5°C decade™! over the last 35 years (or of the 1°C decade™ during the period 1978-2000) measured
at Rothera Point (Chapman and Walsh, 2007; Guglielmin et al., 2014).

The similarity in glacial retreat rates between the MWP and recent decades at our study site
contrasts with the trend of air warming, which is much higher in the recent period. This could
suggest that other factors, such as increased snow accumulation, may have counterbalanced the
higher warming rate of recent years in the mass balance of the glacier, as has recently been
documented for the some Northern Hemisphere glaciers (Colucci and Guglielmin,

2014; Nesje et al., 2008). Local snow accumulation data are not available for this glacier although
precipitation increases have been predicted in coastal regions of the maritime Antarctic, with some
data available supporting this general prediction (Turner et al., 2009, 2013). If it is assumed that the
trend of snow accumulation recorded in the closest ice core available (drilled at Gomez,
73.59°S,70.36°W, ca 750 km SSE) is comparable to the Rothera area, then we can infer that the
increase in snow accumulation described since 1850 AD (from a decadal mean of 0.49 myeq y™' in
1855-1864 to 1.10 mweq y' in 1997-2006, Thomas et al., 2008, 2009) has been partially
counterbalanced by higher rates of ice melt due to increased air temperatures in recent years.
Moreover, given the forecast increase of precipitation in the Twenty-first Century (Uotila et al.,
2007) we suggest that glaciers in the WAP may experience reduced rates of recession despite the air
temperature increase. Our data may allow hypothesize potential different glacier evolution at WAP
differently from what modelled by Davies et al., (2014) and based on the behaviour of an EAP

glacier.
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329 Figure Captions

330

331  Figure 1. Location of the study area and glacial variations during the last 18 years. Legend: green
332 dots = sampled sites; yellow line = glacier front in 1993; blue line = glacier front in 2005; purple
333 line = glacier front in 2011.

334

335  Figure 2. Photographs of the sampled sites: A and B) M11; C and D) site A; E and F) site B, with

336 Q) detail of Andreaea spp. in life position.
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Table 2. Main characteristics of the analysed samples. The calibrated ages were calculated with the

software OxCal 4.2 using the SHCal13*C Southern Hemisphere atmosphere dataset, and are reported as

ranges with a 2o error (95.4%) (cal yr BP; relative to AD 1950)

Sample Lab.code | Material | Measured | 3C/*C | Conv cal yr | Position
radiocarbon Age BP | BP in the
age age map

(Fig. 1)

Rothera 3 Beta - 260750 | moss 340+40 -22.7 380+40 | 490- B

317
Rothera 1 Beta - 260749 | organic 1000440 -22.8 1040+40 | 961- B
sediment 800

Rothgra2009- | beta266189 | moss 670+40 -22.6 710+40 671- A

1 558

Rothgra2009- | beta266190 | organic 800+40 -25.2 800+40 | 745- | A

2 sediment 554

M11 Beta - 356172 | moss 540+40 -22.8 580+30 631- M11

504
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