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Abstract 9 

The organic content of shale has become of commercial interest as a source of hydrocarbons, owing 10 

to the development of hydraulic fracturing (“fracking”). While the main focus is on the extraction of 11 

methane, shale also contains significant amounts of Non-Methane Hydrocarbons (NMHC). We 12 

describe the first real-time observations of the release of NMHC from a fractured shale. Samples 13 

from the Bowland-Hodder formation (England) were analysed under different conditions using 14 

mass spectrometry with the objective of understanding the dynamic process of gas release upon 15 

fracturing of the shale. A wide range of NMHC (alkanes, cycloalkanes, aromatics and bi-cyclic 16 

hydrocarbons) are released at ppm or ppb level with temperature and humidity-dependent release 17 

rates, which can be rationalised in terms of the physio-chemical characteristics of different 18 

hydrocarbons classes. Our results indicate that higher energy inputs (i.e. temperatures) significantly 19 

increase the amount of NMHC released from shale, while humidity tends to suppress it; 20 

additionally, a large fraction of the gas is released within the first hour after the shale has been 21 

fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted 22 

from shale and open the possibility to optimise the “fracking” process, improving gas yields and 23 

reducing environmental impacts. 24 
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Introduction 26 

Shale is an abundant type of sedimentary rock comprising silt and clay-sized particles with 27 

significant quantities of organic matter. The content of organic matter in shale is typically in the 28 

range of 1-3% (and as high as 8%)1 by weight, but change significantly between different types of 29 

shale.2 Shales rich in organic matter have long been known as the sources of gas and oil that 30 

constitute the “conventional” hydrocarbon reservoirs.3,4 Over the past five years, there has been a 31 

renewed interest in shales as “unconventional” hydrocarbon reservoirs, especially methane and light 32 

alkanes (shale gas), due to a combination of rising oil prices, security of supply (e.g. political 33 

instability in certain parts of the world) and improved technology.4,5,6 In order to extract oil or gas 34 

from shale it is necessary to pervasively fracture the shale formation. This technique, termed 35 

hydraulic fracturing (commonly known as “fracking”), consists of drilling a well in the prospective 36 

shale units and injecting water under high pressure mixed with sand (~5%) and chemical additives 37 

(~0.2%) in order to fracture the rock and stimulate the release of hydrocarbons.4,6 Because of the 38 

nature of hydraulic fracturing, the release of gas from shale is a dynamic process influenced by the 39 

amount of energy transmitted to the rock in the form of changes to stress, pore pressure and 40 

temperature. 41 

The growth of hydraulic fracturing in recent years has raised several concerns about its 42 

environmental impact,4,5,7,8 especially with regard to the contamination of ground and surface 43 

waters4,9 and to the potential triggering of minor earthquakes.4,6,7 Shale exploitation also has 44 

important implications for air quality and climate change: while much of the atmospheric impact is 45 

related to the industrial and transport operations surrounding the extraction of gas,10,11 the release of 46 

hydrocarbons into the atmosphere from oil and gas extraction activities is well documented12-16 and 47 

it can lead to the formation of high concentrations of pollutants, such as ozone (>100 parts per 48 

billion by volume).13,16 49 

In this work, we simulated the pervasive fracturing of a shale specimen and we present a real-time 50 

analysis of the release of Non-Methane Hydrocarbon (NMHC) gases from a fractured shale. In 51 



recent years, several studies have reported observations of hydrocarbons emissions from extraction 52 

of oil and gas (e.g., 12,14,15), but, to our knowledge, this is the first time that the dynamic release of 53 

gas from a fractured shale sample has been reported at this level of detail. It must be noted that there 54 

are significant differences between our experiments and an actual “fracking” event (as will be 55 

discussed in more detail below); there are also large differences in the mineralogical composition 56 

and organic content of different shale formations.1,2 For these reasons, our results cannot be directly 57 

extrapolated to “real world” hydraulic fracturing or to other types of shales; however, they provide a 58 

first look into the type of hydrocarbons stored in shale and into the dynamic processes involved in 59 

their release when the shale is fractured. 60 

 61 

Experimental 62 

A shale specimen was collected from a part of the Bowland-Hodder formation in Lancashire (north-63 

western England), which is currently under consideration for commercial exploitation.1 The 64 

specimen was collected from a stream bed, meaning that the material was exposed by stream 65 

erosion of the stream in recent times (in geological terms). Shale of this kind has a thin (~1 cm) 66 

“skin” of oxidized material, below which the material is similar to deep borehole material. The 67 

diffusion rate of gas through the shale at ambient temperature (see below) suggests that only a small 68 

fraction of the gas content will have been lost during the exposure period. Using stream samples is 69 

not the ideal sampling method, which would be drilling deep boreholes and taking well preserved 70 

shale cores; however, that is an expensive procedure and core material was not available for this 71 

work. 72 

The specimen weighted 17.7 kg, with an average carbon, sulphur and water content were 2.87%, 73 

1.84% and 3.9% by weight, respectively. Cylindrical core samples (C2, B1, D1, D2, see Table 1) of 74 

54 mm diameter x 25 mm height and ~127 g mass, were prepared at the British Geological Survey 75 

(Nottingham, UK) and rectangular samples of various sizes were produced at the Department of 76 

Geology (University of Leicester, UK) from the shale specimen. All these samples were taken from 77 



below the weathered “skin” of the specimen and sealed in air-tight polythene envelopes until ready 78 

for analysis. 79 

In order to achieve a pervasive fracturing of the rock, the shale samples were placed inside an open-80 

top aluminium box (12 x 10 x 2 cm), which was sealed in a Tedlar bag. A manual press was then 81 

used to crush the sample inside the bag, taking care of not piercing the bag in the process. The 82 

crushed sample was then transferred in a desiccator containing a cast iron vessel (a domestic 83 

mortar), placed on a temperature controlled hot plate. The mortar acted as a heat sink to help bring 84 

the crushed sample up to the desired temperature as quickly as possible. A Kin-Tek 419M 85 

calibration unit (Ecoscientific Ltd., UK) fitted with a humidity generator supplied a stream of high 86 

purity nitrogen (400 sccm; N6.0 grade, BOC gases). 87 

Prior to each experiment, all materials were cleaned with de-ionised water in an ultrasonic bath, 88 

washed with hexane and rinsed again in de-ionised water. The mortar was then placed into the 89 

desiccator and allowed to dry overnight while flushing with 150 sccm of high purity nitrogen. 90 

During the transfer of the crushed shale samples from the Tedlar bag into the desiccator, the flow of 91 

nitrogen was increased from 150 sccm to 4000 sccm, in order to minimise contamination by 92 

laboratory air for the brief period in which the desiccator lid was lifted.  93 

Each experiment had a duration between 60 and 240 minutes, depending on the sample, the 94 

conditions and the instruments used. The first five minutes of measurements were rejected to enable 95 

the sample to reach the desired temperature/humidity and to exclude contamination by laboratory 96 

air. Table 1 lists the experiments discussed in the main text, with the details of the shale sample and 97 

the conditions used in each experiment. All samples were analysed using mass spectrometric 98 

techniques: details of the instruments, calibrations and methods, as well as preparation of the 99 

samples, are described in the Supporting Information. 100 

In order to observe the release of NMHC from the crushed samples in real-time, the fast analytical 101 

speed of quantitative chemical ionisation offered by Proton-Transfer-Reaction Time-of-Flight Mass-102 

Spectrometry (PTR-TOF-MS)17-19 was employed. However, the PTR technique is not sensitive to 103 



some classes of compounds,18,20 so the identification of the whole range of hydrocarbons found in 104 

the shale samples was carried out using Thermal-Desorption Gas-Chromatography Mass-105 

Spectrometry (TD-GC-MS).21 Linear and branched alkanes (C5-C12), aromatics (C8-C12) and mono- 106 

and bi-cyclic hydrocarbons were detected in all samples at ppm (µmol/mol) or ppb (nmol/mol) 107 

level; carbon disulphide (CS2) was also detected in all samples. The complete list of NMHC 108 

identified by TD-GC-MS is shown in Table SI-1. 109 

The TD-GC-MS has high selectivity, but a much lower sampling frequency than the PTR-TOF-MS 110 

(1 hour vs. 1 minute) and therefore it does not allow to follow the release of NMHC from fractured 111 

shale samples in real-time. For this reason, much of the following discussion will be focused on the 112 

larger NMHC  (≥C5), as measured by PTR-TOF-MS. 113 

Aromatic compounds are easily identifiable by PTR-TOF-MS, although isomers cannot be 114 

distinguished.20 Alkanes, however, are known to fragment22,23 even with soft-ionization techniques 115 

such as proton-transfer, characteristically losing successive methylene groups (–CH2). When 116 

sampling complex hydrocarbon mixtures, this results in mass spectra where a given mass channel 117 

include the parent ion of an alkane ([M-1]+) plus contributions from isobaric branched isomers and 118 

methylene loss from heavier acyclic alkanes. We employed a simple deconvolution model 119 

(described in detail in the Supporting Information) based upon the similarities of the fragmentation 120 

patterns of aliphatic compounds22,23 to determine the PTR-TOF-MS sensitivities for selected m/z 121 

channels and calculate the concentrations of ≥C5 alkanes released from crushed shale. 122 

All data were background-substracted, using spectra taken before and after each experiment; the 123 

PTR-TOF-MS spectra were normalized to 1 million counts of the hydronium ion (H3O
+, m/z = 19), 124 

thus ensuring that the analysis of the data was not influenced by contamination from ambient air or 125 

by variations in the humidity of the sample (which may change the H3O
+ ion count and therefore 126 

the sensitivity of the instrument). 127 

 128 

Results and Discussion 129 



The release of NMHC from a ~200 g shale sample (A4-6, see Table 1) was observed over a period 130 

of 24 hours under different conditions. At first, the sample was uncrushed and kept at ambient 131 

temperature (~23 ºC); after 6 hours, temperature was increased to ~75 ºC; finally, after 132 

approximately 12 hours, the sample was crushed and observed again at high temperature (~80 ºC, 133 

similar to rock temperature at ~3.2 km of depth). The time-series for selected NMHC are shown in 134 

Figure 1. The results show that, if the shale is uncrushed at ambient temperature, very little NMHC 135 

are released. Raising the temperature increases the release of NMHC by a factor of 5 to 10. When 136 

the rock is crushed, NMHC release increases by an additional factor of 4 to 8, even after almost 12 137 

hours spent at high temperature. The observed behaviour indicates that most of the hydrocarbon 138 

mass is trapped inside the shale and cannot be released simply by volatilization at high temperature 139 

(see Supporting Video). 140 

The data in Figure 1 also show that the release rates of gases from an uncrushed shale above room 141 

temperature slowly decrease with time, except for heavier aromatics (≥C9), whose release rates are 142 

almost constant. After the shale has been crushed the release rates of all NMHC show a sharp 143 

decrease. The pattern of gas release post-crushing suggests that different NMHC are stored in the 144 

shale and released from it by different mechanisms, depending on their mode of storage. 145 

To better understand the dynamics of the gas release, several shale samples (Table 1) were crushed 146 

and analysed by PTR-TOF-MS under a range of conditions (hot/cold, dry/humid) in real-time. 147 

Figure 2 shows the time-series of selected compounds for a typical set of experiments. The amount 148 

of gas released is higher (2-5 times) when the rock is crushed in dry air than when it is crushed in 149 

humid air (50-60% RH); it is also much higher (~10 times) at high temperature (70-80 ºC, 150 

comparable to in-situ values) than at ambient temperature (23-25 ºC). Under all conditions, the 151 

maximum concentrations of all NMHC were observed within 30-45 minutes after the rock had been 152 

crushed (Figure 2). The total amount of gas per unit mass of shale released during the first ~2 hours 153 

after the rock was crushed is shown in Table 2; most of the NMHC mass is constituted of alkanes 154 

and cycloalkanes (tens to hundreds of ppm/g) followed by bicycloalkanes (hundreds to thousands of 155 



ppb/g) and aromatics (hundreds of ppb/g or less). Note that the numbers shown in Table 2 do not 156 

represent the total content of gas in the shale samples but only the fraction released within the time 157 

window of the experiments. 158 

Analysis of the PTR-TOF-MS data using piecewise regression analysis on all samples (Table 1) 159 

indicates that the release of gases from a shale occurs on two timescales (Figure 3): an initial “fast” 160 

release (1-5 s-1), during the first 20-40 minutes after the shale has been crushed, followed by a 161 

secondary “slow” release (0.5-2 s-1), comparable to that from the uncrushed shale (Figure 1). It can 162 

be hypothesized that the initial release involves gas stored in the nanometre-scale pores of the 163 

shale,24,25 which is quickly released when the shale is crushed. As Figure 3 shows, the initial release 164 

rates are typically faster for alkanes, cycloalkanes and bi-cyclic hydrocarbons, which are more 165 

volatile than aromatics and thus released promptly upon fracturing of the shale. The initial release 166 

of the more volatile NMHC is faster at low temperature and high humidity, which may be caused by 167 

expansion of the clay minerals owing to swelling under these conditions. 168 

In contrast, the release rates of aromatics are very similar during both the initial and the secondary 169 

release, suggesting that these species are adsorbed on the mineral surface and need additional 170 

energy to be released. Since the presence of water interferes with the desorption of the molecules, 171 

this would explain why the release of aromatics is stimulated at higher temperature and suppressed 172 

at higher humidity (Figure 3). 173 

Our observations show consistent patterns but also significant variability among the samples 174 

(Figure 3), despite being taken from the same shale specimen. The variability is due to several 175 

factors, including of natural heterogeneity of the rock,2 the technical difficulty of achieving 176 

consistent fracturing of the samples in the laboratory, the differences in temperature between the 177 

surface and the bulk of the samples and the variation in the natural moisture content of the shale 178 

itself. It must be noted that the laboratory fracturing process described above differs from the actual 179 

“fracking” process in several respects: hydraulic fracturing occurs at depths of hundreds to 180 

thousands of meters where pressure is of the order of tens MPa.1,4 As explained above, the specimen 181 



was a surface outcrop and it is likely that the changes in humidity, temperature and pressure as the 182 

rock surfaced over a period of thousands of years caused the partial or total loss of some of the 183 

more weakly bound gases. Additionally, the specimen was collected from a stream bed and 184 

therefore, it had remained submerged in water for a long period of time (of the order of hundreds of 185 

years): the external part of the specimen was carefully excluded from the analysis and the specimen 186 

was dry when it was analysed, but the geological history of the specimen might have affected its gas 187 

content both in terms of composition and in terms of quantity. Another important point is that 188 

hydraulic fracturing uses a mixture of water, sand and additives injected at high pressure to crush 189 

the rock:4 it is distinctively different from the mechanical fracturing used in this study, although it is 190 

unclear whether this might have influenced the results. 191 

Our results give insight, for the first time, into the time-dependent release of NMHC from a shale 192 

deemed suitable for “fracking”.1 It is clear that further studies, ideally using deep borehole cores, 193 

will be necessary to properly address the issues raised by the differences between laboratory 194 

fracturing and “real world fracking”. 195 

Methane and light alkanes constitute the main impetus behind the commercial exploitation of 196 

shale,4,6,26 but there are many other hydrocarbons in shale which are released during the “fracking” 197 

process: some of these may be of commercial interest26 if their retrieval can be made economically 198 

viable. The release of most NMHC peaks within 45-60 minutes after the shale is crushed (Figure 2): 199 

if not extracted rapidly, this fraction of shale gas may be lost, reducing the economic output and 200 

resulting in potential contamination of ground and surface waters and the atmosphere. 201 

Since we have analysed only one type of shale, it is reasonable to expect variability in the type and 202 

amounts of NMHC released from different shale formations. There is an urgent need for further 203 

work to understand the fundamental relationships between gas release, energy input, temperature 204 

and humidity. The outcome could lead to opportunities to optimise the “fracking” process, improve 205 

its efficiency and reduce the environmental impact. 206 

 207 
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Tables 298 

 299 

Sample ID Sample Mass 
(g) 

Sample Status Temperature 
(ºC) 

Relative 
Humidity (%) 

A1-a 80.1 Crushed 50 0 

A1-b 80.1 Uncrushed 50 0 

 80.1 Crushed 25 0 

A1-c 70.1 Crushed 25 0 

A1-d 81.3 Crushed 50 60 

C2 (†) 118.4 Crushed 80 0 

B1 (†) 116.7 Crushed 75-81 52-54 

D1 (†) 117.7 Crushed 23 0 

D2 (†) 114.4 Crushed 23 49-50 

A4-1 127.4 Crushed 80 0 

A4-2 216.27 Crushed 80 0 

A4-3 242.9 Crushed 80 0 

A4-4 251.1 Crushed 80 0 

A4-6 215.0 Uncrushed 23 0 

 215.0 Uncrushed 23-75 (*) 0 

 206.7 (**) Crushed 75-85 0 

 (†) Cylindrical core samples (54 x 25 mm): the mass before crushing was ~127 g. 300 
 (*) The experiment started at 23 ºC: temperature increased to 75 ºC within an hour. 301 
 (**) Approximately 10 g of the sample were lost during the crushing process. 302 
 303 

Table 1. List of samples and experimental conditions. 304 

305 



 306 

 Hot/Dry 
(sample C2) 

Hot/Humid 
(sample B1) 

Cold/Dry 
(sample D1) 

Cold/Humid 
(sample D2) 

m/z=83 
(≥ C6 cycloalkanes) 

451914.4 151969.8 43670.17 10698.69 

m/z=85 
(≥ C6 alkanes) 

398684.3 121474.1 28515.1 5912.4 

m/z=97 
(≥ C7 cycloalkanes) 

515792.2 186054.6 63555.1 25678.5 

m/z=99 
(≥ C7 alkanes) 

515527.8 165174.6 41565.1 25848.1 

m/z=107 
(C8 aromatics) 

62.4 25.2 9.1 4.1 

m/z=121 
(C9 aromatics) 

113.5 39.9 9.3 4.6 

m/z=133 
(benzocyclohexane) 

1.6 0.7 0.2 0.1 

m/z=135 
(C10 aromatics) 

15.9 6.7 1.3 0.6 

m/z=137 
(C10 bicycloalkanes) 

7952.6 1774.4 831.5 170.8 

 307 

Table 2. Total NMHC per unit mass of shale released over a period of 1:50 hours after crushing of 308 

the shale sample under different conditions. The shale samples were cylindrical cores (C2, B1, D1, 309 

D2, see Table 1) with mass ~127 g before crushing. Units in ppb (nmol/mol) of gas per gram of 310 

rock. 311 

312 
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Figures 318 

 319 

 320 

Figure 1. Time-series of selected NMHC released from a shale sample. The sample (A4-6, see 321 

Table 1) weighted 207-215 g and was observed over a period of 24 hours under different conditions: 322 

(shaded cyan) uncrushed at 23 ºC; (shaded yellow) uncrushed at 75 ºC; (shaded magenta) crushed at 323 

80 ºC. 324 



 325 

 326 

Figure 2. Effect of temperature and humidity on the release of NMHC from crushed shale samples. 327 

The shale samples were cylindrical cores (C2, B1, D1, D2, see Table 1) with mass ~127 g before 328 

crushing. The samples were crushed and placed under hot (70-80 ºC) or cold (23-25 ºC), dry or 329 

humid (50-60%) conditions. 330 

 331 



 332 

Figure 3. Initial (top panel) and secondary (bottom panel) release rates of classes of NMHC from 333 

crushed shale samples under different experimental conditions: hot (70-80 ºC) or cold (23-25 ºC), 334 

dry or humid (50-60%). The bottom and top of the box represent the first and third quartiles, the 335 

whiskers represent the ±1.5 interquartile range (IQR), the points are the outliers. All the crushed 336 

samples listed in Table 1 have been taken into account. 337 

 338 


