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ABSTRACT 

Breast cancer is a heterogeneous disease. Aggressive subtypes are characterized by faster 

growth rates, increased capability to invade and metastasize, leading to poorer clinical 

outcomes. In this thesis, we use a molecular epidemiology approach to investigate the 

association between risk factors and aggressive breast cancer defined by tumor characteristics, 

intrinsic subtypes, mode of detection, and survival. Using a variety of methods, we analyzed 

data from well-characterized breast cancer cohorts in Sweden, genome-wide association 

studies, and gene expression profiling of tumors. 

In Paper I, we found that breast cancer genetic load, defined by rare deleterious variants in 31 

breast cancer genes, and unlike common variants, is positively associated with unfavorable 

tumor characteristics, patient survival, and mode of detection.  

In Paper II, we observed that women with low breast cancer risk defined by the Tyrer-Cuzick 

risk score were more likely to develop aggressive tumors. We computed a low-risk gene 

expression profile that was consistently associated with worse prognosis. In addition, our 

analysis showed that increased proliferation rather than estrogen status underlie this 

association. 

In Paper III, we examined gene expression profiles in a subset of aggressive breast cancer 

tumors, known as interval cancers. By taking mammographic density and intrinsic PAM50 

subtypes into account, we found an interval cancer gene expression profile to be associated 

with immune subtypes in breast cancer, particularly those involving interferon response. 

In Paper IV, we show that breast cancer has a shared immune-related genetic component with 

celiac disease, an autoimmune disorder. In consistency with previous epidemiological findings, 

we found that a higher genetic load for celiac disease was associated with lower breast cancer 

risk.  

Overall, this thesis aims to provide scientific evidence towards a better understanding of the 

factors underlying the development of aggressive breast cancers that could shed light on the 

design of better preventative strategies aimed at lowering disease mortality.   
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1 Background 

Breast cancer is the most commonly occurring malignancy among women, and its incidence is 

increasing.[1] In 2018, over two million new cases and more than 600,000 deaths were 

estimated worldwide.[2] Global differences in incidence and mortality are largely explained by 

age and country-level income.[3] The increasing trend in incidence is mainly attributed to 

reproductive and lifestyle patterns such as older age at first birth, decrease in childbearing and 

breastfeeding, lower physical activity, and obesity.[4, 5] Breast cancer survival has improved 

over the last decades as the result of the development of adjuvant and targeted therapies,[6] and 

introduction of mammographic screening,[7] primarily in more developed countries.[8] 

Nevertheless, strong differences in survival and other clinical outcomes are observed between 

groups of patients,[9] particularly in women diagnosed with triple-negative breast cancer for 

whom optimal therapies are lacking.[10] 

 

 

Figure 1. Breast cancer heterogeneity. Clinical, pathological, and molecular features depict the 

heterogeneous nature of breast cancers. 

 

From both a biological and a clinical perspective, breast cancer is consider to be a 

heterogeneous disease that can be characterized by a number of clinical, pathological, and 

molecular features (Figure 1). Generally, breast carcinomas are divided into ductal or lobular, 

according to their localization, and as in situ or invasive. The most common type of breast 

carcinomas are invasive ductal carcinomas (IDC) that account for more than 50% of invasive 

cases, followed by invasive lobular carcinoma (ILC), observed in 5% to 15% of patients.[11, 

12] The main clinico-pathological features used to describe invasive breast carcinomas are 

tumor grade (undifferentiated vs well-differentiated), tumor stage (larger tumor size and 

number of lymph node involved), and cellular receptor status (negative vs positive). Based on 

these features, breast cancers can be categorized according to the WHO recommendations.[13, 
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14] The current state of knowledge supports that breast cancers are a mixture of multiple and 

diverse dynamic entities, from which a phenotype emerges based on the interplay between 

intrinsic tumor characteristics and host factors, imposing great challenges for diagnosis and 

treatment.[15] 

Because of the observed heterogeneity in clinical outcomes, tumors more likely to display 

aggressive features and to have poor prognosis require special attention. Therefore, patient 

stratification is important for adequate clinical management, i.e. treatment decision and patient 

care.[16, 17] Also, an accurate tumor classification can allow epidemiological and functional 

studies to unravel mechanisms of carcinogenesis and disease progression,[18] which can prove 

useful for design of early intervention studies towards prevention. In this thesis, we present 

results in the field of molecular epidemiology of invasive breast cancer, and discuss how our 

findings contribute towards better a understanding of the relationship between risk factors and 

disease aggressiveness. 

1.1 BREAST CANCER AGGRESSIVENESS  

Aggressive subtypes of breast cancer can be described as tumors with higher capacity for 

proliferation, invasiveness, and metastasis, leading to poorer prognosis and ultimately, higher 

mortality rates. An imperative task in breast cancer research is to identify factors associated 

with poorer outcomes, in order to effectively reduce breast cancer burden. The following sub-

sections describe subsets of invasive breast cancers defined according to clinico-pathological 

information (tumor characteristics), gene expression profiling (classification into intrinsic 

subtypes), and the mode of detection in the context of mammographic screening in Sweden 

(interval cancers as compared to screen-detected). 

1.1.1 Tumor characteristics 

During the recent decades, large efforts have been made to identify markers that can facilitate 

to predict prognosis (clinical outcomes such as recurrence and death) and therapy response. 

Breast cancer tumor characteristics are the most broadly studied prognosticators and represent 

a relevant measure of aggressive disease.[16] Stage, tumor size, lymph-node involvement, and 

histological grade, are accepted as prognostic markers, where tumors of larger than 20 mm, 

node-involvement, and distant metastasis (stage IV tumors) exhibit poorer prognosis.[19] 

Based on molecular targets such as hormone nuclear receptors of estrogen (ER) and 

progesterone (PR), and the human epidermal growth factor receptor 2 (HER2), which are 

commonly measured by immunohistochemistry lab techniques, tumors can be classified into 

hormone positive (HR+) when expression of either ER or PR is detected,[20] as HER2-

positive, or as triple-negative when lacking expression of either marker. HR+ status has been 

associated with lower risks of mortality independently of demographic and other tumor 

characteristics.[21, 22] In contrary, 15 to 25 % of breast cancers overexpressing HER2, a 

transmembrane tyrosine kinase receptor involve in cell growth,[23] are associated with poorer 

survival,[24] whereas 10% to 20% of cases classified as triple-negative tumors are associated 

with worse prognosis.[25] 
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1.1.2 Intrinsic subtypes 

The development of high-throughput molecular technologies has allowed for the 

characterization of biological samples at very high resolution. In 2000, Perou and colleagues 

introduced the concept of ‘molecular intrinsic’ breast cancer subtypes base on the idea that the 

observed phenotypic diversity could be described by distinct gene expression patterns.[26] By 

comparing expression profiles from 22 paired sample specimens, the authors could identify an 

‘intrinsic’ subset comprised of 496 genes for which variation across samples was larger than 

the variation within pairs of samples from the same tumors.  Using hierarchical clustering, 

samples could be separated into two main groups distinctive on their ER receptor status, but 

with a considerable amount of residual variation within each group, indicating the existence of 

additional breast cancer subtypes. 

Following this principle, classification tools with clinical relevance have been developed. A so 

called PAM50 classifier[27] was found to predict breast cancer subtypes based on a fifty gene 

expression signature into five previously reported breast cancer subtypes: luminal A, luminal 

B, HER2-enriched, basal-like, and normal-like. Analysis of more than 500 tumors concluded 

that the multiple levels of biological variation could be captured by four main PAM50 subtypes 

and explain a fair amount phenotypic heterogeneity.[28] The PAM50 subtypes have also been 

shown to be robust in spite of intra-tumor heterogeneity,[29] in line with the original proposal 

by Perou and colleagues. More importantly, PAM50 subtypes were clinically validated by 

predicting significant differences in patient survival independently of clinical predictors (i.e. 

tumor characteristics), with HER2- and basal-like the tumors with poorer outcome.[30] In 

addition, PAM50 subtypes were shown to provide more clinically relevant information than 

histopathological parameters and with the potential to improve treatment strategies. Table 1 

shows a summary of the relation between the main intrinsic subtypes and the most common 

immunohistochemical (IHC) markers and clinical outcome. 

 

Table 1. Overall description of breast cancer intrinsic subtypes by IHC markers and clinical 

outcome. 

Intrinsic subtype Main IHC markers Clinical outcome (survival) 

Luminal A ER+, PR+, HER2-, low proliferation Good 

Luminal B ER+, PR+, HER2+/-, high 

proliferation 

Intermediate-poor 

HER2-enriched ER-, PR-, HER2+ Poor 

Basal-like ER-, PR-, HER2-, basal marker+  Poor 
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1.1.3 Interval cancers 

Interval cancer is defined as breast cancers diagnosed after a negative mammographic 

screening and before the next programmed screening.[31] Upon blinded re-review of 

mammogram images, interval cancers can be classified into ‘true’ cases with no signs of 

malignant lesions, or ‘missing’ cases where re-examination reveals abnormal signs.[32] Based 

on epidemiological surveillance in mammographic screening programs, ‘true’ interval cancers 

have been observed to occur in 14.7% of cases at annual screening intervals, 17-30% at 

biennial, and 32-38% in triennial programs, and about 20-25% of cases were missed at 

screening.[33]  

It has been proposed that ‘true’ interval cancers correspond to fast growing tumors and 

therefore are enriched in aggressive breast cancer subtypes.[34-36] When compared with 

screen-detected tumors, interval cancers are more likely to have larger size, lymph node 

involvement, higher grade, to be triple-negative or HER2-postive, hormone receptor-negative, 

and are associated with poorer survival.[32, 33] Molecular characterization of tumors using 

sequencing technologies showed that interval cancers are associated with molecular intrinsic 

subtypes of poor survival independently of mammographic density.[37] In that same study, 

interval cancers were found to be enriched in luminal B and basal-like tumors. Moreover, 

association with higher mutational load in TP53, PPP1R3A, and KMT2B cancer-related genes 

as well as differences in somatic copy number aberrations were found, suggesting that key 

biological features drive aggressiveness of interval cancers.  

Because mammographic dense tissue affects screening specificity, i.e. increases false-negative 

cases (a phenomenon referred to as ‘masking’), interval cancers in women with low 

mammographic density are more likely to be enriched in ‘true’ interval cancers (Figure 2). 

Previous studies in our group found pronounced differences when comparing invasive tumors 

with low mammographic density (≤ 20%) on interval cancers versus screen-detected regarding 

lymph node involvement, ER-negative status, HER2-postive, progesterone receptor-negative 

and triple-negative.[38] 

 

Figure 2. Graphical description of breast cancer mode of detection. Arrows indicate a breast 

cancer diagnosis within a mammographic screening setting, and shaded area represents high 

mammographic density. Tumors can be missed at screening due to a “masking effect” in high 

dense breasts. IC, interval cancer. SD, screen-detected breast cancer. 
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1.2 BREAST CANCER RISK FACTORS 

Breast cancer is a complex disease involving hereditary (genetic) and environmental (non-

genetic) risk factors. An essential task in cancer epidemiology is to identify and quantify the 

contribution of these risk factors on the disease development.  

1.2.1 Non-genetic risk 

Established risk factors for breast cancer are related to age, estrogen exposure, reproductive 

history, and mammographic density. The relationship between the main non-genetic exposures 

and breast cancer risk is shown in Table 2. Mammographic density has been discovered to be 

a strong and independent risk factor for breast cancer[39], and seem to be independent of 

molecular subtypes.[40, 41] Family history of breast cancer is an important risk factor 

reflecting the complex interaction between genetic and environmental factors involved in 

breast cancer etiology. It is defined as having first-degree (e.g. mother, sister, or daughter) or 

second-degree relatives that have been diagnosed with breast cancer. Family history is 

associated with an intermediate to high risk independently of mammographic density.[42] The 

risk is about doubled in first-degree than second-degree family history, and the risk is higher 

risk when both mother and sister have been affected.[43]   

 

Table 2. Main breast cancer risk by non-genetic risk factors. 

Risk factor Exposure Effect Aggressive subtype 

Sex Female ↑↑↑↑  

Age Older (> 40 or >60 years old) ↑↑↑  

Family history Yes vs No  ↑↑↑ BRCA, basal-like 

Mammographic density High vs Low ↑↑↑  

Benign breast disease Yes vs No ↑-↑↑↑  

Age at menarche At age < 12 years old ↑  

Age at menopause At age > 55 years old  ↑  

Parity Yes vs No ↓ BRCA, basal-like 

Age at first birth Older age (> 35 years old) ↑  

Breast feeding No vs yes, (e.g. < 1 year) ↑↑ Basal-like 

Postmenopausal obesity Body mass index > 30 Kg/m2 ↑  

Oral contraceptive use Ever vs Never ↑  

HRT Ever vs Never ↑↑ No (Luminal A) 

Oophorectomy Yes vs No ↓↓↓  

Arrows represent the direction and strength of association: ↕↕↕↕ very strong, ↕↕↕ strong, ↕↕ intermediate, ↕ low. 

 

Hormonal exposure, mainly of estrogen, has a pivotal role in the risk to develop breast 

cancer.[44] Other conventional risk factors that most presumably act by modifying hormone 

exposure are: female sex and older age with the largest risk estimates, followed by low to 



 

12 

intermediate relative risks associated with age at natural menopause, age at menarche, age at 

first birth, breast feeding, parity, postmenopausal obesity, oophorectomy, and exogenous 

estrogen exposures such as oral-contraceptive use and hormone/estrogen-replacement 

therapy.[43]  

As breast cancer is a heterogeneous disease, efforts are made to identify specific risk factors, 

particularly on aggressive subtypes.[45] Full-term pregnancy and breastfeeding were the most 

important protective factors in hereditary (BRCA carriers) breast cancer.[46] A study from our 

group assessing the heterogeneity of different risk factors including reproductive and genetic 

factors, also found breastfeeding to be protective factor mainly for basal-like tumors, which 

were enriched in BRCA mutations when compared with luminal A tumors; ever use of hormone 

replacement therapy was differentially associated with increased risk of luminal A tumors.[47] 

Regarding mammographic density, the risk for breast cancer does not seem to differ by ER or 

HER2 status.[40] 

1.2.2 Genetic risk 

A genetic (inherited) component in breast cancer is well established in the etiology of breast 

cancer.[48] Estimation of heritability based on twin studies found 25 to 31 percent to be 

explained by genetic factors.[49-51] Currently, high-risk women are primarily identified on the 

basis of family history and mutation screening of the BRCA1[52] and BRCA2[53] genes located 

on chromosome 17 and 13, respectively, which convey a lifetime risk between 50 to 85% and 

account for approximately 15% of familial breast cancer.[54] 

A large effort to investigate the genetic component of breast cancer has taken place since the 

discovery of the BRCA1/2 genes.[55] Genetic risk variants can be classified into high, 

moderate, and low risk, based on their penetrance expressed in relative risks (RR) as: 1) high 

risk if RR > 4, 2) moderate risk if RR between 2 to 4, and 3) low risk if RR < 1.5.[56] Base on 

their allele frequency, genetic variants are classified into common (>1%) or rare (<1%). Put 

together, it has been observed that highly pathogenic variants are rare and that susceptibility 

variants with lower risk are more frequent (Figure 3). Moderate-to-high risk variants have been 

mainly identified in familial breast cancer cases through genetic linkage studies followed by 

positional cloning, and candidate gene-panel sequencing of unrelated individuals which search 

for protein-coding deleterious variants found at a frequency <1% in general population.[57] On 

the other hand, common variants have been identified through Genome Wide Association 

Analysis (GWAS). While rare variants tend to be of higher penetrance, common variants are 

often of low-penetrance. 
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Figure 3. Penetrance and frequency of breast cancer genetic variants. Variants within the 

shadowed area, thought to explain breast cancer heritability. Variants below the lower 

boundary (rare and low-penetrance) are hard to be detected and of little utility, while variants 

above the upper boundary (common and high-penetrance) are subjected to strong negative-

selection, thus difficult to be observed. Inspired by Manolio, T.A., et al.[58] RR, relative risks. 

 

Common variants 

Initiated with the discovery of common predisposition variants by the first breast cancer GWAS 

in 2007,[59] low-risk variants have been identified in large cohorts under the hypothesis of a 

‘common-disease common-variants’.[57] A series of successful studies with continuously 

increasing number of participants, allow for pooled analysis through international 

collaborations.[60] The largest GWAS in European population up to date analyzed 118,474 

breast cancer cases and 96,201 controls, as well as BRCA1 mutations carriers, 9,414 affected 

and 9,494 unaffected.[61] The study included participants from 82 studies from the Breast 

Cancer Association Consortium (BCAC), and from 60 studies from the Consortium of 

Investigators of Modifiers of BRCA1/2 (CIMBA). The authors reported 32 new loci were 

identified in addition to the 178 loci reported in previous GWAS from the BCAC.[62, 63] The 

210 variants were found to explain 54.2, 37.6 and 26.9% of the genome-wide chip heritability 

for luminal-A-like, triple-negative, and BRCA1 carriers, respectively, and about 18% of the 

familiar risk for invasive breast cancer.[61] Analysis on the genetic correlation between breast 

cancer subtypes showed that luminal A-like breast cancer is less correlated with triple-negative 

and BRCA1 subtypes (0.46 and 0.39, respectively), while highest correlation was observed for 

the BRCA1 subtype with triple-negative and HER2-enriched-like subtypes (0.84 and 0.80, 

respectively) (Figure 4). 
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Figure 4. Genetic correlation between breast cancer intrinsic-like subtypes, estimated through 

LDSC regression. Reprinted by permission from Springer Nature. Zhang et al 2020.[61] 

 

When combined into polygenic risk scores (PRSs),[64] common variants are able to explained 

a larger proportion of phenotypic variation and have proven useful for risk stratification.[65, 

66] Recently, a PRS including 330 single nucleotide polymorphisms (SNPs) was found to 

confer 83% to 65% higher risk for luminal-A-like and triple-negative subtypes, 

respectively.[61] These results are similar to a previous PRS based on 313 SNPs that was 

associated with 61% higher risk of overall breast cancer, 4.37-fold risk of ER-positive, and 

2.78-fold risk of ER-negative breast cancer on women in the highest centile as compared with 

women in the middle PRS quintile.[67] 

 

Rare variants 

It has been proposed that the “missing heritability” observed in GWAS studies could be 

potentially explained by rare variants with moderate-to-high risk effects that require the 

systematic characterization of a large number of samples.[68] The advent of Next Generation 

Sequencing (NGS) technologies, that allow for reading entire coding regions of DNA (exon-

sequencing), or whole genomes (whole-genome sequencing), has enable the discovery of novel 

breast cancer germline pathogenic variants which could not have been identified through 

family studies.[69-72] Multigene (sequencing) panels are proving to be useful in identifying 
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breast cancer susceptibility genetic variants involved in DNA repair (similar to the BRCA 

genes), cell-cycle control or mitotic signal transduction pathways.[73]. Carriers of high- and 

moderate-risk germline mutations in genes such as BRCA1, BRCA2, CHEK2 and PALB2, have 

been found to be predisposed to specific subtypes of breast cancer.[74-77] In particular, 

mutated BRCA1 gene is highly enriched for basal-like tumors,[78, 79] and ATM and CHEK2 

have been observed to be associated with higher risk of ER-negative disease.[80] In addition 

to the BRCA genes, germline mutations in PALB2, RAD51D, and BARD1 have been found to 

be associated with triple-negative breast cancer.[81] Combined, mutations in high-to-moderate 

risk genes account for 9% to 14% of triple-negative cases and were associated with more 

aggressive phenotypes, as found through gene-panel sequencing of patients unselected for 

family history of breast cancer.[82, 83] 

While sequencing studies allow for identification of rare deleterious variants, GWAS variants 

lie most presumably on gene regulatory elements.[57]  Interestingly, sequencing of exon-intron 

boundaries of 56 genes identified through GWAS studies, only found weak evidence of rare 

deleterious variants being associated with breast cancer risk in non-BRCA families.[84] A 

similar conclusion was drawn from a large study sequencing 38 genes neighboring 38 leading 

GWAS SNPs.[85] However, this does not discard the possibility of finding regulatory variants 

conferring high risk effects on GWAS studies, and does not mean that all variants in protein-

coding regions are of high penetrance. 

 

Immune-related genetic factors 

Immune and inflammatory responses play a key role in the different stages of cancer 

disease.[86] It is possible that immune-related genetic variants affect breast cancer 

susceptibility by influencing immunosurveillance mechanisms and could potentially provide 

prognostic information, particularly on tumor subtypes with higher immunogenicity. For 

instance, studies on candidate genetic predisposition variants have found immune-related genes 

to be associated with ER-negative breast cancer.[87, 88]  

Large-scale genotyping initiatives have been undertaken in order to characterize the genetic 

architecture underlying the phenotypic variation of immune traits[89, 90] and the susceptibility 

to develop autoimmune diseases in which an altered immune response is exhibited.[91] These 

data sources represent an opportunity to explore the role of immune-related factors on breast 

cancer in order to identify common etiological and prognostic factors. Autoimmune diseases 

are known to be associated with breast cancer based on epidemiological data.[92] Celiac 

disease in particular, a gastrointestinal immune-mediate disease triggered by gluten intake, has 

been associated with reduced risk of breast cancer.[93, 94]. Base on this idea, overall trends or 

correlations between traits based on genomic variant information can be used to guide the 

search for shared etiological factors, also referred as pleiotropy.[95] For that, different 

methodologies have been proposed to exploit the ‘hidden’ information that can be capture from 

GWAS studies.[96-98] 
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1.3 MOLECULAR ASPECTS OF BREAST CANCER BIOLOGY 

This section aims to describe key concepts in cancer biology that provide a theoretical 

framework for the understanding of the observed molecular features in cancer, and with 

particular remarks on breast cancer. In this context, mutations are the thought as the main 

drivers of cancer cells (carcinogenesis), where biological features emerge (cancer hallmarks) 

in a complex and dynamic fashion (heterogeneity and evolution) (Figure 5). A separate section 

on immunogenicity, that in a sense provides a link between the former concepts, is also briefly 

described. 

1.3.1 Carcinogenesis 

Carcinogenesis, also known as tumorigenesis or oncogenesis, refers to the processes by which 

genomic alterations, acquired and/or inherited, lead to the formation of cancer cells.[99] 

Mutated genes driving this process are broadly classified into two categories according to their 

biological function: tumor-suppressor genes, which act as “guardians of the genome”, and 

oncogenes or proto-oncogenes. In breast cancer, a number of oncogenes (e.g. ErbB2, PI3KCA, 

MYC, and CCND1) and tumor-suppressor genes (BRCA1, BRCA2, PTEN, CHK2, NBS1, 

RAD50, PALB2, BRIP) have been identified.[100, 101]  

The prevailing theory of cancer proposes that for the formation of cancer cells, a stepwise 

acquisition of cancer-favoring mutations is required for the clonal evolution of cancer 

cells.[102-104] The nature of these mutations can be inheritance, DNA-damaging 

environmental factors, and consequence of errors in DNA replication.[105] Causal mutations 

are referred as driver mutations, to distinguish them from passenger or neutral mutations.[106, 

107] In a recent pan-cancer analysis 299 driver genes were identified, of which about 10% were 

found in more than half of the cancer types, while more than 50% of genes were unique to one 

subtype.[108] Still, the role of passenger mutations is debated,[109] as they may provide 

evolutionary advantages to intermediate cancer cell phenotypes.[110] Generally, mutational 

signatures provide valuable information on cancer etiology, prognosis, and potential 

therapeutic targets.[111] For instance, mutational load across cancer genomes was used to 

identify diagnostic and prognostic gene expression signals,[112] and to predict positive 

response to immunotherapy in different cancer types.[113]  

1.3.2 Cancer hallmarks 

By acquisition of key biological properties, called ‘cancer hallmarks’,[114, 115] abnormal cells 

are able to become tumorigenic and invasive. Cancer hallmarks include: sustaining 

proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming of 

energy metabolism, and evading immune destruction, all of which are underlined by two 

enabling characteristics: genome instability, and tumor-promoting inflammation. Tumors can 

also be conceptualized as tissues composed of multiple cell types that interact with the tumor 

microenvironment through signaling processes.   
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Figure 5. Molecular aspects of breast cancer biology. Mammary cells portray a unique 

mutational landscape (genotype); somatic mutations can trigger transformation into cancer 

cells, which evolve into a distinct breast cancer subtype through clonal evolution; 

Immunoediting events occur along this process. CSCs, cancer-stem cells; TME, tumor 

microenvironment. 

 

In the specific case of breast cancer, these principles can be used to describe breast cancer 

heterogeneity in a more coherent way by assigning tumor subtypes onto cancer hallmarks.[116] 

For instance, ‘sustaining proliferative signaling’ is proposed to be the principal mechanism 

driving tumors with hormonal (e.g. ER | PR positive, luminal A subtype) and growth receptor 

positivity (tumor with HER2+). Over-expressed proliferation markers such as TOP2A, Ki-67, 

and cell cycle genes can further differentiate [ER+ | PR+, HER2-] tumors into more aggressive 

subtypes. ‘Activating invasion and metastasis’ hallmark is more characteristic in tumors with 

poorer prognosis such as triple negative [ER-, PR- and HER2-] and basal like subtype, where 

basal markers such as cytokeratins are linked with tumorigenesis and metastasis. Properties 

related to the same hallmark, such as epithelial to mesenchymal transition processes and cell 

stemness, are enriched in triple negative tumors. Other breast cancer subtype that can be 

distinguished in relation with ‘Evading immune destruction’ cancer hallmark, is the so called 

interferon-rich tumors (accounting for ~10% of cases), a subset of triple-negative cancers with 

intermediate survival outcome. 
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1.3.3 Heterogeneity and evolution 

Biological features of cancer, such as intratumoral heterogeneity in breast cancinomas,[117] 

can be described from a developmental perspective.[118, 119] Under this paradigm, cancer cell 

populations (clones and sub-clones) arise from carcinogenic and tumorigenic events in an 

evolution-like process, which can explain fundamental differences between breast cancer 

subtypes at the single-cell level.[120] For instance, sub-clonal mutations identified in the AKT, 

FGFR, PIK3CA, and TP53 genes through multi-region NGS sequencing of breast cancer 

primary tumors, were found to explain aggressive phenotypes such as increased proliferation, 

chemoresistance, invasiveness, and metastasis.[121] Another theory to explain tumor 

heterogeneity forwarded in 1977, is the existence of different cells-of-origin,[122] referred as 

cancer stem cells (CSCs). Other models integrating clonal evolution and CSCs, to explain 

intratumoral heterogeneity, have also been proposed.[123] 

1.3.4 Immunogenicity 

Clonal selection is influenced by the host immune system in a process called immuoediting, 

which can be differentiated into three phases: elimination, equilibrium, and scape.[124] 

Elimination refers to the processes by which the innate effector cells and adaptive immune 

system lead newly formed cancer cell towards apoptosis.  The equilibrium phase is 

characterized by the acquisition of molecular modifications which allow malignant cells to 

avoid immune system detection and elimination. In the scape phase, tumor cells are capable of 

inducing an immunosuppressive microenvironment allowing further proliferation.[125]  

Immunogenicity of the tumor reflects the extent of immune response involvement and can be 

described by the presence of tumor infiltrating lymphocytes (TIL). For breast cancer in 

particular, TILs have been observed predominantly on triple-negative tumors, i.e. more than 

50% lymphocytic infiltrate, which correlates with better prognosis from each 10 percent 

increase in TIL; other breast cancer subtypes exhibit lower TIL levels and could benefit from 

TIL enhancing therapies.[126] Immunogenicity is determined by the ability of immune cells to 

recognize tumor-specific epitopes defining the antigenicity of a tumor. Higher mutational load 

is positively correlated with formation of tumor neoantigens, making them more immunogenic, 

and is usually higher on ER-negative tumors. Immunogenicity can also be enhanced by specific 

mutational signatures affecting DNA repair mechanism, as it is for BRCA genes linked to basal-

like tumors. Tumors with lower proliferation and genomic instability such as luminal subtype 

may result in lower antigenicity. However, heterogeneity in ER-positive tumors could be 

influenced by high genomic driver diversity favoring immune-scape mechanisms.[124] 
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2 Aims 

The overall aim of this thesis was to generate new knowledge on breast cancer epidemiology 

by leveraging of molecular data, with a particular focus on disease aggressiveness. The specific 

aims, corresponding to the constituent scientific papers included in this thesis, are the 

following: 

I. To evaluate the contribution of rare and common germline genetic variants on disease 

aggressiveness. 

II. To characterize tumor gene expression patterns behind the association between breast 

cancer risk, defined by the 5-year Tyrer-Cuzick risk score, and disease aggressiveness.  

III. To investigate underlying biological features of interval breast cancers independent of 

the PAM50 intrinsic subtypes. 

IV. To assess the genetic correlation and overlap between breast cancer and celiac disease. 
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3 MATERIALS AND METHODS 

In this thesis, we included women who participated in two breast cancer studies in Sweden 

designed to investigate risk factors, tumor characteristics, and clinical outcomes, among other 

aspects of breast cancer. After ethical approval and participant informed consent, detail level 

information was collected from questionnaires, medical records, and from linkage to high 

quality registers. Additionally, data from external studies in Swedish and European populations 

was used in some of the analysis. The following sections describe the study populations, data 

material and summary variables, study designs, and statistical methods used across the four 

papers. 

3.1 UNDERLYING STUDY POPULATIONS 

In all our studies, we included women recruited under the Linné-Bröst 1 (LIBRO-1) study. In 

papers II, III, and IV, we included women who participated in the KARolinska MAmmography 

Project for Risk Prediction of Breast Cancer (KARMA) study. In paper I and IV, some analyses 

were based on data obtained from The Breast Cancer Association Consortium (BCAC). Gene 

expression validation datasets obtained from two independent breast cancer cohorts, The 

Cancer Genome Atlas (TCGA), and the MERCK, are also briefly described. 

3.1.1 LIBRO-1 

The LIBRO-1 study has been described in previous publications.[38, 127] Briefly, it consists 

of women diagnosed with invasive breast cancer between January of 2001 and December of 

2008 in the Stockholm/Scotland regions of Sweden, who were alive in 2009. In total, more 

than 9,000 women were identified through the Regional Cancer register and invited, of which 

5,715 accepted to participate in the study. 

3.1.2 KARMA 

KARMA is a large and well characterized prospective breast cancer cohort.[128] It is derived 

from population-based mammographic-screening or clinical radiology examinations 

conducted at five participating hospitals from the Stockholm and Skåne regions of Sweden 

(Stockholm South General Hospital, Helsingborg Hospital, Skåne University Hospital, Lund 

Hospital, and Landskrona Hospital). Between January 2011 and March 2013, more than 

210,000 women were invited to participate. In total, more than 70,000 women with our without 

breast cancer diagnosis were included in study, of which approximately 3,000 have been 

diagnosed with invasive breast cancer.  

3.1.3 BCAC 

BCAC is the largest international initiative to characterize the genetic susceptibility of breast 

cancer (http://bcac.ccge.medschl.cam.ac.uk/). In our studies, we used GWAS summary results 

reported for overall, ER-positive, and ER-negative breast cancer risk, based on European 

population, here referred as GWAS summary statistics, which are further discussed in section 

3.2.4.3 Briefly, in Paper IV we used summary results published in 2015,[129] in which over 
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85,000 women of European ancestry (45,290 cases) were genotyped under the Collaborative 

Oncological Gene-Environment Study (COGS), using an Illumina iSelect SNP Array that 

covered 211,155 SNPs, the iCOGS.[130] In Paper I, we used GWAS summary results 

published in 2017,[62] where over 100,000 women of European ancestry (61,282 cases)  were 

genotyped using the iCOGS, or the OncoArray, an Illumina SNP array targeting more than 

500,000 genomic variants.[131] 

3.1.4 Ethical approvals 

All women participating in the LIBRO-1 and KARMA studies gave written informed consent 

to extract data from medical records and national registers, provided information on risk 

factors, and donated a blood sample for genetic analysis. The studies were approved by the 

Regional Ethical Review Board at Karolinska Institutet (LIBRO-1, DNR: 2009/254-31/4, 

amendments 2011/2010-32, and 2012/465-32; KARMA, DNR: 2010/958-31/1, amendment 

2013/2090-32), and were conducted in accordance with the Declaration of Helsinki. In brief, 

all personal data was pseudonymised by the Swedish National Board of Health and Welfare 

(in Swedish, Socialstyrelsen) and analyzed in secure local servers at the Department of Medical 

Epidemiology and Biostatistics, following data management guidelines. 

3.2 DATA MATERIAL 

Data material consisted of the main outcomes and exposures are described in this section. The 

main outcomes included tumor characteristics (all papers), breast cancer specific survival 

(Papers I and II), and interval cancers (Paper III). The main exposure variables were based on 

breast cancer risk factors (Paper II), genetic (Papers I and IV), and gene expression data (Papers 

II and III). 

3.2.1 Tumor characteristics, treatment, and survival  

Data on molecular markers was retrieved from medical and pathology records. ER and PR 

percentage staining was determined using radioimmunoassay or IHC techniques and 

dichotomized into positive (if ≥10%) or negative status, otherwise. HER2 status was 

dichotomized as negative status if protein expression from IHC/immuocytochemistry was 0 or 

1+, or higher, and no gene amplification by FISH, and assigned positive status if gene 

amplification by FISH was observed. Proliferation marker Ki67 was measured in hotspot 

regions following routine guidelines and was reported as low if percent staining <20%, or as 

high otherwise. Information on prior breast cancer diagnoses, lymph node involvement 

(dichotomized into positive or negative), tumor size diameter measured in millimeters, and 

tumor grade recorded using the Nottingham Histologic Grade system,  as well as treatment 

regimen (adjuvant chemotherapy, endocrine therapy, and radiotherapy) was obtained through 

the Swedish National Cancer Register (INCA)[132] and the Stockholm-Gotland Regional 

Breast Cancer Quality Register[133] through the Swedish personal identity numbers.[134] 

Information on date and breast cancer-specific cause of death (code “C50*”) was obtained from 

the Swedish Cause of Death Register.[135] 
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3.2.2 Risk factors  

Information on various aspects of women’s health was extracted from questionnaire data 

provided by each participant in the LIBRO-1 and KARMA study, at time of entry. Data on 

reproductive history, family history of breast cancer, exposure to exogenous estrogen (i.e. use 

of oral contraceptives, and hormone-replacement therapy) was obtained. This information was 

used to estimate absolute breast cancer risks (Tyrer-Cuzick score) in Paper III, as described 

below in section 3.3.3. 

3.2.3 Interval cancer and mammographic density 

In this thesis, we assessed mammographic screening history (i.e. dates at mammographic 

screening visits) to define breast cancer mode of detection (i.e. screen-detected or interval 

cancer). Screening information regarding data and outcome from each visit was obtained from 

the population-based mammography screening database[136] at the Stockholm-Gotland 

Regional Cancer Center. Since 1989, in Stockholm, all women aged 50 to 69 years have been 

invited to screening at 24-month intervals, and 2005, women aged 40 to 49 years have also 

been invited to screening at 18-month intervals. Breast cancer diagnosis from women regularly 

attending mammographic screening, were classified by mode of detection into interval cancers, 

or screen-detected breast cancer. Interval cancers were defined as breast cancer diagnosis 

occurring after a negative screening mammogram and before the next programmed screen. 

Screen-detected tumors were defined as breast cancer diagnosis occurring after a positive 

screening mammogram. Breast mammographic density, expressed in percentage (PD), was 

measured from mammograms of healthy breasts prior breast cancer diagnosis using a machine-

learning algorithm, STRATUS,[137] developed by our group.  

3.2.4 Genetic data  

Three types of germline genetic data were analyzed in this thesis: 1) sequencing data, 2) raw 

genotype data, and 3) GWAS summary statistics. The first type consisted of targeted 

sequencing of 31 breast cancer related genes to measure carriership of rare deleterious variants 

(section 3.3.1). The second and third type inform about common genetic variants across the 

genome that can be summarized into PRSs (section 3.3.2) or used to estimate genetic 

correlation (section 3.4.3).  

3.2.4.1 Sequencing data (Paper I) 

Germline DNA sequencing was performed in LIBRO-1 patients using a custom-made gene 

panel. The gene panel was design to target exome and intro/exon boundary regions of 31 genes 

breast cancer predisposition genes included in commercial gene panels.[80] DNA variant 

calling was obtained for 5,099 (99.55%) of 5,122 patients successfully sequenced at the Centre 

for Cancer Genetic Epidemiology, at University of Cambridge (see eMethods in Data 

Supplement 2, Paper I). In brief, the panel consisted of an amplicon-based (targeted) custom 

panel, applied to a NGS platform. The in total 1,350 amplicons and primer sequences used to 

target the intro/exon boundaries of the 31 genes are shown in Paper I, Table S1 in Data 
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Supplement 2. Library preparation (enrichment) was performed using the Fluidigm Access 

Array 48.48 system. Libraries were sequenced on a single lane of an Illumina platform (Hi-

Seq200) yielding 100-base paired-end reads. Bioinformatics processing of raw data consisted 

of reads alignment to a human reference genome (hg19) using the Burrows-Wheeler Aligner 

(BWA).[138] Variant calling was performed using the Genome Analysis Toolkit 

(GATK)[139] UnifiedGenotyper pipeline (see Figure S1, in Data Supplement 2, Paper I). A 

number of quality control and hard filtering criteria were applied to obtain high confidence 

variant calls for SNP, and INDELs, separately, as shown in Paper I, Supplementary Table 3. 

Rare variants were defined at <2% frequency. For annotation of variants (i.e. classification of 

variants into nonsense, frameshift, splicing, missense, etc.), the ANNOVAR[140] software was 

used. 

3.2.4.2 Raw genotype data (Paper I and IV) 

In this thesis, we used individual-level genotype data from women who participated in the 

LIBRO-1 or KARMA study, and that were genotyped as part of the iCOGS initiative.[129] In 

Paper I, a case-only study, more than 5,000 women diagnosed with breast cancer who 

participated in the LIBRO-1 study were included. These women were also included in paper 

IV, in addition to 5,433 women without cancer diagnosis (controls) who participated in the 

KARMA study. Women subjected to genotyping had donated blood samples at study entry. 

From these samples, germline DNA was extracted and genotyped using the iCOGS, a custom 

Illumina iSelect SNP array.[130] Because the array only targets approximately 200,000 

independent SNPs, a standard strategy is to impute genotypes at genome-wide coverage based 

on the principle of linkage disequilibrium (LD).[141] In our studies, imputation was performed 

using the IMPUTE version 2 software,[142] and a genome reference panel of densely 

genotyped individuals from the 1000 Genome Project, which contains information for over 88 

million common variants.[143]  

3.2.4.3 GWAS summary statistics (Paper I and IV) 

We used data on common genetic variation of breast cancer and celiac disease measured in 

large GWAS studies, referred as GWAS summary statistics. Advantages of this type of data is 

its de-personalized nature, making easier to become publically available and to be used for 

research purposes.  

Breast cancer 

Breast cancer GWAS summary statistics were obtained from data published as part of the 

BCAC consortium, based on the iCOGS and the OncoArray genotyping arrays (see section 

3.1.3). 

Celiac disease  

GWAS summary statistics for celiac disease (133,352 SNPs) were downloaded from the 

ImmunoBase (https://www.immunobase.org/), a web based resource focused on the genetics 
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and genomics of immunologically related human diseases.  Celiac disease data has been 

reported in a GWAS study by Trynka and colleagues[144] on 12,041 celiac disease cases and 

12,228 controls of European ancestry using the Illumina Infinitum High-Density array 

(ImmunoChip), designed to target 195,806 SNPs located at immune-related genome 

regions.[145] 

3.2.5 Gene expression data: tumor RNA sequencing 

3.2.5.1 LIBRO-1/KARMA dataset 

Genome-wide expression data was measured for a subset of LIBRO-1 and KARMA patients. 

This subset of tumors were sequenced under two sequencing initiatives: the ClinSeq,[146] and 

the SCAN-B.[147] In brief, total RNA was extracted from tumor samples using ribosomal 

depletion (RiboZero; Illumina, US) in the ClinSeq study, and a poly-A enrichment dUTP 

library protocol in the SCAN-B. High quality RNA (RIN > 7) was assured. RNA sequencing 

was performed using the Illumina HiSeq technology. At minimum, more than 5 million paired-

end RNA fragments (reads) were obtained on each samples, and less than 60% duplication, 

meaning that a unique read is mapped twice.  

Quantification of gene expression levels was performed using a fast-alignment algorithm 

(quasi-mapping based mode), Salmon version 0.9.1.[148] For that, an index reference 

transcriptome (genome assembly version GRCh38) was built using the --type quasi -k 19 flag. 

Then, transcript-level estimates were extracted using the tximportData R package, and 

aggregated into gene-level expression values using the tximport R package.[149] Because the 

SCAN-B library protocol was design to target mRNAs, we filtered approximately 19,000 gene-

coding mRNAs in both datasets. 

3.2.5.2 External datasets 

Two external gene expression datasets were used as validation sets. A publically available 

breast cancer cohort from the TCGA database[152]  was used in Papers II and III, and a nested 

breast cancer cohort of the MERCK study, which has been previously described [127, 150, 

151] was used in Paper III. In brief, the TCGA dataset consisted of 975 primary invasive breast 

cancer tumors, from women of age 26 to 90 years. Pre-processed RNA-sequencing data, in 

form of transcript count computed with HTseq software,[153] was available for retrieval trough 

the GDC Data Transfer Tool. Data was downloaded on November 7th, 2018, together with 

patient clinical information. The MECK study comprised of 621 patients diagnosed with 

invasive and metastatic breast cancer, from which we identified 111 interval cancer and 109 

screen-detected breast cancers. In these samples, gene expression was measured using an 

Affymetrix microarray assay. 
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3.3 SUMMARY VARIABLES  

Variables that combine information from accumulated knowledge have the potential to 

improve our ability to evaluate the relationship between multiple factors involved in complex 

traits such as breast cancer. Particularly important are predictions on aggressive subtypes. In 

the following subsections summary variables used in this thesis are described. These include 

breast cancer risk scores (genetic and non-genetic), as well as gene expression patterns related 

to the disease aggressiveness (gene expression profiles and breast cancer subtypes).  

3.3.1 Protein-truncating variants (Paper I) 

Protein-truncating variants (PTVs) in 31 breast cancer genes sequenced on a gene panel 

(section 3.2.4.1), were used to summarize breast cancer genetic load by rare deleterious 

variants. PTVs were defined as variants disrupting gene function by introducing a stop codon 

(nonsense mutation), by frameshift insertion/deletions, or through splice site mutations.  For 

BRCA1/2 genes, PTVs annotations were refined based on previously confirmed nonsense and 

frameshift mutations,[154]  as well as missense pathogenic variants in BRCA1/2 genes 

confirmed by the ENIGMA international expert panel (http://brcaexchange.org/). The Maftools 

software[155] was used for summary, analysis, and visualization of the annotated variants. 

PTV carriership was defined as having at least one PTV in any of the 31 genes included in the 

gene panel, and was analyzed as a binary exposure. 

3.3.2 Polygenic risk score (Paper I and IV) 

A PRS is a tool to summarize the small effects of multiple loci associated with a polygenic 

disease,[156] and has potential clinical applications.[157] PRSs are calculated as a weighted 

combination of the number of risk alleles an individual has, where the weights/effect size 

estimates are typically obtained from an independent study population.[67] In Paper I, we 

included 162 GWAS significant (P-value < 5×10-08) SNPs associated with breast cancer. In 

Paper IV, we computed PRSs based on 199, 276, 1284, and 3803 SNPs associated with celiac 

disease, selected under four P-value thresholds (5×10-08, 1×10-05, 1×10-02, 5×10-02), 

respectively. 

We computed each PRS under the following multiplicative (log-additive) model: 

PRS = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 

where 𝛽𝑘 (𝑘 = 1, ⋯ , 𝑛) is the per-allele log-odds ratio, 𝑥𝑘 is the number of risk alleles (e.g. 0, 

1, or 2) for SNP𝑘, and n is the number of SNPs included in the PRS. The model assumes no 

genetic interactions, an assumption which has been shown to be reasonable.[158, 159] 

3.3.3 Tyrer-Cuzick risk score (Paper II) 

In Paper II, we measured the risk of women to develop breast cancer expressed as 5-year 

absolute risk. The risk was calculated using the Tyrer-Cuzick (TC) model,[160] a breast cancer 

risk assessment tool from the International Breast Cancer Intervention Study (IBIS). We 

entered information about established risk factors of breast cancer into the model. These 
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included factors related to an increased lifetime endogenous estrogen exposure (i.e. early age 

at menarche, late age at first birth, late age at menopause), as well as exogenous exposures (i.e. 

use of oral contraceptives, and have undergone hormone-replacement therapy), to previous 

benign breast disease including hyperplasia, atypical hyperplasia, and lobular cancer in situ, in 

addition to height, weight, family history of breast and ovarian cancer, Ashkenazy descent, and 

BRCA mutation status.  

In brief, the TC model estimates the probability of a woman to develop breast cancer within 5 

years, 10 years, or during her lifetime. The risk is age-specific, which is calculated by 

considering the incidence rate of breast cancer at five year interval observed in the background 

population (e.g. UK or Sweden). The model multiplies the age-specific incidence by the 

probability of carrying a hypothetical predisposition gene accounting for all unknown 

predisposition genes explaining the familial aggregation. This probability is derived from 

BRCA frequencies in the population using a Bayes theorem. We computed the scores using the 

IBIS tool version 7 (http://www.ems-trials.org/riskevaluator/). 

3.3.4 Gene expression profiles (Paper II and III) 

In Paper II and III, we profiled tumors based on gene expression patters associated with breast 

cancer risk (Paper II) or with interval breast cancer (Paper III). The profiles included genes 

showing strongest association with the exposure of interest, and were computed as the 

following: 

Profile = 𝑊1𝑔1 + 𝑊2𝑔2 + ⋯ +  𝑊𝑛𝑔𝑛 

where 𝑊𝑘 (𝑘 = 1, ⋯ , 𝑛) is the gene weight obtained from the discovery gene expression 

analyses (explained in section 3.5.4), 𝑔𝑘 are the log2-scaled and normalized gene expression 

levels for gene k, and n is the number of genes included in the profile. 

3.3.5 Molecular subtypes (Paper II and III) 

In Paper I, surrogate molecular subtypes were assigned to samples using a machine learning 

algorithm fed with data on immunohistochemistry marker status (ER, PR, HER2, and ki67) as 

previously implemented by our group.[47]  

In paper II and III, breast cancer intrinsic molecular subtypes, also known as PAM50 subtypes, 

were inferred from gene expression data using a research-based classifier, the Absolute 

Assignment of Breast Cancer Intrinsic Molecular Subtype (AIMS).[161] This machine 

learning algorithm was developed to assign subtypes based on a set of patient-level gene 

expression rules, which are not affected by differences in array/sequencing platforms and 

cohort composition, both of which the PAM50 classifier is sensitive to. 

3.3.6 Immune subtypes (Paper III) 

Tumors were classified into distinct immune subtypes based on gene expression profiles 

following methodology published by Amara and colleagues.[162] The underlying principle is 
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that it is possible to extract immune-related signals from “bulk” RNA sequencing data. In that 

paper, the authors assessed 57 published immune expression signatures that could be assigned 

into one of four co-expression modules: core-serum response (CSR), T-cells and/or B-cells 

(T/B-cell), interferon (IFN), and transforming growth factor beta (TGFB). Using hierarchical 

cluster analysis,[163] samples could be classified based on five immune subtypes representing 

coherent immune-related expression patterns: Immune Low, CSR-High, IFN/CSR High, T/B-

Cell/IFN High, and TGFB High.  

3.4 STUDY DESIGNS 

3.4.1 Case-only study (Paper I-III) 

In Papers I to III, we used a case-only design in order to study patterns of breast cancer 

aggressiveness. In this way, we could assess whether differences in adverse outcomes (more 

aggressive vs. less aggressive) defined by a number of prognostic factors (e.g. ER-negative 

tumors), could be explained by a variable of interest (exposure). In this thesis, we evaluated 

exposures such as different types of breast cancer genetic load (Paper I), level of non-genetic 

breast cancer risk (Paper II), and unfavorable mode of detection (Paper III).  

3.4.2 Case-control study (Paper IV) 

Case-control studies are meant to evaluate the association between a variable of interest 

(exposure) and the disease status (cases or disease-free controls). In Paper IV, we used this 

study design to estimate breast cancer risk by the amount of genetic predisposition to celiac 

disease. The main difference with case-only studies, is that the reference (control) group is 

comprised of non-affected individuals. This approach offers a cost-effect strategy to quantify 

whether an exposure variable is likely to reduce or increase the probability of developing a 

disease. A higher level of scientific evidence stems from prospective cohort studies and from 

randomized-control trials, however, these study designs are costly and often not viable. 

3.4.3 Genetic correlation and overlap (Paper IV) 

In Paper IV, we performed analysis on the shared genetic component between breast cancer 

and celiac disease, using two type of methods: 1) based on raw genotype data we computed a 

celiac disease PRS (see section 3.3.2), which was then used to estimate risk to develop breast 

cancer, and 2) estimation of genetic correlation and overlap based on analysis of GWAS 

summary statistics (section 3.2.4.3) using methods described in sections 3.5.6 and 3.5.7. In 

brief, this type of study aim to assess the extent of genetic variation that is shared between 

polygenic traits (e.g. complex diseases). Ideally, genetic variation on each trait should be 

measured using set of samples independent from the discovery studies in order to avoid over-

estimation. The existence of a widespread shared genetic variation across complex traits is 

based on the concept of pleiotropy, meaning that genetic variants can be involved in multiple 

disease pathways.[164] In essence, genetic overlap is similar to the concept of pleiotropy, while 

in genetic correlation analysis the direction of the association is taken into account.[98] Future 
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studies might explore the role of cell-type or tissue specific effects on the genetic predisposition 

shared between different diseases.[165]   

3.5 STATISTICAL METHODS 

All statistical analyses were performed in the open-access statistical software R. Binary 

outcomes were analyzed using logistic regressions, and categorical outcomes using 

multinomial logistic regressions. Survival analyses were performed using Cox regressions. 

Methods to analyze gene expression differences and their effect at the level of biological 

processes, are also included. Finally, methods to assess genetic correlation are described, as 

well as modeling of potential confounding. 

3.5.1 Logistic regression 

Logistic regression was used to make inference on binary variables (outcomes) such as ER-

negative vs ER-positive status or interval cancer vs screen-detected tumor. Effect estimates for 

the associations of explanatory variables (exposures) such as high vs low PRS, or carriership 

of rare variants, with the main outcomes, were expressed as odds ratios (OR), and 95% 

confidence intervals, were calculated. With logistic regression, the probability of an event Y 

(binary outcome), conditional on an explanatory variable, X, is modelled as 

𝑃(𝑌 = 1|𝑋) = 𝑃(𝑌) =  
𝑒(𝛽0+𝛽1𝑋)

1 +  𝑒(𝛽0+𝛽1𝑋)
 

where 𝛽0 and 𝛽1are two parameters inferred from the data, e is the exponential, and X is a 

covariate (but can easily be extended to a set of covariates). The log-odds is defined as 

 𝑙𝑜𝑔 [𝑃(𝑌)  1 − 𝑃(𝑌)]⁄ , which is known as the logit transformation. It can be shown that 

unbiased estimates of ORs can be obtained from case-control data by fitting a logistic 

regression model and by taking the exponent of the estimate of 𝛽1. Under this model, 𝛽1 

represents the log-odds ratio, and is defined as 𝑙𝑜𝑔[𝑜𝑑𝑑𝑠 𝑜𝑓 𝑌 | 𝑋 = 1 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑌 | 𝑋 = 0⁄ ]. 

Logistic regression models were fitted as special cases of generalized linear models using the 

R function glm. 

3.5.2 Multinomial logistic regression 

Multinomial logistic regression was used to estimate ORs, with 95% confidence intervals, 

when assessing association with categorical outcome variables (reference category vs exposure 

categories), using the nnet R package. The multinomial regression model can be viewed in 

terms of separate logistic regression models for each exposure category, each against the 

reference group. 

3.5.3 Cox Proportional-Hazards regression 

Cox Proportional Hazards (PH) regression was used to estimate hazard-ratios (HRs), with 95% 

confidence intervals. Under this method, a time-to-event (e.g. from death due to breast cancer) 

is modeled as a function of explanatory variables, and individuals are considered to be at risk 
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from the time to entry to the end of follow up, and are censored (no longer considered as risk) 

if the event has occurred, the participant has left the study, or the study has ended. The Cox PH 

regression model specifies the hazard of an event at time t as a function of a baseline hazard 

and the independent explanatory variable(s), such that 

𝜆(𝑡|𝑋𝑖) = 𝜆0(𝑡) exp(𝑋𝑖 ∙  𝛽) 

where 𝜆0(𝑡) is the baseline risk of the event (i.e. with covariates set to zero) per unit change in 

the underlying time scale, 𝑋𝑖 is the vector of covariates for i individuals, and 𝛽 is the vector of 

coefficients explaining the hazards. In our analysis, time since diagnosis, in years, was used as 

the underlying time scale. 

3.5.4 Gene expression analysis  

Gene expression analysis were performed in Papers II and III to quantify gene-level differences 

across samples explained by the exposure of interest. Methods under the generalized linear 

model framework that allowed for including co-variates were developed to analyze gene 

expression levels in the form of intensities yielding from Microarray platforms.[166] With the 

advent of RNA-sequencing technologies, which instead produces count data (e.g. number of 

RNA fragments mapped into a gene-coding region), new types of statistical model have been 

required. In our studies, we used the methodology implemented in the edgeR package,[167, 

168] which is based on the negative binomial distribution and quasi-likelihood tests. Data 

preprocessing included normalization for differences on library composition (e.g. amount the 

RNA fragments) using the trimmed mean of M-value method.[169] 

3.5.5 Gene set enrichment analysis (GSEA) 

Gene set enrichment analysis (GSEA) methods assess the information coherence at gene level 

(association with a given trait) when grouped into gene sets defined based on prior knowledge 

(gene annotations). In this thesis, we used a well curated annotation source, the Molecular 

Signature Database (MSigDB) comprised of fifty biological hallmark gene sets (not to be 

confused with the hallmarks of cancer!).[170] Generally, gene sets are said to be enriched if 

there is significant statistical evidence that its constituent genes are differentially expressed in 

a consistent manner. Since a number of GSEA methodologies have been developed based on 

different statistical assumptions and hypothesis testing,[171, 172] one approach is to look for 

consistent results produced by different methods. 

In Papers II and III, we used a comprehensive workflow analysis implemented in the Piano R 

package.[173] The input data is described on each paper. Gene set-level statistics were 

computed using six different GSEA methods: Wilcoxon rank-sum test, tail strength, mean, 

median, sum, reporter features, and Stouffer’s method. To summarize findings, the Piano 

workflow generates a consensus score to rank gene set based on their consistency for 

association across the different GSEA methods.  In addition, gene set enrichment is 

distinguished by the direction of gene expression changes (e.g. positive or negative) into: non-

directional class (only gene-level P-value information is considered), mixed-directional class 
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(gene set can have subset of genes associated in opposite directions, one of which dominates), 

and distinct-directional class, which indicates a clear trend for association in either direction 

(genes associated in opposite direction will cancel each other out). Statistical significance was 

assessed based on the null distribution computed by permutation of gene labels. To control for 

multiple testing, we allowed the false discovery rate (FDR) to be lower than 5%. Significantly 

enriched gene sets were reported as having a median adjusted P-value lower than 0.05. 

3.5.6 Cross-trait LD Score (LDSC) regression  

In Paper IV, we used LDSC regression to estimate genetic correlation.[98] This method is 

based on modeling GWAS summary statistics based on LD (linkage disequilibrium).[98, 174] 

LD is the non-random association of alleles at different loci (the combinations of alleles at 

different loci on the same chromosome are called haplotypes). If two SNPs were independent 

and associated randomly, for alleles A1 and A2 at locus A, with respective frequencies 

𝑝𝑖(𝑖 = 1,2), and alleles B1 and B2 at locus B, with frequencies 𝑞𝑘(𝑘 = 1,2), the expected 

haplotype probabilities would be defined by 𝑝𝑖 × 𝑞𝑘.[141] LDSC regression is based on 

modeling the genetic covariance as the relationship between SNP effect estimates for two traits 

(i.e. the product of z scores, 𝑧1𝑗𝑧2𝑗 for SNP j) explained by the amount of information, LD 

score, SNPs carry. In such a case, the LDSC regression assumes that an SNP in high LD with 

other SNPs summarizes the effects those SNPs. The LDSC regression is estimated in such a 

way that the expected value of 𝑧1𝑗𝑧2𝑗 is regressed on the LD scores, under the equation 

𝐸[𝑧1𝑗𝑧2𝑗| ℓ𝑗] =
√𝑁1𝑁2 𝜚ℊ

𝑀
ℓ𝑗 +

𝜚𝑁𝑠 

√𝑁1𝑁2

 

where 𝑁𝑖 is the study sample size, 𝜚𝛿 is the genetic covariance, ℓ𝑗 is the LD score, 𝑁𝑠 is the 

total number of individual, 𝜚 is the phenotypic correlation among 𝑁𝑠 overlapping samples, and 

𝑀 is the number alleles in the reference panel with minor allele frequency between 5% and 

50%. Genetic correlation is then calculated as 

𝑟ℊ ∶= 𝜚ℊ √ℎ1
2ℎ2

2⁄  

where the genetic covariance 𝜚ℊ is normalized by the SNP heritabilities ℎ𝑖
2 from study i. 

3.5.7 SNP Effect Concordance Analysis (SECA)  

In addition to the LDSC regression used in Paper IV, we measured genetic correlation and 

overlap using the SECA methodology,[96] which is based on a different statistical approach. 

While in the LDSC regression genetic correlation is modelled as a function of the LD scores, 

the SECA method is based on a pre-selection of independent SNPs (e.g. in low LD with each 

other) so that genetic correlation is not inflated by SNPs in high LD. SNPs are filtered using a 

two-step LD pruning procedure. Of notice, genetic correlation is referred as genetic 

concordance under this method.  
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In order to assess the genetic shared component between two traits, effect estimates (P-values) 

from each trait (Pi) are plotted against each other into a grid. The grid consist of 144 squares 

defined by combinations of 12 x 12 equally increasing P-value thresholds: {𝑃1, 𝑃2} =

 {0.01, 0.05. 0.1, 0.2, 0.03, … , 1.0}, where the strongest evidence of genetic overlap would be 

expected to occur at the lowest P-value combination {𝑃1 < 0.01, 𝑃2 < 0.01}. Genetic overlap 

is defined as the excess in overlapping SNPs (observed > expected) across the grid assessed 

through binomial tests. To avoid overestimation due to powered GWAS yielding low P-values, 

the expected frequency of overlapping SNPs is defined as the observed frequency for one of 

the traits. In paper IV, we used the observed proportion of celiac disease SNPs as the expected 

value. Analogous to genetic correlation, SECA test assess for consistency in the direction of 

effects between overlapping SNPs through Fisher’s tests across the P-value grid. An odds ratio 

> 1 indicates genetic concordance (e.g. positive correlation), < 1 indicates genetic discordance 

(e.g. negative correlation), and an odds ratio equal to 1 means no evidence of genetic 

correlation. Significance testing was performed by generating empirical null distribution 

through random permutation of SNP effect estimates. Following the SECA approach, the 

subset of overlapping SNPs with strongest evidence of genetic correlation can be identified. 

3.5.8 Confounding 

Because of the cross-sectional nature of case-only and case-control studies, potential 

confounding effects are of major concern. Confounding variables are factors correlated with 

both the exposure and the outcome, and that lead to spurious associations or masked effects 

(biased estimates) when not taken into account. Modeling of covariates and stratified analysis 

are two common approaches to deal with potential confounding. We used both approaches in 

this thesis, while crude effects were obtained from unadjusted analyses. The main confounding 

variables were: chronological age, age at breast cancer diagnosis, PAM50 subtypes, 

mammographic density, tumor characteristics, and treatment. In genetic correlation analysis, 

the effect of phenotypic covariates is assumed to be minimal, and other sources of confounding 

such as genetic correlation by sample overlap or relatedness, and LD structure, are considered 

under each methodology. 
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4 MAIN RESULTS AND INTERPRETATIONS 

 

Unlike common genetic variation, carriership of rare deleterious variants in breast 

cancer predisposition genes was associated with more aggressive tumors and poorer 

survival. 

In Paper I, we analyzed the contribution of germline genetic variants towards disease 

aggressiveness in a case-only study. We found that common genetic variants tend to predispose 

to tumors of more favorable clinicopathology, whereas rare deleterious variants were 

associated with more aggressive disease defined by tumor characteristics and the PAM50 

subtypes (Figure 6). In particular, stronger differences were observed for tumor grade, luminal 

B, and basal-like subtypes. Of note, we did not observed differences in common genetic load 

(i.e. for overall, ER-positive, and ER-negative PRS) by rare variant carriership status (see paper 

I, Figure S3). In addition, rare deleterious variants in any of the 31 breast cancer genes, PTV 

carriership, was associated with interval cancers in women with low mammographic density, 

as well as with worse survival independently of treatment and tumor characteristics (see paper 

I, table 3 and 4). The strongest association with worse survival was observed for women below 

age 50 and carriers of non-BRCA1/2 rare variants, whereas no association was observed for 

common variants. Likewise, BRCA1/2 rare variants seemed to drive the association with ER-

negative and basal-like subtypes in younger women (OR: 1.75; 95% CI, 1.11 to 2.75, and OR: 

5.24; 95% CI, 2.35 to 11.66, respectively), and this is consistent with previous knowledge about 

the enrichment of BRCA1 variants in basal-like tumors. Interestingly, non-BRCA1/2 rare 

variants remained significantly associated with poorly-differentiated and luminal-B tumors in 

older women (OR: 1.65; 95% CI, 1.10 to 2.48, and OR: 2.21; 95% CI, 1.36 to 3.59, 

respectively). Together, our analysis indicates that carriership of rare deleterious variants in 

any of the 31 predisposition genes predispose to more aggressive disease, independently of age 

group. 

Discussion 

In our study, we leveraged large genotyping data and previous GWAS findings in order to 

compute genetic risk scores, as well as on targeted exome sequencing to inquire into rare 

deleterious mutations. Our findings suggest that rare and common variants act as distinct risk 

entities. This is consistent with the hypothesis that rare predisposition mutations with moderate 

effects (e.g. heterozygous mutations in genes for which biallelic mutations are known to be 

causal of genetic syndromes) are more likely to explain the missing heritability observed in 

GWAS studies.[175] However, there are some methodological challenges in interrogating the 

contribution of rare variants using NGS technologies, such as low power.[176] To overcome 

that, we used an approach by aggregating mutations. Thus, we assumed that predisposition to 

breast cancers of an aggressive phenotype could occur through disruption of any of the genes 

tested. 
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In that context, the association of rare variants with unfavorable disease outcomes suggests a 

direct link to the etiopathology of breast cancer. Because the analyzed genes are involved in 

important processes of genome maintenance such as DNA-repairing mechanisms,[177] 

deleterious mutations in any of these genes could increase the probability to develop more 

aggressive tumors by acquisition of further mutations. Interestingly, a recent whole-exome 

sequencing study of 54 non-BRCA familial breast cancer index patients found that 44% of 

them carried one or maximum 3 rare deleterious variants.[178] The authors reported that 

mutations in DNA repairing genes conferred a two-fold increased risk as compared to 120 

matched controls, and novel variants in genes not known to be related to cancer were found, 

highlighting the usefulness of sequencing approaches. 

Regarding common variants, their utility to predict risk to develop either breast cancer subtype, 

will require the incorporation of subtype-specific risk variants identified through ongoing 

efforts, particularly of triple-negative breast cancer,[63] and as shown in the latest 

comprehensive GWAS published in May, 2020.[61] As noticed in our analysis, genetic load 

from common variants weighted by ER-negative disease did not show association with 

unfavorable prognosticators, and although correctly predicted higher risk for ER-negative 

disease, had a small effect (ORper1-SD: 1.10, 95% CI, 1.01 to 1.19). In the contrary, analysis 

based on variants weighed by ER-positive disease showed similar associations as weighting by 

the overall risk, supporting the idea that discovery based on overall breast cancer is biased 

towards the most frequent ER-positive disease.  

 

Lower breast cancer risk defined by the Tyrer-Cuzick score was associated with more 

aggressive disease. Gene expression analysis highlighted the involvement of proliferative 

processes. 

In Paper II, we found that breast cancer risk defined by the TC score was inversely associated 

with basal-like and HER2-enriched surrogate subtypes (as compared with luminal A surrogate 

subtype), and with ki-67 proliferative marker. In order to better understand the association 

between lower TC and disease aggressiveness, we characterized underlying molecular 

differences. Using transcriptomic data, we correlated gene expression to TC score and 

summarized it into a low-risk TC-expression profile (TC-Gx), based on the top 37 genes 

showing strongest correlation with TC. The low-risk TC-Gx was able to discriminate tumors 

and indicated an overlap with more aggressive subtypes, particularly with basal-like tumors 

(Figure 7). Regression analyses showed that the low-risk TC-Gx was associated with the more 

aggressive PAM50 subtypes such as basal-like (validation dataset, OR per1-SD: 13.20, 95% 

CI, 7.10 to 24.57) and HER2-enriched (validation dataset, OR per1-SD: 4.79, 95% CI, 2.95 to 

7.79) as compared with luminal A tumors, and with higher breast cancer-specific mortality 

(≥mean vs <mean low-risk TC-Gx, HR: 2.29, CI, 1.21 to 4.35). The association with higher 

mortality was partially explained by the PAM50 subtypes and by higher levels of ki-67 gene 

expression, but not by ER expression. Interestingly, we found that low-TC gene expression 

was significantly enriched in proliferative and oncogenic signaling processes. 
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Figure 6. Differential association of rare and common genetic variants with breast cancer 

aggressiveness. Rare variants are represented by carriership of at least one PTV in any of the 

31 panel genes (violet) or excluding BRCA1/2 variants (blue). Common variants are depicted 

by overall (green), ER-positive (mustard), and ER-negative (orange) PRSs. 

 

 



 

36 

Figure 7. Relationship between low-risk TC-Gx profile and breast cancer intrinsic subtypes. 

Principal Component Analysis (PCA) plot showing similarity between 296 samples in the 

discovery set based on transcriptomic data (whole-genome expression levels). Samples are 

labeled according to the low-risk TC-Gx profile: open square if decreased (< mean distribution) 

or solid dot if increased (≥ mean distribution). In addition, tumor samples are colored to show 

their relationship with intrinsic subtypes. 

 

Discussion 

In our study, we used a molecular epidemiology approach to investigate gene expression 

features behind the association of low TC score with the breast cancer subtypes of unfavorable 

prognosis, and this is consistent with previous work from our group.[38] In addition, our low-

risk TC-Gx was found to be associated with worse survival independently of ER status, 

suggesting the existence of underlying risk factors beyond the involvement of estrogen 

exposure. Therefore, risk modeling incorporating factors associated with basal-like and HER2-

enriched disease, and in particular risk factors favoring higher proliferation, could have an 

important contribution to improve risk assessment tools. Interestingly, the association between 

low-risk TC-Gx and survival was only weakened after adjusting by the PAM50 subtypes and 

high proliferation status, indicating the existence of poor prognosis tumors within the Luminal 

A subtype. 
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Findings from our enrichment analysis highlighted oncogenic and signaling pathways as 

potential mechanisms underlying the increased aggressiveness associated with low TC. 

Interestingly, these included MYC and E2F oncogenic targets, as well as mTORC1 and WNT 

beta catenin pathways, which have been associated with aggressive breast cancer subtypes. For 

instance, MYC overexpression has been associated with poorer outcomes in basal-like, 

Luminal A breast cancer with lymph-node involvement, and HER2-postive tumors,[179], 

whereas E2F transcription factors, mTORC1 and WNT beta catenin, have been found to be 

important in triple-negative breast cancer.[180-182] 

The TC model, similar to other risk assessment tools (such as the Gail model, and genetic 

scores), can be used to stratify women into distinct risk groups. This stratification can be used 

to tailor preventative strategies. For instance, women with a risk higher than the average risk 

observed for their age-group, could be considered for personalized screening,[183] so that early 

detection is achieved more successfully in the entire screening population. We argue that in 

order to effectively reduce disease mortality, risk assessment tools should be able to identify 

women at increased risk of developing breast cancer aggressive subtypes. 

 

Compared to screen-detected tumors, interval cancers in women with low-dense breasts 

exhibited gene expression patterns associated with interferon immune subtypes, 

independently of PAM50 subtypes. 

In Paper III, we characterized gene expression for interval cancer in women with low-dense 

breasts as compared with screen-detected tumors, in order to identify underlying biological 

features independently of the PAM50 subtypes. Through enrichment analysis using the 

MSigDB database, a curated collection of hallmark gene sets representing well-defined 

biological processes, we found that altered gene expression in interval cancers was mainly 

related to immune response. We then profiled tumors based on genes found to be strongly 

associated with interval cancer by computing the IC-Gx profile. The IC-Gx was found to be 

associated with breast cancer subtypes, particularly with subtypes involving a high interferon 

signal, and this was replicated in an independent cohort from the TCGA database (Figure 8).   

Discussion 

It is not well understood why some tumors, referred as interval cancers, are less likely to be 

detected through regular mammographic screening. Because interval cancers tend to be have 

more adverse tumor characteristics,[184] and molecular subtypes[185] one hypothesis is that 

fast growing tumors commonly of ER-negative, basal-like and HER2-enriched subtype, are 

able to reach symptomatic detectability in a short time spam and therefore are more likely to 

become interval cancer. Another complementary hypothesis is that high mammographic 

density, which is associated with interval cancers,[186, 187] reduces mammographic screening 

sensitivity, also known as masking effect.[33] Nevertheless, in addition to conventional tumor   
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Figure 8. Association between the IC-Gx profile with breast cancer subtypes. A) Association 

with immune subtypes as compared with the Immune Low subtype, and adjusted for PAM50 

subtypes. CSR, core-serum response; T/B-cell, T-cells and/or B-cells; IFN, interferon; TGFB, 

transforming growth factor beta. B) Association with main intrinsic subtypes as compared with 

the Luminal A subtype. In both figures, estimates were obtain from multinomial logistic 

regressions in the discovery (LIBRO-1/KARMA, n=672) and external validation set (TCGA, 

n=975). Odds ratio and 95% confidence intervals are shown per one-standard deviation in the 

IC-Gx profile.  

 

characteristics, other factors are needed to be discovered in order to explain the poorer 

outcomes observed for interval cancer.[188]  Previous work from our group have shown that 

aggressive interval cancers are over represented in women with mammographically low dense 

breasts.[38] Also, molecular characterization of interval cancers lead to the conclusion that 

most features were explained by the PAM50 subtypes.[37]  

In order to improve early detection of breast cancer, better biological understanding of interval 

cancers is needed.[189] By dissecting gene and molecular process likely to underlie interval 

cancers, our study contributes toward this goal. In particular, our study highlights the 

involvement of the interferon immune response as a potential target. These findings are further 

supported by preliminary data from our group showing that germline genetic variants 

associated with interval cancers are significantly enriched in a network of IC-Gx genes 

(CXCL7/8, CXCR1/2) interacting with type I and II interferon genes. To our knowledge, this is 

the first study to characterize gene expression patterns on interval cancers in women with low 

dense breast, and to bring forward the potential role of interferon genes into this subset of 

aggressive breast cancers. 
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Shared common genetic variation between breast cancer and celiac disease was found to 

be inversely correlated, consistent with previous epidemiological findings on the reduced 

risk of breast cancer in celiac disease patients.  

In Paper IV, we measured the extent of the shared genetic variation between breast cancer and 

celiac disease, guided by previous epidemiological findings on the observed reduced risk of 

breast cancer in celiac disease patients. We found a statistically significant inverse genetic 

correlation between the two diseases using two different analytical approaches (overall breast 

cancer and celiac disease, LDSC, r = -0.17, s.e. 0.05; SECA, OR: 0.60, 95% CI: 0.44 to 0.82). 

In a third analysis, we performed a case-control analysis to estimate breast cancer risk by celiac 

disease genetic load, namely, celiac disease polygenic risk score (celiac-PRSs). We found that 

a higher genetic load for celiac disease was associated with 6% to 13% decrease risk of breast 

cancer when comparing highest versus lowest quartile distribution (quartile 4 vs. quartile 1 of 

celiac-PRS based on 3,803 associated with celiac disease at nominal P-value, OR: 0.83, 95%CI 

0.75 to 0.93). Associations by ER status showed similar results between overall breast cancer 

and ER-positive disease, whereas no association was observed for ER-negative breast cancer, 

nor for other tumor characteristics. Further assessment of the genetic overlap between the two 

diseases showed that top SNPs were significantly overrepresented in pre-defined gene sets such 

as: induction of apoptosis and programmed cell death, MAPK and other protein-protein 

interaction subnetworks, as well as gene sets related to immune phenotypes. A prioritization 

analysis highlighted fifteen top SNPs as the most relevant loci for the genetic overlap between 

the two diseases (Figure 9). 

Discussion 

The immune system has an important role in breast cancer, both in the etiology and the 

progression of the disease.[126, 190] As a strategy to investigate the immune-related genetic 

component in the etiology of breast cancer, we exploited potential pleiotropic effects with 

celiac disease by leveraging of the largest GWAS summary statistics from breast cancer and 

celiac disease available at the time. Our findings were consistent with the observed reduced 

risk of breast cancer in celiac disease patients, which has been reported to be 10% to 15% 

lower, in Nordic populations.[92-94, 191] In addition, we pinpointed genetic loci and 

molecular pathways as most likely underlying a shared etiology between the two diseases. Our 

findings forward the hypothesis that an increased genetic susceptibility to celiac disease could 

be protective against breast cancer pathogenesis by regulation of key immune processes 

directing cancer cells towards apoptosis, in which immunesurveillance processes can prevent 

mammary cancer cells to proliferate.[192] Likewise, an unfavorable immune-related genetic 

load could be involved in the breast cancer etiopathology by predisposing mammary cancer 

cells to evade the immune system. It is possible that an increased propensity for the formation 

of cancer cells (such as mutations in genome-stabilizing genes), together with an altered 

immunogenic microenvironment, could lead towards an equilibrium phase of cancer cells with 

the host immune system. In such a phase, cancer cells would adapt and acquire further 

mutations favoring tumor development.[125] 



 

40 

 

 

Figure 9. Network of the 15 immune-related genes most likely to underlie the genetic overlap 

between breast cancer and celiac disease. Genes were deemed as significantly relevant (P-

value<0.05) in a prioritization analysis from a list of 52 top-overlapping SNPs between breast 

cancer (BC) and celiac disease (CD) (PBC≤0.05, PCD<1×10-05), and are described in Paper IV, 

Table 3. Gene network was generated based on known gene-gene interactions using 

STRINGv11.[193] 
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5 Concluding remarks 

i. The study of breast cancer genetic germline variants is useful to improve our clinical 

and biological understanding of the disease, particularly when linked to detailed 

phenotypic data. 

ii. We observed that unlike common variants, rare deleterious variants in breast cancer 

predisposition genes were associated with more aggressive disease. This supports the 

hypothesis that rare variants with moderate penetrance in key pathways have an 

important contribution in the disease progression. 

iii. The observed association between lower risk of breast cancer with more aggressive 

disease, is likely due to the lack of accuracy to predict highly proliferative and invasive 

tumors by means of established risk factors (non-genetic) as modelled in the Tyrer-

Cuzick score. 

iv. Interval breast cancer, a subset of tumors not detected at the time of regular 

mammographic screening visits, was found to display unique gene expression patterns 

correlated with interferon-immune response that could be involved in their aggressive 

phenotype. 

v. The potential role of an inherited immunogenic environment in the etiology of breast 

cancer was highlighted by our findings on the shared genetic component with celiac 

disease, an autoimmune disease.  

vi. Findings in this thesis could inform further efforts toward the identification of women 

at high risk to develop aggressive breast cancer.
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6 Future perspectives 

After the conclusion of the four studies presented in this thesis, some questions come to light: 

Would rare deleterious variants be associated with breast cancer (subtype-specific) risk in a 

case-control study, or are these type of variants mainly contributing to the disease prognosis? 

Would sequencing of pairs of germline and somatic tissue show that protein-truncating variants 

become homozygous driver mutations, or that rather act through other mechanisms? 

What is the optimal genotyping strategy in breast cancer epidemiological studies needed to 

identify significant genetic variants associated with aggressive subtypes? Would well-powered, 

subtype-specific GWAS on basal-like, HER2-enriched, and highly proliferative tumors, be 

sufficient? Or are whole-exome and/or whole-genome sequencing approaches necessary to 

identify genes and regulatory regions implicated in the development of aggressive subtypes of 

breast cancer?  

Either way, large studies using surrogate subtype classifiers based on IHC markers, could be 

of great importance, while more refined analysis to understand additional biological aspects 

will require omics data such as gene expression. In that way, the discovery of novel risk factors 

specific to more aggressive disease subtypes and their incorporation into risk assessments tools 

will improve our ability to identify women at increased risk. 

Another future direction is whether existence of additional aggressive subsets of breast cancer 

require our attention, for instance therapy-resistant Luminal A tumors. Or, is that other 

aggressive features, such as unfavorable immune response and mutational load, act 

independently of phenotype from the PAM50 classification and are more important in this 

context?  

Our findings suggest that fine mapping of the genetic variation in immune-related genomic 

regions will be also useful to understand the role of the immune system in susceptibility to 

develop breast cancer. In addition, future genomic and functional studies are required to better 

understand the role of immune phenotypes in the disease progression of aggressive subsets 

such as interval cancers. For instance, are there specific interferon genes also associated with 

BC prognosis? If so, what are the mechanisms favoring tumor progression that could be 

targeted? 

Finally, because higher mortality is observed in non-European populations from often less 

socioeconomically developed countries, worldwide reduction of disease mortality will require 

the transfer of knowledge and improvements of their healthcare systems. 





 

45 

Acknowledgements 

First of all, I would like to thank my supervisors. My main supervisor, Kamila Czene, thank 

you for having me as one of your doctoral students, for the hard work and dedication, for the 

constructive criticism, and for all the support. To Jingmei Li, thank you for being so helpful 

and patient helping me improve. Thanks for welcoming me at MEB and for together with 

Kamila, choose me to join the group. That phone interview has definitely been one of the most 

life-changing calls I’ve had. Thanks to Keith Humphreys for been so friendly and helpful with 

all the statistical details, I have learned a lot from that. To Felix Grassmann, thanks for your 

support and amazing contribution on the last manuscripts. To Per Hall, thank you for providing 

the wider perspective and for making this possible together with Kamila. 

To friends and colleagues from Kamila’s and Pelle’s group: Fredrik Strand, Johanna Holm, 

Haomin Yang, Mikael Eriksson, Erwei Zeng, Xinhe Mao, Natalie Holowko, Wei He, Pui 

San Tan, Zhadi Azam, Marike Gabrielson, and Ami Rönnberg. Special thanks to Fredrik 

for welcoming me into the group, for the nice talk, lunches, after works, and hangouts. Thanks 

for being so generous and supportive. To Johanna, thanks for being so friendly and cool 

person. Your thesis is definitely a great legacy. To Haomin, thanks also for being always 

helpful and so friendly. To Mikael, thanks for being so helpful, the data quality is just great. 

To Ami, thanks for being so kind and supportive. 

To my close friends at MEB: Andreas Yangmo, Carolyn Cesta, Isabell Brikell, Ida 

Karlsson, Dylan Williams, Jet Termorshuizen, Qian Yang, Laura Ghirardi, Elisabeth 

Dahlqwist, Isabella Ekheden. Thanks for welcoming me into Sweden, for all the support 

during the hard times, and even more, for making me feel at home. Thanks for the good 

moments and cool adventures. Special thanks to Andreas, thanks so much for the friendship 

and generosity, for organizing all sort of cool stuff, for being such a great host and remind me 

of the Mexican culture. To Carolyn, my great gratitude for all your kindness, help, and support, 

for finding me places to live and meals to eat, and for saving my thesis from funny hazards. To 

Ida, thanks for being an amazing friend, it would not have been the same without that shared 

love for Weissbier and nice talks. To Dylan, for being such a great pal, person, and researcher. 

To Elisabeth, thanks for been such a great friend, for the nice talks, hard-core exercising and 

hangouts. 

To everyone at MEB, thank you all for making this place a great one to be part of. To Qing 

Shen, with whom shared co-chair of the PhD group. To Jiayao Lei, and Malin Ericsson, 

thanks for helping with the application process. To Frida Lundberg, Mark Taylor, Mina 

Rosenqvist, was great to join you for fika. To Andreas Karlsson for the nice talks at lunch 

and dinner. Robert Karlsson, thanks for the help and cool mood. To the amazing Harry Potter 

cast: Kat Bokenberger, Elisabeth Dahlqwist, Hannah Bower, Shuyang Yao, Gabriel 

Isheden, and Zhen Ning. Thanks for all the great fun organizing Christmas MEB’s dinner. To 

the dear, friendly and amazing persons with whom I have a Latin connection at MEB: Laura 

Ghirardi, Marco Trevisan, Marica Leone, Elisa Longinetti, thanks for your friendliness and 



 

46 

great mood. Thanks as well to Tong Gong, Tyra Lagerberg, Ash Thompson, Jingru Yu, 

Tingting Huang, Fei Yang, Cecilia Radkiewicz, Bronwyn Brew, Anna Johansson, Rikard 

Strandberg, Henrik Olsson, Wenjiang Deng, Daniela Mariosa, Anna Plym, Camilla 

Sjörs, and all the friendly people at MEB. 

Special thanks to Shadi, Wenjiang, and Rikard for reading the thesis and helping me prepare 

for the defence. To my mentor, Sarah Bergen, thanks for being supportive and for the nice 

talks. 

To the friendly research staff and professors at MEB, Patrick Magnusson, Paul Dickman, 

Mark Clements, Kristina Johnell, Fredrik Wiklund, Mark Divers, Mattias Rantalainen, 

and many more. To MEB administrative staff, thanks for always helping out and making things 

work. Particularly to Gunilla Sonnebring and Marie Jansson. To the directors of PhD studies 

and educational administrators at MEB: Paul Lichtenstein and Amelie Plymoth, Gunilla 

Nilssson Ross, and Alessandra Nanni. Special thanks to Alessandra for assisting and helping 

throughout this process.  

Thanks to all the people who had been involved in the studies and generation of data used in 

this thesis. To my co-authors and collaborators, thank you very much for your work and 

contribution to this thesis. Thanks to the Swedish Bioinformatics Advisory Program, in 

particular to Sebastian DiLorenzo and Björn Nystedt. 

I would like to thank as well to people from my masters at Wageningen University, The 

Netherlands. To my thesis supervisors Guido Hooiveld and Leo Lahti. To my dearest and 

beloved friends Ale Hernández, Vicente Sedano, Noora Ottman and Armando Garcia. 

Thanks to people form my BSc program at Universidad Iberoamericana, Leon, Mexico. In 

particular to Luis Adolfo Torres, for being my mentor and friend, and for inspiring me to 

pursue a scientific carrier. To my thesis supervisor Teresa Tusié-Luna, friends at the National 

Institute of Nutrition, Mexico City. Special thanks to Gabriela Fonseca for your friendship 

and encouragement. Thanks to Karla Sánchez-Lara at the Cancer Center in MedicaSur 

Hospital, Mexico City. 

To my beloved ones, thanks so much for your being there for me in the hard times and for cheer 

me in the good ones. Thanks for believe in me and making me feel loved. To my dear family: 

Paco, Lucy, Adrian, Natan, e Tania, and the beautiful little branches, thanks for all the effort 

and sacrifices you have made, for letting me be, for worrying and taken care of me, for walking 

with me along the way regardless of the physical distance. You are my roots and part of my 

identity. Aún en la distancia, su esencia siempre ha estado y estará presente en mi. Los amo. 

And last but not least, thanks to all the women that have participated in the studies included in 

this work. 

 

 



 

47 

REFERENCES 
 

1. Forouzanfar, M.H., et al., Breast and cervical cancer in 187 countries between 1980 and 

2010: a systematic analysis. Lancet, 2011. 378(9801): p. 1461-1484. 

2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and 

mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 

394-424. 

3. Bellanger, M., et al., Are Global Breast Cancer Incidence and Mortality Patterns Related 

to Country-Specific Economic Development and Prevention Strategies? J Glob Oncol, 

2018. 4: p. 1-16. 

4. Momenimovahed, Z. and H. Salehiniya, Epidemiological characteristics of and risk factors 

for breast cancer in the world. Breast Cancer (Dove Med Press), 2019. 11: p. 151-164. 

5. Parkin, D.M. and L.M. Fernandez, Use of statistics to assess the global burden of breast 

cancer. Breast J, 2006. 12 Suppl 1: p. S70-80. 

6. Early Breast Cancer Trialists' Collaborative, G., et al., Comparisons between different 

polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome 

among 100,000 women in 123 randomised trials. Lancet, 2012. 379(9814): p. 432-44. 

7. Berry, D.A., et al., Effect of screening and adjuvant therapy on mortality from breast 

cancer. N Engl J Med, 2005. 353(17): p. 1784-92. 

8. Youlden, D.R., et al., The descriptive epidemiology of female breast cancer: an 

international comparison of screening, incidence, survival and mortality. Cancer 

Epidemiol, 2012. 36(3): p. 237-48. 

9. Delgado-Ramos, G.M., et al., Real-world evaluation of effectiveness and tolerance of 

chemotherapy for early-stage breast cancer in older women. Breast Cancer Res Treat, 

2020. 182(2): p. 247-258. 

10. Furlanetto, J. and S. Loibl, Optimal Systemic Treatment for Early Triple-Negative Breast 

Cancer. Breast Care (Basel), 2020. 15(3): p. 217-226. 

11. Eheman, C.R., et al., The changing incidence of in situ and invasive ductal and lobular 

breast carcinomas: United States, 1999-2004. Cancer Epidemiol Biomarkers Prev, 2009. 

18(6): p. 1763-9. 

12. Makki, J., Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. 

Clin Med Insights Pathol, 2015. 8: p. 23-31. 

13. Sinn, H.P. and H. Kreipe, A Brief Overview of the WHO Classification of Breast Tumors, 

4th Edition, Focusing on Issues and Updates from the 3rd Edition. Breast Care, 2013. 8(2): 

p. 149-154. 

14. Hoon Tan, P., et al., The 2019 WHO classification of tumours of the breast. 

Histopathology, 2020. 

15. Yeo, S.K. and J.L. Guan, Breast Cancer: Multiple Subtypes within a Tumor? Trends in 

Cancer, 2017. 3(11): p. 753-760. 

16. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): 

p. 288-300. 

17. Moo, T.A., et al., Overview of Breast Cancer Therapy. PET Clin, 2018. 13(3): p. 339-354. 

18. Russnes, H.G., et al., Breast Cancer Molecular Stratification From Intrinsic Subtypes to 

Integrative Clusters. American Journal of Pathology, 2017. 187(10): p. 2152-2162. 

19. Chavez-MacGregor, M., et al., Incorporating Tumor Characteristics to the American Joint 

Committee on Cancer Breast Cancer Staging System. Oncologist, 2017. 22(11): p. 1292-

1300. 

20. Hammond, M.E., et al., American Society of Clinical Oncology/College Of American 

Pathologists guideline recommendations for immunohistochemical testing of estrogen and 

progesterone receptors in breast cancer. J Clin Oncol, 2010. 28(16): p. 2784-95. 

21. Grann, V.R., et al., Hormone receptor status and survival in a population-based cohort of 

patients with breast carcinoma. Cancer, 2005. 103(11): p. 2241-51. 



 

48 

22. Dunnwald, L.K., M.A. Rossing, and C.I. Li, Hormone receptor status, tumor 

characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer 

Research, 2007. 9(1). 

23. Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol 

Cell Biol, 2001. 2(2): p. 127-37. 

24. Piccart-Gebhart, M.J., et al., Trastuzumab after adjuvant chemotherapy in HER2-positive 

breast cancer. N Engl J Med, 2005. 353(16): p. 1659-72. 

25. Boyle, P., Triple-negative breast cancer: epidemiological considerations and 

recommendations. Ann Oncol, 2012. 23 Suppl 6: p. vi7-12. 

26. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): 

p. 747-52. 

27. Parker, J.S., et al., Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. 

Journal of Clinical Oncology, 2009. 27(8): p. 1160-1167. 

28. Koboldt, D.C., et al., Comprehensive molecular portraits of human breast tumours. Nature, 

2012. 490(7418): p. 61-70. 

29. Karthik, G.M., et al., Intra-tumor heterogeneity in breast cancer has limited impact on 

transcriptomic-based molecular profiling. Bmc Cancer, 2017. 17. 

30. Prat, A., et al., Clinical implications of the intrinsic molecular subtypes of breast cancer. 

Breast, 2015. 24: p. S26-S35. 

31. McCarthy, A.M., et al., Breast Cancer With a Poor Prognosis Diagnosed After Screening 

Mammography With Negative Results. JAMA Oncol, 2018. 4(7): p. 998-1001. 

32. Rayson, D., et al., Comparison of Clinical-Pathologic Characteristics and Outcomes of 

True Interval and Screen-Detected Invasive Breast Cancer Among Participants of a 

Canadian Breast Screening Program: A Nested Case-Control Study. Clinical Breast 

Cancer, 2011. 11(1): p. 27-32. 

33. Houssami, N. and K. Hunter, The epidemiology, radiology and biological characteristics 

of interval breast cancers in population mammography screening. NPJ Breast Cancer, 

2017. 3: p. 12. 

34. Porter, P.L., et al., Breast tumor characteristics as predictors of mammographic detection: 

Comparison of interval- and screen-detected cancers. Journal of the National Cancer 

Institute, 1999. 91(23): p. 2020-2028. 

35. Gilliland, F.D., et al., Biologic characteristics of interval and screen-detected breast 

cancers. Journal of the National Cancer Institute, 2000. 92(9): p. 743-749. 

36. Meshkat, B., et al., A comparison of clinical-pathological characteristics between 

symptomatic and interval breast cancer. Breast, 2015. 24(3): p. 278-82. 

37. Li, J.M., et al., Molecular Differences between Screen-Detected and Interval Breast 

Cancers Are Largely Explained by PAM50 Subtypes. Clinical Cancer Research, 2017. 

23(10): p. 2584-2592. 

38. Holm, J., et al., Risk factors and tumor characteristics of interval cancers by 

mammographic density. J Clin Oncol, 2015. 33(9): p. 1030-7. 

39. Eriksson, L., et al., Mammographic density and molecular subtypes of breast cancer. Br J 

Cancer, 2012. 107(1): p. 18-23. 

40. Antoni, S., et al., Is mammographic density differentially associated with breast cancer 

according to receptor status? A meta-analysis. Breast Cancer Research and Treatment, 

2013. 137(2): p. 337-347. 

41. Velasquez Garcia, H.A., et al., Mammographic density parameters and breast cancer tumor 

characteristics among postmenopausal women. Breast Cancer (Dove Med Press), 2019. 

11: p. 261-271. 

42. Ahern, T.P., et al., Family History of Breast Cancer, Breast Density, and Breast Cancer 

Risk in a US Breast Cancer Screening Population. Cancer Epidemiology Biomarkers & 

Prevention, 2017. 26(6): p. 938-944. 



 

49 

43. Clamp, A., S. Danson, and M. Clemons, Hormonal risk factors for breast cancer: 

identification, chemoprevention, and other intervention strategies. Lancet Oncology, 2002. 

3(10): p. 611-619. 

44. Rojas, K. and A. Stuckey, Breast Cancer Epidemiology and Risk Factors. Clin Obstet 

Gynecol, 2016. 59(4): p. 651-672. 

45. Barnard, M.E., C.E. Boeke, and R.M. Tamimi, Established breast cancer risk factors and 

risk of intrinsic tumor subtypes. Biochimica Et Biophysica Acta-Reviews on Cancer, 

2015. 1856(1): p. 73-85. 

46. Toss, A., et al., The impact of reproductive life on breast cancer risk in women with family 

history or BRCA mutation. Oncotarget, 2017. 8(6): p. 9144-9154. 

47. Holm, J., et al., Assessment of Breast Cancer Risk Factors Reveals Subtype Heterogeneity. 

Cancer Res, 2017. 77(13): p. 3708-3717. 

48. Teugels, E. and S. De Brakeleer, An alternative model for (breast) cancer predisposition. 

NPJ Breast Cancer, 2017. 3: p. 13. 

49. Mucci, L.A., et al., Familial Risk and Heritability of Cancer Among Twins in Nordic 

Countries. Jama-Journal of the American Medical Association, 2016. 315(1): p. 68-76. 

50. Czene, K., P. Lichtenstein, and K. Hemminki, Environmental and heritable causes of 

cancer among 9.6 million individuals in the Swedish family-cancer database. International 

Journal of Cancer, 2002. 99(2): p. 260-266. 

51. Moller, S., et al., The Heritability of Breast Cancer among Women in the Nordic Twin 

Study of Cancer. Cancer Epidemiol Biomarkers Prev, 2016. 25(1): p. 145-50. 

52. Miki, Y., et al., A strong candidate for the breast and ovarian cancer susceptibility gene 

BRCA1. Science, 1994. 266(5182): p. 66-71. 

53. Wooster, R., et al., Identification of the breast cancer susceptibility gene BRCA2. Nature, 

1995. 378(6559): p. 789-92. 

54. Shiovitz, S. and L.A. Korde, Genetics of breast cancer: a topic in evolution. Annals of 

Oncology, 2015. 26(7): p. 1291-1299. 

55. Mavaddat, N., et al., Genetic susceptibility to breast cancer. Mol Oncol, 2010. 4(3): p. 174-

91. 

56. Easton, D.F., et al., Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. 

New England Journal of Medicine, 2015. 372(23): p. 2243-2257. 

57. Chandler, M.R., E.P. Bilgili, and N.D. Merner, A Review of Whole-Exome Sequencing 

Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery. Human 

Mutation, 2016. 37(9): p. 835-846. 

58. Manolio, T.A., et al., Finding the missing heritability of complex diseases. Nature, 2009. 

461(7265): p. 747-53. 

59. Easton, D.F., et al., Genome-wide association study identifies novel breast cancer 

susceptibility loci. Nature, 2007. 447(7148): p. 1087-93. 

60. Lilyquist, J., et al., Common Genetic Variation and Breast Cancer Risk-Past, Present, and 

Future. Cancer Epidemiol Biomarkers Prev, 2018. 27(4): p. 380-394. 

61. Zhang, H., et al., Genome-wide association study identifies 32 novel breast cancer 

susceptibility loci from overall and subtype-specific analyses. Nat Genet, 2020. 52(6): p. 

572-581. 

62. Michailidou, K., et al., Association analysis identifies 65 new breast cancer risk loci. 

Nature, 2017. 551(7678): p. 92-+. 

63. Milne, R.L., et al., Identification of ten variants associated with risk of estrogen-receptor-

negative breast cancer. Nature Genetics, 2017. 49(12): p. 1767-1778. 

64. Mavaddat, N., et al., Prediction of Breast Cancer Risk Based on Profiling With Common 

Genetic Variants. Jnci-Journal of the National Cancer Institute, 2015. 107(5). 

65. Gail, M.H., Discriminatory accuracy from single-nucleotide polymorphisms in models to 

predict breast cancer risk. J Natl Cancer Inst, 2008. 100(14): p. 1037-41. 



 

50 

66. Dite, G.S., et al., Using SNP genotypes to improve the discrimination of a simple breast 

cancer risk prediction model. Breast Cancer Res Treat, 2013. 139(3): p. 887-96. 

67. Mavaddat, N., et al., Polygenic Risk Scores for Prediction of Breast Cancer and Breast 

Cancer Subtypes. Am J Hum Genet, 2019. 104(1): p. 21-34. 

68. Zuk, O., et al., Searching for missing heritability: designing rare variant association 

studies. Proc Natl Acad Sci U S A, 2014. 111(4): p. E455-64. 

69. Dong, L., et al., Detection of novel germline mutations in six breast cancer predisposition 

genes by targeted next-generation sequencing. Hum Mutat, 2018. 39(10): p. 1442-1455. 

70. Kraemer, D., et al., Prevalence of genetic susceptibility for breast and ovarian cancer in a 

non-cancer related study population: secondary germline findings from a Swiss single 

centre cohort. Swiss Med Wkly, 2019. 149: p. w20092. 

71. Lu, H.M., et al., Association of Breast and Ovarian Cancers With Predisposition Genes 

Identified by Large-Scale Sequencing. JAMA Oncol, 2019. 5(1): p. 51-57. 

72. Patel, A.P., et al., Association of Rare Pathogenic DNA Variants for Familial 

Hypercholesterolemia, Hereditary Breast and Ovarian Cancer Syndrome, and Lynch 

Syndrome With Disease Risk in Adults According to Family History. JAMA Netw Open, 

2020. 3(4): p. e203959. 

73. Colas, C., et al., "Decoding hereditary breast cancer" benefits and questions from 

multigene panel testing. Breast, 2019. 45: p. 29-35. 

74. Teo, Z.L., et al., Tumour morphology predicts PALB2 germline mutation status. British 

Journal of Cancer, 2013. 109(1): p. 154-163. 

75. Roy, R., J. Chun, and S.N. Powell, BRCA1 and BRCA2: different roles in a common 

pathway of genome protection. Nature Reviews Cancer, 2012. 12(1): p. 68-78. 

76. Honrado, E., et al., Pathology and gene expression of hereditary breast tumors associated 

with BRCA1, BRCA2 and CHEK2 gene mutations. Oncogene, 2006. 25(43): p. 5837-

5845. 

77. Heikkinen, T., et al., The Breast Cancer Susceptibility Mutation PALB2 1592delT Is 

Associated with an Aggressive Tumor Phenotype. Clinical Cancer Research, 2009. 15(9): 

p. 3214-3222. 

78. Prat, A., et al., Molecular features of the basal-like breast cancer subtype based on BRCA1 

mutation status. Breast Cancer Res Treat, 2014. 147(1): p. 185-91. 

79. Turner, N.C. and J.S. Reis-Filho, Basal-like breast cancer and the BRCA1 phenotype. 

Oncogene, 2006. 25(43): p. 5846-53. 

80. Decker, B., et al., Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not 

XRCC2, are associated with increased breast cancer risks. J Med Genet, 2017. 54(11): p. 

732-741. 

81. Shimelis, H., et al., Triple-Negative Breast Cancer Risk Genes Identified by Multigene 

Hereditary Cancer Panel Testing. J Natl Cancer Inst, 2018. 110(8): p. 855-862. 

82. Buys, S.S., et al., A study of over 35,000 women with breast cancer tested with a 25-gene 

panel of hereditary cancer genes. Cancer, 2017. 123(10): p. 1721-1730. 

83. Couch, F.J., et al., Inherited mutations in 17 breast cancer susceptibility genes among a 

large triple-negative breast cancer cohort unselected for family history of breast cancer. J 

Clin Oncol, 2015. 33(4): p. 304-11. 

84. Li, N., et al., Evaluating the breast cancer predisposition role of rare variants in genes 

associated with low-penetrance breast cancer risk SNPs. Breast Cancer Res, 2018. 20(1): 

p. 3. 

85. Decker, B., et al., Targeted Resequencing of the Coding Sequence of 38 Genes Near Breast 

Cancer GWAS Loci in a Large Case-Control Study. Cancer Epidemiol Biomarkers Prev, 

2019. 28(4): p. 822-825. 

86. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 

2010. 140(6): p. 883-99. 



 

51 

87. Li, J., et al., 2q36.3 is associated with prognosis for oestrogen receptor-negative breast 

cancer patients treated with chemotherapy. Nat Commun, 2014. 5: p. 4051. 

88. Lei, J., et al., Assessment of variation in immunosuppressive pathway genes reveals 

TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after 

chemotherapy. Breast Cancer Res, 2015. 17: p. 18. 

89. Roederer, M., et al., The genetic architecture of the human immune system: a bioresource 

for autoimmunity and disease pathogenesis. Cell, 2015. 161(2): p. 387-403. 

90. Orru, V., et al., Genetic variants regulating immune cell levels in health and disease. Cell, 

2013. 155(1): p. 242-56. 

91. Parkes, M., et al., Genetic insights into common pathways and complex relationships 

among immune-mediated diseases. Nat Rev Genet, 2013. 14(9): p. 661-73. 

92. Hemminki, K., et al., Effect of autoimmune diseases on risk and survival in female cancers. 

Gynecol Oncol, 2012. 127(1): p. 180-5. 

93. Ludvigsson, J.F., et al., Reduced risk of breast, endometrial and ovarian cancer in women 

with celiac disease. Int J Cancer, 2012. 131(3): p. E244-50. 

94. Askling, J., et al., Cancer incidence in a population-based cohort of individuals 

hospitalized with celiac disease or dermatitis herpetiformis. Gastroenterology, 2002. 

123(5): p. 1428-35. 

95. Gratten, J. and P.M. Visscher, Genetic pleiotropy in complex traits and diseases: 

implications for genomic medicine. Genome Med, 2016. 8(1): p. 78. 

96. Nyholt, D.R., SECA: SNP effect concordance analysis using genome-wide association 

summary results. Bioinformatics, 2014. 30(14): p. 2086-8. 

97. Lee, S.H., et al., Estimation of pleiotropy between complex diseases using single-

nucleotide polymorphism-derived genomic relationships and restricted maximum 

likelihood. Bioinformatics, 2012. 28(19): p. 2540-2542. 

98. Bulik-Sullivan, B., et al., An atlas of genetic correlations across human diseases and traits. 

Nat Genet, 2015. 

99. Nik-Zainal, S., From genome integrity to cancer. Genome Med, 2019. 11(1): p. 4. 

100. Pranavathiyani, G., et al., Integrated transcriptome interactome study of 

oncogenes and tumor suppressor genes in breast cancer. Genes Dis, 2019. 6(1): p. 78-87. 

101. Lee, E.Y. and W.J. Muller, Oncogenes and tumor suppressor genes. Cold Spring 

Harb Perspect Biol, 2010. 2(10): p. a003236. 

102. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 

481(7381): p. 306-13. 

103. Paduch, R., Theories of cancer origin. Eur J Cancer Prev, 2015. 24(1): p. 57-67. 

104. Vogelstein, B., et al., Cancer genome landscapes. Science, 2013. 339(6127): p. 

1546-58. 

105. Tomasetti, C., L. Li, and B. Vogelstein, Stem cell divisions, somatic mutations, 

cancer etiology, and cancer prevention. Science, 2017. 355(6331): p. 1330-1334. 

106. Bozic, I., et al., Accumulation of driver and passenger mutations during tumor 

progression. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18545-50. 

107. Haber, D.A. and J. Settleman, Cancer: drivers and passengers. Nature, 2007. 

446(7132): p. 145-6. 

108. Bailey, M.H., et al., Comprehensive Characterization of Cancer Driver Genes 

and Mutations. Cell, 2018. 174(4): p. 1034-1035. 

109. Gatenby, R.A., J.J. Cunningham, and J.S. Brown, Evolutionary triage governs 

fitness in driver and passenger mutations and suggests targeting never mutations. Nat 

Commun, 2014. 5: p. 5499. 

110. Wodarz, D., A.C. Newell, and N.L. Komarova, Passenger mutations can 

accelerate tumour suppressor gene inactivation in cancer evolution. J R Soc Interface, 

2018. 15(143). 



 

52 

111. Helleday, T., S. Eshtad, and S. Nik-Zainal, Mechanisms underlying mutational 

signatures in human cancers. Nat Rev Genet, 2014. 15(9): p. 585-98. 

112. Liu, H., et al., Prognostic gene expression signature revealed the involvement of 

mutational pathways in cancer genome. J Cancer, 2020. 11(15): p. 4510-4520. 

113. Samstein, R.M., et al., Tumor mutational load predicts survival after 

immunotherapy across multiple cancer types. Nat Genet, 2019. 51(2): p. 202-206. 

114. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 

57-70. 

115. Hanahan, D. and R.A. Weinberg, Hallmarks of Cancer: The Next Generation. 

Cell, 2011. 144(5): p. 646-674. 

116. Dai, X.F., et al., Cancer Hallmarks, Biomarkers and Breast Cancer Molecular 

Subtypes. Journal of Cancer, 2016. 7(10): p. 1281-1294. 

117. Torres, L., et al., Intratumor genomic heterogeneity in breast cancer with clonal 

divergence between primary carcinomas and lymph node metastases. Breast Cancer Res 

Treat, 2007. 102(2): p. 143-55. 

118. Horne, S.D., S.A. Pollick, and H.H. Heng, Evolutionary mechanism unifies the 

hallmarks of cancer. Int J Cancer, 2015. 136(9): p. 2012-21. 

119. Fouad, Y.A. and C. Aanei, Revisiting the hallmarks of cancer. Am J Cancer Res, 

2017. 7(5): p. 1016-1036. 

120. Wang, Y., et al., Clonal evolution in breast cancer revealed by single nucleus 

genome sequencing. Nature, 2014. 512(7513): p. 155-60. 

121. Yates, L.R., et al., Subclonal diversification of primary breast cancer revealed by 

multiregion sequencing. Nat Med, 2015. 21(7): p. 751-9. 

122. Hamburger, A.W. and S.E. Salmon, Primary bioassay of human tumor stem cells. 

Science, 1977. 197(4302): p. 461-3. 

123. Zhang, M., A.V. Lee, and J.M. Rosen, The Cellular Origin and Evolution of 

Breast Cancer. Cold Spring Harb Perspect Med, 2017. 7(3). 

124. Luen, S., et al., The genomic landscape of breast cancer and its interaction with 

host immunity. Breast, 2016. 29: p. 241-250. 

125. Jiang, X. and D.J. Shapiro, The immune system and inflammation in breast 

cancer. Mol Cell Endocrinol, 2014. 382(1): p. 673-82. 

126. Stanton, S.E. and M.L. Disis, Clinical significance of tumor-infiltrating 

lymphocytes in breast cancer. Journal for Immunotherapy of Cancer, 2016. 4. 

127. Li, J., et al., Breast cancer genetic risk profile is differentially associated with 

interval and screen-detected breast cancers. Ann Oncol, 2015. 26(3): p. 517-22. 

128. Gabrielson, M., et al., Cohort profile: The Karolinska Mammography Project for 

Risk Prediction of Breast Cancer (KARMA). Int J Epidemiol, 2017. 

129. Michailidou, K., et al., Genome-wide association analysis of more than 120,000 

individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015. 

47(4): p. 373-U127. 

130. Michailidou, K., et al., Large-scale genotyping identifies 41 new loci associated 

with breast cancer risk. Nat Genet, 2013. 45(4): p. 353-61, 361e1-2. 

131. Amos, C.I., et al., The OncoArray Consortium: A Network for Understanding 

the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev, 2017. 

26(1): p. 126-135. 

132. Barlow, L., et al., The completeness of the Swedish Cancer Register: a sample 

survey for year 1998. Acta Oncol, 2009. 48(1): p. 27-33. 

133. Emilsson, L., et al., Review of 103 Swedish Healthcare Quality Registries. J 

Intern Med, 2015. 277(1): p. 94-136. 

134. Ludvigsson, J.F., et al., The Swedish personal identity number: possibilities and 

pitfalls in healthcare and medical research. Eur J Epidemiol, 2009. 24(11): p. 659-67. 



 

53 

135. Johansson, L.A. and R. Westerling, Comparing Swedish hospital discharge 

records with death certificates: implications for mortality statistics. Int J Epidemiol, 2000. 

29(3): p. 495-502. 

136. Lind, H., et al., Breast Cancer Screening Program in Stockholm County, Sweden 

- Aspects of Organization and Quality Assurance. Breast Care (Basel), 2010. 5(5): p. 353-

357. 

137. Eriksson, M., et al., A comprehensive tool for measuring mammographic density 

changes over time. Breast Cancer Res Treat, 2018. 169(2): p. 371-379. 

138. Li, H., Exploring single-sample SNP and INDEL calling with whole-genome de 

novo assembly. Bioinformatics, 2012. 28(14): p. 1838-44. 

139. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework 

for analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-

303. 

140. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of 

genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010. 38(16): 

p. e164. 

141. Goode, E.L., Linkage Disequilibrium, in Encyclopedia of Cancer, M. Schwab, 

Editor. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 2043-2048. 

142. Howie, B.N., P. Donnelly, and J. Marchini, A flexible and accurate genotype 

imputation method for the next generation of genome-wide association studies. PLoS 

Genet, 2009. 5(6): p. e1000529. 

143. Genomes Project, C., et al., A global reference for human genetic variation. 

Nature, 2015. 526(7571): p. 68-74. 

144. Trynka, G., et al., Dense genotyping identifies and localizes multiple common 

and rare variant association signals in celiac disease. Nat Genet, 2011. 43(12): p. 1193-

201. 

145. Cortes, A. and M.A. Brown, Promise and pitfalls of the Immunochip. Arthritis 

Res Ther, 2011. 13(1): p. 101. 

146. Rantalainen, M., et al., Sequencing-based breast cancer diagnostics as an 

alternative to routine biomarkers. Sci Rep, 2016. 6: p. 38037. 

147. Saal, L.H., et al., The Sweden Cancerome Analysis Network - Breast (SCAN-B) 

Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer 

genomic analyses in the clinical routine. Genome Med, 2015. 7(1): p. 20. 

148. Patro, R., et al., Salmon provides fast and bias-aware quantification of transcript 

expression. Nat Methods, 2017. 14(4): p. 417-419. 

149. Soneson, C., M.I. Love, and M.D. Robinson, Differential analyses for RNA-seq: 

transcript-level estimates improve gene-level inferences. F1000Res, 2015. 4: p. 1521. 

150. Lindstrom, L.S., et al., Gene signature model predicts metastatic onset better than 

standard clinical markers - Nested case-control design uniquely enables enrichment for 

biologically relevant features. Cancer Research, 2013. 73. 

151. Cunha, S.I., et al., Endothelial ALK1 Is a Therapeutic Target to Block Metastatic 

Dissemination of Breast Cancer. Cancer Res, 2015. 75(12): p. 2445-56. 

152. Cancer Genome Atlas, N., Comprehensive molecular portraits of human breast 

tumours. Nature, 2012. 490(7418): p. 61-70. 

153. Anders, S., P.T. Pyl, and W. Huber, HTSeq--a Python framework to work with 

high-throughput sequencing data. Bioinformatics, 2015. 31(2): p. 166-9. 

154. Borg, A., et al., Characterization of BRCA1 and BRCA2 deleterious mutations 

and variants of unknown clinical significance in unilateral and bilateral breast cancer: the 

WECARE study. Hum Mutat, 2010. 31(3): p. E1200-40. 

155. Mayakonda, A., et al., Maftools: efficient and comprehensive analysis of somatic 

variants in cancer. Genome Res, 2018. 28(11): p. 1747-1756. 



 

54 

156. Dudbridge, F., Power and Predictive Accuracy of Polygenic Risk Scores. Plos 

Genetics, 2013. 9(3). 

157. Yanes, T., et al., Clinical applications of polygenic breast cancer risk: a critical 

review and perspectives of an emerging field. Breast Cancer Res, 2020. 22(1): p. 21. 

158. Milne, R.L., et al., A large-scale assessment of two-way SNP interactions in 

breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer 

association consortium. Hum Mol Genet, 2014. 23(7): p. 1934-46. 

159. Joshi, A.D., et al., Additive interactions between susceptibility single-nucleotide 

polymorphisms identified in genome-wide association studies and breast cancer risk 

factors in the Breast and Prostate Cancer Cohort Consortium. Am J Epidemiol, 2014. 

180(10): p. 1018-27. 

160. Tyrer, J., S.W. Duffy, and J. Cuzick, A breast cancer prediction model 

incorporating familial and personal risk factors. Statistics in Medicine, 2004. 23(7): p. 

1111-1130. 

161. Paquet, E.R. and M.T. Hallett, Absolute assignment of breast cancer intrinsic 

molecular subtype. J Natl Cancer Inst, 2015. 107(1): p. 357. 

162. Amara, D., et al., Co-expression modules identified from published immune 

signatures reveal five distinct immune subtypes in breast cancer. Breast Cancer Res Treat, 

2017. 161(1): p. 41-50. 

163. Wilkerson, M.D. and D.N. Hayes, ConsensusClusterPlus: a class discovery tool 

with confidence assessments and item tracking. Bioinformatics, 2010. 26(12): p. 1572-3. 

164. Solovieff, N., et al., Pleiotropy in complex traits: challenges and strategies. Nat 

Rev Genet, 2013. 14(7): p. 483-95. 

165. Hekselman, I. and E. Yeger-Lotem, Mechanisms of tissue and cell-type 

specificity in heritable traits and diseases. Nat Rev Genet, 2020. 21(3): p. 137-150. 

166. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47. 

167. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor 

package for differential expression analysis of digital gene expression data. 

Bioinformatics, 2010. 26(1): p. 139-40. 

168. McCarthy, D.J., Y. Chen, and G.K. Smyth, Differential expression analysis of 

multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res, 

2012. 40(10): p. 4288-97. 

169. Robinson, M.D. and A. Oshlack, A scaling normalization method for differential 

expression analysis of RNA-seq data. Genome Biol, 2010. 11(3): p. R25. 

170. Liberzon, A., et al., The Molecular Signatures Database (MSigDB) hallmark 

gene set collection. Cell Syst, 2015. 1(6): p. 417-425. 

171. Ackermann, M. and K. Strimmer, A general modular framework for gene set 

enrichment analysis. BMC Bioinformatics, 2009. 10: p. 47. 

172. Maleki, F., et al., Gene Set Analysis: Challenges, Opportunities, and Future 

Research. Front Genet, 2020. 11: p. 654. 

173. Varemo, L., J. Nielsen, and I. Nookaew, Enriching the gene set analysis of 

genome-wide data by incorporating directionality of gene expression and combining 

statistical hypotheses and methods. Nucleic Acids Res, 2013. 41(8): p. 4378-91. 

174. Bulik-Sullivan, B.K., et al., LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat Genet, 2015. 47(3): p. 291-5. 

175. Skol, A.D., M.M. Sasaki, and K. Onel, The genetics of breast cancer risk in the 

post-genome era: thoughts on study design to move past BRCA and towards clinical 

relevance. Breast Cancer Res, 2016. 18(1): p. 99. 

176. Lee, S., et al., Rare-variant association analysis: study designs and statistical 

tests. Am J Hum Genet, 2014. 95(1): p. 5-23. 



 

55 

177. Nielsen, F.C., T. van Overeem Hansen, and C.S. Sorensen, Hereditary breast and 

ovarian cancer: new genes in confined pathways. Nat Rev Cancer, 2016. 16(9): p. 599-

612. 

178. Shahi, R.B., et al., Identification of candidate cancer predisposing variants by 

performing whole-exome sequencing on index patients from BRCA1 and BRCA2-

negative breast cancer families. BMC Cancer, 2019. 19(1): p. 313. 

179. Green, A.R., et al., MYC functions are specific in biological subtypes of breast 

cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer, 2016. 

114(8): p. 917-28. 

180. Li, Y., et al., Expression patterns of E2F transcription factors and their potential 

prognostic roles in breast cancer. Oncol Lett, 2018. 15(6): p. 9216-9230. 

181. Costa, R.L.B., H.S. Han, and W.J. Gradishar, Targeting the PI3K/AKT/mTOR 

pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat, 2018. 169(3): 

p. 397-406. 

182. Gangrade, A., et al., Preferential Inhibition of Wnt/beta-Catenin Signaling by 

Novel Benzimidazole Compounds in Triple-Negative Breast Cancer. Int J Mol Sci, 2018. 

19(5). 

183. Shieh, Y., et al., Breast Cancer Screening in the Precision Medicine Era: Risk-

Based Screening in a Population-Based Trial. J Natl Cancer Inst, 2017. 109(5). 

184. Kirsh, V.A., et al., Tumor characteristics associated with mammographic 

detection of breast cancer in the Ontario breast screening program. J Natl Cancer Inst, 

2011. 103(12): p. 942-50. 

185. Cabioglu, N., et al., Poor Biological Factors and Prognosis of Interval Breast 

Cancers: Long-Term Results of Bahcesehir (Istanbul) Breast Cancer Screening Project in 

Turkey. JCO Glob Oncol, 2020. 6: p. 1103-1113. 

186. Krishnan, K., et al., Mammographic density and risk of breast cancer by mode of 

detection and tumor size: a case-control study. Breast Cancer Res, 2016. 18(1): p. 63. 

187. Nguyen, T.L., et al., Interval breast cancer risk associations with breast density, 

family history and breast tissue aging. Int J Cancer, 2020. 147(2): p. 375-382. 

188. Chuang, S.L., et al., Using tumor phenotype, histological tumor distribution, and 

mammographic appearance to explain the survival differences between screen-detected 

and clinically detected breast cancers. APMIS, 2014. 122(8): p. 699-707. 

189. Shieh, Y., E. Ziv, and K. Kerlikowske, Interval breast cancers - insights into a 

complex phenotype. Nat Rev Clin Oncol, 2020. 17(3): p. 138-139. 

190. Edechi, C.A., et al., Regulation of Immunity in Breast Cancer. Cancers (Basel), 

2019. 11(8). 

191. Viljamaa, M., et al., Malignancies and mortality in patients with coeliac disease 

and dermatitis herpetiformis: 30-year population-based study. Dig Liver Dis, 2006. 38(6): 

p. 374-80. 

192. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor 

escape. Nat Immunol, 2002. 3(11): p. 991-8. 

193. Szklarczyk, D., et al., STRING v11: protein-protein association networks with 

increased coverage, supporting functional discovery in genome-wide experimental 

datasets. Nucleic Acids Res, 2019. 47(D1): p. D607-D613. 

 

 


