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Abstract 

Prostate cancer is the second most common cancer in men worldwide. Of almost 1.3 million 

newly diagnosed men per year, up to 80% will have localized disease with a characteristically 

prolonged natural history. Risk stratification and treatment decision-making for these men is 

currently based on the combination of standard clinical and histopathological predictors, such 

as the Gleason score, prostate specific antigen (PSA) level and clinical tumor stage at 

diagnosis. However, these standard predictors are not sufficient to capture the heterogeneity 

in prognosis for men with localized prostate cancer. As a consequence, these men are often 

overtreated and may suffer from treatment-related side effects. In this thesis we aimed to 

improve prognostication for men with localized prostate cancer through validation of existing 

risk stratification tools based on standard clinical and histopathological factors, and through 

validation of existing, and identification of novel, prognostic markers. 

In Study I, we evaluated if the nested case-control study design is appropriate for estimating 

relative and absolute risks of dying from prostate cancer in the presence of competing risks. 

We used a case-control study (ProMort I) nested in the National Prostate Cancer Register of 

Sweden (NPCR). We found that the relative risks of dying from prostate cancer estimated in 

ProMort I were comparable to the relative risks estimated in the NPCR. The relative risks of 

dying from other causes estimated in ProMort I were biased, which led to biased estimates of 

the absolute risks of dying from prostate cancer. The bias in both the relative and absolute 

risks was reduced by augmenting competing-risks cases, and especially by augmenting both 

the competing-risks cases and the controls. Our results indicate that, without the additional 

extensions to the design, the nested-case control studies are not suitable for the development 

of models predicting death from prostate cancer in the presence of competing risks. 

In Study II, we systematically compared the prognostic performance of the most commonly 

used pretreatment risk stratification tools in predicting death from prostate cancer using data 

from the Prostate Cancer data Base of Sweden. The Memorial Sloan Kettering Cancer Center 

nomogram, Cancer of the Prostate Risk Assessment score and Cambridge Prognostic Groups 

discriminated death from prostate cancer better than the D’Amico and D’Amico-derived risk 

grouping systems. The order of performance remained after stratifying by primary treatment 

and year of diagnosis. Using these tools could improve clinical decision-making. 

In Study III, we evaluated if a virtual microscopy system which we developed for central re-

review in ProMort I and Study IV can be used interchangeably with standard light 

microscopy for the histopathological evaluation of prostate cancer. We found good 

repeatability (i.e., intra-observer agreement) and reproducibility (i.e., inter-observer 

agreement) for several key prostate cancer histopathological features (i.e., core length, tumor 

length, primary and secondary Gleason pattern, the Gleason score and the Gleason Grade 

Groups (GGs)) both within and between light and virtual microscopy. The repeatability 

and/or reproducibility for some of the rare, or less commonly reported, features and for the 

percentage of Gleason pattern 4 was poor. The repeatability and/or reproducibility for these 



features should be improved before they are used in prognostic models. For all evaluated 

features, the agreement was similar within and between light and virtual microscopy 

indicating that light microscopy and our internally developed virtual microscopy system can 

be used interchangeably for the histopathological evaluation of prostate cancer.  

In Study IV, we evaluated if the International Society of Urological Pathology (ISUP) 

revisions of the Gleason grading systems have improved prostate cancer prognostication. We 

used a nested case-control study (ProMort II) to compare the prognostic performance of the 

pre-2005 Gleason score and the ISUP 2014 Gleason score. In our study, the ISUP 2014 

Gleason score discriminated death from prostate cancer better than the pre-2005 Gleason 

score. Our results also indicate that this improvement may be due to classifying all cribriform 

patterns, rather than poorly formed glands, as Gleason pattern 4. We then evaluated if other 

histopathological features can further improve the prediction of death from prostate cancer. 

The number of cores with ≥50% cancer involvement, comedonecrosis and high-grade 

prostatic intraepithelial neoplasia (HGPIN) predicted death from prostate cancer 

independently of the GGs. Only comedonecrosis and HGPIN remained independent 

predictors when added to the model with all the standard predictors (the GGs, age, PSA and 

clinical tumor stage at diagnosis). Adding these features had minimal impact on the model 

discrimination. 
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Figure 1.1. Prostate cancer incidence and mortality in Sweden, 1970-2018. Source: The Swedish Cancer

Registry and the Cause of Death registry, the National Board of Health and Welfare, Sweden

1 Introduction 

1.1 Prostate cancer 

1.1.1 Incidence  

In 2018, prostate cancer was the second most common cancer in men worldwide with an 

estimated 1.3 million newly diagnosed cases (1). It was the most frequently diagnosed cancer 

in 105 countries of the world, most notably in developed regions such as the North America, 

Northern and Western Europe and Australia (1). In Sweden, where prostate cancer was the 

most common cancer in 2018, almost 11,000 men were diagnosed with prostate cancer (2, 3). 

Prostate cancer incidence has been marked by a slow increase until the early 1990s (and 

somewhat later in the Nordic countries), followed by a more dramatic increase corresponding 

to the introduction and adoption of prostate specific antigen (PSA) testing (4, 5) and, finally, 

a slow decrease in subsequent years (Figure 1.1). Given the low specificity and the high false-

positive rate of the PSA test, routine PSA screening led to unnecessary prostate biopsies, 

overdiagnosis of indolent cancers and, ultimately, to overtreatment (6). For this reason, the 

US Preventive Services Task Force (USPSTF) has made several changes to the screening 

recommendations over time (7-9) and the trends in PSA testing, and, possibly, the trends in 

prostate cancer incidence seem to follow the timing of the changes in the USPSTF 

recommendations (10-12). After completely discouraging the use of PSA screening tests in 

2012, in 2018 the USPSTF recommended PSA testing for men aged 55 to 69 based on 

individual assessment (9). 
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1.1.2 Mortality 

With an estimated 359,000 men dying from prostate cancer in 2018, prostate cancer was the 

fifth most common cause of cancer-related death in the world (1). In Sweden, 2,500 men died 

from prostate cancer making it the leading cause of cancer-related death in men in 2018 (3, 

13). 

Unlike the incidence, prostate cancer mortality has been mostly stable or decreasing over 

time (Figure 1.1), likely due to the improved treatment and increased detection of early stage 

disease as a result of PSA screening (5, 14, 15). While PSA screening has undoubtedly led to 

an increased detection of prostate cancer, especially of localized prostate cancer, the effect on 

prostate cancer-specific mortality is still a subject of debate (16). Conflicting evidence from 

two major trials, the prostate arm of the Prostate, Lung, Colorectal and Ovarian Cancer 

Screening Trial (PLCO) (17) and the European Randomised Study of Screening for Prostate 

Cancer (ERSPC) (18), has been a major driver of this debate (5). The PLCO trial reported no 

survival benefit due to PSA screening after 13 and 17 years of follow-up (17, 19). On the 

other hand, the ERSPC reported an overall 21% reduction in cancer-specific mortality in the 

PSA screened arm at 13 years of follow-up (18) and the results were further confirmed by an 

updated analysis at 19 years of follow-up (20). A direct comparison of the results is, however, 

difficult due to the differences in implementation and settings of the two trials. Furthermore, 

76% of the men in the control arm of the PLCO trial had at least one PSA test during the 

study period (21), while in the ERSPC trial there was almost no PSA contamination (20). 

When these differences were taken into account, analyses indicated compatible results with a 

25-31% and 27-32% reduction in prostate cancer mortality due to PSA screening in the 

ERSPC and PLCO intervention groups, respectively (22, 23). While the ERSCP trial showed 

a reduction in cancer-specific mortality overall, published results from the Goteborg (24, 25), 

Spanish (26), Finish (27, 28) and Rotterdam (29, 30) sections of the trial are not uniform. 

Three sections report no reduction in prostate cancer mortality due to PSA screening (26-28) 

while the remaining sections report a reduction in prostate cancer mortality (24, 25, 29, 30). 

In addition, results from a large randomized clinical trial conducted in the United Kingdom 

(31) also report no reduction in prostate cancer mortality due to the PSA screening.  

1.1.3 Overdiagnosis 

Screening for prostate cancer aims at identifying high-risk, localized prostate cancer that can 

be successfully treated. Successful treatment would, in turn, prevent the morbidity and 

mortality associated with advanced or metastatic prostate cancer. However, PSA screen-

detected cancers are mostly asymptomatic cancers that would not cause symptoms and, 

otherwise, be detected nor contribute to death. This is known as overdiagnosis.  

As a part of the informed update of the USPSTF 2012 recommendations (5) the extent of 

overdiagnosis was evaluated in all the major PSA screening trials (17-20, 24-31). 

Overdiagnosis was estimated to range from 16.4% (17, 19) to 47.9% (29, 30) of all prostate 

cancers, and from 20.7% (17, 19) to 58.9% (29, 30) of all screening detected prostate cancers. 
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Overdiagnosis estimates are highly influenced by differences in study populations and 

screening practices as well as by the methods used for quantifying overdiagnosis. This is 

summarized in a review by Leob et al. where the estimates of overdiagnosis ranged from 

1.7% to 67% across the range of different methods and underlying populations with differing 

screening protocols (32). 

1.1.4 Overtreatment 

Treatment options for prostate cancer include upfront radical treatment with curative intent 

(i.e., radical prostatectomy or radiation therapy), deferred treatment with curative intent (i.e., 

active surveillance), deferred treatment without curative intent (i.e., watchful waiting) and 

upfront androgen deprivation therapy without curative intent. Treatment decision-making is 

primarily driven by prostate cancer prognosis and life expectancy (33-37). However, in the 

absence of clear guidelines and strong scientific evidence, treatment of localized cancer is 

heavily influenced by patients’ and clinicians’ preferences and beliefs (38).  

While men with high-risk prostate cancer are typically offered upfront radical treatment (38, 

39), treatment decision is more complex for men with low- or intermediate-risk disease. As, 

currently, no marker can separate indolent cancers from fast-developing cancers requiring 

treatment, overdiagnosed men are often overtreated, which, in turn, may lead to unnecessary 

treatment related side effects such as persistent urinary, sexual and bowel morbidities (5, 40-

43). Even with the increased utilization of active surveillance, over 50% of men with low- or 

intermediate-risk disease are still treated radically (38, 39, 44, 45). The potential harms of 

diagnosis and treatment should be balanced by improved life expectancy in men with low- 

and intermediate-risk disease. While upfront radical treatment may reduce the risk of 

metastatic disease, the long-term effect on prostate cancer mortality is not clear (46-48). 

1.2 Risk stratification 

Treatment decision-making in prostate cancer is mostly driven by prostate cancer prognosis 

and life expectancy (33-37, 49). Men with prostate cancer are typically classified into risk 

groups based on their clinicopathological features, such as PSA level, clinical tumor stage 

(cT) and Gleason score. In 1998, D’Amico combined these features and grouped men with 

localized prostate cancer into low-, intermediate- and high-risk groups (49). The D’Amico’s 

risk stratification system quickly became the main standard in clinical practice and the basis 

for risk stratification in all major prostate cancer guidelines (i.e., the European Association of 

Urology (EAU) (37, 50), the National Institute for Health and Care Excellence (NICE) (33), 

the Genito-Urinary Radiation Oncologists of Canada (GUROC) (34), the American 

Urological Association (AUA) (35), and the National Comprehensive Cancer Network 

(NCCN) (36)). Incorporation of more granular clinicopathological information (e.g., 

separating Gleason score 3+4 from 4+3) or introduction of additional clinicopathological 

parameters (e.g., measures of tumor extent in the diagnostic biopsies) led to further sub-

classification of these risk groups into very low- and low-risk group, favorable and 
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unfavorable intermediate-risk group and high- and very high-risk group (36, 51-55). The 

D’Amico and D’Amico-based risk grouping systems used in all major prostate cancer 

guidelines are presented in Table 1.1.  

Risk grouping systems are simple to apply in the clinical setting. However, high 

heterogeneity of patients within risk groups inevitably leads to imprecise outcome prediction. 

Multivariable model-based risk classification systems circumvent the problem of collapsing 

patients into broad risk groups by predicting individual risks. Several such models exist in 

prostate cancer, presented as look-up tables (56-59), risk scores (60) or nomograms (61-64). 

Even more complicated risk classification models have been developed using artificial neural 

networks (65-67). In prostate cancer, nomograms have been shown to outperform clinicians 

and simpler risk stratification tools (68, 69) but also the more complicated tools such as 

neural networks (70).  

Table 1.1. Prostate cancer risk stratification criteria for the most commonly used risk grouping systems 

System 
Low risk Intermediate risk High risk 

Very low risk Low risk Favorable Unfavorable High risk Very high 

risk D'Amico (49) PSA≤10 and GS≤6 and  

cT1c-2a 

PSA>10-20 or GS=7 or  

cT2b 

PSA>20 or GS=8-10 or  

cT2c 

EAU (37) PSA<10 and GS≤6 and  

cT1c-2a 

PSA=10-20 or GS=7 or  

cT2b 

PSA>20 or GS>7 or  

cT2c 

NICE (33) PSA<10 and GS≤6 and  

cT1-2a 

PSA=10-20 or GS=7 or  

cT2b 

PSA>20 or GS=8-10 or 

≥cT2c 

GUROC (34) PSA≤10 and GS≤6 and  

cT1-2a 

PSA≤20 and GS≤7 and cT1-2 

not otherwise low-risk 

PSA>20 or GS=8-10 or 

≥cT3a 

AUA (35) PSA<10 and GG1 

and cT1-2a and 

<34% positive 

cores and 0 cores 

with >50% cancer 

and PSAD<0.15 

PSA<10 and 

GG1 and 

cT1-2a 

PSA=10-<20 or GG2-3 or 

cT2b-2c 

PSA≥20 or GG4-5 or 

 ≥cT3 

AUA_i (35) PSA<10 and GG1 

and cT1-2a and 

<34% positive 

cores and no 

cores with >50% 

cancer and 

PSAD<0.15 

PSA<10 and 

GG1 and 

cT1-2a 

GG1 and 

PSA=10-<20 

or 

GG2 and 

PSA<10 

GG2 and 

(PSA=10-<20 

or cT2b-2c) 

or 

GG3 and 

PSA<20 

PSA≥20 or GG4-5 or  

≥cT3 

NCCN (36) PSA<10 and 

GS≤6 and cT1c 

and <3 positive 

cores and ≤50% 

cancer in each 

core and 

PSAD<0.15 

PSA<10 and 

GS≤6 and 

cT1-2a 

PSA=10-20 or 

GS=3+4 or 

cT2b-2c 

and <50% 

positive cores 

PSA=10-20 or 

GS=3+4/4+3 

or cT2b-2c 

PSA>20 or 

GS=4+4/4+5 

or cT3a 

G1=5 or >4 

cores with 

GS=8-10 or 

cT3b-4 

Abbreviations: EAU, European Association of Urology; NICE, The National Institute for Health and Care 

Excellence; GUROC, Genito-Urinary Radiation Oncologists of Canada; AUA, American Urological 

Association; NCCN, National Comprehensive Cancer Network; PSA, Prostate-specific antigen; GS, Gleason 

score; cT, Clinical tumor stage; GG1-5, Gleason grade groups 1-5; PSAD, Prostate-specific antigen density; 

G1, primary Gleason pattern 
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Pretreatment risk stratification tools are developed with the aim of assisting clinicians in 

treatment decision-making for newly diagnosed men. Although they can be developed to 

predict several relevant clinical outcomes, such as progression-free survival or metastasis-free 

survival, prostate cancer death and overall survival are most commonly used for treatment 

decision making. However, most tools have been developed in studies with short follow-up, 

where biochemical recurrence (BCR), rather than prostate cancer death, was used as the 

endpoint (49, 52, 56-61, 63, 64, 67). Although BCR is an imperfect surrogate for prostate 

cancer mortality, only a few of these tools have been validated for prostate cancer death (53, 

71-73). Furthermore, most tools have been developed using cohorts of men treated with 

radical prostatectomy or radiation therapy (49, 52, 56-61, 64, 67), and in selected rather than 

population-based cohorts (49, 52, 56-59, 61, 64).  

Thus, despite the overwhelming number of pretreatment risk stratification tools in prostate 

cancer (74-77), a considerable proportion of men still remain misclassified, and no single tool 

is currently recommended for clinical use. Systematic, head-to-head comparison of the most 

commonly used risk stratification tools with respect to their ability to predict prostate cancer 

death would clarify which tool performs best and should be used to improve treatment 

decision-making. Such a tool could also serve as a baseline model or a “gold standard” used 

to demonstrate independent prognostic value of novel markers. 

1.3 Prognostic markers  

The standard pretreatment markers of prostate cancer prognosis are PSA, cT and Gleason 

score at diagnosis. Although the combination of these markers is the basis for most of the risk 

stratification tools used in clinical practice today, they are not sufficient to capture the 

heterogeneity in the outcomes of localized prostate cancer. Consequently, a plethora of novel 

biomarkers and molecular signatures have been evaluated as predictors of prostate cancer 

prognosis (78-81). Most of these markers are, however, outside of the scope of this thesis and 

will not be addressed in following chapters. 

This thesis focuses primarily on histopathological markers of prostate cancer prognosis. For 

this reason, PSA, cT, the Gleason score and other commonly evaluated histopathological 

markers will be described in more detail.  

1.3.1 Prostate-specific antigen  

PSA is a glycoprotein secreted by prostate epithelial cells that is present in the serum. PSA is 

organ-specific, not cancer-specific, and the PSA level can be increased as a consequence of 

non-cancerous conditions, such as benign prostatic hyperplasia or prostatitis. Baseline PSA is 

a part of risk stratification tools and is commonly used as a marker for monitoring disease 

progression after curative treatment (35, 37, 49, 53, 60, 80, 82, 83). The role of PSA as a 

reliable prognostic marker is not without controversies. PSA levels are subject to large 

analytical and biological variation (84) and the differentiation between indolent and 
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aggressive cancer is sub-optimal as many men with low PSA levels seem to have aggressive 

disease (85).  

1.3.2 Clinical tumor stage 

The Tumor-Node-Metastasis (TNM) system was jointly developed by the American Joint 

Commission on Cancer and the Union for International Cancer Control and is used globally 

as the benchmark for cancer staging (86). The TNM system is a measure of the extent of the 

primary tumor (T stage), spread to lymph nodes (N stage) and distant metastases (M stage) 

(Table 1.2). The cT is based on the digital rectal examination of the prostate (86) and is thus 

quite a subjective measure of tumor extent (Table 1.2). Although magnetic resonance 

imaging is expected to improve the accuracy of cT staging, it appears to have high specificity, 

but poor and heterogeneous sensitivity (87), and is, for now, not recommended as a 

replacement for the digital rectal examination (86).  

Table 1.2. The Tumor-Node-Metastasis (TNM) staging system according to the 8th edition of the American Joint 

Committee on Cancer staging of prostate cancer.  

Stage  Description 

Clinical tumor stage 

TX Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

T1 Clinically unapparent tumor neither palpable nor visible by imaging 

  T1a Tumor incidental histologic finding in 5% or less of tissue resected 

  T1b Tumor incidental histologic finding in more than 5% of tissue resected 

  T1c Tumor identified by needle biopsy (for example, because of elevated PSA) 

T2 Tumor confined within prostate1 

  T2a Tumor involves one-half of one lobe or less 

  T2b  Tumor involves more than one-half of one lobe but not both lobes 

  T2c Tumor involves both lobes 

T3 Tumor extends through the prostate capsule2 

  T3a Extracapsular extension (unilateral or bilateral) 

  T3b Tumor invades seminal vesicle(s) 

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles, such as external 

sphincter, rectum, bladder, levator muscles, and/or pelvic wall 

Regional lymph nodes 

NX Regional lymph nodes were not assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

Distant metastasis 

M0 No distant metastasis 

M1 Distant metastasis 
1 Tumor found in one or both lobes by needle biopsy, but not palpable or reliably visible by imaging, is classified 

as T1c  
2 Invasion into the prostatic apex or into (but not beyond) the prostatic capsule is classified as T2, not T3 
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1.3.3 The Gleason grading system 

In 1966, Dr. Gleason created a 5-point grading system based on the histological patterns of 

prostate cancer (Figure 1.2A) (88). The Gleason score, ranging from 2-10, was defined as a 

sum of the first and the second most common pattern, and it was demonstrated that the 

probability of prostate cancer-specific mortality progressively increased with the increasing 

Gleason score (88, 89). Since then, the Gleason score has been considered one of the most 

powerful prognostic factors in prostate cancer. 

At the time the Gleason grading system was introduced, the Mostofi system, also known as 

the World Health Organization (WHO) grading system, was frequently used for grading 

prostate cancer (90). The WHO grading system was based on cellular anaplasia and the 

degree of glandular differentiation and classified prostate cancers into well differentiated, 

moderately differentiated and poorly differentiated. This system has, however, been entirely 

abandoned in favor of the Gleason grading system. 

1.3.3.1 The evolution of the Gleason grading system 

The Gleason score has undergone a series of changes over time, most notably two major 

revisions by the International Society of Urological Pathology (ISUP) in 2005 (91) and in 

2014 (92).  

The ISUP 2005 revision addressed both the interpretation of the morphological patterns and 

the reporting methods. The most notable changes were recommendations against assigning 

Gleason pattern 1 and 2, narrowing down the definition of Gleason pattern 3 by including 

most of the cribriform glands and poorly formed glands in the definition of Gleason pattern 4, 

and, finally, defining Gleason score as the sum of the most common and the highest Gleason 

pattern (Figure 1.2B). As a consequence, pathologists more often assigned Gleason score 7 

and tumors with Gleason score 6 had better prognosis. This tendency of assigning a higher 

Gleason score over time is known as a grade inflation (93, 94).  

In 2014, the ISUP further modified the definition of the morphological patterns by including 

all cribriform glands and glomeruloid glands in the definition of Gleason pattern 4 (Figure 

1.2C). Furthermore, ISUP endorsed the five-tiered Gleason Grade Groups (GGs) where GG1 

is defined as Gleason score ≤6, GG2 as Gleason score 3+4, GG3 as Gleason score 4+3, GG4 

as Gleason score 4+4, 3+5, 5+3 and GG5 as Gleason score 9-10. The endorsement of the 

GGs was based on the claims that:  

1. The GGs stratify prostate cancer better that the current system (where the current 

system was the three-tiered Gleason score (≤6, 7, 8-10)), 

2. The number of grading categories was reduced from 2-10 to 1-5, 

3. Having GG1 instead of Gleason score 6 as the lowest grade could reduce 

overtreatment of indolent cancers, and  
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4. The GGs are based on the modified Gleason grading system which bears little 

resemblance to the original Gleason grading system (92, 95, 96), which should justify 

it being introduced as a new classification system.  

The ISUP 2014 revision was subsequently adopted by the 2016 WHO classification of 

tumors of the urinary system and male genital organs (97). 

1.3.3.2 Impact of the Gleason grading system revisions on prostate cancer 

prognostication 

The Gleason grading system revisions aimed at improving inter-pathologist agreement and, 

ultimately, prostate cancer prognostication (91, 92, 95). To evaluate improvements in 

prognostication, a direct comparison of the Gleason scores assigned according to the different 

Gleason grading systems is necessary (98). However, only a few studies have compared the 

ISUP 2005 Gleason score to the pre-2005 Gleason score in predicting BCR and found either 

a small (99, 100) or no improvement (101). None of the studies validating the GGs as a 

predictor of adverse outcomes in prostate cancer (see more information under heading 

1.3.3.4.) have also performed a re-review of the same samples according to both the ISUP 

Figure 1.2.  The evolution of the Gleason grading system. Original (pre-2005) Gleason (A), International Society 

of Urological Pathology (ISUP) 2005 Gleason (B) and ISUP 2014 Gleason grading system (C). 

A) Reprinted from Gleason DF. Histologic grading of prostate cancer: a perspective. Hum Pathol. 1992;23:273–

279, with permission from Elsevier; B) and C) Reprinted by permission from Springer Nature Customer Service 

Centre GmbH: Springer Nature, Contemporary Approach to Gleason Grading of Prostate Cancer. In: Prostate 

Biopsy Interpretation by Shah R.B., Zhou M. © 2019. 

C) B) A) 
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2014 Gleason grading criteria and the ISUP 2005 or pre-2005 Gleason grading criteria. Only 

one study has compared the GGs to previous Gleason grading revisions by modelling the 

GGs and the diagnostic Gleason score in predicting BCR, but they did not compare the 

prognostic performance of the two models (102). Thus, even though a plethora of studies 

have unsurprisingly confirmed that the GGs are a prognostic factor in prostate cancer, it is 

still not clear if the changes in the Gleason grading system introduced in 2005 and 2014 have 

improved prostate cancer prognostication.  

1.3.3.3  Inter-observer reproducibility of the Gleason score 

Prior to the ISUP 2005 revision, the agreement for the Gleason score ranged from 0.16 to 

0.70 among uropathologist (103-106) and 0.00 to 0.88 among general urologists (106, 107) 

(Table 1.3). The general opinion was that the ISUP 2005 revision led to an improvement in 

the inter-observer reproducibility (108). This improvement was ascribed to either the more 

specific definition of patterns 3 and 4, or to Gleason score 2-5 no longer being used (94, 99). 

However, the agreement for the ISUP 2005 Gleason score ranged from 0.48-0.68 among 

uropathologists (109-113) and from -0.13-0.68 among general pathologists (110, 113-115), 

indicating no obvious improvement in agreement (Table 1.3). Similarly, the agreement for 

the ISUP 2014 Gleason score ranged from 0.43-0.75 among general pathologists (116, 117), 

while for the GGs it ranged from 0.39-0.75 among general pathologists (116, 117) and 0.48-

0.89 among uropathologists (118) (Table 1.3).  

The lack of obvious improvement in the inter-observer agreement with the ISUP 2005 and 

2014 revisions could be due to the slow adoption of the new grading criteria, different 

interpretations of the guidelines or to differences in study design and methods used to 

quantify the agreement. However, several studies have demonstrated that the agreement can 

be improved by additional training (110), use of reference images (118-120) or various 

techniques for improving reproducibility, such as web-based education or the use of 

interactive digital slides with heat maps (110, 121-123).  

1.3.3.4 Validation of Gleason Grade Groups  

Since the ISUP endorsed the GGs, a plethora of studies have evaluated the ability of the GGs 

to predict BCR (96, 124-132) and/or death from prostate cancer (133-140) (Table 1.4). 

However, most of these validation studies were based on selected samples of treated men 

with a short follow-up. Furthermore, in most of the studies there was no central re-review of 

the diagnostic biopsies according to the ISUP 2014/WHO 2016 criteria. In fact, of four 

studies that had access to centrally re-reviewed diagnostic biopsies (102, 134, 136, 140), only 

one study has done so according to the ISUP 2014/WHO 2016 criteria (102) (Table 1.4).  

Given that none of the validation studies re-reviewed the same samples according to different 

Gleason grading criteria, the claims of better prognostic accuracy of the GGs have been based 

on comparisons with different groupings of the Gleason score, most commonly the three-

tiered Gleason score (≤6, 7, ≥8), and on minimal changes in model discrimination (e.g., 
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change in the second/third decimal of the area under the receiver operating curve 

(AUC)/concordance index (C-index)) (Table 1.4) (98). However, it has also been shown that 

using the GGs seems to result in less upgrading on prostatectomy specimens (102, 141), 

which indicates better identification of potentially aggressive tumors, and, in turn, has great 

clinical implications. 

   

Table 1.3. Inter-observer reproducibility of the Gleason score 

Author Year Sample 

size 

Gleason score Pathologists Inter-observer agreement Kappa type 

No. Type  

McLean (103) 1997      71 Pre-2005   3 Urologic Range: 0.16-0.29 Weighted  

Allsbrook (104) 2001      46 Pre-2005 10 Urologic Range: 0.56-0.70 Weighted  

Allsbrook (107) 2001      38 Pre-2005 41 General 0.44 (Range: 0.00-0.88) Simple  

Glaessgen (105) 2004    2791 Pre-2005   4 Urologic Range: 0.48-0.55 Weighted  

Oyama (106) 2005      37 Pre-2005   8 General 0.49 Simple 

Pre-2005   6 Urologic 0.68 

Melia (111) 2006      81 ISUP 2005   9 Urologic 0.54 (range: 0.49-0.61) Fleiss  

Griffiths (110) 2006      20 ISUP 20057  

24 

General 0.33 Simple  

ISUP 20058  General 0.41 

ISUP 2005 Urologic 0.62 

Veloso (142) 2007    1102 ISUP 20059 

  3 

Mixed12 Range: 0.32-0.44 Weighted  

ISUP 200510 Range: 0.31-0.44 

ISUP 200511 Range: 0.39-0.50 

Mulay (114) 2008      40 ISUP 20057  
  4 

General 0.46 (Range: 0.36-0.65) NR 

ISUP 20058  0.54 (Range: 0.46-0.68)  

Singh (115) 2011      203 ISUP 2005 21 General Range: -0.13 to 0.55 Simple  

Rodriguez-

Urrego (109) 

2011      50 ISUP 2005 
  4 

Urologic 0.54 Simple 

Harnden (113) 2011      20 ISUP 2005   5 Urologic 0.57 Simple 

19 General 0.61 

27 Mixed 0.60 

Goodman (112) 2012 1,9054,5 ISUP 2005   2 Urologic 0.56 (95% CI: 0.48-0.63) Weighted  

Abdollahi (143) 2012    101 Pre-2005   5 NR 0.29  NR 

Abdollahi (122) 2013    150 ISUP 20057  
  3 

NR 0.25 (Range: 0.14-0.39) NR 

ISUP 20058  0.52 (Range: 0.39-0.65) 

Ozkan (116) 2016    1976 ISUP 2014   2 General 0.43 (95%CI: 0.42-0.48) Simple  

GGs   2 0.39 (95%CI: 0.34-0.47) 

Qureshi (144) 2016      47 NR   7 General 0.5 Simple  

Al Nemer (117) 2017    126 ISUP 2014  
  4 

General 0.75 (95%CI: 0.71-0.79) Fleiss  

 GGs 0.75 (95%CI: 0.71-0.79) 

Egevad (118) 2018      904 GGs 23 Expert Range: 0.48 - 0.89 Weighted  

Abbreviations: ISUP, International Society of Urological Pathology; GGs, Gleason Grade Groups; NR, not 

reported  
1 69 patients with 279 slides with cancer 
2 Number of reviewed cores per pathologist not equal 
3 10 biopsy samples, 8 transurethral resection of the prostate (TURP) samples, 2 radical prostatectomy samples 
4 Reviewed using digital microscopy 
5 268 patients with 1,905 slides 
6 407 cores belonging to 34 patients. Tumor was detected in 197 slides (cores) by both pathologists 
7 Before intervention 
8 After intervention 
9 Gleason score calculated as a sum of primary and secondary Gleason pattern 
10 Gleason score calculated as a sum of primary and tertiary (when present) Gleason pattern 
11 The highest core level Gleason score  
12 Two pathologists were experienced in urological pathology and one was less experienced 
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Table 1.4. Gleason Grade Groups validation studies  

Author Population Central 

review 

Outcome1 Comparison Model 

performance 
Period Sample size Treatment 

Leapman (138) 1995-2014 10,529 mixed no PCSM GGs vs. GS (extended)2 - 

Beckmann (133) 2006-2013 4,268 mixed no PCSM GGs - 

Berney (134) 1990-2003 988 WW/early 

hormones 

yes3 PCSM Overall GGs vs. Worst 

GGs 

0.756 vs. 0.752 

Bondarenko 

(124) 

2006-2016 621 RP - robot 

assisted 

no BCR GGs vs. GS (6,7,8-10) 

vs. GS (6,3+4,4+3,8-

10) vs. GS (6,7,8,9-10)  

0.724 vs. 0.740 vs. 

0.730 vs. 0.745  

Chen (135) 2010 13,798 WW/early 

hormones 

no PCSM GGs vs. GS (6,7,8-10) 0.908 vs. 0.907 

Dell’Oglio (125) 2005-2014 1,624 RP no BCR GGs vs. GS (6,7,8-10) 

vs. GS (6,3+4,4+3,8-

10) vs. GS (6,7,8,9-10) 

0.660 vs. 0.653 vs. 

0.656 vs. 0.657 

Epstein (126) 2005-2014 16,172  RP no BCR GGs vs. GS (6,7,8-10) 

vs. GS (6,3+4,4+3,8-

10) vs. GS (6,7,8,9-10) 

0.813 vs. 0.805 vs. 

0.811 vs. 0.806 

He (137) 2006-2012 331,320 mixed no PSCM GGs - 

Kirmiz (127) 2012-2017 8,052 RP no BCR GGs vs. GS (6,7,8-10) 0.76 vs. 0.75 

Loeb (128) 2005-2007 5,880 

RP: 4,325 

RT: 1,555 

RP/RT no BCR  GGs vs. GS (6,7,8-10) 

vs. GS (6,7,8,9-10) 

RP: 0.659 vs. 

0.658 vs. 0.658 

RT: 0.727 vs. 

0.738 vs. 0.730 

Mathieu (129) 2005-2014 27,122 RP no BCR GGs vs. GS (6,7,8-10) 0.743 vs. 0.740 

Offerman (102) 2002-2015 339  

 

RP yes4 BCR GGs vs. diagnostic GS 

(6,3+4,4+3,8,9-10) 

- 

Pierorazio (96) 2004-2011 7,850 RP no BCR GGs - 

Pompe (139) 2004-2009 242,531 

RP: 91,565 

RT: 38,184  

EBRT: 52,926  

NLT: 59,856 

mixed no PCSM  GGs vs. GS (6,7,8-10) RP: 0.813 vs. 

0.804 

RT: 0.731 vs. 

0.727 

EBRT: 0.759 vs. 

0.750 

NLT: 0.817 vs. 

0.810 

Shulman (130) 2005-2015 2,509 RP no BCR GGs - 

Spratt (131) 1994-2013 3,694 RP no BCR GGs vs. GS (6,7,8-10) 0.67 vs. 0.65 

Spratt (140) 1990-2013 847 EBRT yes PCSM GGs vs. GS (6,7,8-10) 0.752 vs. 0.733 

Yeong (132) 2005-2014 638 RP partial5  BCR GGs vs. GS (6,7,8-10) 0.687 vs. 0.647 

Delahunt (136) 2003-2007 496 RT6 yes7 PCSM GGs vs. GS 

(6,7,8,9,10) 

0.782 vs. 0.750 

Abbreviations: PCSM, Prostate cancer-specific death; GGs, Gleason Grade Groups; GS, Gleason score; RP, Radical 

prostatectomy; WW, Watchful waiting; BCR, Biochemical recurrence; RT, Radiation therapy; EBRT, External beam 

radiation therapy; NL, No local therapy 
1 When available, results for prostate cancer specific mortality are reported. Otherwise, results for biochemical recurrence 

are reported.  
2  ≤3 + 3, 3 + 4, 4 + 3, 4 + 4, 4 + 5, 5 + 4, 5 + 5. 
3 Central review according to the Gleason scoring system (Epstein, 2010) 
4 Central review according to the ISUP 2014 criteria 
5 Central review according to the ISUP 2005 criteria of 44 men diagnosed in 2005 
6 Men treated with androgen suppression 6 months prior to radiation therapy and men treated with 12 months of androgen 

suppression after radiotherapy 
7 Central review according to the ISUP 2005 criteria, Gleason score then recoded to GGs 
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1.3.4 Other histopathological markers 

Most men diagnosed with prostate cancer have their diagnosis made on a needle biopsy. 

Prostate cancer biopsy tissue contains a vast amount of information, some of which is 

routinely recorded by pathologists in a pathology report. In addition to the Gleason score, 

pathologists are required to report different measures of tumor extent (i.e., the number of 

positive cores/total number of cores and length of tissue involved by carcinoma in mm or the 

linear extent of prostatic tissue involved by carcinoma as a percentage (%)) and the 

presence/absence of extraprostatic extension (145). Reporting of additional information, such 

as the percentage of Gleason pattern 4 or 4/5, the presence of perineural invasion, and 

intraductal carcinoma, is only a recommendation (145). At ISUP 2014 revision, it was 

additionally recommended to report the GGs for individual cores, the percentage of Gleason 

pattern 4 for cores with Gleason score 7 and the presence of intraductal carcinoma (95). 

Given the need for novel markers that can separate indolent from aggressive cancers, many of 

these routinely reported histopathological features, as well as some features which are not 

routinely reported, have been studied as potential predictors of prostate cancer prognosis 

(146). The most commonly studied histopathological features are described in more detail 

below. 

1.3.4.1 Measures of tumor extent 

Currently, there is no consensus on how to best quantify tumor extent in prostate biopsies. 

Different measures of tumor extent, such as the number or percentage of cores with cancer or 

measures of linear extent of cancer (i.e., total length and percentage of cancer in mm), have 

been evaluated as potential prognostic factors. While the results for the number of cores with 

cancer and total length of cancer are not conclusive (147-151), the results for the percentage 

of cores with cancer and the total percentage of cancer are more consistent. The percentage of 

cores with cancer is an established predictor of BCR (52, 148, 150, 152-155) and has also 

been shown to predict death from prostate cancer (154). Similarly, the total percentage of 

cancer has been repeatedly identified as a predictor of BCR (147, 149, 150, 155, 156) and of 

death from prostate cancer (157, 158). These measures are highly correlated (151, 156) and 

there seems to be no gain in modelling them together (153). Which of the two is a better 

measure of tumor extent is not clear (150, 155, 156).  

When modelled together with other established predictors of prostate cancer prognosis, the 

contribution of both the percentage of cores with cancer and the total percentage of cancer to 

discrimination seems to be minimal (148, 157), which brings their clinical utility into 

question. Nevertheless, some of these measures are already incorporated in risk stratification 

tools and used for clinical decision making. The percentage of cores with cancer and the 

number of cores with >50% cancer involvement separate very low- and low-risk cancer in the 

AUA guidelines (35). The percentage of cores with cancer is also used for pretreatment risk 

stratification using the Cancer of the Prostate Risk Assessment score (CAPRA) score (60), 

and together with the number of cores with cancer and the number of cores with ≤50% cancer 



 

 13 

involvement in the NCCN guidelines (36). The percentage of cores with cancer, the number 

of cores with cancer, and the number of cores with ≤50% cancer involvement are also a part 

of the criteria for active surveillance (82, 159-161).  

1.3.4.2 Cribriform pattern and intraductal cancer  

Gleason pattern 4 is characterized by four distinct growth patterns: poorly-formed, fused, 

glomeruloid and cribriform pattern (92). Cribriform pattern has been associated with an 

unfavorable biologic behavior, and has often been studied as a potential predictor of prostate 

cancer prognosis (162). The presence of cribriform pattern in radical prostatectomy samples 

has been associated with BCR (162-166) as well as with metastasis after radical 

prostatectomy (164). Cribriform pattern in biopsy samples of men with Gleason score 3+4 

has been shown to predict upstaging (167) and BCR after radical prostatectomy (168).  

Intraductal cancer in radical prostatectomy or biopsy samples has been identified as a 

predictor of BCR (168, 169), clinical progression-free survival (170) and death from prostate 

cancer (169). Given the microscopic similarity of intraductal cancer and cribriform pattern, 

several studies have evaluated the predictive value of the presence of cribriform pattern 

and/or intraductal carcinoma. The presence of cribriform pattern and/or intraductal carcinoma 

in radical prostatectomy samples predicted BCR independently of the Gleason score (171). 

Furthermore, the presence of cribriform pattern and/or intraductal carcinoma on biopsy 

samples predicted death from prostate cancer (172), and incorporating these two patterns into 

the GGs has been shown to somewhat improve discrimination of death from prostate cancer 

compared to the standard GGs (C-index: 0.79 vs. 0.76) (173). 

1.3.4.3 The percentage of Gleason pattern 4  

Both the ISUP 2014 revision and the WHO recommend reporting percentage of Gleason 

pattern 4 for Gleason score 7 prostate cancer in needle biopsies and RP samples (95, 97), 

however, the method for quantification is left optional (95). Different methods for 

quantifying the percentage of Gleason pattern 4 have been studied as potential predictors of 

prostate cancer prognosis, such as the overall percentage of Gleason pattern 4 (total length (in 

mm) of Gleason pattern 4/total length (in mm) of cancer), maximum percentage of Gleason 

pattern 4 in one core, total length (in mm) of Gleason pattern 4 etc. Another potential issue 

regards the cases for which it is recommended to record the percentage of Gleason pattern 4. 

The ISUP 2014 authors stated that they do not record it if any other core has GG5 since 

treatment decision is more straightforward for men with GG5 and the percentage of Gleason 

pattern 4 has little, if any, clinical relevance (95). 

The overall percentage of Gleason grade 4 on both radical prostatectomy and biopsy samples 

has been shown to be an independent predictor of adverse pathology at RP (174-177), BCR 

(166, 174, 176-178) and prostate cancer death among men with GG2 and/or GG3 (179). The 

overall percentage of Gleason grade 4 has been shown to outperform the maximum 

percentage of Gleason pattern 4 (174, 180). However, when modelled with PSA, cT and the 
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percentage of cores with cancer, the total length of the Gleason pattern 4 outperformed both 

the maximum and the overall percent of Gleason pattern 4 in predicting adverse pathology at 

radical prostatectomy (177). 

1.3.4.4 Perineural invasion  

Perineural invasion is a well-known mechanism for the extraprostatic spread of prostate 

cancer (181) and as such has long been recognized as a potential prognostic factor. A plethora 

of studies have evaluated the association between perineural invasion on biopsy or radical 

prostatectomy specimens and BCR, with conflicting results. At least four systematic reviews 

(182-185), of which three include a meta-analysis (182, 184, 185), have confirmed the 

association of perineural invasion with BCR after radical prostatectomy or radiation therapy. 

Nevertheless, the authors still remained cautious when discussing their summary findings due 

to substantial heterogeneity across the evaluated studies and because of the presence of 

selection and publication bias.  

Overall, relatively few studies focus on the prognostic significance of perineural invasion on 

biopsies. A recent study evaluated perineural invasion on biopsies as a predictor of BCR and 

found a 50% increase in the rate of BCR, although with wide confidence intervals (CIs) 

(hazard ratio (HR): 1.55; 95% CIs: 0.98-2.45)  (186). When the authors pooled their results 

with the results from the three largest published studies with similar design, methods and 

research question (187-189), the combined estimate supported perineural invasion on prostate 

biopsy specimens as a strong independent predictor of BCR after radical prostatectomy (186). 

In addition, perineural invasion on prostate biopsy seems to also be a predictor of death from 

prostate cancer (190, 191). These results indicate that perineural invasion should be a 

required component of histopathologic review and it may be relevant for clinical decision-

making in prostate cancer. 

1.4 Digital pathology and virtual microscopy 

Advancements in whole slide imaging technology and software development have led to the 

development of digital pathology and virtual microscopy (192). In digital pathology, glass 

slides are digitalized using a scanner, stored, and viewed locally or transmitted over a 

network for remote viewing on a computer or other electronic devices using a virtual 

microscopy software interface that emulates the light microscopy experience (192-194). 

Digital pathology has mostly been used for education, quality assurance, research, image 

analysis, collaborations and seeking a specialist second opinion (195-197). However, owing 

to recent approvals by the US Food and Drug Administration, digital pathology solutions are 

also starting to be used in clinic practice. 

Several studies have assessed the interchangeability of standard light and virtual microscopy 

in prostate cancer by evaluating the inter-method, intra-observer agreement and/or the intra-

method, inter-observer agreement (109, 113, 198, 199) for several histopathological features, 
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including the Gleason score. The inter-method, intra-observer agreement for the Gleason 

score ranged from 0.49 to 0.77 (109, 198, 199). The inter-observer agreement on light 

microscopy (range: 0.54-0.61) (109, 113) was overall similar to the inter-observer agreement 

on virtual microscopy (range: 0.45-0.62) (109, 112, 113, 199) indicating interchangeability of 

the two methods. One of the well-known downsides of virtual microscopy, which could 

potentially limit the use in clinical practice, is the longer review time (200). However, review 

time will probably be shortened with improvements in software design, and by automating 

several of the most time-consuming parts of slide annotation, such as circling different 

regions of interest. This opens the door for many exciting possibilities, such as using machine 

learning methods for automation. 
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2 Aims of the thesis 

The overarching aim of this thesis is to improve prognostication for men with localized 

prostate cancer through validation of the existing risk stratification tools based on standard 

clinical and histopathological factors, and through validation of the existing, and 

identification of novel, prognostic markers. 

The study specific research aims were: 

Study I. To evaluate if the relative and absolute risks of dying from prostate cancer 

estimated in the competing risk setting using the nested case-control study 

(ProMort I) are comparable to the relative and absolute risks estimated in the 

underlying cohort, and to quantify the bias in the risk estimates. 

To explore alternative approaches for estimating relative and absolute risks in 

the competing-risks setting using the nested case-control study design. 

Study II. To compare the prognostic performance of the most commonly used 

pretreatment risk prediction tools in predicting death from prostate cancer, 

overall and stratified by primary treatment (active surveillance/watchful 

waiting, radical prostatectomy/radiation therapy and androgen deprivation 

therapy) and by year of diagnosis (1998-2002, 2003-2006, 2007-2016). 

Study III. To evaluate if the standard light microscopy and a virtual microscopy system 

which we developed for the central re-review in ProMort I and Study IV can 

be used interchangeably for the histopathological evaluation of prostate 

cancer. 

To evaluate the repeatability (i.e., intra-method, intra-observer agreement) and 

the reproducibility (i.e., intra-method, inter-observer agreement) for different 

key histopathological features in prostate cancer, including the ISUP 2014 

Gleason grading system for both light and virtual microscopy. 

Study IV. To evaluate if the Gleason grading system revisions have improved prostate 

cancer prognostication by comparing the prognostic performance of the pre-

2005 Gleason score and the ISUP 2014 Gleason score in predicting death from 

prostate cancer. 

To evaluate if additional histopathological features (e.g., specific tumor 

features) can further improve the ability to predict death from prostate cancer. 

 

 



 

 17 

3 Materials and methods 

3.1 Data sources 

All the studies in this thesis are based on data from the National Prostate Cancer Register of 

Sweden (NPCR) and Prostate Cancer data Base Sweden (PCBaSe), a research database 

constructed by linking the NPCR to other national registers and demographic databases.  

3.1.1 The National Prostate Cancer Register of Sweden  

The NPCR is a cancer quality register including virtually all incident cases of prostate cancer 

in Sweden since 1998 (201). Compared to the Swedish National Cancer Register, to which 

reporting is mandatory and regulated by law, the NPCR has a 98% coverage (202).  

Data is registered in the NPCR using four registration forms: a diagnostic form, a form for 

subsequent work-up and primary treatment, as well as separate forms for radiation therapy 

(since 2007) and radical prostatectomy (since 2015). The NPCR contains detailed 

information on: 

1. Diagnostic workup (e.g., date and hospital of diagnosis, cause for diagnostic workup 

leading to cancer diagnosis (PSA-screening, lower urinary tract symptoms, other 

symptoms)), 

2. Tumor features (e.g., clinical TNM classification, biopsy tumor differentiation 

(Gleason score or WHO grade), serum PSA level at diagnosis), and  

3. Planned primary treatment (i.e., active surveillance, watchful waiting, radical 

prostatectomy, radiation therapy or primary androgen deprivation therapy) within 6 

months of diagnosis.  

In 2007, the NPCR started registering more detailed information on the biopsy procedure 

(i.e., indicators of tumor extent such as the number of cores taken at biopsy, the number of 

cores with cancer, the total length of all biopsy cores and the total length of cancer in all 

cores), prostate volume and radical prostatectomy and radiation therapy.  

Vital status in the NPCR is updated yearly by linkage to the Swedish Population Register. 

Date and cause of death, coded according to the 10th revision of the International 

Classification of Diseases, are obtained through linkage to the Swedish Cause of Death 

Register. Prostate cancer specific death is defined as death where prostate cancer was coded 

as the underlying cause of death. For more information on the registers used in this thesis, 

recorded information, their coverage and validity, please see Table 3.1.  

3.1.2 Prostate Cancer data Base Sweden  

In 2008, the Swedish personal identity number was used to link NPCR to a number of 

national population-based health-care registers and demographic databases, and construct a 
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research database named PCBaSe (201, 203). The NPCR was first linked to the Swedish 

Cancer Register, the Total Population Register and the Cause of Death Register, and, 

subsequently, to the National Patient Register, the Prescribed Drug Register, the Longitudinal 

Integration Database for Health Insurance and Labour Market Studies (LISA) (Table 3.1) as 

well as several other national (quality) registers (203). The PCBaSe linkages are updated 

every three years.  

3.2 Study designs, study populations and covariate information 

3.2.1 Study I  

In Study I, we used a case-control sample from the NPCR, called ProMort I. ProMort I is an 

ongoing study which aims to identify tissue-based, molecular biomarkers of death from 

prostate cancer for men with low- or intermediate-risk prostate cancer. As this thesis focuses 

on clinical and histopathological markers of prostate cancer, ProMort I was used only to 

evaluate if the nested case-control design can be used to evaluate absolute risks of dying from 

prostate cancer in the competing risks setting. Furthermore, as a part of ProMort I, we 

developed a virtual microscopy system which was used in Study III and Study IV (for more 

details see the section 3.4.2.1). 

Table 3.1. Overview of the registers and databases providing data for PCBaSe. Only the registers from which 

information was used in this thesis are presented. 

Registry Recorded information Coverage Update 

The Swedish Cancer 

Register (204) 
Personal information, medical data (e.g., date and bases for 

diagnosis, tumor site, histological type, stage) and follow-up 

data (date and cause of death, migration date) 

96%1 (205) Annual 

The Total Population 

Register (206, 207) 
Personal information, birth-related data (e.g., date and 

country), address data, income, citizenship, country of 

immigration/emigration, and dates of death and 

immigration/emigration 

0.25-0.5%2 

(207) 

Daily 

The Cause of Death 

Register (13, 208) 
Personal information, birth-related data, date of death, 

underlying and contributing cause(s) of death, information 

on autopsy and surgery within 4 weeks prior to death 

for PCa3:  

86-96%  

(209, 210) 

Annual 

The National Patient 

Register (204) 
Personal patient information, geographical data, 

administrative data (e.g., inpatient (IP) and outpatient (OP) 

date of admission and discharge), medical data (e.g., main 

and secondary diagnosis, procedures) 

IP: 100%  

(211) 

OP: 80% 

Monthly 

LISA (212, 213) Personal and family-related demographic data, civil status, 

birth-related data, data on immigration/emigration, highest 

level of education, data on occupation, employment status 

and income, and socioeconomic indices 

NA Annual 

Abbreviations: LISA, Longitudinal Integration Database for Health Insurance and Labour Market Studies; NA, 

Not available 
1 The estimated capture rate of all cancers to the Swedish Cancer Registry compared with the National Patient 

Register 
2 The estimated over-coverage 
3 86-96% refers to agreement with cause of death determined by a medical record review 
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ProMort I was nested among all men in the NPCR diagnosed with low- or intermediate-risk 

prostate cancer between January 1, 1998 and December 31, 2011. We defined low- or 

intermediate-risk prostate cancer as cT1-2, Gleason score ≤7 (or WHO grade 1 when 

information on the Gleason score was missing), serum PSA<20 ng/mL, and no signs or non-

assessed status of lymph node (N0 or Nx) or distant (M0 or Mx) metastases. Of 

approximately 130,000 men in the NPCR, 57,952 men fulfilled these criteria. Follow-up was 

available until December 31, 2012. All men who died from prostate cancer during follow-up 

(n=1,735) were selected as cases. For each case, we randomly selected one control, matched 

on year and hospital of diagnosis. The control had to be alive at the date of death of the 

respective case. Cases without an eligible control within the matching stratum (n=25) were 

excluded from the study. The final ProMort I data set included 1,710 cases and 1,710 

controls. 

Information on age, cT, Gleason score/WHO grade and PSA at diagnosis, as well as vital 

status and cause of death, was abstracted from the NPCR. We assigned Gleason score ≤6 to 

140 cases and 103 controls with WHO differentiation grade 1 and no information on the 

Gleason score.  

3.2.2 Study II 

Study II is a cohort study including all men in PCBaSe 4.0 (the fourth update of PCBaSe), 

who were diagnosed with non-metastatic (i.e., not M1 or N1) prostate cancer between 

January 1, 1998 and December 31, 2016 (n=154,811). Follow-up was available until 

December 31, 2016. Prostate cancer death was used as the main outcome.  

Information on age, PSA, clinical TNM stage, primary and secondary Gleason pattern, 

Gleason score and tumor extent at diagnosis was abstracted from PCBaSe, and used to define 

the risk stratification tools assessed in this study: 

1. Risk group systems (D’Amico (49), NICE (33), GUROC (34), AUA (35), EAU (37), 

NCCN (214) and the Cambridge Prognostic Groups (CPG) (53)) (see also Table 1.1), 

2. Risk scores (CAPRA score (60)), and 

3. Nomograms (pre-operative Memorial Sloan Kettering Cancer Center (MSKCC) 

nomogram (83)).  

We also abstracted information on planned primary treatment, year of diagnosis, Charlson 

Comorbidity Index, marital status and education level from PCBaSe. 

Missing values for the variables included in the risk stratification tools were imputed using 

multivariate imputation by chained equation (215, 216). Information on cT2-3 sub-stage (i.e., 

cT2a, cT2b, cT2c, cT3a, cT3b) is not recorded in PCBaSe and could not be imputed. Instead, 

we used a cohort of men diagnosed with prostate cancer between 1995 and 2015 who were 

treated with proton-boost radiation therapy at the Uppsala University Hospital, Uppsala, 

Sweden (217) to develop regression models predicting the probability of cT2 and cT3 sub-

stage. These models were then used to predict the probability of cT2 and cT3 sub-stage for 
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each study subject in PCBaSe with known cT2 or cT3 stage, respectively. Each patient was 

assigned the cT2 or cT3 sub-stage category with the highest predicted probability.  

3.2.3 Study III and IV 

Study III is a reliability/measurement study conducted in a subsample (N=60) of Study IV 

with the aim of validating an internally developed virtual microscopy system used for central 

re-review in ProMort I and Study IV. Study IV is a case-control study nested in the NPCR, 

named ProMort II.  

Exclusions Case Control 

Diagnostic slides not retrieved 53 48 

Diagnosis based on cytology 41 23 

Duplicate subjects 1 3 

 

Exclusions Case Control 

No evaluable slides 19 34 

Rejected at clinical annotation 1 6 

No cancer 8 13 

 

Exclusions Case Control 

Missing clinical M-stage in the 

NPCR, M1 in the medical chart 
1  

Missing PSA 2 2 

Missing primary treatment 1 1 

Missing clinical T-stage 4 4 

Complete separation 2  

 

Light vs. virtual microscopy 

N=60 

ProMort II 

(500 cases/500 controls) 

N=830 

(404 cases/426 controls) 

N=7532 

(377 cases/379 controls) 

N=7362 

(367 cases/369 controls) 

N=62,603  

(NPCSM =8,076 died from PCa)1 

All men with non-M1 PCa in NPCR (1998-2015) 

N=146,137 (NPCSM=18,022)1 
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Not in: Dalarna, Gävleborg, Halland, Jönköping, 

Kalmar, Kronoberg, Norrbotten, Skåne, Värmland, 

Västmanland, and Örebro (N=83,534) 

Figure 3.1. Flow chart of the selection of cases and controls for Study III and IV 

Abbreviations: PCa, Prostate cancer; NPCSM, The number of men who had died from prostate cancer; NPCR, 

the National Prostate Cancer Register of Sweden 
1 Based on the data extracted from NPCR June 5, 2020, but restricted to match conditions at April 11, 2017, 

when ProMort II was sampled 
2 Includes duplicate subjects (cases selected as controls (n=1) and controls selected more than once (n=3))  
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ProMort II cases and controls were selected from all men in the NPCR who were diagnosed 

with non-metastatic prostate cancer (i.e., not M1) between January 1, 1998 and December 31, 

2015. Given that all diagnostic slides belonging to the selected cases and controls were to be 

centrally re-reviewed by the study pathologists, cases and controls were selected from 11 (out 

of 21) counties in the NPCR deemed most likely to respond to our request for slides (Dalarna, 

Gävleborg, Halland, Jönköping, Kalmar, Kronoberg, Norrbotten, Skåne, Värmland, 

Västmanland, and Örebro). Follow-up was available until December 31, 2015. Of all men 

who had died from prostate cancer by the end of the follow-up we randomly selected 500 

cases and matched them to 500 men who had not died from prostate cancer (controls) by year 

and county of diagnosis. Controls had to be alive at the date of death of the respective case. 

The complete selection process is described in Figure 3.1. 

Information on age, PSA, clinical TNM stage, primary and secondary Gleason pattern, and 

the Gleason score at diagnosis, as well as planned primary treatment, was abstracted from the 

NPCR. In addition, for the 404 cases and 426 controls for whom we had successfully scanned 

the diagnostic slides, we performed a medical chart review to extract detailed information on 

the clinicopathological features at diagnosis, biopsy procedure, primary treatment, pathology 

after radical prostatectomy, BCR, castration resistance, metastasis and death. Medical charts 

were successfully reviewed for 282 cases (69.8%) and 297 controls (69.7%). The extracted 

information was used when information abstracted from the NPCR was missing.  

3.2.3.1 Slide digitalization and managing 

We first retrieved the diagnostic biopsy slides from the Pathology wards across Sweden. Out 

of the 1,000 sampled men, the diagnostic slides belonging to 830 men (83%), 404 cases and 

426 controls, were retrieved (Figure 3.1). The slides were then scanned at the Örebro 

University Hospital, Örebro, Sweden, using a Pannoramic 250 Flash II digital slide scanner 

(3DHistech Ltd., Budapest, Hungary) with a 40x objective. Scanned images had a resolution 

of 0.19 microns/pixel. In total, we scanned 5,536 slides.  

After the scanning, the images were uploaded to a virtual microscopy system developed by 

the Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy 

as a part of the ProMort I study (218). The virtual microscopy system is composed of two 

integrated components (Figure 3.2):  

1. Ome_seadragon (https://github.com/crs4/ome_seadragon), a plugin for the Open 

Microscopy Environment Remote Objects (OMERO) platform (219) which enables 

viewing, handling and annotation of the 3DHistech images. The image management 

is based on the OMERO.server which supports over 140 different image formats and 

allows for storing of meta-information (e.g., classification TAGs or Regions of 

Interests (ROIs)). The ome_seadragon simplifies the integration of the images stored 

within OMERO into external web systems (220), adds Deep Zoom Image format 

support to OMERO and, through OpenSlide libraries (https://openslide.org), increases 

the number of supported image formats. The user side of ome_seadragon is a 

https://github.com/crs4/ome_seadragon
https://openslide.org/
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specialized viewer developed from the open source viewer OpenSeadragon 

(https://openseadragon.github.io). Real time annotation tools which are based on 

paper.js libraries (http://paperjs.org) enable navigation through Whole Slide Imaging 

(WSI) and annotation by drawing different 2D shapes, as well as taking precise 

measures (e.g., ROI length or area). 

2. The ProMort Image Management System (https://github.com/crs4/ProMort), a 

clinical annotation platform which manages the review worklist and clinical 

annotation process (i.e., definition and clinical annotation of ROIs). This software 

embeds the ome_seadragon plugin and allows users to navigate and annotate digital 

slides while acquiring the ROIs. Clinical annotations are performed via a dedicated 

user interface which has been designed specifically for ProMort. 

Both components are web-based applications developed to run on all modern browsers and 

require no specific hardware or operative system. The pathologists involved in the study 

(Michelangelo Fiorentino and Francesca Giunchi) used either a desktop PC, with a 22 inch 

Olivetti OLISCREEN22 display, running the Google Chrome browser or a 2018 iPad Pro, 

with a 12.9 inch display, running the Safari browser.  

 

Figure 3.2. A simplified schematic representation of the virtual microscopy system developed by the Centre for 

Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy, which was used for the central 

re-review in ProMort I and ProMort II  

 

 

ProMort application handles 

user secure authentication, 

worklists management, all the 

image-related data (quality 

control and ROIs) and clinical 

classification of the slides. 

ProMort retrieves data of the tiles 

that compose the image and 

shows them to the user using the 

ome_seadragon web viewer. 

Omero server 
+ 

Ome-seadragon app 

To improve performance, 

tiles can be stored in a cache. 

Ome_seadragon app provides callbacks needed 

by OpenSeadragon to access OMERO images 

as images in Deep Zoom Image (DZI) format. 

ProMort’s user interface encloses ome_seadragon plugin to 

display images. The plugin directly communicates with the 

OMERO server. 

Users can manage their worklists and regions of interest (ROIs) 

on the images and classify them using the web application. 

ProMort server 

https://openseadragon.github.io/
http://paperjs.org/
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3.2.3.2 Histopathological review 

The two study pathologists, with 6 and 13 years of experience respectively as dedicated 

genitourinary pathologists, performed the re-review of all scanned images according to the 

2016 WHO classification of tumors of urinary system and male genital organs (97). The 

pathologists were blinded to the case-control status and to the original clinical and 

histopathological information of all slides. 

We first selected 60 random cases and controls out of the 830 men in ProMort II whose 

diagnostic slides had been successfully scanned. The selected men were diagnosed in Örebro 

county (n=25) and Värmland county (n=35) (Figure 3.1). Slides belonging to these 60 men 

were used in Study III to evaluate the interchangeability of standard light microscopy and the 

above-described virtual microscopy system. The study pathologists reviewed all cores 

belonging to the 60 selected men using both light and virtual microscopy according to a pre-

specified protocol (Figure 3.3). Using this protocol allowed us to estimate the intra- and inter-

observer agreement for both light and virtual microscopy. 

Slides belonging to the remaining 770 subjects were subsequently reviewed only by one 

pathologist. In total, 8,982 cores belonging to 770 subjects were reviewed, of which 3,713 

cores belonging to 749 subjects contained cancer (Figure 3.1). A mock-up example of the 

review process is presented in the Figure 3.4. The features recorded during the re-review are 

presented in Table 3.2. Case level summaries were calculated as the sum across all cores for 

continuous features, and as presence or absence in at least one of the cores for binary features. 

The highest core-level GGs/Gleason score was used as an overall GGs/Gleason score for a 

case. 

 

Figure 3.3. Pre-specified review protocol for evaluation of interchangeability of light and virtual microscopy 

Pathologist 2 
Light 

Microscopy 

Virtual 

Microscopy 
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Light 

Microscopy 

Virtual 

Microscopy 
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3.2.3.3 Pre-2005 Gleason grading 

To approximate the pre-2005 Gleason grading we used information on cribriform pattern, 

poorly formed glands and hypernephroid pattern. Gleason pattern 4 (primary or secondary) 

was downgraded to Gleason pattern 3 whenever Gleason pattern 4 was assigned based on the: 

1. Cribriform pattern only,  

2. Poorly formed glands only and  

3. Cribriform pattern and/or poorly formed glands.  

In all three definitions hypernephroid pattern was graded as Gleason pattern 4. The pre-2005 

Gleason score for each core was then calculated as the sum of the back-transformed primary 

and secondary Gleason pattern.  

Table 3.2. Histopathological features recorded by the pathologists during the central re-review 

Recorded for: Feature Unit 

Core Length microns 

 Area squared microns 

 Cancer yes/no 

Core with cancer Length microns 

 Area squared microns 

 Primary Gleason pattern 3-5 

 Secondary Gleason pattern 3-5 

 ISUP 2014 Gleason score 6, 3+4/4+3, 8, 9, 10 

 Gleason Grade Groups 1-5 

 Poorly formed glands yes/no 

 Cribriform pattern yes/no 

 Hypernephroid pattern yes/no 

 Comedonecrosis yes/no 

 Small-cell/signet ring cell-like cancer yes/no 

 Perineural invasion yes/no 

 Intraductal carcinoma yes/no 

 Ductal carcinoma yes/no 

 Mucinous carcinoma yes/no 

Core with Gleason score 7 Area of Gleason pattern 41,2 squared microns 

Slide Acute inflammation yes/no 

 Chronic inflammation yes/no 

 Periglandular inflammation yes/no 

 Intraglandular inflammation yes/no 

 Stromal inflammation yes/no 

 High-grade prostatic intraepithelial neoplasia (HGPIN) yes/no 

 Post-atrophic hyperplasia (PAH) yes/no 

Abbreviations: ISUP, International Society of Urological Pathology 
1 The percentage of Gleason pattern 4 was calculated as (area of Gleason pattern 4/tumor area)*100 
2 On light microscopy, the percentage of Gleason pattern 4 was assessed by “eye-balling” and categorized as 

<10, 10-19%, 20-29% etc.) 
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As a secondary approach, we used the diagnostic Gleason score recorded in the NPCR and in 

medical charts as the pre-2005 Gleason score. This approach was restricted to men diagnosed 

with prostate cancer before 2006. 

3.3 Methodological considerations and statistical methods 

Study I is a method application study that deals with some of the challenges related to the 

nested case-control study design. Given the non-standard methodology, the methods section 

for this study will be described in more detail. In Study II-IV we used standard methodology, 

and only a short summary of the statistical methods will be given here.  

3.3.1 Study I 

Given the difficulty in separating indolent from aggressive prostate cancer, especially for men 

with low- and intermediate-risk disease, we intended to use ProMort I to not only identify 

novel molecular markers of prostate cancer prognosis, but also to build a new prognostic 

model, or update an existing one. To be clinically useful, a prognostic model needs to be able 

to predict the absolute risk of the outcome of interest given the different combinations of the 

predictor values. Relative risks (e.g., odds ratios (ORs), risk ratios or HRs) are not directly 

interpretable and are used only to obtain absolute risks of the outcome.  

To use ProMort I for prognostic modelling, we needed to deal with two issues: 

1. Competing risks – men diagnosed with prostate cancer are on average old and, given 

the prolonged natural history of prostate cancer, especially among men with low- and 

intermediate-risk disease, they are more likely to die with, rather than from, prostate 

cancer.  

2. Study design – the best design for prognostic modelling is a prospective cohort study. 

However, ProMort I is a nested case-control study. 

Nested case-control studies are typically used for the estimation of relative risks. However, if 

adequate methods are used, nested-case control studies can be used to obtain unbiased 

estimates of absolute risks (221-226). These methods have also been extended to a setting 

where secondary outcomes are of interest (227, 228), and to the competing risk setting (229, 

230). 

3.3.1.1 Competing risks 

In Study I, we focused on the cause-specific hazards approach for dealing with competing 

risks (231, 232) as the way controls were selected in ProMort I precluded the use of other 

approaches, such as the subdistribution hazards approach (233, 234).  

The presence of competing risks implies that a subject is at risk of having 𝐾 different events. 

In this setting, the cause-specific hazard function, 𝜆𝑘(𝑡), represents the instantaneous risk of 

dying from the event 𝑘 given that the subject is still alive at time 𝑡:  



 

 27 

𝜆𝑘(𝑡) = lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐾 = 𝑘|𝑇 ≥ 𝑡)

∆𝑡
 

The cumulative incidence function (CIF) for the event of interest 𝑘 (i.e., prostate cancer 

death), 𝐼𝑘(𝑡), is a function of the cause-specific hazard for both the event of interest and the 

competing event(s) (i.e., death from other causes). 𝐼𝑘(𝑡) is defined as the probability of dying 

from the event 𝑘 at the time 𝑡 given that the subject can die from other causes: 

𝐼𝑘(𝑡) = ∫ 𝜆𝑘(𝑢)∏𝑆𝑘(𝑢)𝑑𝑢

𝐾

𝑘=1

𝑡

0

 

3.3.1.2 Estimation of absolute risks (CIFs) 

To estimate the absolute risks using ProMort I, we used the inverse probability weighting 

method proposed by Samuelson (225). This method has been described in the context of the 

partial likelihood which is used to estimate parameters in the Cox proportional hazards model 

(235). In the partial likelihood, the baseline hazard function is not specified, and in order to 

estimate it we would need to use additional estimators, such as the Breslow estimator (235). 

Since we were interested in estimating both the HRs and the CIFs in Study I, we decided to 

use flexible parametric survival models instead of the Cox proportional hazards model (236, 

237). In flexible parametric survival models, the baseline hazard function is fully specified 

and estimated by maximizing the full likelihood (236, 237).  

Thus, to estimate CIFs in ProMort I, we used the weighted full likelihood method where the 

weights for cases and controls equal the inverse of their selection probability. In nested case-

control studies, typically, all cases are sampled and their weight equals one. Given that the 

proportion of eligible cases which were not included in ProMort I was very small (1.5%), all 

cases were assigned with a weight of one. The selection probability for a control 𝑖, 𝑝𝑖, was 

calculated using an extension of the method proposed by Samuelson (225) which accounts 

for the presence of ties in failure times and for additional matching (221, 227):  

𝑝𝑖 = 1 − ∏ (1−𝑚𝑖𝑛 (1,
𝑚𝑏𝑗𝑖

𝑛𝑗𝑖 − 𝑏𝑗𝑖
))

𝑗:𝑎𝑖≤𝑇𝑗≤𝑇𝑖

 

At each event time 𝑇𝑗, a subject 𝑖 who entered the study at time 𝑎𝑖 (𝑎𝑖 ≤ 𝑇𝑗), was censored or 

failed at time 𝑇𝑖 (𝑇𝑖 ≥ 𝑇𝑗), and who satisfied the matching criteria, could be sampled as a 

control. 𝑚 is the number of controls selected per case at each event time 𝑇𝑗. 𝑛𝑗𝑖 is a risk set at 

time 𝑇𝑗 which satisfied the matching criteria and 𝑏𝑗𝑖 is the number of tied subjects that failed 

at the time 𝑇𝑗 who satisfied the matching criteria. 

The weights, 𝜔𝑖, are defined as: 

𝜔𝑖 =
1

𝑝𝑖
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Of note, in this type of analysis, matching is broken and all unique individuals are pooled for 

the analysis (224). For controls who were selected more than once, we kept only one control 

record. For a control who later became a case, we kept only the case record.  

3.3.1.3 Statistical analyses 

We first estimated HRs and CIFs in ProMort I using the above-described inverse probability 

weighting approach. The flexible parametric model was fitted as described by Hinchliffe et 

al. (236). The cause-specific HRs and the corresponding 95% CIs of death from prostate 

cancer and death from other causes were estimated simultaneously (237, 238), and the CIFs 

were obtained by combining the cause-specific HR estimates (239). The HRs and CIFs 

estimated in ProMort I were compared to the HRs and CIFs estimated in the NPCR. 

Then we used two extensions of the inverse probability weighting approach to the setting 

with more than one endpoint, including competing risks, where: 

1. Both the competing risk cases and the competing risk controls were augmented 

(“Method 1”) (240), and  

2. Only the competing risk cases were augmented (“Method 2”) (229). 

The main idea behind the two methods is to reuse the controls and the cases selected for one 

endpoint as controls in the analysis of another endpoint, with or without a new control 

selection. The HRs and CIFs estimated using these two alternative approaches were also 

compared to the estimates from the NPCR. 

Finally, we evaluated the bias in the HRs and CIFs estimated in ProMort I using the inverse 

probability weighting approach. To do so, we used the same selection criteria as for ProMort 

I to draw 1,500 random nested case-control subsamples from the NPCR. The bias in the 

log(HRs) was calculated as the absolute difference in the log(HRs) estimated in the 1,500 

subsamples and the log(HRs) estimated in the NPCR. We also calculated the bias in CIFs of 

dying from prostate cancer at 5, 10 and 15 years of follow-up, as well as the coverage 

probability of their 95% CIs. The bias in CIFs was defined as the absolute difference in CIFs 

estimated in the 1,500 subsamples and CIFs estimated in the NPCR.  

3.3.2 Study II 

In Study II, we initially planned to use PCBaSe 4.0 to formally externally validate the most 

commonly used prostate cancer risk stratification tools. External validation and comparable 

information on each tool’s ability to predict prostate cancer death in untreated patients are key 

for informed decision-making in clinical practice.  

Formal external validation is not possible without having information on the intercept (i.e., 

baseline survival function in models analyzing time-to-event) and the linear predictor from 

the original prognostic model (241, 242). However, for most of the risk stratification tools 

evaluated in this study, information on the intercept and/or the linear predictor from the 
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original models has not been published. Furthermore, most of the risk stratification tools have 

been developed or validated to predict BCR and not prostate cancer-specific death. We were 

thus not able to perform a formal external validation. Instead, we re-estimated the linear 

predictor for each risk stratification tool in PCBaSe and performed a head-to-head 

comparison of their prognostic performance in predicting prostate cancer death.  

3.3.2.1 Statistical analyses 

The prognostic performance of the different risk stratification tools was evaluated using a 

split-sample approach. The linear predictor for each risk stratification tool was re-estimated in 

the training dataset and the models were internally validated in the testing dataset. 

We used the cause-specific hazards approach to account for the presence of competing 

events. The cause-specific HRs and 95% CIs for prostate cancer death and death from other 

causes were estimated using the Cox proportional hazards model (235). Time at risk was 

calculated from the date of diagnosis until the date of death, emigration or end of follow-up 

(December 31, 2016), whichever came first. The models predicting death from prostate 

cancer included only the risk grouping system, while the models predicting death from other 

causes also included age and year of diagnosis, the Charlson Comorbidity Index, marital 

status, education level and primary treatment. The cause-specific hazards for prostate cancer 

death and death from other causes were then combined to obtain the CIFs for prostate cancer 

death (243). 

Model performance was evaluated in terms of discrimination and calibration. Discrimination 

was evaluated by the C-index adapted for competing risks (244, 245) in the full training 

datset, and stratified by primary treatment (active surveillance/watchful waiting, radical 

prostatectomy/radiation therapy and androgen deprivation therapy) and by year of diagnosis 

(1998-2002, 2003-2006, 2007-2016). The C-index was estimated by truncating the maximum 

follow-up time in the testing datasets at 1-19 years of follow-up. Calibration was evaluated by 

comparing the non-parametric CIFs (243) with the mean predicted CIFs at 5, 10 and 15 years 

of follow-up. 

Of note, since multiple imputation was used to deal with the missing covariate information, 

the HRs, CIFs and C-indices for each risk stratification tool were combined across the 

imputed datasets (246). 

3.3.3 Study III 

In Study III, we assessed the repeatability (i.e., intra-observer agreement) and reproducibility 

(i.e., inter-observer agreement) of the ISUP 2014/WHO 2016 Gleason grading system 

evaluated on light microscopy and the virtual microscopy system which was developed for 

central re-review in ProMort I and ProMort II. The intra- and inter-observer agreement were 

evaluated within and between the two microscopy methods.  
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The agreement was evaluated using Cohen’s kappa (κ) for binary variables (247), weighted 

Cohen’s kappa (κw) with linear weights for ordinal variables (248), and Bland and Altman’s 

limits of agreement for continuous variables (249). For descriptive purposes, κ/κw<0 was 

considered as no agreement, 0–0.20 slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 

substantial, and 0.81–1 as almost perfect agreement (250).  

3.3.4 Study IV 

In Study IV, we conducted two separate analyses. Both analyses were performed using all 

subjects with complete information on all covariates (Figure 3.1).  

We first evaluated if the Gleason grading system revisions have improved prostate cancer 

prognostication by comparing the prognostic performance of the pre-2005 Gleason score and 

the ISUP 2014 Gleason score in predicting death from prostate cancer. The pre-2005 Gleason 

score was approximated using two approaches. In the first approach, we back-transformed the 

ISUP 2014 Gleason score into the pre-2005 Gleason score as described in the section 3.2.3.3. 

In the second approach we used the diagnostic Gleason score restricted to all men diagnosed 

before 2006. ORs and 95% CIs of the association between the pre-2005 Gleason score and 

the ISUP 2014 Gleason score and death from prostate cancer were estimated using 

unconditional logistic regression adjusted for the matching variables (year and county of 

diagnosis, and follow-up time) and primary treatment. Multivariable models included 

untransformed age, PSA (transformed using restricted cubic splines with knots at 4.5, 16 and 

105.65 ng/ml) and cT at diagnosis.  

In the second analysis, we evaluated if additional histopathological features are independent 

predictors of death from prostate cancer. As above, ORs and 95% CIs of the association 

between each histopathological feature and death from prostate cancer were estimated using 

unconditional logistic regression adjusted for the matching variables and primary treatment. 

We then evaluated if each histopathological feature predicts death from prostate cancer 

independently of GGs, and, finally, independently of GGs, age, PSA and cT at diagnosis. We 

also explored the presence of statistical interaction with the GGs. 

The prognostic performance for different models was evaluated by calculating the AUC 

(251). As a sensitivity analysis, we repeated all the analyses using conditional logistic 

regression. 

3.4 Ethical considerations 

In this thesis, we used information from registries, medical charts and diagnostic slides, all of 

which contain sensitive personal information. In case of release of sensitive data for research, 

all participants should be re-contacted. However, in large-scale research, re-contacting might 

not always be practicable, feasible or even possible. Many of the involved patients may no 

longer be alive and non-response could threaten study validity. For all the studies in this 

thesis, the Research Ethics Committee concluded that the potential benefits for the 
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community outweigh the potential risks and the requirement for consent was waived. Since 

potential risks included violation of individual patient privacy, handling of sensitive data 

needed to be given the highest consideration. Below I will describe precautionary measures 

taken to minimize the risk of violation of individual patient integrity. 

For the purpose of Study I and Study II, access to the registry data (i.e., the NPCR and 

PCBaSe) was possible only through the NPCR server in Uppsala, Sweden. The NPCR server 

has a very strict import/export policy and the risk for violation of individual patient privacy 

was very low. All men in ProMort I and ProMort II datasets, which were used in Study I, III 

and IV, were assigned a study-specific identification number by the NPCR upon the release 

of the data. Pseudonymized ProMort I and ProMort II data was then stored on a secure server 

at the Clinical Epidemiology Division at Karolinska Institutet, Stockholm, Sweden and 

handled according to the institution’s guidelines for information security.  

For ProMort I and ProMort II we performed a centralized re-review of the diagnostic slides, 

and for ProMort II additional information was extracted from the medical charts. For this 

reason, the key between a study-specific identification number and the personal identification 

number could be accessed by selected collaborators. For each man, the diagnostic slides and 

the medical charts were obtained from the diagnostic hospital/pathology ward and sent to 

Örebro University Hospital, Örebro, Sweden. After the diagnostic slides were scanned and 

the information was abstracted from the medical charts, personal identification numbers were 

replaced by the study-specific identification numbers and the slides and chart were returned 

to the respective institutions. The de-identified images were sent to the CRS4, Pula, Italy, and 

securely stored on the CRS4 server. The images were assigned with another random 

identification number at the time of histopathological review. Data extracted from the 

histopathological review and the data extracted from the medical charts were kept on the 

server at the Clinical Epidemiology Division at Karolinska Institutet and handled according 

to the institution’s guidelines for information security.  
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4 Results 

Brief summary of the results: 

Study I. The relative risks of dying from prostate cancer estimated using the nested 

case-control study design were, as expected, comparable to the estimates from 

the underlying cohort. The estimates of the relative risks of dying from other 

causes were, however, biased, which introduced bias in the estimates of the 

absolute risks of dying from prostate cancer in the competing-risks setting.  

Study II. The pretreatment risk stratification tools that performed best in predicting 

death from prostate cancer were the MSKCC nomogram, CAPRA score and 

CPG system. These tools discriminated best regardless of the primary 

treatment and year of diagnosis. 

Study III. The repeatibility and reproducibility of the ISUP 2014 Gleason grading 

system within and between light and virtual microscopy was good. The 

repeatability and/or reproducibility for some of the rare, or rarely reported, 

features (e.g., intraductal cancer, inflammation, HGPIN and PAH), as well as 

for the percentage of Gleason pattern 4, was poor.  

For all evaluated features, the agreement was similar within and between light 

and virtual microscopy which indicates interchangeability of light microscopy 

and our internally developed virtual microscopy system for the 

histopathological evaluation of prostate cancer.   

Study IV. The ISUP 2014 Gleason score discriminated death from prostate cancer better 

than the pre-2005 Gleason score, likely due to classifying all cribriform 

patterns, rather than poorly formed glands, as Gleason pattern 4. In addition, 

comedonecrosis and HGPIN predicted death from prostate cancer 

independently of the GGs, age, PSA and cT at diagnosis. 
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4.1 Study I 

In Study I, we evaluated if the nested case-control study design (ProMort I) can be used to 

estimate the relative and absolute risks of dying from prostate cancer in the competing risks 

setting.  

When we compared the relative risks of dying from prostate cancer in ProMort I to those in 

the NPCR, the point estimates were overall similar (Figure 4.1A) and the mean absolute bias 

was generally close to zero for all covariates. The point estimates for death from other causes 

were, however, generally biased for ProMort I (Figure 4.1B) with the largest mean absolute 

bias for age (−3.813, −0.118, and 0.118 for ages ≤55.0 years, 65.1–75.0 years, and >75.0 

years, respectively). Only a few subjects in the age ≤55.0 category had died from other causes 

and were sampled in ProMort I, leading to extreme and unreliable estimates.  

 

The 5-, 10-, and 15-year CIFs of death from prostate cancer were, overall, similar in ProMort 

I and the NPCR. However, the bias in the ProMort I estimates increased with age, and was 

the largest in the age >75.0 years category (Figure 4.2), where we also saw the largest mean 

absolute bias (0.011, 0.025, and 0.025 at 5, 10, and 15 years of follow-up, respectively).  

Augmenting competing-risks cases (Method 2), and especially augmenting both the 

competing-risks cases and the controls (Method 1), reduced the bias in the estimates of the 

relative risks of dying from other causes and thus also the bias in the estimates of the absolute 

risks of dying from prostate cancer in the competing-risks setting (results presented in the 

supplementary material for Study I). 

Figure 4.1. Cause-specific log hazard ratios (HR) for the risks of dying from prostate cancer (A) and other 

causes (B) in the NPCR (black) and ProMort (plum) 
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4.2 Study II 

In Study II, we used 139,515 men diagnosed with prostate cancer, of whom 15,961 (11.4%) 

died from prostate cancer, to systematically compare how well the most commonly used 

pretreatment risk stratification tools predict death from prostate cancer. 

Overall, all tools discriminated death from prostate cancer well, and the C-index ranged from 

0.73 (95% CI: 0.72-0.73) to 0.80 (95% CI: 0.80-0.81) at 10 years. As expected, the 

discrimination generally improved with the increasing granularity of the risk stratification 

tool and was lowest for the three-tiered D’Amico risk group system and highest for the 

MSKCC nomograms (Figure 4.3).  

  T1c, GS6, PSA ≥10 
T1c, GS6, PSA 4-9.9 
T1c, GS6, PSA <4 
T1c, GS7, PSA ≥10 
T1c, GS7, PSA 4-9.9 
T1c, GS7, PSA <4 
T2, GS6, PSA ≥10 
T2, GS6, PSA 4-9.9 
T2, GS6, PSA <4 
T2, GS7, PSA ≥10 
T2, GS7, PSA 4-9.9 
T2, GS7, PSA <4 

A) 

0 1 2 3 

Age ≤55 

0 1 1.5 2 2.5 0.5 

Age 55.1-65 

0 2 4 6 8 

Age 65.1-75 

0 5 10 15 20 

Age >75 

T1c, GS6, PSA ≥10 
T1c, GS6, PSA 4-9.9 
T1c, GS6, PSA <4 
T1c, GS7, PSA ≥10 
T1c, GS7, PSA 4-9.9 
T1c, GS7, PSA <4 
T2, GS6, PSA ≥10 
T2, GS6, PSA 4-9.9 
T2, GS6, PSA <4 
T2, GS7, PSA ≥10 
T2, GS7, PSA 4-9.9 
T2, GS7, PSA <4 

B) 

0 2 4 6 8 10 0 2 4 6 8 0 5 10 15 20 0 10 20 30 40 

 T1c, GS6, PSA ≥10 
T1c, GS6, PSA 4-9.9 
T1c, GS6, PSA <4 
 T1c, GS7, PSA ≥10 
T1c, GS7, PSA 4-9.9 
T1c, GS7, PSA <4 
T2, GS6, PSA ≥10 
T2, GS6, PSA 4-9.9 
T2, GS6, PSA <4 
T2, GS7, PSA ≥10 
T2, GS7, PSA 4-9.9 
T2, GS7, PSA <4 

C) 

0 5 10 15 20 0 5 10 15 20 0 10 20 30 40 0 20 40 60 

Cumulative incidence function (%) 

Figure 4.2. Cumulative incidence function and 95% confidence intervals of dying from prostate cancer at 5 (A), 

10 (B) and 15 (C) years of follow-up in the NPCR (black) and ProMort I (plum) 
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Figure 4.3. Pooled concordance index for prostate cancer death 

 

 

Figure 4.4. Range of the MSKCC nomogram predicted probabilities of dying from prostate cancer within the 

D’Amico risk groups. We used the average predicted cumulative incidences in the deciles of the MSKCC 

nomogram. Vertical red lines indicate the average predicted probability in each D’Amico risk group at 5 (A), 10 

(B) and 15 (C) years of follow-up 

 

 

The probabilities of dying from prostate cancer predicted using the D’Amico risk group 

system and the MSKCC nomogram are presented in Figure 4.4. The probability of dying 

from prostate cancer 15 years after diagnosis was 3.1%, 8.3% and 29.5% for men diagnosed 

with the low-, intermediate- and high-risk cancer according to the D’Amico criteria (Figure 

4.4C). The individual probabilities of dying from prostate cancer predicted using the MSKCC 

nomogram varied widely within each D’Amico risk group. The predicted probabilities ranged 

from 1.6-20.6%, 1.6-40.5% and 1.6-49.4% within the low-, intermediate- and high- D’Amico 

risk groups, respectively (Figure 4.4C).  
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When evaluated in different treatment groups, the discrimination was similar among men in 

the active surveillance/watchful waiting group and men in the radical prostatectomy/radiation 

therapy group. However, among men treated with primary androgen deprivation therapy, the 

discrimination was substantially poorer ranging from 0.56 (95% CI: 0.55-0.56) to 0.64 (95% 

CI: 0.63-0.65). For all risk stratification tools, the discrimination improved in more recently 

diagnosed cohorts. Among men diagnosed before 2003, the discrimination ranged from 0.66 

(95% CI: 0.65-0.67) to 0.73 (95% CI: 0.72-0.75) compared to 0.77 (95% CI: 0.76–0.78) to 

0.85 (95% CI: 0.84-0.86) among men diagnosed 2007-2016.  

For all risk stratification tools, the observed and predicted probabilities of dying from prostate 

cancer were generally similar. However, the predicted probabilities were generally 

underestimated, especially at 5 years of follow-up, in the highest-risk category of the NCCN 

system, CAPRA score, and deciles of the MSKCC linear predictor.  

4.3 Study III 

In Study III, we evaluated if light and virtual microscopy can be used interchangeably for the 

histopathological evaluation of prostate cancer by examining the repeatability (i.e., intra-

observer agreement) and reproducibility (i.e., inter-observer agreement) of the ISUP 

2014/WHO 2016 Gleason grading system using both microscopy methods. 

The intra-observer agreement for most of the features evaluated on the core level was similar 

for the two methods (Figure 4.5A), indicating good repeatability regardless of the method 

used. For the Gleason related features, the agreement ranged from substantial to almost 

perfect (primary Gleason pattern: κwLM=0.80 vs. κwVM=0.84; secondary Gleason pattern: 

κwLM=0.67 vs. κwVM=0.66; GGs: κwLM=0.85 vs. κwVM=0.84). For features which were rare, or 

for which reporting is not obligatory in clinical practice, such as intraductal cancer, the 

agreement was somewhat lower, but better when virtual microscopy was used (Figure 4.5A). 

The intra-observer agreement for the percentage of Gleason pattern 4 was overall poor, but, 

again, somewhat better on virtual microscopy. 

The inter-observer agreement for the Gleason-related features was similar for the two 

methods (Figure 4.5B), ranging from moderate/substantial to almost perfect (primary Gleason 

pattern: κwLM=0.72-0.90 vs. κwVM=0.78-0.80; secondary Gleason pattern: κwLM=0.58-0.75 vs. 

κwVM=0.67-0.68; GGs: κwLM=0.80-0.89 vs. κwVM=0.83) indicating good reproducibility 

regardless of the method used. For the remaining features, the agreement was somewhat 

lower, but similar for the two methods, except for mucinous carcinoma, perineural invasion, 

small-cell signet ring cell-like carcinoma, HGPIN and chronic inflammation, where it was 

better for light than virtual microscopy (Figure 4.5B). The inter-observer agreement for the 

percentage of Gleason pattern 4 was overall poor. 
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Finally, the median agreement between light and virtual microscopy was similar to the 

average/median agreement within the two methods, both when it was evaluated intra-

observer (Figure 4.5C) and inter-observer (Figure 4.5D), indicating interchangeability of light 

and virtual microscopy for most of the evaluated features. However, for most of the features 

Figure 4.5. Repeatability (A), reproducibility (B) and interchangeability (C, D) plot for all characteristics 

evaluated on the core and slide level  

Abbreviations: LM, Light microscopy; VM, Virtual microscopy; GGs, Gleason Grade Groups; GS, Gleason 

score; CN, Comedonecrosis; G1, Primary Gleason pattern; SCSR, Small-cell signet ring cell-like cancer; G2, 

Secondary Gleason pattern; CP, Cribriform pattern; MC, Mucinous cancer; PNI, Perineural invasion; PFG, 

Poorly formed glands; PAH, Postatrophic hyperplasia; AcI, acute inflammation. IgI, Intraglandular 

inflammation; PgI, Periglandular inflammation; ChrI, chronic inflammation; HGPIN, High-grade prostatic 

intraepithelial neoplasia; StrI, Stromal cancer; IDC, Intraductal cancer 
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evaluated on the slide level, median inter-method intra-observer agreement was lower than 

the average intra-method intra-observer agreement (Figure 4.5C), probably due to the higher 

intra-observer agreement on virtual microscopy. The absolute difference between the 

percentage of Gleason pattern 4 measured using light vs. virtual microscopy was up to 22 

percentage points larger for both the intra- and inter-observer comparisons. These results 

indicate overestimation of the percentage of Gleason pattern 4 when light microscopy is used. 

4.4 Study IV 

In Study IV, we first evaluated if the ISUP 2005 and 2014 Gleason grading revisions have 

improved prediction of death from prostate cancer. Then we investigated if any additional 

histopathological feature predicts death from prostate cancers independently from the GGs, as 

well as independently from GGs, age, PSA and cT at diagnosis. 

The GGs and ISUP 2014 Gleason score performed equally and better than the pre-2005 

Gleason score back-transformed using only cribriform pattern or both cribriform and poorly 

formed glands in discriminating death from prostate cancer in univariable (p=0.003 and 

p=0.005, respectively) and multivariable models (p=0.066 and p=0.097, respectively). There 

was, however, no difference in discrimination between the ISUP 2014 Gleason score and the 

pre-2005 Gleason score back-transformed using only poorly formed glands (p=0.296 and 

p=0.830 in univariable and multivariable models) (Table 4.1). These results indicate that the 

small improvement in discrimination of the ISUP 2014 Gleason score vs. pre-2005 Gleason 

score could be due to classifying all cribriform patterns, rather than poorly formed glands, as 

Gleason pattern 4. 

 

Table 4.1. Prognostic performance of univariable and multivariable models with different Gleason grading 

system revisions in predicting death from prostate cancer  

 Univariable analysis1 Multivariable analysis2 

 AUC 95% CIs AUC 95% CIs 

Pre-2005 Gleason score3 0.820 0.790 0.850 0.845 0.818 0.873 

Pre-2005 Gleason score4 0.832 0.803 0.861 0.853 0.826 0.880 

Pre-2005 Gleason score5,6 0.819 0.789 0.849 0.844 0.816 0.872 

ISUP 2014 Gleason score 0.840 0.811 0.868 0.854 0.828 0.881 

Gleason Grade Groups 0.839 0.811 0.868 0.854 0.827 0.881 

Abbreviations: AUC, Area under the receiver operating curve; ISUP, International Society of Urological 

Pathology 
1 Adjusted for the matching variables (year and county of diagnosis, and follow-up time) and primary treatment 
2 Adjusted for the matching variables, clinical tumor stage, age, PSA level and primary treatment 
3 Back-transformation using the cribriform pattern only 
4 Back-transformation using the poorly formed glands only 
5 Back-transformation using the cribriform pattern and/or poorly formed glands 
6 362 cases and 360 controls used in the analysis due to the complete separation 
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Almost all evaluated histopathological features were predictors of death from prostate cancer 

in the univariable analysis. However, only comedonecrosis, HGPIN and the number of cores 

with ≥50% cancer involvement predicted death from prostate cancer independently of the 

GGs (Figure 4.6). After additional adjustment for age, cT and PSA at diagnosis, 

comedonecrosis (OR: 6.8, 95% CIs: 1.4-33.4) and HGPIN (OR: 0.6, 95% CIs: 0.4-0.9) 

remained individual predictors (Figure 4.6), however with minimal impact on the 

discrimination (AUC: 0.86 vs 0.85 for both features). We also evaluated if there were any 

statistical interactions between the histopathological factors and the GGs. Adding an 

interaction term improved the model only for the number of cores (likelihood ratio test: 

p=0.002) and percentage of Gleason grade 4 (likelihood ratio test: p=0.033). The percentage 

of Gleason grade 4 was associated with death from prostate cancer only among men with 

GG3 (OR: 1.05, 95% CIs: 1.01-1.09). The impact of the added interaction term on 

discrimination was, however, minimal.  
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5 Discussion 

This thesis focuses on improving prognostication for men with localized prostate cancer. 

Although it does not include a comprehensive evaluation of all aspects of prognostic 

modelling in prostate cancer, it addresses several very important issues related to study 

design, model development and model updating. Rather than discussing the study results one 

by one as is done within each study manuscript, in the following text I will discuss our 

findings in the context of the aforementioned issues.  

5.1 Study design for prognostic modelling in localized prostate cancer 

Localized prostate cancer, and especially low- and intermediate-risk prostate cancer, has a 

prolonged natural history, and long-term cancer-specific mortality in these patients is quite 

low. In a relatively recent study by Klotz et al. (252), the cancer-specific survival for men on 

active surveillance was 98.1% and 94.3% at 10 and 15 years of follow-up, respectively. 

Similarly, in PCBaSe, the observed 15-year cancer-specific mortality for men with D’Amico 

low- and intermediate-risk cancer who were treated with mixed modalities was 5.1% and 

12.2%, respectively (253). Thus, even 15 years after diagnosis, only a small proportion will 

have died from prostate cancer, which makes prostate cancer death a rare outcome in men 

with low- and intermediate-risk disease. This also means that to study such a rare outcome, 

we need large cohorts of men followed-up for a very long time. Collecting additional 

information from such large cohorts (e.g., through a central histopathological re-review) 

makes cohort study design unfeasible. This issue is not an uncommon issue and is typically 

addressed by using well-known cost-effective cohort sub-sampling designs, such as case-

cohort or nested case-control designs (254, 255).  

5.1.1 The nested case-control study design  

ProMort I and ProMort II were sampled with the above-described reasoning in mind. 

ProMort I is an ambitious ongoing project which aims to identify novel tissue-based 

molecular prognostic markers for men with low- and intermediate-risk prostate cancer. 

ProMort II, on the other hand, aims at identifying novel histopathological markers for men 

with localized (i.e., low-, intermediate- or high-risk) prostate cancer. For both ProMort I and 

ProMort II, the nested case-control design is an appropriate study design for identifying novel 

prognostic markers as it gives unbiased relative risk estimates, which is also what we 

observed in Study I. However, to understand if a novel marker actually improves prediction, 

it should be evaluated in addition to established prognostic factors, i.e., the “gold standard” 

prognostic model (256). This brings us to two very important questions:  

1. Is the nested case-control study design appropriate for the development of models to 

predict death from prostate cancer? 

2. What is the “gold standard” prognostic model in prostate cancer? 
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5.1.1.1 Predicting death from prostate cancer  

For a prognostic model to be clinically useful, estimates of absolute risks are essential. It has 

been shown that the nested case-control design can be used to obtain unbiased estimates of 

absolute risks if appropriately analyzed (221, 222, 224-226, 230). Appropriate analysis here 

implies the use of weights which are based on the inverse of the probability of being selected 

into the study (221, 225, 226). The inverse probability weighting methods are, however, 

underutilized in epidemiological practice, mostly because the weights are difficult to obtain 

without access to the underlying cohort. When the underlying cohort is available, the 

calculation of weights can be implemented in R using the multileNCC package (257), or in 

Stata, using the code we published as a part of Study I (218). Once the weights are correctly 

estimated, these methods deliver virtually identical information compared to the analysis of 

the entire cohort with the advantage of reduced costs and reduced computational burden.  

5.1.1.2 Competing events 

In addition to the estimates of prostate cancer-specific survival, Klotz et al. reported that, in 

the same cohort of men on active surveillance described above, overall survival was 80% and 

62% at 10 and 15 years of follow-up, respectively (252). This means that 10 and 15 years 

after a prostate cancer diagnosis, most men will be alive, and of those who have died, most 

will have died from causes other than prostate cancer (258-260). In the setting where a man 

with prostate cancer is more likely to die from a competing event, using the nested case 

control-study design to predict death from prostate cancer becomes more complicated.  

Nested case-control studies are selected on the outcome. In ProMort I, the cases were all men 

who had died from prostate cancer and the controls were selected from the men who were 

still alive and at risk of dying from prostate cancer at the time the corresponding case died. It 

has been shown that the inverse probability weighting methods can still be used to make valid 

inferences for secondary, nonexclusive, outcomes (227, 228). However, to make inference on 

competing risks, these methods need to be extended further. To use nested case-control 

studies for competing risks analysis, we need to either modify the control sampling (233), 

treat the nested case-control study as a missing-data problem (240) or sample an additional 

set of competing risk cases (229) or both competing risk cases and controls (230). In Study I, 

we showed that simply using the inverse probability weighting method leads to biased 

estimates of the relative risks of dying from other causes, and that this translates into biased 

estimates of the absolute risks of dying from prostate cancer. However, adding competing 

risk cases to the analysis, or even better, adding both competing risk cases and controls, 

minimized these biases in Study I. This shows that nested-case control study design can 

indeed be used for the development of models predicting death from prostate cancer in the 

competing risk setting, but only with additional extensions to the design. 

It is important to note that when the nested case-control sampling has already been done and 

the underlying cohort is not available, we can no longer modify the control sampling (233) 

nor can we treat the case-control study as a missing-data problem (240). If the nested case-
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control study design is to be used for more than just identification of novel prognostic 

markers, the above-described issues should be considered at the study design phase. Rather 

than trying to fix the issues by augmenting competing risks controls and/or cases (229, 230), 

or by resampling controls for the event of interest by using a different sampling strategy 

(233), both of which carry additional cost, we should instead consider if alternative designs, 

such as the case-cohort design, are more feasible.  

5.1.1.3 Non-rare (common) events 

As mentioned before, both ProMort I and ProMort II are nested case-control studies. 

However, there is an important difference in their sampling. In ProMort II, where we sampled 

cases and controls among all men with non-metastatic prostate cancer, death from prostate 

cancer was not as rare as it was among the men with low- and intermediate-risk cancer who 

were sampled in ProMort I. In fact, in the 11 counties in the NPCR from which ProMort II 

cases and controls were sampled, 8,076 men (out of 62,603) had died from prostate cancer by 

the end of follow-up (Figure 3.1). In this population, prostate cancer death is a non-rare, or 

even a common, event. Sampling all cases, as is typically done in nested case-control studies, 

would thus be unfeasible. Instead, in ProMort II, we used a modified nested case-control 

sampling design to select a sub-sample of all cases (n=500) and their corresponding controls 

(n=500). Such a nonrepresentative sampling of cases was outlined in a paper by Langholz 

and Borgan in 1995 (261), but, to the best of my knowledge, there were no examples of its 

application. A recent doctoral thesis, however, described how the inverse probability 

weighting methods can be extended to modified nested case-control and case-cohort studies 

(262). By using modified inverse probability weights we could, in theory, obtain estimates of 

the individual absolute risks of dying from prostate cancer in ProMort II. Whether we could 

also account for the competing events using the above-described methods, remains, for now, 

unclear.  

5.2 Current prognostic models in prostate cancer 

Pretreatment prognostic models, or risk stratification tools, are critical not only for the 

appropriate treatment decision-making at the time of diagnosis, but also for benchmarking the 

utility of novel prognostic markers. The risk stratification tools used in all major prostate 

cancer guidelines (EAU (37, 50), NICE (33), GUROC (34), AUA (35), and NCCN (36)) are 

based on the three-tiered D’Amico risk group system (49). It is becoming increasingly clear 

that, even with the additional sub-stratification of the D’Amico low-, intermediate- and high-

risk groups, these tools are just too crude to be used as the “gold standard” (263). Indeed, in 

Study II, we showed that subdividing the NCCN low-risk group into very low and low, the 

NCCN/AUA intermediate-risk group into favorable and unfavorable, and, finally, the NCCN 

high-risk group into the high and very high has a minimal impact on discrimination. Which of 

the currently used risk stratification tools is then best at predicting death from prostate 

cancer? 
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5.2.1 The best-performing prognostic model 

Of all the compared risk stratification tools in Study II, the more complex, model-based tools 

such as the MSKCC nomogram (83), CAPRA score (60) and CPG risk groups (53), 

discriminated death from prostate cancer better than D’Amico and D’Amico-derived risk 

groups. That discrimination improves when more complex risk stratification tools are used is 

an expected consequence of finer risk stratification and use of continuous information. 

However, it is important to note that the C-index is not a function of the actual predicted 

probabilities (264). The probability of the correct ranking of risks in pairs of men with and 

without the outcome is not a relevant measure of clinical utility. While in Study II we used 

the C-index as a convenient measure to rank risk stratification tools according to how well 

they discriminate death from prostate cancer, it is not obvious if a higher C-index translates 

into improved prediction of individual probabilities of dying from prostate cancer. 

When deciding on the appropriate treatment, a clinician is primarily interested in the 

individual probability of death from prostate cancer. The best performing tool should thus 

predict this probability as accurately as possible. All risk stratification tools evaluated in 

Study II had similar observed and predicted probabilities of death from prostate cancer with 

some underestimation in the highest-risk categories for the MSKCC nomogram, CAPRA 

score and NCCN risk groups. However, the compared observed and predicted probabilities 

are population averages. For the risk stratification tools which do not finely stratify men with 

higher risk prostate cancer, the average predicted probabilities are influenced by the larger 

number of men with lower risk prostate cancer within the same group. To demonstrate how 

lumping together a large group of men with different risks of dying from prostate using the 

D’Amico risk groups may influence clinical decision-making, we plotted a distribution of the 

individual risks predicted using the best performing tool, the MSKCC nomogram, within 

each D’Amico risk group (Figure 4.4). Although perhaps not sufficiently emphasized in the 

published paper, this joint distribution plot is striking. At 15 years, within the D’Amico 

intermediate-risk group, 25% of the men had a MSKCC predicted probability of dying from 

prostate cancer between 1.6% and 6%. This range corresponds to the range of MSKCC 

predicted values within the D’Amico low-risk group. Furthermore, over 50% of the men had 

a MSKCC predicted probability higher than the D’Amico intermediate-risk group probability 

(8.3%), and of them, 25% had a predicted probability of 13.4-20.6%, and some extreme cases 

had a predicted probability of 49.4% (Figure 4.4). A similar wide range of MSKCC predicted 

probabilities was present also within the NCCN risk groups (data not shown), which, again, 

demonstrates that simply sub-stratifying low-, intermediate- and high-risk groups is not 

sufficient. This finer risk stratification could surely facilitate treatment decision for some of 

the men in the D’Amico intermediate risk group. Of note, we performed no formal 

quantification of the clinical usefulness/net benefit of the prediction models, such as decision 

curve analysis, in Study II. 
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5.2.2 The best-performing vs. the “gold-standard” prognostic models 

There is no formal definition of the “gold standard” prognostic model in prostate cancer. 

Intuitively, such a model should be parsimonious and contain relevant, readily available 

baseline features which are established and strong predictors of death from prostate cancer. 

Special attention should be given to the functional form of continuous variables and presence 

of interaction between predictors (265). Of note, this is a gross simplification of the 

prognostic model development process, and there is an extensive literature focusing on the 

technical and practical aspects of the optimal model development and validation process 

(266). As previously mentioned, prognostic models in prostate cancer typically include the 

Gleason score, PSA and cT. Although age at diagnosis is a predictor of death from prostate 

cancer, of all risk stratification tool we evaluated in Study II, age was included only in the 

CAPRA score. 

The best-performing tools we identified in Study II (MSKCC nomogram, CAPRA score, 

CPG risk groups) improve prediction of death from prostate cancer when compared to the 

D’Amico and D’Amico-derived risk grouping systems. However, these tools are still sub-

optimal. For the MSKCC nomogram, at the time Study II was conducted, age was not 

included in the model and primary and secondary Gleason pattern were dichotomized. Both 

the CAPRA score and the CPG risk grouping system categorize PSA. The CAPRA score also 

dichotomizes primary and secondary Gleason pattern as well as age at diagnosis, which is 

reduced to the categories <50 and ≥50 years of age. Given the plethora of available 

prognostic models in prostate cancer (68, 74, 75, 77), development of novel models based on 

the standard clinical variables is difficult to justify (263). However, using one, or several, 

standard methods to update (267, 268) the existing best performing models could get them 

closer to the “gold standard” ideal. Until then, consistent adoption of one or a few of the best 

performing tools in both clinical practice and research will allow for more personalized 

treatment decisions, facilitate the introduction of novel biomarkers and improve 

comparability across studies. 

Of note, the pretreatment MSKCC nomogram was updated in 2020 to include age, which is 

modelled as a continuous variable, and to replace the dichotomized Gleason patterns with the 

full range of the GGs (269). These changes seem to have had a minimal impact on the 

MSKCC internally validated C-index (0.79 in 2019 vs. 0.79 in 2020). We cannot, however, 

exclude the possibility that even minimal improvements in discrimination could translate into 

a more correct risk stratification and more appropriate management for some patients. Thus, 

it remains to be seen how this updated model performs in predicting individual probabilities 

of death from prostate cancer, in the competing risks setting.  

5.3 Improvement of the prognostic model performance 

In the preceding text I only briefly hinted at the technical and practical complexities of 

prognostic model development (266). The performance of prognostic models can be 
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improved through, for example, careful selection of predictors, choosing the correct 

functional form of continuous predictors, reduction of predictor misclassification, the 

inclusion of interactions between predictors as well as through model-updating methods (265, 

266). Discussing all of these methods is beyond the scope of this thesis. Here I will focus 

only on improvement through reduction of predictor misclassification and on one of the 

model-updating methods: the addition of new prognostic markers to an existing model. These 

issues were addressed in Study III and IV. 

5.3.1 Reliability and measurement heterogeneity  

Reliability of the predictor variables and measurement heterogeneity are important issues in 

prognostic model development (270). Reliability refers to the repeatability (i.e., intra-

observer agreement) and/or reproducibility (i.e., inter-observer agreement). Measurement 

heterogeneity refers to differences in the procedure and/or instruments used to measure the 

predictors. It has been shown that prognostic models including unreliable/misclassified 

predictors perform suboptimally on internal (271, 272) and, especially, external validation 

(273-275). In prostate cancer, all standard variables used for developing prognostic models 

are known to be unreliably measured and/or are subject to measurement heterogeneity. As 

described in the Introduction of this thesis, PSA levels are subject to large analytical and 

biological variation (84), cT is based on subjective digital rectal examination (86), and the 

Gleason score is notorious for its low inter-observer agreement, which has been only 

minimally improved by the ISUP 2005 and 2014 revisions (Table 1.3).  

While the misclassification of PSA and cT was not directly addressed in this thesis, in Study 

II, we imputed cT2 and cT3 sub-stage to reduce misclassification of men in risk groups and to 

improve comparability across the different risk stratification tools. In Study III we evaluated 

the reliability (i.e., intra-method agreement) and the measurement heterogeneity (i.e., inter-

method agreement) of the ISUP 2014 Gleason grading system, including the Gleason score 

and the GGs as well as many other histopathological features (Table 3.2). Furthermore, in 

Study IV we evaluated the potential improvement in prostate cancer prognostication due to 

the revisions of the Gleason grading system. 

5.3.1.1 The ISUP 2014 Gleason Grading system 

The main aim of Study III was to demonstrate interchangeability of light and virtual 

microscopy for the purpose of using virtual microscopy for the central re-review of ProMort I 

and II. To achieve this aim we evaluated the repeatability and reproducibility of different 

histopathological features on both light and virtual microscopy.  

Overall, we found better repeatability and reproducibility of the ISUP 2014 Gleason grading 

system compared to previous studies which evaluated the pre-2005 Gleason score (103-107, 

143), ISUP 2005 Gleason score (109-115, 122, 142), ISUP 2014 Gleason score (116, 117) 

and GGs (116, 117). The agreement between the pathologists in Study III was better than the 

agreement in the studies evaluating the pre-2005 and ISUP 2005 Gleason score regardless of 
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the experience of the pathologists (general or uropathologists). For the ISUP 2014 Gleason 

score and GGs our pathologist agreed better than the general pathologists in previous studies 

(116, 117). Only one previous study has evaluated the agreement between uropathologists for 

the GGs and their results were similar to ours (118). Of note, the sample size in Study III was 

relatively small (n=60) and we evaluated the agreement only between two uropathologists 

who have been working together for more than 7 years. Our findings on agreement, thus, 

might not reflect the agreement between unrelated uropathologists, and they quite likely do 

not reflect the agreement between general pathologists.  

The interpretation of these results is not straightforward. It is possible that the changes 

introduced by the ISUP 2014 revision have improved the inter-observer agreement for the 

Gleason score. Improved agreement would indicate an improved reliability of the Gleason 

score, or GGs, and potentially improved prediction of death from prostate cancer. Indeed, in 

Study IV, we found that the ISUP 2014 Gleason score discriminates death from prostate 

cancer better than the pre-2005 Gleason score. However, it is unclear if the improved 

discrimination is explained by increased reliability of the ISUP 2014 Gleason score or by 

better classification of tumor aggressiveness. Our results indicate that this improvement could 

be due to classifying all cribriform patterns, rather than poorly formed glands, as Gleason 

pattern 4. As cribriform pattern seems to have an unfavorable biologic behavior (see also 

section 1.3.4.2), interpreting all cribriform patterns as Gleason pattern 4 could lead to better 

classification of men with aggressive disease. 

Furthermore, given the similar agreement within and between light and virtual microscopy in 

Study III, we also confirmed the interchangeability of virtual and light microscopy for the 

ISUP 2014 Gleason grading system (109, 112, 113, 199). These results indicate no 

measurement heterogeneity when the histopathological review is performed on light vs. 

virtual microscopy.  

5.3.1.2 Other histopathological features 

Compared to previous studies, in Study III we found better repeatability and reproducibility 

for cribriform pattern (276, 277), poorly formed glands (276, 277) and comedonecrosis (278), 

but not for the percentage of Gleason pattern 4 (277). For some of the features which are rare, 

or are rarely reported (e.g., intraductal cancer, inflammation, HGPIN and PAH), we did not 

find good repeatability and/or reproducibility. Unreliable measurements for these features, 

and for the percentage of Gleason pattern 4, caution against using them in prognostic models 

until repeatability and reproducibility are improved. For all these features, however, our 

findings were similar on light and virtual microscopy, which indicates interchangeability and 

little to no measurement heterogeneity of light vs. virtual microscopy. 

5.3.2 Model extension with a novel prognostic marker  

Finally, in Study IV, we evaluated some of the previously proposed or established 

histopathological markers as well as other histopathological features as predictors of death 
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from prostate cancer. Critical evaluation of novel prognostic markers can be summarized into 

several phases, including: proof of concept, prospective validation, evaluation of incremental 

value, and assessment of clinical utility and cost effectiveness (279). In study IV, we were 

interested in validating existing and identifying novel histopathological markers. We also 

evaluated whether these markers could improve a “gold standard” prediction model.  

While almost all evaluated histopathological features in Study IV predicted death from 

prostate cancer in univariable analyses, only the number of cores with ≥50% cancer 

involvement, comedonecrosis and HGPIN remained predictive independently of GGs. When 

these markers were added to a “gold standard” prognostic model, only comedonecrosis and 

HGPIN remained independent predictors of death from prostate cancer, although with 

minimal impact on discrimination (C-index: 0.86 vs 0.85). Notably, we did not use the best-

performing prognostic model identified in Study II as the “gold standard” model. Instead we 

used a somewhat optimized version including the whole range of the GGs, continuous age, 

PSA modeled using restricted cubic splines and cT. This model is actually quite similar to the 

update of the MSKCC nomogram in 2020 (269). In addition, by adding primary treatment in 

all the models, we also accounted for the potential variability in the outcome due to primary 

treatment. Our study is the first to show that the presence of comedonecrosis is prognostic 

even after adjustment for the GGs and other standard clinicopathological factors. While 

interesting, this finding may have limited clinical application, as all men with 

comedonecrosis are assigned GG5 and are thus typically recommended treatment. Finally, 

the inverse association of HGPIN with death from prostate cancer is opposite to the only 

study describing HGPIN as a predictor of lethal prostate cancer (280), and this result should 

be interpreted with care until confirmed or disputed by additional research.  

Given that ProMort II was sampled using a modified nested case-control sampling scheme, 

we evaluated the improvement in prediction only in terms of discrimination. By applying the 

modified inverse probability weights in the analysis of ProMort II we could, as discussed 

above, try to estimate the individual probabilities of dying from prostate cancer. This could 

help us understand if the identified histopathological markers actually improve risk 

stratification compared to the “gold standard” model, regardless of the minimal impact on the 

discrimination. 

5.3.2.1 Case level vs. core level 

Prostate cancer diagnosis is based on needle biopsy findings, where several biopsy cores are 

sampled per patient. However, this core-level information is usually not accounted for in the 

prognostic models. Instead, only case-level summaries are used. For example, the highest 

Gleason score on a single core or the global Gleason score are typically used to assign a case-

level Gleason score. While there seems to be no difference between the highest and the global 

Gleason score or GGs in predicting BCR (281), the global GGs seem to have slightly higher 

agreement with the GGs on radical prostatectomy (282). However, neither of these summary 

case-level measurements truly takes into account the different GGs in all the sampled cores. 

The recommendation to record the percentage of Gleason pattern 4/5 was an attempt to 
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quantify the extent of high grade cancer in the biopsy core(s). There are several proposed 

ways of including this information in the prognostic models and the overall percentage of 

Gleason pattern 4 seems to outperform the highest percentage of Gleason pattern 4 (174, 

180). How the information on the Gleason score/GGs and the percentage of Gleason pattern 

4/5 is to be best combined is also not clear. Furthermore, there seems to be no consensus on 

the best way to quantify tumor extent. Many different, highly correlated measures have been 

proposed (see also the section 1.3.4.1), with no clear recommendations on the “best” 

measure. Finally, for binary histopathological features, case-level summaries typically refer 

to presence or absence in any of the sampled cores. For example, a man with perineural 

invasion in one core is treated the same as a man with perineural invasion in all of the cores. 

By using a single-summary case-level measure, we are losing a lot of potentially prognostic 

information. One of the next steps in improving prognostic models in prostate cancer should 

thus be finding optimal ways of using the core-level information for each man. 
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6 Conclusions 

Study I. The nested case-control study design can be used to obtain unbiased estimates 

of the relative risks of dying from prostate cancer. However, in the competing 

risks setting, nested case-control studies with augmented competing-risks 

cases and controls provide more valid absolute risk estimates. Thus, without 

additional extensions to the design, nested-case control studies are not suitable 

for the development of models predicting death from prostate cancer in the 

competing risks setting.  

Study II. The MSKCC nomogram, CAPRA score and CPG system discriminate death 

from prostate cancer better than the D’Amico and D’Amico-based risk 

grouping systems. Using these tools leads to finer individual risk prediction 

and using them in clinical practice could improve treatment decisions. 

Furthermore, these tools should be used to benchmark novel biomarkers and 

using them consistently in research could improve comparability across 

studies.  

Study III. Our findings indicate that light microscopy and our internally developed 

virtual microscopy system can be used interchangeably. We found good 

repeatability and reproducibility for key histopathological features, such as the 

ISUP 2014 Gleason score, GGs, perineural invasion, and cribriform pattern. 

The repeatability and/or reproducibility for some of the rare, or rarely 

reported, features, and for the percentage of Gleason pattern 4, was poor and 

should be improved before they are used in clinical practice. 

Study IV. The ISUP 2014 Gleason score discriminates death from prostate cancer better 

than the pre-2005 Gleason score. This improvement is likely due to classifying 

all cribriform patterns, rather than poorly formed glands, as Gleason pattern 4.  

Comedonecrosis and HGPIN predict death from prostate cancer independently 

of the GGs, age, PSA and cT at diagnosis, however, their impact on model 

discrimination is minimal. Future studies should confirm our results and 

evaluate if adding comedonecrosis and/or HGPIN to the “gold standard” 

model  improves risk stratification. 
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7 Future directions 

Several important issues regarding the development of prognostic models, such as sampling 

designs and handling of competing events, have been discussed in the Methods and 

Discussion sections and will not be further expanded here. In this section I will focus on 

several topics which have not been covered in this thesis, but should, nevertheless, be thought 

of when developing prognostic models. These topics deal with the improvement of current 

practices of prognostic model development for prostate cancer, and in general. 

7.1 Dynamic prediction models 

The prognostic models discussed in this thesis are built using baseline features and are 

sometimes referred to as static models. Static models do not account for temporal changes in 

the population or in the features used for model development and they could become outdated 

over time. Furthermore, the implementation of prognostic models into clinical practice will 

change clinical decision-making and, ultimately, the outcome of interest. Consequently, risk 

predictions obtained using these models may be inaccurate which, in turn, leads to 

inappropriate treatment decision-making. Prognostic models, therefore, tend to become 

“victims of their own success” (283, 284). Models which account for the changes occurring 

over time are called dynamic models. In the current literature, dynamic prognostic modelling 

refers to either continuous model updating or to incorporation of time-dependent covariates.   

The performance of static prognostic models tends to deteriorate over time. This phenomenon 

is also known as calibration drift (285, 286). Calibration drift is a consequence of differences 

between the population used for model development and the population to which the model is 

applied. These differences may refer to shifts in the outcome rate, patient case mix, or 

associations between predictors and outcomes (287, 288). In this setting, dynamic modelling 

refers to the application of discrete or continuous model updating methods (289, 290). 

Discrete model updating methods use new data over time and apply one, or several, standard 

model updating methods, such as simple intercept correction, adjustment of coefficients, or 

inclusion of novel predictors in the model (287, 289, 290). Continuous, or Bayesian, model 

updating methods combine the information obtained from the past data with the new data to 

obtain updated estimates (289, 290). Such updating methods seem to have little impact on 

discrimination of the model. However, they often lead to improved calibration (290). 

In time-to-event data, dynamic prediction modelling refers to the incorporation of time-

dependent covariate information into the prognostic model (283). The time-dependent 

covariate information refers to the longitudinal covariate data collected during treatment or 

follow-up which is often stored in electronic health records. The two most common 

approaches to dynamic prediction modelling are joint modelling and landmark analysis (283, 

291), but other methods have also been described (292). Joint models simultaneously 

estimate the model for the longitudinal process and the model for the time-to-event data, 

while the landmark analysis consists of a series of Cox proportional hazards models estimated 
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at predefined landmark times. Furthermore, several different methods have been proposed to 

extend dynamic prediction modelling to the competing risks setting, such as extension of the 

dynamic landmark models (293), combination of the pseudo-observations with the landmark 

analysis (294) and extension of the landmark models to the Fine and Gray model, i.e., the 

landmark subdistribution hazards model and supermodel (295). 

Although rarely applied in practice, probably due to a lack of access to the longitudinal data, 

no available guidelines or implementation difficulties, dynamic prognostic models seem to 

improve the accuracy of the predicted individual risks (296, 297) and they should be 

implemented in future prognostic models (291).  

7.1.1 Multiparametric magnetic resonance imaging guided biopsy 

A very timely example of a potential cause of calibration drift is the implementation of 

multiparametric magnetic resonance imaging (mpMRI) in clinical practice. mpMRI before 

biopsy as a triage test has been shown to reduce the number of unnecessary biopsies (298) 

and it seems to be a cost-effective strategy for diagnosing clinically significant prostate 

cancer in biopsy-naïve men (299). mpMRI-guided biopsy procedure outperforms systematic 

biopsy procedure in the detection of significant cancer in the repeat-biopsy setting, while in 

biopsy-naïve men, a combination of mpMRI-guided biopsy and systematic biopsy performs 

the best (300, 301). These findings have already led to changes in prostate cancer guidelines. 

For example, in the 2019 edition of the EAU guidelines for prostate cancer, mpMRI is 

recommended prior to biopsy in patients with suspected clinically significant prostate cancer, 

both targeted and systematic biopsy are recommended for biopsy-naïve men, and for men 

with a prior negative biopsy only targeted biopsy is recommended, albeit weakly (50). 

Although mpMRI has moderate inter-observer reproducibility and the optimal number of 

targeted cores per mpMRI ROI is still not determined (302), once these are optimized, it is 

likely that mpMRI-guided biopsy will completely replace systematic biopsies.  

It is expected that the implementation of mpMRI-guided biopsies in clinical practice will lead 

to calibration drift of prognostic models in prostate cancer. Whether the performance of these 

models can be improved by model updating methods, such as including mpMRI-related 

information, or by accounting for the potential differences in biopsy cores sampled using 

mpMRI-guided biopsy vs. systematic biopsy procedure, remains to be seen.  

7.2 The role of treatment in clinical prediction models 

To guide treatment decision-making in men diagnosed with prostate cancer, individual 

probabilities of dying from prostate cancer predicted using prognostic models should reflect 

the probability of dying from prostate cancer in the absence of treatment. Most prognostic 

models for prostate cancer have been developed using selected populations of radically 

treated men or using mixed populations of treated and untreated men. Treatment lowers the 

risk of dying from prostate cancer, yet treatment is usually ignored when prognostic models 
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are developed. Not accounting for treatment when developing a prognostic model leads to 

underestimation of the probability of the outcome in untreated men (303), and to a biased 

model performance when validated in differently treated populations (304). 

When developing a prognostic model, treatment can be modeled either as a time-invariant 

variable or as a time-dependent variable. Groenwold et al. compared several methods of 

accounting for time-invariant treatment when developing a prognostic model for a binary 

outcome (303). They found that ignoring an effective treatment leads to incorrect predicted 

probabilities of the outcome, that restricting analysis to untreated individuals is suitable only 

when treatment allocation is random, and that, when treatment allocation is not random, 

including treatment as a covariate in the model results in better predictive performance 

compared to other methods (303). Sperrin et al. extended this work to time-dependent 

treatment (305). They proposed a counterfactual framework for the development of 

prognostic models and they showed that using marginal structural models resulted in 

unbiased predicted probabilities of a binary outcome (305). In a recent study, Pajouheshnia et 

al. evaluated seven strategies of accounting for time-dependent treatment when developing a 

prognostic model for time-to-event outcomes (306). They compared models where the 

treatment was ignored to models developed by excluding treated patients, censoring treated 

patients at the time of treatment, using inverse probability of treatment weighting, modelling 

treatment as a binary covariate, modelling treatment as a time-varying covariate and, finally, 

using marginal structural models with time-varying inverse probability of treatment weights. 

They confirmed that ignoring the treatment when developing a prognostic model is 

theoretically inferior. However, when compared to other methods, ignoring the treatment and 

modelling time-dependent treatment as a binary covariate led to only a small overestimation 

of the predicted probabilities of the outcome and model performance varied minimally when 

different approaches were used (306).  

Van Geloven et al. proposed a somewhat different approach (307), which was inspired by the 

European Medicines Agency framework for dealing with additional treatments started after 

baseline, and other post-baseline but pre-outcome events, in clinical trials (308). In this 

approach, the choice of strategy for accounting for time-dependent treatment should be based 

on the question the researcher wants to address using the prediction model (307). An 

overview of the four proposed strategies is presented in Table 6.1. Depending on the strategy, 

risk predictions may be very different. Thus, the question of interest and choice of the 

strategy should ideally be predefined. For example, pretreatment risk stratification tools in 

prostate cancer are used to guide treatment decision-making for newly diagnosed men. Thus 

clinicians are interested in the risk of dying from prostate cancer in the absence of treatment. 

According to the proposed framework, prognostic models addressing this question should be 

developed using the hypothetical strategy. 

 

 



 

54 

Table 6.1. Overview of four strategies for dealing with treatment initiation after baseline in prognostic models 

Strategy Estimand Example Estimators Key assumptions 

Ignore 

treatment 

Risk of the event, 

regardless of 

treatment 

Risk of cardiovascular 

events where some patients 

will initiate statins 

according to routine-care 

prescriptions 

Survival model for T, 

do not censor at V 

Treatment 

assignment policy 

in application 

setting similar to 

development data 

Composite Risk of the event or 

treatment initiation 

Risk of a composite of 

cardiovascular death, 

myocardial infarction and 

treatment with PCI or 

CABG 

Survival model for 

min(T, V) 

Treatment 

assignment policy 

in application 

setting similar to 

development data 

While 

untreated 

Risk of the event 

occurring before 

treatment is started 

Risk of dying while on the 

waiting list for a liver 

transplant 

Competing risks 

methods 

Treatment 

assignment policy 

in application 

setting similar to 

development data 

Hypothetical Risk of the event if 

treatment was never 

started 

Risk of a natural pregnancy 

without IVF treatment 

Survival model for T, 

censor at V or include 

treatment as time-

dependent covariate in 

the model and set to 0 

when predicting 

Exchangeability, 

consistency and 

positivity 

Abbreviations: Estimand, the target quantity that we aim to estimate; T, time to event of interest; V, time to start 

of treatment; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; IVF, in vitro 

fertilization 

Reprinted from Nan van Geloven et al. Prediction meets causal inference: the role of treatment in clinical 

prediction models. Eur J Epidemiol. 2020;35:619–630, licensed under Creative Commons CC BY. © 2020, 

Springer Nature 

7.3 Clinical utility 

Although there is a plethora of risk stratification tools in prostate cancer, the vast majority of 

them is not used by clinicians. To be implemented into standard clinical practice, it should be 

clear how these tools are intended to be used to guide treatment decision. However, risk 

stratification tools, or prognostic models in general, do not recommend decisions to 

clinicians. Instead, clinicians are provided with predicted probabilities of the outcome of 

interest without being told what to do with that information (309). It is also often not clear if 

treatment decisions based on the prognostic model will improve patient outcome(s) compared 

to treatment decisions based on the current standard of care. The gold standard for evaluating 

clinical utility is a randomized clinical trial where prediction-based decision-making is 

compared to standard of care decision-making. The implementation of such a trial is, 

however, both practically and ethically challenging. Sachs at al. proposed to use 

observational data to optimize a prediction-based decision rule and to evaluate its clinical 

utility by emulating a randomized clinical trial (310). The proposed framework consists of 

three separate steps:  

1. Development of a prognostic model,  
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2. Development and optimization of a proposed decision rule based on the prognostic 

model, and  

3. Evaluation of the clinical utility of the proposed decision rule. 

A step-by-step example of the proposed framework was made available in the appendix to the 

paper (310). These studies could then be used to motivate better-informed confirmatory 

randomized clinical trials. 

7.4  Life expectancy 

Given the risk of overtreatment, evaluation of life expectancy can help balance the potential 

for life gained against the potential for harm caused by treatment and is currently 

recommended for prostate cancer clinical decision-making in several guidelines (35, 36, 50). 

However, there are no clear recommendations regarding the best method to predict life 

expectancy and clinicians seem to either not consider it when making treatment decision, or 

are poor judges of it, and are prone to both under- and over-estimation, regardless of their 

experience (311-313). Despite the fact that there are several available tools and online 

calculators predicting life expectancy (312), in practice, simple age-adjusted life tables seem 

to still be the most commonly recommended (50) and used by clinicians. Predicting life 

expectancy using age alone might be satisfactory only for men without any additional 

comorbidities. However, age and comorbidity are independent predictors of other-cause 

mortality in men with prostate cancer (314, 315) and they should be both considered when 

making treatment decision (316, 317). Adding additional predictors of other-cause mortality 

would lead to more individual life expectancy predictions, improved decision-making and 

potentially decreased overtreatment. Given that most of the current tools predicting death 

from other causes in prostate cancer patients seem to either be inappropriate for clinical use, 

or to provide questionable estimates (318), developing and validating a novel life expectancy 

calculator (using population-based samples of treated and untreated men (316)) in addition to 

a novel dynamic model predicting death from prostate cancer in the competing risks setting 

should be the next step toward informed treatment decision-making. 
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