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ABSTRACT 

The research of this thesis is focused to investigate the role of SUMOylation, a protein 

post-translational modification reaction, implemented to the skeletal muscle 

pathophysiology area. SUMOylation is regulated by an enzymatic cascade of coordinated 

events capable of the reversible attachment of the Small Ubiquitin-like Modifier (SUMO) 

on to the targeted proteins. This reaction is highly susceptible to intra- or extracellular 

stimuli and responds immediately by altering the expression of its enzymes and the final 

SUMOylated products as an adaptation to the new status.  

Skeletal muscle is a complex organ and it is unfortunately affected by severe diseases, 

which represent widespread pathologies affecting millions of people every year. Until 

now, despite many studies performed on the field, there is still a lack of information about 

the cellular and molecular mechanisms predicting or describing the early events of human 

muscle pathologies. We investigated different processes occurring among the SUMO 

network and the skeletal muscle functions and related them to the normal muscle 

activities or muscle alterations, from rodent models of muscle pathologies to human 

muscle biopsies. We described a tight correlation between the abundance of SUMO 

conjugated proteins and the different skeletal muscle fiber types. This association was 

quickly altered as a consequence of muscle activity changes or early events in acquired 

muscular disorders. We provided also a new skeletal muscle embryological classification 

based exclusively on the diverse abundances and distribution of the SUMO enzymes.  

A combination of innovative techniques allowed us to identify and validate new 

SUMO skeletal muscle targets and determine the modulation of the SUMO enzymes 

abundances during myogenesis and the progression of acquired muscle diseases. These 

results assigned to some SUMO components a potential biomarker function to predict 

skeletal muscle dysfunctions.  

Thus, the investigation on skeletal muscle disuse allowed us to discover a new 

transcriptional regulation mechanism of the E2 SUMO enzyme, Ubc9, mediated by the 

transcriptor factor PAX6 in soleus muscles under unloaded conditions.  

Finally, we proved that targeting the SUMO pathway using chemical drugs as BGP-

15 or anacardic acid have a positive effect on the treatment of myopathies and improving 

myogenesis under hyperglycemic conditions.  
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INTRODUCTION  

Skeletal muscle is a developed composite structure important for our life. The 

complexity of this organ is maintained by regular body training that promotes the good 

health of the muscle. Unfortunately, modifications in the lifestyle or mutations in the 

human genome promotes muscle disorders. To understand how these changes contributed 

to altering the ordinary skeletal muscle functions, I present in this thesis a new concept 

focused to investigate the role of the SUMO protein posttranslational modification in 

muscle pathophysiology. 

1. MUSCLE 

Muscle is one of the main soft tissues present in the animal kingdom. It is in charge of 

generating motion, maintaining body posture, and temperature homeostasis. Muscle cells 

also produce and secrete specific cytokines called myokines1,2. Muscle is categorized into 

three different types according to cell structure and function: cardiac, skeletal, and smooth 

(Figure 1). 

 

Figure 1: Types of muscle. The three types of muscles in the body, cardiac, skeletal, and 

smooth with their cellular organization. Blueringmedia, Vectorstock3.  

Cardiac muscle is formed by single striated cells with multiple branches and forms the 

major contractile tissue of the heart. Skeletal muscles are formed by multinucleated 

striated cells with a linear organization and gather the majority of the limbs, diaphragm, 

and neck-head muscles. Smooth muscle cells lack striation and form part of the inner 

structures of blood vessels, the uterine system, and the respiratory and digestive tracks. 
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Muscle cells contract in response to signals sent by the nervous system. Skeletal 

muscle cells receive the signal from the central nervous system causing a voluntary 

contraction in response to conscious orders, while cardiac and smooth cells receive the 

signal from the autonomic nervous system and contract involuntarily4.  

1.1. Skeletal muscle 

Skeletal muscle forms the 30-50% of total human body weight and stores about 50-

75% of all human body carbohydrates and amino acids. These compounds are released 

into the blood to maintain constant glucose levels during starvation since the release of 

amino acids stimulates the secretion of insulin and glucagon5,6. The skeletal muscle 

consists of different integrated components: blood vessels, nerve fibers, connective tissue, 

and muscle fibers. The blood vessels provide nutrients, oxygen, and remove the metabolic 

residues. Nerve fibers send the contraction signals to the muscle. The connective tissue 

helps the muscle to maintain its structure creating different organized structural levels of 

myofibers, muscle fascicle, and skeletal muscle (Figure 2).  

 

Figure 2: Striated muscle; human biceps muscle. Structural levels of the muscle 

organization, from muscle to the sarcomere. Encyclopӕdia Britannica7. 

Myofibers are long and cylindrical cells with multiple flattened nuclei in the periphery 

and surrounded by the myofiber cell membrane, the sarcolemma, that is enveloped by the 

basal lamina and connective tissue. Sarcolemma acts as a barrier between the extra- and 

intracellular spaces, allows the nutrients transport through different channels, maintains 
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the cell architecture and force transmission, and conducts the action-potential stimuli 

through the T-tubes. The T-tubes are membrane invaginations that permit a faster 

transmission of the action-potential into the muscular cells and help in the intracellular 

calcium regulation. Sarcoplasm, the muscle cell cytoplasm, contains myofibrils, glycogen 

for energy supply, and hemoglobin for gas exchange. More, sarcoplasm has a great 

abundance of mitochondria to fulfill high energy demand, and it is traversed by the 

sarcoplasmic reticulum, which forms a tight network storing calcium ions for the muscle 

contraction.  

The myofibrils constitute the contractile structures through the repetition of sections 

called sarcomeres that give the striated appearance to the cardiac and skeletal muscles. 

Sarcomeres possess a highly organized arrangement of the contractile filaments, actin and 

myosin, and the regulatory proteins troponin and tropomyosin8. The sarcomere anatomy 

is described according to the observations using electron microscopy (Figure 3).  

 

Figure 3: Striated muscle sarcomere. Schematic diagram. A-band of myosin filaments 

crosslinked with thin actin-containing filaments that end at the Z-disc (a). Nebulin 

(green) and titin (red) contribute to the structure. Electron micrograph of a longitudinal 

section of fish white (fast) muscle (b). Scale bar = 500 nm. Pradeep K Luther, J. Muscle 

Res. Cell Motil, 200910. 

Indeed, the muscle fiber shows a dark middle band framed by two light zones. The 

dark zone, name as A-bands, is caused by high protein density corresponding to thick 

filaments overlapping with the thin filaments. A different zone, the M-line, localized in 
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the middle possess connective tissue merged with the thick filaments to maintain the 

structure. The lighter zones (I-bands) have less protein density and have a dense band (Z-

disk) in the middle with connective tissue merged with the thin filaments9. The region 

contained between Z-disks is defined as a sarcomere. 

1.1.1.  Myosin 

Myosins (500 kDa) are a big superfamily of motor proteins and the human genome 

encode more than 40 MYO genes belonging to 11 clases11. They interact with actin to 

produce muscle contraction and are involved in other activities like cell movement, 

transport of organelles, and mitosis. Myosins are divided into 3 regions, an N-terminus 

head with ATPase activity for the binding and movement over the actin filaments, a 

middle region, and the C-terminus tail12. Myosin II is the most common class, it is 

responsible for muscle contraction, and can be found in striated and smooth muscle cells 

and forming stress fibers in non-muscular tissues13. It is composed of two heavy chains 

forming the double head and the coiled-coil tails and four light chains forming the middle 

regions and binding the heavy chains14,15.  

1.1.2.  Actin  

Actin (42 kDa) is a highly expressed protein in the cells and can be found in two 

different states, monomeric (G-actin), or combined in a polymeric filamentous chain (F-

actin). Actin can perform protein-protein interaction with a vast amount of actin-binding 

proteins, making it a key player in multiple functions within the cell16. There are 5 actin 

isoforms, 3 α-isoforms expressed in each of the three muscle types (smooth, skeletal, and 

cardiac), and a β- and γ-isoforms in all the cells, with slight amino acid differences among 

them mainly close to the N-terminus. The combination of two F-actin filaments forming a 

helicoidal structure is essential for the contractile force production. 

1.1.3.  Troponin 

Troponin is a specific protein complex of skeletal and cardiac muscles. There are 

three regulatory units in the complex: troponin T (34 kDa), troponin I (23 kDa), and 

troponin C (18 kDa), with different functions. Troponin T anchors the troponin complex 

to tropomyosin. Troponin I binds the troponin-tropomyosin complex to the actin filament 

and blocks the actin-myosin interaction in the absence of calcium. Troponin C possesses 
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calcium-binding sites and induces the conformational change of troponin I to start the 

contraction17. 

1.1.4.  Tropomyosin 

Tropomyosin (70 kDa) has four tropomyosins (TPM) genes that generate 40 isoforms 

in mammals. Tropomyosin is localized in the myosin-binding sites of the actin proteins, 

blocking them. When the calcium levels rise and the contraction process begins, troponin 

rotates tropomyosin position freeing the myosin-binding sites on actin18. 

1.2. Myogenesis 

Myogenesis is the process that promotes skeletal muscle formation during embryonic 

development but also in any other circumstances when muscle regeneration or reparation 

is required, like injuries or muscle remodeling. In embryonic development, a high 

abundance of fibroblast growth factors (FGFs) are produced inducing the myoblast 

proliferation process, consequently, when the FGFs levels decrease, the myoblast division 

is arrested and the myogenesis program begins. During muscle regeneration, activated 

satellite stem cells respond to the cytokines released from the immune cells as 

inflammatory signals to repair the damaged myofibers19. The satellite stem cells will 

follow an asymmetric division with one of the daughter cells remaining as stem cell and 

the other starting the differentiation into the myogenic pathway to provide enough cells to 

heal the fiber20. When muscle reparation occurs due to a severe injury condition, muscle 

regeneration is associated with fibrosis events that contributed to repair the area, replacing 

the damaged myofibers with connective tissue.  

Myogenesis is a highly regulated event. Indeed, the gene expression of myogenic 

regulatory factors (MRFs) such as MyoD, Myf5, and Mrf4 are indispensable for skeletal 

muscle development. Satellite stem cells expressing high levels of Myf5 and Pax7 will 

follow the myogenic pathway21. Pax is a family of transcription factors with an important 

role in tissue specification and organ development22. An increase of MyoD gene 

expression regulated by Pax7 will induce the proliferation, differentiation, and muscle 

regeneration. Myogenin is also part of the MRF family with a later role in the 

differentiation of myoblasts into skeletal muscle fibers23(Figure 4).  
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Figure 4: The myogenic regulatory factors pathway during skeletal muscle regeneration. 

Myogenesis steps from quiescent cells to mature myofibers. Expression of the different 

MRFs and Pax7 during the different stages. Nadège Zanou et al., Cellular and Molecular 

Life Sciences, 201324. 

Other important players in the myogenesis pathway are the reactive oxygen species 

(ROS). ROS are oxygen-containing species that are chemically reactive and includes 

hydrogen peroxide (H2O2), superoxide (•O2
−) and hydroxyl radical (•OH). ROS origin can 

be mitochondrial, produced as waste when the electrons leaking from complex I and III 

react with oxygen, or cellular, generated by other cellular sources including NADPH 

oxidases, lipoxygenases, and cyclooxygenases with a different purpose like synthesis, 

signaling, or defense mechanism. ROS levels reduce the nuclear binding activity of the 

transcription factor AP-1, allowing the activation of the myogenin promoter for its 

expression. The activation of the satellite stem cells is mediated by mitogen-activated 

protein kinases (MAPKs) as a response to oxidative stress, inducing the expression of 

MyoD25. Lately, ROS have been found playing an important role as secondary 

messengers for many biological pathways such as healing process26, cancer metastasis27 

and accelerating the myogenesis28 

1.3. Skeletal muscle contraction 

The voluntary contraction of the skeletal muscle is induced by signals from the central 

nervous system29. A motor unit is formed by a motor neuron that goes from the spinal 

cord to the muscle fibers that innervates. The neuron transmits the action potential (AP) 

into the muscle fibers through the branches of its axon. The AP induces the secretion of 

the neurotransmitter acetylcholine (ACh) activating its receptors in the muscle fiber, 

causing the sarcolemma depolarization and generates a new AP. The AP spreads radially, 
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traveling into the cell via the T-tubes to reach the sarcoplasmic reticulum (SR) releasing 

the calcium contained inside into the cytoplasm. Calcium interacts with troponin changing 

its conformation and initiating the contraction. When the depolarization is over, calcium 

is reabsorbed by the SR through the SERCA (SR calcium-ATPase) pumps, and the 

contraction finishes leading to the relaxation of the muscle30. The myosin-actin cycling 

produces the contraction through the sliding of the actin and myosin filaments one over 

the other. This movement requires several steps and the hydrolysis of ATP as an energy 

source. In the first step, ATP binds the myosin’s head inducing its release from actin. In 

the next step, ATP hydrolyzes into ADP+Pi and the energy released induced the 

elongation of the myosin head and the binding in a new myosin-binding site in the actin. 

Finally, ADP+Pi is released and the head of the myosin bends producing the movement31 

(Figure 5). 

 

Figure 5: Skeletal muscle contraction steps. Adapted from Earth’s Lab32. 

1.4. Fiber type and skeletal muscle function 

Muscle fibers are classified according to the myosin heavy chain (MHC) isoforms 

expressed on them. The MYH genes encode the expression of four MHC isoforms: MHCI 

(MYH7), MHCIIa (MYH2), MHCIIb (MYH4), MHCIIx (MYH1). MHCIIb is not 

expressed in humans limb muscles33, so only the other three MHC isoforms are present (I, 

IIa, and IIx). 

Muscle fibers are also classified depending on the speed of contraction (fast or slow) 

and the metabolism used for energy uptake (oxidative or glycolytic). The combination of 
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these two factors catalogs the muscle fibers according to differences in contraction, 

metabolism, and resistance to fatigue. Type I fibers have slow contractile speed and an 

oxidative metabolism thanks to a high mitochondria content, making them resistant to 

fatigue. Type II fibers are split into type IIa: fast with oxidative metabolism, type IIb: fast 

with a glycolytic metabolism, and therefore less resistance to fatigue and type 2X with an 

intermediate phenotype (Table. 1).  

 

Table 1. Fiber type classification in type 1 fibers (red) and type 2 (blue), according to the 

speed of contraction, metabolism, resistance to fatigue, and myosin isoform.  

The skeletal muscle fiber type composition is subordinated to the muscle functions. 

Usually, muscles are composed of different fiber types in diverse proportions, according 

to the need for contraction speed or resistance. However, the fiber type composition is not 

constant over individuals nor during life. Indeed, regular training changes the fiber 

composition with a positive effect on the speed or endurance of the specific muscle, on 

contrary, a complete fiber reorganization with loss in muscle properties is observed in 

muscle disuse or muscle diseases34. 

1.5. Myopathies 

Myopathies are clinical disorders of skeletal and cardiac muscles. Myopathies are 

classified as inherited, with a genetic component and an early age development, or 

acquired, with a sudden or subacute presentation at an older age. The manifestation of 

those diseases is usually in the form of weakness and muscle atrophy35.  

In this thesis within the inherited myopathies, we considered the hypertrophic 

cardiomyopathy (HCM) and protein aggregate myopathies (PAMs). HCM is a genetic 

condition that causes an increase in the wall thickness of the left ventricle, making it 

harder to pump the blood. It usually causes shortness of breath, chest pain, arrhythmias, or 

sudden death36. PAMs are a group of diseases of striated muscle with a very broad origin 

and cause misfolded proteins to aggregate, observed in pathologies like Alzheimer’s and 

Slow twitch

Fiber type Type 1 Type 2A Type 2X Type 2B

Speed of contraction Slow << Fast < Fast < Fast

Metabolic type Oxidative Oxidative Glycolytic Glycolytic

Resistance of fatigue High > High Low > Low

MHC gene MYH7 MYH2 MYH1 MYH4

Fast twitch



 

 25 

Parkinson’s disease, epidermolytic keratin disease, or heart and skeletal muscle-like 

myopathy37. 

Among the acquired myopathies, Ventilator Induced Diaphragmatic Dysfunction 

(VIDD) and limb muscle inactivity were the ones used as muscle diseases models in this 

study plan. VIDD is the loss of diaphragmatic force-generating capacity caused by the use 

of mechanical ventilation. The outcome will cause difficulties in weaning from the 

ventilator and potentially the death of patients in the Intensive Care Unit (ICU)38. Limb 

muscle inactivity, associated with patients forced to rest due to injury or illness, has an 

atrophic effect in the muscle tissue since the body will break it down to conserve energy. 

Hyperglycemia is a severe condition associated with diabetes; a disease caused by the 

excess of glucose in the blood due to insulin-resistant problems. We adopted this 

pathological disorder to investigate how muscle regeneration is affected by high glucose 

conditions. Certainly, diabetes is usually associated with muscle mass loss due to the 

upregulation of factors like FOXO1 which trigger the skeletal muscle protein degradation 

pathways39.  
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2. SMALL UBIQUITIN-LIKE MODIFIER PROTEIN (SUMO) 

Protein post-translational modifications (PTM) are reactions catalyzed by enzymes 

where chemicals, lipids, sugars, or polypeptides are reversible or irreversible covalently 

attached to specific targets after their synthesis. These PTMs play an important role in 

dictating the target folding, function, localization, conformation, and activity. PTM are a 

fundamental part of the cellular and tissue signaling cascades that respond to intra and 

extracellular stimuli. A subgroup of PTMs showed the covalent linkage of small 

polypeptides, such as ubiquitin or ubiquitin-like molecules (UbLs, i.e., SUMO, NEDD8, 

ISG15, and ATG), providing a new structural reorganization of the target. This event 

possibly modulates the target-protein interactions, regulates the target activity, its 

subcellular localization, and stability or turnover. 

The Small Ubiquitin-like Modifier (SUMO) is a protein of 101-amino acids (11 kDa). 

SUMO is covalently attached to the lysine residues on target proteins via the 

SUMOylation enzymatic cascade reaction. Five SUMO mammalian paralogs, SUMO1 to 

SUMO5, are transiently and reversibly conjugated to the substrate (Figure 6).  

 

Figure 6: Alignment of amino acid sequences of SUMO5, SUMO1, SUMO2, SUMO3, 

and SUMO4. SUMO conjugation motifs are boxed by solid lines. The di-glycine motif 

for SUMO maturation is boxed by dashed lines. Yao Liang et al., Sci. Rep., 201640 

SUMO1, SUMO2, and SUMO 3 target a vast number of proteins for SUMOylation41. 

SUMO moieties are produced as precursors, and the isopeptidases, known as SUMO 

specific proteases, target them for its maturation42. Maturation generates a C-terminal 

carboxyl group, after a double glycine amino acid (SUMO-Gly-Gly-OH) that binds to the 

target protein lysine (K) residue in the consensus sequence, ΨKxD/E, via an isopeptide 

bond. In the consensus sequence, Ψ is a large hydrophobic residue, K is the target lysine 

and D/E are acidic residues43. SUMO2 and SUMO3 paralogs can polymerize, forming 
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polySUMO chains by covalent linkage of the C-terminal Gly-Gly-OH residue to a lysine 

available in their inner structure within a consensus sequence. SUMO1 lacks a consensus 

site and can’t produce poly chains, usually working as a mono SUMOylation link or 

terminator in a polySUMO2/3 chain. The study of SUMO4 functions is difficult due to its 

specific tissue distribution, but the presence of a proline residue in its sequence prevents 

its maturation and conjugation to proteins44. SUMO5, the last addition to the family 

seems to play a role in the disruption of promyelocytic leukemia nuclear bodies (PML-

NBs). SUMO5 helps to recruit components for its enlargement and enhance the 

conjugation of SUMO2/3 poly chains, inducing RNF4 activity for the PML-NBs 

disruption40. PML-NBs are interchromosomal accumulations of PML and other proteins 

that regulate diverse cellular processes like transcription, DNA repair, apoptosis, 

senescence, and tumor suppression. 

2.1. The SUMO cycle and SUMO enzymes 

SUMOylation is a dynamic reaction where only a small percentage of the targeted 

proteins is SUMOylated and their abundance is quickly affected as a response to internal 

or external cellular stimuli.  

During SUMOylation, SUMO is attached to the target proteins through an enzymatic 

cascade mediated by the hetero-dimer E1 SUMO-activating enzyme, SAE1/2, the E2 

SUMO-specific conjugating enzyme Ubc9, and in most cases, an E3 SUMO ligase, part 

of the PIAS enzyme family45 (Figure 7). 

The heterodimer of SAE1 and SAE2 triggers the activation of SUMO in an ATP-

dependent way and transfers it in the conserved catalytic cysteine of the conjugation 

enzyme Ubc9. Then Ubc9, up to date the only E2 identified, delivers the SUMO moiety 

to the substrates. In some cases, Ubc9 alone is sufficient for the conjugation and ligation, 

however, the presence of the SUMO E3 ligases, facilitate the interaction of Ubc9 with the 

substrates, direct Ubc9 to specific targets, promote polySUMO chain formation, and 

introduce additional SUMO acceptor sites46,47 (Figure 8). 
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Fig. 7: Mechanism of SUMOylation. SUMO cycle with consecutive steps for the SUMO 

conjugation/deconjugation into the target (A). Different SUMO conjugation options with 

SUMO1 and SUMO2/3, from single units to poly chains (B). Andrea Rabellino et al., 

Cancer Res, 201748. 

 

Fig. 8: PIAS proteins structure. SAP (DNA-binding motif), PINIT (nuclear translocation) 

RING (E3 SUMO protein ligase), ADSIM (acidic domain-containing SIM), S/T rich 

(Serine/threonine-rich C-terminal). Andrea Rabellino et al., Cancer Res, 201748. 

In the case of SUMO, the covalent enzymatic reaction is reversible and mediated by 

specific proteases. In humans, three families are involved to assess the SUMO 

deconjugation and they are classified as SENPs42, Desi49, and USPL150. These enzymes 

show specific activity among the different SUMO paralogues and different localization in 
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the cellular and nuclear compartments. SENPs contain a specific N-terminal domain in 

charge of the regulation of the cellular localization, proposing that each SENP may have a 

specific group of substrates51 (Figure 9).  

 

Figure 9: Structures of SUMO proteases. SUMO specific proteases with corresponding 

domains: catalytic domain in magenta, regions for intracellular localization in cyan, and 

SIM domains marked with asterisks. Christopher M. Hickey et al., Nature Reviews 

Molecular Cell Biology, 201252. 

Besides SUMO conjugation into proteins, non-covalent protein interaction with 

SUMO is possible through the SUMO interaction motifs (SIMs). SIM domains contain a 

Val/Ile-X-Val/Ile-Val/Ile sequence that allows SUMO binding53. 

A connection between SUMO and Ubiquitin pathways was discovered with the 

SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind poly-SUMO2/3 chains via 

SUMO interaction motifs (SIMs) in tandem and target the SUMOylated protein with 

ubiquitin chains for degradation through the proteasome system. One example of this 

protein family is the mammalian RNF4, involved in the ubiquitin-dependent degradation 

of promyelocytic leukemia bodies (PML) after poly-SUMO2/3 conjugation, induced by 

different types of cellular stress54. The minimum amount of SIMs required to bind poly-

SUMO chains is two, as it was demonstrated by the mutation of the different SIM 

domains in RNF4 sequence55.  
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2.2. SUMOylation regulates diverse biological processes 

SUMOylation is an important PTM involved in the regulation of crucial cellular 

functions including developmental and differentiation, and its alteration contributes to 

severe human diseases. However, most of the studies were performed on single 

eukaryotic cells from yeast to primary cells. The involvement of SUMOylation in 

regulating activity, functions, development, and disorders in complex systems like 

differentiated tissues (i.e., brain and muscles) is just emerging.  

The SUMO network is vital for the survival of eukaryotic cells and changes in the 

expression levels of one enzymatic component may destabilize the entire cell behavior. 

For example, low levels of SAE1/2 will reduce the aggressivity of breast cancers with 

high expression of Myc56, but in mammalian cells and mice embryos in development, the 

deletion of the SUMO E1 enzyme has a lethal efffect56,57. The high abundance of Ubc9 

observed in the hippocampus and cerebral cortex suggests a potential role of 

SUMOylation in the synaptic and neuronal plasticity58, but overexpression of Ubc9 is 

observed in ovarian, hepatocellular, prostate, and lung carcinomas59. 

The SUMO enzymes regulate the coupling and uncoupling of the SUMO moieties on 

the targeted protein in a balanced manner, as it has been observed in the cardiac gene 

regulation for the development and maintenance of the normal cardiovascular system60. 

Indeed, different abundances of SUMO enzymes were notified and associated with an 

altered SUMO reaction equilibrium, with a consequent variation in the total SUMOylated 

protein profiles observed, for example, in heart biopsies of patients who had severe 

developmental heart defects, including cleft lip and cardiac malformation61. 

The equilibrium of the SUMOylation reaction is also altered under different stress 

conditions including heat shock, high oxidative or osmotic environments, and ethanol 

poisoning. Stress situations are usually associated with a large increase in the global 

SUMOylation by SUMO2/3 in mammals, plants, and yeast62. Although this increase of 

SUMOylation is widespread in these situations, the affected substrates and regulatory 

circuits remain, however, largely unknown. 

SUMO conjugation triggers the targeted protein in three different aspects: alters the 

activities, consents the localization or relocation in different cellular districts, or facilitates 

the interaction with other proteins. In fact, RIM1α, the Rab3-interacting molecule 1α, 

involved in the neuronal function, requires the conjugation with SUMO1 to increase the 
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synaptic vesicle presynaptic exocytosis activity63 and the protein interaction of RanGAP1, 

(GTPase-activating protein for Ran that regulates the cytoplasm-nucleus transport), with 

the nuclear pore complex protein RanBP2 (RAN binding protein 2) and its nuclear 

translocation is allowed only when the first one is SUMOylated64. 

2.3. SUMO implication in skeletal muscle pathophysiology 

The complexity of skeletal muscle physiology requires a crucial regulation and 

coordination of diverse muscle activities. As a new integrator pathway, SUMO 

orchestrates the correct functions of different cellular networks as they are summarized 

below. 

SENP1 and SENP2 are important SUMO deconjugases operating in the myogenesis 

process65,66. As an example, the deSUMOylation of Sharp-1 mediated by SENP1, inhibits 

its activity, while SENP2 cleaves SUMO moieties from the transcription factor Mef2A, 

and promotes the skeletal muscle differentiation.  

The sarcomeric organization is coordinated by the SUMOylation of different 

components like the Mef2 family of transcription factors67, which enhances the 

transcription of Myomesin-1 for its incorporation into the sarcomeric structures68. 

Proteins involved in the mitochondrial adaptation to exercise like the myocyte enhancer 

factor-2 (Mef2), the peroxisome proliferator-activated receptor-gamma coactivator 1 α 

(PGC1α)69, p38, and c-Jun70, need the SUMO conjugation for its nuclear translocation. 

The control of muscle energy metabolism is critical to avoid the development of 

metabolic syndromes or to correct obesity disorders. The inhibition of the Krüppel-like 

transcription factor 5 (KLF5) by SUMO attachment blocks its activity regulating the lipid 

metabolism71. Overexpression of Ubc9 protects the glucose transporter GLUT4 from 

degradation and increasing the response to insulin in adipocytes72.  

SERCA, the sarco/endoplasmic reticulum Ca2+-ATPase has the role of transferring 

calcium from the sarcoplasm to the SR lume during muscle relaxation. SERCA2a is the 

isoform expressed in cardiac muscle and slow-twitch skeletal muscle. The conjugation of 

SUMO1 in SERCA2a has a protective effect during heart failure, with the increase of 

SUMO1 levels restoring SERCA2a levels73. 

There are some animal models developed to study the role of SUMO in different 

pathologies. SENP1 knockout or flox inducible for the study of apoptotic death during 
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transient brain ischemia/reperfusion74 or His6-HA-SUMO1 KI mice for brain analysis of 

SUMOylated proteins75. 

2.4. SUMO as drug targetable pathway 

A new line of research has emerged looking for compounds with effects in the 

modulation of SUMO PTM related to human diseases. New drugs are also designed to 

affect the main properties of the enzymes involved in the SUMOylation process to 

improve or reduce the interaction and/or conjugation of specific SUMO substrates. The 

massive changes in SUMO components associated with cancer, cardiac, and 

neurodegenerative diseases76 give an insight into how important it is to keep a well-

balanced SUMOylation profile. The peculiar reversible conjugation characteristic of 

SUMO makes it perfect for the development of specific pharmacological drugs to revert 

the effect of pathologies through its modification. In the last years, new drugs are starting 

to be established and to prove its positive effects in the treatment of heart failure, cancer, 

and other pathologies. 

In vivo and in vitro studies provided new results showing the inhibitory effect of some 

drugs over the E1 activating enzymes SAE1 and SAE2. The gingkolic and anacardic 

acids impair the formation of the E1-SUMO intermediate77 and show a positive effect in 

the treatment of non-promyelocytic leukemias78. A similar effect over the formation of the 

E1-SUMO intermediate was observed using kerriamycin B79 and davidiin, having the last 

one a more potent effect even in lower doses80. The only drug under clinical trials right 

now is the inhibitor TAK-981, with an effect blocking the SUMO transference between 

the E1 and Ubc981. 

On the contrary, the use of the small molecule N106 enhances the binding interaction 

of both E1 subunits, SAE1 and SAE2 increasing its conjugation activity and the 

SUMOylated fraction of SERCA2a, as a potential therapeutic strategy for heart failure 

treatment82. 

Ubc9 is also a drug target. Spectomycin B1 binds Ubc9 inhibiting its activity83, and 2-

Do8 blocks the SUMO transfer from the E2 to the substrate84. 

Topotecan decreases the total SUMOylation levels in glioblastoma cells by impairing 

SUMO1 conjugation of CDK6 and causing its degradation, but unfortunately, the 

mechanism involved in this activity is yet to be discover85. 
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Finally, several new protein-based inhibitors and activity-based probes are useful for 

the inhibition of the SUMO deconjugases (SENPs) due to its implication in several 

cancer86 (Figure 10).  

 

Figure 10: Overview of inhibitors and probes of SENPs. List of SENPs inhibitors and 

probes. Jia Yuqing, ACS Chemical Biology, 201986.   
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3. UBIQUITIN AND THE UBIQUITIN-PROTEASOME SYSTEM 

Goldstein discovered the ubiquitin-protein in 197587. Ubiquitin is a 76-amino acid 

peptide (9 kDa) and is covalently attached to the target through the ubiquitin cycle. The 

studies of the ubiquitin-mediated proteasomal degradation of regulatory proteins showed 

the essential role of the ubiquitin cycle in the cells. Ubiquitination controls many 

processes, including cell-cycle progression (cyclins and Cdk), signal transduction, 

transcriptional regulation (tumor suppressors, proto-oncogenes), receptor down-

regulation, immune response, development, apoptosis, and endocytosis88. Pathological 

conditions, including malignant cell transformation, emerge when the ubiquitin pathway 

suffer alterations. 

Ciechanover and Hershko found in 1978 that the ubiquitin-mediated proteolysis 

required the use of ATP as an energy source89. Ubiquitin is attached to the target protein 

through the sequential action of three enzymes. First, a specific activating enzyme (E1) 

activates the ubiquitin C-terminal Gly residue with ATP energy consumption. Through 

this step, an intermediate ubiquitin adenylate is created, PPi released and ubiquitin binds 

to a Cys residue of E1 in a thioester linkage, with AMP release. After that, the activated 

ubiquitin is transferred to a Cys active residue of a ubiquitin-carrier protein (E2) and 

finally a ubiquitin-protein ligase enzyme (E3) catalyzes the ubiquitin union in the 

substrate lysine residue by its C-terminus90,91. Once one ubiquitin molecule is attached to 

the protein, the process is repeated several times to form a polyubiquitin chain. 

Ubiquitin has several lysines in its sequence helping to create different types of 

ubiquitin chains with specific functions. Lys48 ubiquitin poly chains mainly target 

substrates for the proteasome degradation, but new functions like the activity regulation of 

the transcription factor Met4 or the ubiquitin selective chaperone p97 activation are also 

performed92. Chains form through the Lys63 have non-proteolytic functions in different 

pathways including DNA damage repair, cellular signaling, intracellular trafficking, and 

ribosomal biogenesis, but new studies show its involvement in the degradation of some 

targets93. Unconventional ubiquitin poly chains of Lys6, Lys27, Lys29, and Lys33 have 

been found, but their function remains unknown. 
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3.1. Ubiquitinating enzymes 

The E1 ubiquitin-activating enzymes catalyze the first step in the ubiquitination 

reaction94. The human genome encodes two E1 for the ubiquitin pathway: 

UBA1 contains four different domains for the interaction with ATP95 and Ub, the 

active cysteine, and the recruitment of specific E2s96. 

UBA6: Shares 40% of its sequence with UBE1 and some E2s, but it also has specific 

E297. 

The E2 ubiquitin-conjugating enzymes participate in the protein substrate recognition, 

either alone or in combination with an E3 enzyme, being able of great specificity or 

overlapped functions. The E2-E3 interaction is very complex, involving different levels of 

specificity with a very precise effect over the target. 

E3 enzymes are classified into three types of ubiquitin-protein ligases: HECT, U-box, 

and RING-finger. They have an important role in the specific bind of the E2 to the 

substrate and up to date, 500-1000 E3 ligases are described98. These enzymes localize in 

the different organs with tissue specificity and different localization in the cellular 

compartments, demonstrating how critical specificity is for the ubiquitin pathway. 

3.2. Deubiquitinating enzymes 

Before the ubiquitinated protein goes inside of the proteasome for degradation, the 

ubiquitin polychain is removed. Six families of enzymes are the ones performing the task: 

ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), Machado-

Josephin domain proteases (MJDs), ovarian tumor proteases (OTU), Jab1/Mov34/Mpr1 

Pad1 N-terminal+ (MPN+) (JAMM), and the ZUFSP. USPs detach ubiquitin from the 

poly-ubiquitinated proteins, UCHs cleaves Ub/NEDD8, target ubiquitin precursors for 

maturation, and interact with Lys48 Ub chains to protect them from degradation. MJDs 

and OTU have high Ub chain specificity (K11, K48, K63) with specific roles99. JAMM 

are the only metalloproteases and use Zn+ in its active site for the deubiquitination100. 

ZUFSP has a single protein in the family, ZUP1 with an important role in genome 

stability. 

 

 



 

36 

 

3.3. E3 ubiquitin ligase MuRF1 

MuRF1, MuRF2, MuRF3 compose the C-II family of TRIM proteins and are only 

expressed in cardiac, skeletal, and smooth muscles. All three proteins can homo- and 

hetero-dimerize via their coil domains. MuRF1 is a protein of 353 amino acids (40 kDa) 

encoded by the TRIM63 gene, MuRF2 (51 kDa) by TRIM55 and MuRF3 (40 kDa) by 

TRIM54 (Figure 11). 

  

Figure 11: MuRF domains. MuRF protein family with corresponding domains. RING, 

MFC (MuRF family-specific domain), BB (B-box), helical region (coiled-coil domain), 

COS (C-terminal subgroup One Signature-box), and AT (acidic tail). Dr. Benjamin 

Suenkel, The Max Delbrück Center for Molecular Medicine101. 

Like the other TRIM proteins, MuRF1 follows the domain pattern of a RING-finger 

domain (E3 ubiquitin ligase function), followed by an MFC, a highly conserved region in 

the MuRF family for binding to PPAR (peroxisome proliferator-activated receptors). A B-

box and two coiled-coil domains (helical region and COS) localize after them, for protein 

interactions and microtubule-binding, with an acidic tail at the end of the sequence that 

promotes binding with the microtubules with the help of the coiled-coil domains102. 

MuRF1 was first identified as a novel muscle-specific RING finger protein that bound 

to the kinase domain of the giant sarcomeric protein titin. MuRF1 localize at the M- and 

Z-line of the sarcomere103 associated with MuRF2 and MuRF3. When there is inactivity, 

unloading, or muscle stress conditions MuRF1 is translocated into the myonucleus, where 

it may influence gene expression in the different atrophy models. The specific role could 

be direct, acting as a transcription factor or indirect, mediating polyubiquitin degradation 

of other transcription factors104. 
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MuRF1 is the only family member related to muscle atrophy because its transcription 

is under the control of FOXO1 and FOXO3a that increases during certain forms of 

atrophy. The two major classes of proteins as putative substrates for MuRF1 are 

myofibrillar proteins and proteins occupied in ATP generation, in particular those 

involved in glycolysis, suggesting that MuRF1 could have a role in metabolic regulation 

since it was observed in cardiac mitochondria reducing the reactive oxygen species 

levels105. 

3.4. SUMO pathway and Ubiquitin Proteasome System 

Ubiquitin and SUMO are part of the same family of ubiquitin-like proteins and 

common elements are shared in both pathways. They use similar enzymatic reactions 

involving the E1 activating, E2 conjugating, E3 ligase, and deconjugases enzymes to 

regulate the SUMO and Ub binding to the substrate’s lysine. On the contrary, there are 

also some differences between the two pathways, SUMO enzymes cannot work as 

Ubiquitin-conjugating and deconjugating enzymes, and vice versa. More, predominantly, 

the main task described for the ubiquitin conjugation is the proteasomal degradation of 

proteins in the different cell compartments106,107, while the SUMO moieties conjugation 

affects the enzymatic activity, protein-protein interactions, and cellular localization of the 

targeted proteins.  

A large pool of proteins is a substrate for both SUMO and ubiquitin. Since both cycles 

usually compete for the same lysine, the expected result is an antagonistic effect108. 

Interestingly, a cooperative effect is observed in SUMO2/3 chains conjugated to specific 

substrates, which become a target of polyubiquitination reaction, mediated by the SUMO-

targeted ubiquitin ligase (STUbL), RNF4, and addressed for proteasomal degradation109. 

Both ubiquitin and SUMO pathways can cross-regulate each other through the 

modification of their components, for example, the inhibition by SUMOylation of the 

ubiquitin E2-25k110, the Gam1 ubiquitination of SAE1 for its degradation111 or the 

complex relationship between the ubiquitin E3 enzyme Parkin and the SUMO E3 

RanBP2. Parkin ubiquitinates RanBP2, promoting its degradation and RanBP2 binds non-

covalently to Parkin enhancing its activity112. 
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3.5. The ubiquitin and UbLs family 

Besides Ub and SUMO previously mentioned, the ubiquitin-like protein family is 

formed by other proteins with similar structure but involved in the regulation of different 

cellular processes in the nuclear transport, proteolysis, translation, autophagy, and 

antiviral pathways113 (Figure 12). 

  

Figure 12: Schematic overview of the enzymatic cascades involved in the Ub and UbL 

conjugation pathways. Ubiquitin and ubiquitin-like family of proteins with 3D structure. 

Conjugation cycle with corresponding enzymes and known substrates for each UbL. 

Martine Biard-Piechaczyk et al. Biology of the Cell, 2012114. 

Nedd8 has a 58% similarity to Ub and was first found as one of the ”Neural precursor 

cell-Expressed, Developmentally Downregulated” genes expressed in embryonic mouse 

brain. Nedd8 regulates the Cul family members, needed for the assembly of 

multicomponent RING E3 ligases. 

FAT10, the HLA-F adjacent transcript 10, is expressed in dendritic and B cells 

cytoplasm and is involved in the immune response, induction of caspase-dependent 

apoptosis, NF-κB activation, cell-cycle defects, and chromosomal instability. 
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ISG15, interferon-stimulated gene 15, was the first UbL identified and is involved in 

the interferon signaling after infection. Interferon type I mediates its expression and acts 

targeting viral and host proteins. 

Atg8/LC3 and Atg12 regulate autophagosomal membrane growth and expansion: 

There is a correlation of Atg8 levels and the size of the autophagosomes, Atg12 forms a 

complex with Atg5 and Atg16L1 and works as an E3 ligase in the external side of the 

autophagosomal membrane.  
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4. AIMS OF THESIS  

This thesis aims to understand the role played by the SUMO post-translational 

modification in the pathophysiology of skeletal muscle. We hypothesize that an 

invaluable role as a cellular sensor of environmental changes is attributed to the SUMO 

pathway for the correct muscle performance. Thus, by associating the alterations of the 

SUMO network with muscular diseases, we provide a new angle to understand the origins 

and offer potential innovative treatments for severe muscle pathologies.  

4.1. Specific aims: 

- To understand the functions of SUMOylation in the skeletal muscle 

physiology. Study the adaptation of the SUMO pathway under altered muscle 

conditions.  

 

- To characterize the SUMO PTM on the E3 Ubiquitin ligase MuRF1. 

Understand how SUMOylation influences MuRF1 activity and cellular localization. 

Associate MuRF1-related human muscular disorders to its alterations in SUMO 

conjugation. 

 

- To associate an unusual distribution in the SUMO enzymes and the 

SUMOylated proteins to the skeletal muscles localized in different body districts. 

Study the implications of the SUMO network modulation in muscle adaptation. 

 

- To determine the variations of SUMO PTM in the myogenesis processes. 

Associate the impairment of muscle regeneration under hyperglycemic conditions 

with alterations in the SUMOylation reaction events during the myogenesis process.  
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5. METHODOLOGICAL CONSIDERATIONS  

5.1. Eukaryotic cell lines  

Immortalized murine myocytes, C2C12, and HeLa cells were cultured in DMEM-

normal glucose (5.5 mM, 308-340 mOs/Kg) or high glucose (25 mM, 313-346 mOs/Kg) 

media, supplemented with 10% FBS and 100 IU/ml of penicillin-streptomycin antibiotics. 

Cells were grown in a humidified air atmosphere at 37 °C in presence of 5% CO2.  

5.2. Rodents and human samples  

Rats: Female Sprague-Dawley rats were deeply sedated by isoflurane inhalation, 

paralyzed with α-cobratoxin, and maintained in constant protein, and fluid balanced from 

the beginning to the end of all mechanical ventilation processes. Animals were monitored 

continuously to detect any pain reactions (EEG activity, heart rate, and intra-arterial blood 

pressure). For the pharmacological assay, rats were treated with BGP-15 drug (40 mg/kg 

dose) during the desired period of mechanical ventilation. Control rats, not subjected to 

mechanical ventilation, were anesthetized with isoflurane for two hours and then 

euthanized. The experimental procedure was ended at different time points, from few 

hours to 2 weeks of mechanical ventilation, and animals were sacrificed by thoracotomy, 

hearts were removed, and all tissues were harvested. Surgery was performed under sterile 

conditions. All necessary steps were taken to minimize animal suffering described in the 

ethical permit N263/14.  

Wistar-Han rats were caged individually and randomly assigned to experimental 

groups: freely ambulating as controls, 1-, 2-, and 4-days hind limb-unloaded animals. 

Hind limb muscles were unloaded using the tail suspension rat model, by wrapping the 

tail root with tape under general anesthesia, induced with intraperitoneal administration of 

20 mg/kg of zolazepam chlorhydrate and tiletamine chlorhydrate. All animals were 

euthanized in the presence of anesthesia with isoflurane according to the ethical permit 

502/2015-PR. Limb muscles were excised and frozen in liquid nitrogen.  

Mice: BKS Cg-Dock7m+/+ Leprdb/J male mice, were used as a model of chronic 

hyperglycemia, this strain is used as a model in phases I - III of diabetes type II and 

obesity. 8- to 10-week-old mice were sacrificed by cervical dislocation and the respiratory 

muscles were immediately isolated and deeply frozen in liquid nitrogen and storage at 

−140°C. 
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Human: Muscle biopsies were isolated from the vastus lateralis muscle of volunteers 

participating in a campaign of muscle inactivity performance at 0, 8, and 35 days after a 

bed rest period. Procedures were described in the ethical permit 502/2015-PR. 

5.3. ORFs cloning in expression vectors 

To clone the ORFs of the analyzed proteins in prokaryotic and in eukaryotic plasmids, 

cDNAs generated from rodents or human skeletal muscle RNAs were used as templates 

and PCRs were performed together with designed primers containing specific restriction 

sites for the cloning. The PCR reactions were performed with 40 ng template, 20 μM 

forward and reverse primers, 20 mM dNTP’s mix, High Fidelity Buffer, and 2 U Pfu 

enzyme in a final volume of 50 μl. The PCR cycling program was: denaturation 95°C for 

5 min, followed by 25 cycles of denaturation 95°C for 30 sec, annealing (temperature 

according to the primers TM) for 30-60 sec, polymerization 72°C for 1 min, and a final 

step of 72°C for 10 min elongation. Amplicons were purified in agarose gel and extracted 

by using a gel extraction kit following the manufacture instructions. Ligase reactions were 

performed combining the digested plasmids and amplicons (molar ratio 1:3) in presence 

of ligase enzyme with the appropriate buffer, for 16 h at room temperature. Ligase 

reactions were used to transform competent DH5α and plated on bacteria LB agar 

medium, supplied with the appropriate antibiotic selection. Colonies were visible after 24 

h of incubation at 37°C. 

5.4. Side direct mutagenesis 

The site direct mutagenesis was performed on the ORFs nucleotide sequences to 

generate proteins with different amino acid sequences. For this purpose, the QuikChange 

II Site-Directed Mutagenesis kit was adopted and complementary primers including the 

desiderated mutations were designed for each case. The mutagenesis reaction contained 

100 ng of plasmid template, 20 μM of primers, 20 mM of dNTP’s mix, High Fidelity 

Buffer, 2 U of Pfu Taq DNA polymerase, in a total volume of 50 μl. When required, 8% 

DMSO was added to the final reaction. The cycling program was: denaturation 95°C for 3 

min, followed by 16 cycles of 95°C for 30 sec, 65°C for 1 min, 72°C for 5 min with a 

final step of 72°C for 10 min. After PCR, samples were treated with the DpnI enzyme at 

37°C for 1 h in the presence of the appropriated reaction buffer. 20 μl of the digested 

sample was used to transform 50 μl of DH5α competent bacteria and plated on bacteria 

LB agar medium, supplied with the appropriate antibiotic selection. Colonies were visible 
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after 24 h of incubation at 37°C. Colonies were grown in the appropriated media 

overnight and the plasmid DNAs were extracted using Mini-Prep commercial kit, 

quantify and send to the sequence to confirm the nucleotide mutations. 

5.5. Eukaryotic cells transfection 

Exponential C2C12 and HeLa cells were transfected with the desired plasmids using 

lipofectamine probes according to the manufacturer’s protocol.  

5.6. Cells and muscle lysates  

Cells were lysed with RIPA buffer (25 mM Tris-Cl pH 7.5, 50 mM NaCl, 0.5% NP40, 

1 mM EDTA pH 8.5, 1 mM DTT, 20 mM NEM, protease inhibitors) and passed 2–3 

times through a syringe provided with a G28 needle to disrupt genomic DNA. Crude 

lysates were clarified with centrifugation for 15 min at 10000 g, 4°C, and protein 

concentration was measured with BIORAD protein assay kit using BSA standard curve. 

Frozen muscle biopsies were incubated with lysis buffer (50 mM Tris-Cl pH 7.4, 150 

mM NaCl, 1 mM EDTA, 1% SDS, 0.5% DOC, 0.5% NP40, 1 mM DTT, 10 mM NEM, 

20 mM Iodoacetamide, fresh protease inhibitors cocktail) for 15 min on ice, then 

homogenized in a 1.5-ml tube with pestle. Muscle homogenizes were centrifuged for 20 

min at 10000 g, 4°C. Clear supernatants were collected and protein concentrations were 

measured with the BIORAD protein assay kit using BSA standard curve. 

5.7. Immunoblotting  

Desired amounts of sample lysates were resuspended in loading buffer and denatured 

for 10 minutes at 95°C, loaded and fractionated in acrylamide Bis-Tris 4%-12% gradient 

gels. Proteins were transferred onto PVDF membrane for 60 minutes at 0.34 A, and 

blocked in TBS (50 mM Tris-Cl, 150 mM NaCl, pH 7.6) containing 0.1% Tween-20% 

and 5% skimmed milk. Membranes were incubated with the specific primary antibodies 

overnight at 4°C, followed by a 1-hour incubation with the appropriate horseradish 

peroxidase-conjugated secondary antibodies. The immunocomplexes were visualized by 

chemiluminescence and detected by ChemiDoc MP Imaging System. Band signals were 

acquired and analyzed with the correspondent imaging analysis software, version 5.0. 
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5.8. Quantitative real-time PCR  

Gene transcripts were assayed by qPCR using specific primers designed with 

PRIMER3 software. RNAs extraction was performed following the manual instructions 

included in the GeneJET RNA purification kit. Extracted RNAs were purified from 

genomic DNA contamination with DNase I/RNAse-free treatment. The correspondent 

cDNAs were produced using oligo (dT)18 and random primers by following the 

instruction of RevertAID H Minus First-strand cDNA synthesis kit. qPCR reactions were 

performed with 100 ng of cDNA template, in presence of the specific primers and SYBR 

Green Master Mix, in a 20 μL of the final volume. The analysis was performed with 

QuantStudio 3 Real-Time PCR Systems instrument, with the following cycling program: 

initial at 50°C for 2 minutes, denaturation at 95°C for 10 minutes, followed by 40 cycles 

at 95°C for 15 seconds, and at 60°C for 1 minute. A final step of “melting curve” cycle 

between 65°C and 90°C, 1°C/s temperature speed was incorporated. Fold change relative 

to a housekeeping control gene (gapdh) was calculated as 2−ΔCt where: 

ΔCt=Ct(target)−Ct(gapdh), according to the Minimum Information for Publication of 

Quantitative Real-Time PCR Experiments (MIQE) guideline. To calculate relative gene 

expression levels between differently treated samples, 2-ΔΔCT was used to determine fold 

transcript changes, where ΔΔCt=ΔCt(target gene after treatment)−ΔCt(target gene before 

treatment). All samples were analyzed in triplicate and mean and ± SD were obtained. 

5.9. Protein purification 

Prokaryotic cells: E. coli BL21 bacteria were transformed with the desired plasmids 

and colonies were selected within the appropriate LB agar medium. After exponential 

growth, IPTG-protein induction was performed. Bacteria were collected and lysed. The 

proteins of interest were purified using the different methods according to the specific 

conjugated tag. Purified proteins were either separated by SDS-PAGE gel and stained 

with Coomassie blue or directly used for enzymatic assays.  

Eukaryotic cells: Cells were harvested using cold PBS, when necessary in presence of 

0.2 M iodoacetamide, and lysed with specific lysis buffers. Lysates were centrifuged at 

for 10 min, 10000 g, at 4°C. Native or overexpressed-tagged proteins were purified using 

the specific antibodies conjugated to sepharose beads or with commercial tag-trap 

columns, following the manufacture´s purification protocols.  



 

 45 

Muscles: Approximately 200 mg of muscles tissue were lysed in an optimized lysis 

buffer (Tris-Cl 150 mM, NaCl 150 mM, SDS 0.5%, NP-40 1%, DOC 0.5%, EDTA 5 

mM, DTT 1 mM, fresh NEM 20 mM, and protease inhibitors, pH 7.6). Muscle lysates 

were precleared with protein G-agarose beads coupled to anti-normal mouse IgG for 3 h 

and gently rotated at 4 °C before the incubation with protein G-agarose beads coupled to 

specific antibodies. Beads were collected by centrifugation and washed twice with PBS 

containing 0.01% NP40. Immunocomplexes were eluted by competition with specific 

peptides. Elutes were used for mass spectrometry analysis or protein-protein interaction 

assays. 

5.10. Immunocytochemistry 

C2C12 cells were seeded in 13-mm diameter coverslips precoated with poly-D-lysine 

in 12-well plates. When required, exponential cells were transfected with plasmids for 

protein expression assays or differentiated into myotubes with an appropriate medium. 

Coverslips were washed three times with cold PBS and fixed with filtered 4% 

paraformaldehyde dissolved in PBS, for 20 min at RT. Fixed cells were permeabilized 

with 0.5% Triton-X100 for 1 h at RT. 3% BSA in PBS was used as a blocking solution 

and slides were incubated for 30 min at RT. After that, 1 h incubation with primary 

antibodies, three PBS-washed, and 1 h incubation with the secondary antibody were 

performed. Coverslips were transferred on an objective glass with a mounting solution 

containing DAPI probe to stain nuclei. Confocal or fluorescent microscopes were used to 

acquire the images. 

5.11. Immunohistochemistry 

Frozen muscle biopsies were fixed with Compound for Cryostat Sectioning (OCT) 

and cryosectioned into 10 μm slices at −20°C. Cryosections were incubated at room 

temperature (RT) for 5 min, rehydrated in PBS for 15 min at RT, fixed in cold acetone at 

−20°C for 15 minutes, dried for 1 minute at RT, and blocked with 3% BSA in PBS for 40 

minutes at RT. Incubation with primary antibodies was performed for 90 minutes at RT, 

then washed 3 times for 5 minutes with PBS, followed by a 1-hour incubation with 

secondary antibodies and washed again with PBS. The slides were mounted with 

Fluoroshield medium containing DAPI. Pictures were acquired using a ZEISS laser 

scanning confocal microscope using a fixed protocol for all sections. 
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5.12. ATPase pH 10.4 staining 

Cryosections were incubated with alkaline solution 1 (0.1 M Glycine, 5.4 mM CaCl2, 

0.1 M NaCl, pH 10.4 adjusted with 0.1 M NaOH) for 9 min at 37°C. Then, washed with 

water, and incubated with solution 2 (17 mg Na2ATP in 10 ml of Solution 1, pH 9.4 

adjusted with HCl) for 30 min at 37°C. Samples were washed and incubated 

consecutively with 1% CaCl2 for 3 min at RT, 2% CoCl2 for 3 min, 1% (NH4)2S for 1 min 

at RT, with washes performed between the different incubations. Finally, slides were 

mounted in glycerine gelatin. Pictures of staining were acquired using Nikon Phase 

Contrast 0.90 dry microscope. 

5.13. NADH-TR staining 

Cryosections were incubated in 30 ml of NADH-TR solution (28 mg Nitroblue 

Tetrazolium, 6.25 ml 0.1 M MOPS solution pH 7.4, 10 mg Nicotinamide adenine 

dinucleotide in 30 ml H2O) for 20 min at 37°C. Then the sections were washed with 

running distilled water to remove any excess NADH-TR solution on glass slides. Sections 

were kept for drying at RT for 15 min and cover glass was mounted with glycerine 

gelatin. Pictures of staining were acquired using Nikon Phase Contrast 0.90 dry 

microscope. 

5.14. Images processing software 

ImageJ software was used as a processing program to quantify band intensity from 

western blots, and fluorescences from immunofluorescence muscle section pictures.  

5.15. ROS detection 

Exponential C2C12 cells and derived myotubes cultured in medium containing 

different amounts of glucose with and without ROS inhibitors, or overexpressing specific 

proteins, were seeded in 24/96-well plates. Intracellular and mitochondrial ROS were 

measured using commercial kits following the manufacturer’s protocol.  

5.16. Myogenesis 

Confluent C2C12 cells were differentiated in myotubes using differentiation medium 

(DMEM + 2% horse serum). Fresh medium was supplied to the culture every two days 

during differentiation to provide a constant amount of glucose. When required, 10 μM 

anacardic acid or 2 μM topotecan were added as indicated. These drug concentrations 

were selected based on C2C12 and myotubes toxicity tests performed previously. Stocks 
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were prepared in DMSO and the final working concentration did not exceed 0.01% v/v, 

resulting in no DMSO-induced cellular cytotoxicity or alteration of the myogenesis 

process. All four myogenesis processes (NG, HG, HG+anacardic acid, and 

HG+topotecan) were performed in parallel. 

5.17. Cellular senescence assay 

C2C12 cells were cultured and myogenesis was induced in media. β-galactosidase 

assays were performed with the senescence cells histochemical staining kit according to 

the manufacturer’s protocol. 
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6. RESULTS AND CONCLUSIONS 

6.1. Paper I 

A well-maintained muscle is very important for the activities of daily life. The good 

status of the muscle is conserved by intricated and interconnected pathways able to 

quickly adapt to different situations. Our hypothesis was to understand how SUMOylation 

collaborated in the correct skeletal muscle functions under normal activity, and how it 

responded in cases of skeletal muscle diseases.  

To achieve the results, we analyzed diaphragm muscles from ambulatory rats as 

control, and under controlled mechanical ventilation (CMV) as an acquired muscle 

disease model. Indeed, prolonged exposure to CMV treatment results in the development 

of Ventilator-Induced Diaphragm Dysfunction (VIDD). VIDD is a common disease in 

ICU patients that causes a delay in the weaning from intubation due to diaphragm 

weakness and affects the quality life of the patients115. 

6.1.1.  SUMOylated proteins are unevenly distributed in the muscle fibers 

The distribution of SUMO conjugated proteins in the different muscle fibers is 

unknown. To investigate this, we performed consecutive diaphragm cryosectioning from 

control rats and immunostained the sections either with SUMO1 or SUMO2/3 antibodies 

or with fiber type identifier markers NADH-TR (to identify oxidative or glycolytic fibers) 

or myosin ATPase (to identify myosin type I or II fibers) (Figure 13). 

 

Figure 13: Immunofluorescence analysis of SUMO conjugates in the control diaphragm. 

Muscle fibers stained with antibodies to SUMO1 (a) and SUMO2/3 (d). White boxes are 

enlarged, showing the nuclear localization of both SUMO1 and SUMO2/3 (b and e). 

Consecutive serial muscle sections were subjected to NADH-TR staining to recognize the 

oxidative (O, dark purple) and glycolytic (G, light purple) fibers (c and f). Scale bars, 50 

µm (panels a–d and c–f), and 20 µm (panels b–e). 
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The results obtained surprisingly showed a mosaic-like distribution of SUMOylated 

proteins between fibers types, showing oxidative fibers higher accumulation of SUMO 

conjugated proteins compared to the glycolytic fibers. 

6.1.2.  SUMO reaction is perturbed in the diaphragm during CMV treatment 

The levels of total SUMO conjugated proteins are altered in stress situations due to 

changes in the expression of the SUMO enzymes in cells and organs116. We hypothesized 

that the SUMOylation will change as a consequence of acquired muscle pathology, using 

VIDD as a model. 

We compared the total levels of SUMOylated proteins for both SUMO1 and 

SUMO2/3 in the diaphragm of control and CMV treated rats. The results showed a 

progressive elevation in the total amount of SUMOylation for both SUMO1 and 

SUMO2/3 target proteins, with short times of CMV (Figure 14). 

 

Figure 14: Quantification of free and conjugated SUMO1 (A), and SUMO2/3 (B). The 

intensities of free SUMO and SUMO conjugates were obtained from western blot 

expressed in AU after normalization by the correspondent GAPDH loading. 

6.1.3.  SUMOylated proteins increase in all fiber types as a response to CMV 

Since CMV increased the total amount of SUMOylated proteins, we hypothesized that 

an increase in the SUMO conjugation in the different fiber types will be observed. We 

compared the previous cryosections from control rats with the ones obtained at different 

time points of CMV.  

We observed a progressive increase of the SUMO1 and SUMO2/3 signals with the 

treatment, being the glycolytic fibers highly affected, and reaching the same intensity 

levels as the oxidative fibers at the end of the measurements (Figure 15). 



 

50 

 

Furthermore, we found the presence of both SUMOs in the myonuclei in the different 

conditions, validating the nuclear localization of SUMOs previously described in the 

literature117. 

 

Figure 15: Localization of SUMO1 (A) and SUMO2/3 (B) proteins on diaphragm muscle 

cross-sections from control and mechanically ventilated rats. Cryo-sections stained for 

NADH-TR, and SUMO1-2/3 antibodies in diaphragms from control and mechanically 

ventilated rats 10 days, and with BGP-15 for 10 days (10d BGP-15). Scale bars, 50 µm.  

6.1.4.  SUMO substrates in skeletal muscle  

The specific SUMOylation levels in the muscle fibers and how they increased during 

CMV opened the question about which proteins were SUMOylated in the diaphragm 

during normal conditions and what changes undergo with the CMV treatment. 

With a combined approach of immunoprecipitation, mass spectrometry, and 

bioinformatics analysis on rat diaphragms lysates, we identified a vast amount of new 

SUMO interacting proteins involved in a wide spectrum of cellular activities with a broad 

distribution in the cell compartments. In normal circumstances, the majority of those 

proteins are involved in diverse pathways for energy production, muscle remodeling, and 

contraction. 

During the different points of mechanical ventilation, we found the recruitment of 

new SUMO1 and SUMO2/3 substrates from different processes including transcription 

factor, translation regulator activity, response to an external stimulus, and response to 

stress. These results validated our hypothesis about SUMO playing an important role in 

muscle physiology and the adaptation to pathology. 
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6.1.5.  SUMO substrates validation 

By immunoprecipitation with SUMO1 and SUMO2/3, we obtained all the SUMO 

interacting proteins, including SUMOylated proteins, proteins interacting with 

SUMOylated proteins, and proteins with SIM domains that interact with SUMO moieties. 

To confirm which of them were SUMOylated, we selected ten highly abundant SUMO-

protein candidates with different roles and localizations with a positive score in potential 

SUMO lysines, and we performed prokaryotic and eukaryotic assays. We obtained 

positive SUMOylation results for the E3 ubiquitin ligases MuRF1 and MuRF3, the motor 

protein myosin, the mitochondrial proteins aspartate aminotransferase (AATM), Ornithine 

aminotransferase (OAT), ATP synthase subunit epsilon (ATP5E), and ATP synthase 

subunit alpha (ATP5A) and for the ryanodine receptor-related proteins calsequestrin 1 

(CASQ1), calsequestrin 2 (CASQ2) and triadin (TRDN). 

In the case of myosin, calsequestrin 1, triadin, and ATP synthase subunit alpha, a 

western blot analysis performed using the enriched SUMO1 and SUMO2/3 peptide eluted 

immunocomplexes confirmed their SUMOylation in the skeletal muscle. 

6.1.6.  SUMO cycle components adapt to pathological conditions 

Previous studies suggest that stress situations induce alterations in the expression of 

the SUMO machinery components118. These alterations could be the explanation for the 

different levels in SUMOylation observed along with the CMV treatment. We performed 

a transcriptomic analysis from rat diaphragm muscle from control and CMV. The results 

showed changes in the mRNA expression levels of the SUMO cycle components in 

control and during 1, 5, and 10 days of CMV (Figure 16). 

The increased expression levels of SUMO conjugating enzymes like the E1 dimers, 

(Sae1/Uba1), the E2 (Ubc9), and some E3 ligases (Pias1-3-4, RanBP2, TOPORS), and 

the reduced levels of the E3 ubiquitin ligase RFN4 could explain the increase in the global 

SUMOylation profile. The transcriptomic values were validated for some candidates at 

the protein level via western blot or immunofluorescence in cryosections. 
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Figure 16: Transcriptome analysis of SUMO-related enzymes in control and 

mechanically ventilated rats without and with drug treatment. Quantitative PCRs 

performed on SUMOs (A), E1- and E2 SUMO enzymes (B and C), SENPs (D), STUbL 

RNF4 (E), and ATR1, TRIM63, and the circadian Per2 (F). 

6.1.7.  BGP-15 reverts the SUMOylation levels altered by CMV 

BGP-15 is a co-inducer of HSP72 expression and was useful for the cardiac function 

improvement119 and the recovery of the mitochondrial function during CMV in rat 

diaphragm120. Heat shock proteins (HSP) are overexpressed in response to stressful 

situations with a chaperone activity and a protective role against ROS121. ROS increase 

during prolonged exposure to CMV122 and high ROS levels increase SUMOylation by 

enhancing the activity of PIAS1 and PIAS4 and blocking SENPs123. 

We hypothesized that treating rats with BGP-15 while they were under CMV 

conditions could revert SUMOylation levels. We used diaphragms extracted from rats 

after 10 days of CMV and treated with BGP-15 to measure the general SUMO levels and 

compared them with non-treated rats. We observed a clear effect of BGP-15 reducing the 

total SUMOylation levels after 10 days of CMV (Figure 14), the immunofluorescence 

intensity was similar to the control slides (Figure 15), and both SUMO pathway 

components proteome and transcriptome were protected (Figure 16). 
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6.1.8.  Conclusion of Paper I 

For the first time, we showed a heterogeneous distribution of SUMO conjugated 

proteins in the muscle fibers according to the fiber type. We observed an adaptation of the 

SUMO pathway in response to the progression of VIDD. Finally, the positive effect of 

BGP-15 impairing the pathological effect in the SUMO pathway opens the door for the 

SUMO cycle as a target for the development of a pharmacological approach in the 

treatment of pathologies. 

6.2. Paper II 

MuRF1 plays an important role in the muscle pathophysiology and we found it was 

SUMOylated by SUMO1 in paper I. MuRF1 is a muscle E3 ubiquitin ligase known to be 

involved in the muscle protein turnover124 for muscle maintenance and has a protective 

role during cardiac hypertrophy125. MuRF1 is also related to the development of protein 

aggregate myopathies (PAMs)126 and hypertrophic cardiomyopathy (HCM)127,128 when its 

protein sequence is mutated. 

We wanted to characterize the SUMO conjugation of the E3 ubiquitin ligase MuRF1 

and its implication in MuRF1 activity and localization. We also wanted to correlate the 

alterations in MuRF1 SUMOylation and its association with muscle pathologies. 

6.2.1.  SUMO1 conjugates MuRF1 on lysine 238 

Knowing that MuRF1 is SUMOylated, we tried to find the exact lysine in the MuRF1 

sequence involved in the SUMO conjugation. With a combination of bacteria 

SUMOylation assay, immunoprecipitation, and mass spectrometry followed by 

bioinformatics analysis we isolated ten potential lysines involved in the SUMOylation of 

MuRF1. 

To define which lysine could be involved in the SUMO conjugation, we generated 

single mutations for all the ten identified lysines (K) into arginine along the GFP-MuRF1 

amino acid sequence and performed eukaryotic assays. Exclusively, the GFP-MuRF1 

containing the mutation in the 238 position showed a complete absence of the slow 

migrating bands above the native GFP-MuRF1 protein, and this result was confirmed by 

the total absence of PTM bands above GFP-MuRF1 corresponding to SUMO1 after 

immunoprecipitation. 
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This result suggests that K238 is the unique lysine in the MuRF1 protein that could 

become a target of SUMO1 conjugation (Figure 17). 

 

Figure 17: MuRF1 protein structural domains indicated in different colors, RING, MFC 

(MuRF family conserved domain), B-box, CC (coiled coin, and COS domains), AR 

(acidic tail). Potential SUMOylation binding sites for single mutants generation marked in 

orange.  

6.2.2.  Ubc9 and PIAS 4 promote the SUMOylation on MuRF1 

The correct SUMO conjugation into the target proteins is mediated by an enzymatic 

pathway as it was earlier mentioned. Such conjugation requires the use of the only known 

E2 conjugation enzyme Ubc9 and maybe the use of an E3 SUMO ligase. To identify the 

enzymes involved in MuRF1 SUMOylation, we performed eukaryotic assays with the co-

transfection of GFP-MuRF1 with Ubc9 or several E3 SUMO ligases. An increase in the 

SUMOylated fraction of MuRF1 when combined with Ubc9 but not with its catalytic 

mutant (C93S) and with the specific use of the E3 SUMO ligase PIAS4 validated both 

enzymes. 

6.2.3.  MuRF1 mutation impairs its enzymatic activity for troponin 

degradation 

Mutations in the polypeptide chain sequence can affect the protein 3D structure and 

inactivate it. We hypothesized that alterations in the MuRF1 sequence influence its 

activity. To address this question, we compared the MuRF1 wild type (wt) with the 

K238R in the enzymatic degradation of a well-known target, troponin.  

We observed that the degradation of troponin was significantly reduced in MuRF1 

K238R compared to the wt. This result suggested that the mutation affects the substrate 

ubiquitination, probably due to a conformational protein change. This change in 

conformation could generate a non-functional E3 ubiquitin ligase or cause an impairment 

between enzyme-substrate interaction. 
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6.2.4.  SUMOylation is essential for MuRF1 translocation into the nucleus 

Since SUMOylation promotes cellular translocation we focused our next goal in the 

analysis of the cellular distribution of MuRF1 in mouse myoblasts. We compared the 

cellular distribution of transfected GFP tagged MuRF1 wt and K238R in C2C12 cells 

using cell fractionation and immunofluorescence imaging. The results showed that 

SUMO1 conjugation to MuRF1 was required to translocate into the nucleus even though 

it was cleft after and that the K238R mutation induced a high proliferation of MuRF1 

aggregates in the cytoplasm (Figure 18). 

 

Figure 18: Confocal microscopy analysis of GFP-MuRF1 and GFP-MuRF1-K238R 

cellular localization. Protein distributed in cytoplasm and nuclei, in mitochondria, or 

forming aggregates in the cytoplasm (A). Statistical distribution of protein localization in 

transfected cells (B). White squares show enhanced details, arrows show alteration in 

mitochondria morphology due to increased ROS levels. Scale bar 10 µm. 

6.2.5.  MuRF1 protects from SUMO deconjugation under high glucose 

conditions 

To investigate the potential role and the biological significance of MuRF1 localization 

in mitochondria, we analyzed the level of total SUMOylated proteins in murine 

myoblasts. We compared no transfected cells with ones transfected with MuRF1 wt and 

K238R placed in normal (5,5 mM glucose) and high glucose medium (25 mM glucose). 

A significant decrease in the SUMO2/3 conjugated proteins signal was detected in no 

transfected cells or K238R ones in high glucose compared to normal glucose, but no 

difference was noticed in cells overexpressing MuRF1 wt. This result was connected with 

a reduction of approximately 50% of cellular ROS in the cells transfected with wt 

MuRF1, demonstrating that MuRF1 had a positive effect preserving the SUMOylation of 

cellular proteins by reducing the level of cellular ROS. 
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6.2.6.  Conclusion 

The new insights provided on MuRF1 SUMOylation highlight the critical role played 

by SUMO1 in the modulation of both MuRF1 activity and localization. Since the specific 

lysine involved in the SUMO conjugation is localized in the coiled-coil region of MuRF1, 

with the role of microtubule association, the effect caused by SUMOylation impairment 

could affect the correct localization of MuRF1. 

6.3. Paper III 

The knowledge provided by our previous work done on paper I showed that 

SUMOylated proteins accumulate in different degrees according to the muscle fiber type. 

We also observed that VIDD causes alterations in the expression levels of the SUMO 

machinery components and at the end alterations in the global SUMO conjugation. 

In this paper, we wanted to investigate if the correlation between SUMOylation levels 

and fiber type found in the diaphragm was also observed with other muscles along the 

body. Also, if a new stress situation caused by soleus unloading had a similar effect on the 

SUMOylation levels as CMV. 

6.3.1.  The SUMO system is specific to each skeletal muscle 

To understand if there were variations among the different skeletal muscles in their 

SUMOs profile, we compared the SUMO1 and SUMO2/3 western blots obtained from 

the lysates of nine different rat skeletal muscles (tibialis anterior, EDL, soleus, diaphragm, 

plantaris, gastrocnemius superficial, gastrocnemius deep, gastrocnemius proximal and 

masseter). We found variations in the intensity levels of the SUMO substrate conjugation 

associated with the different skeletal muscles. These results confirmed our hypothesis that 

the SUMO pathway adapts to the needs of the skeletal muscles according to the specific 

role played by each one of them. 

6.3.2.  SUMO conjugation levels are specific according to skeletal muscle fiber 

In the paper I, we observed a mosaic distribution of SUMOylated proteins in the 

diaphragm connected with the metabolism of the muscle fibers. We hypothesized that the 

other skeletal muscles would have a similar distribution with a muscle fiber type 

correlation and the abundance of SUMO conjugates. 
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Immunostaining analysis with SUMO1 or SUMO2/3 antibodies, and ATPase pH 

10.4, and NADH-TR stainings, performed in consecutive cryosections from ambulatory 

rats, provided a mosaic of fluorescence intensities with higher levels of SUMOylation 

localized in the skeletal muscle fibers with an oxidative metabolism (Figure 19). 

 

Figure 19: Fluorescence intensity measurement for each fiber type. 100 fibers per type 

from the nine different skeletal muscles were used in the analysis. Results were 

normalized to the corresponding myofiber area and values were expressed in arbitrary 

units (A.U.). 

These results validated our previous findings in the paper I where we showed the 

same distribution of SUMOylated proteins in the diaphragm. 

6.3.3.  Transcriptome analysis of the SUMO machinery components 

For a better understanding of the heterogeneity in the SUMOylation expression in the 

different skeletal muscles, we analyzed the transcriptomic levels of the SUMO moieties 

and enzymes from the same nine rat skeletal muscles. The RNA measurements showed 

differences in their expression levels within the skeletal muscles. The proteomics analysis 

confirmed the results from the transcriptomics, validating the correlation of the SUMO 

enzymes expression and the specific function of the skeletal muscles. 

The principal component analysis provided with interesting information. The different 

expressions of the SUMO components allowed us to classify skeletal muscles according 

to muscle embryogenesis, anatomical position (vertical), and fiber type composition 

(horizontal) (Figure 20). 
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Figure 20: Principle component analysis of transcriptome reveals the formation of 

distinct clusters, indicating differences in the SUMO expression signature. 

6.3.4.  Muscle activity impairment affects SUMOylation levels 

The previous experiments were performed over healthy, ambulatory rats and we 

wanted to observe the effect of a different pathology over the SUMO pathway. In the 

paper I, we observed changes in the SUMO pathway due to CMV in rat diaphragm, so we 

hypothesized that other alterations in the muscle activity could induce modifications in 

the expression of the SUMO network components and therefore changes in the general 

SUMOylation levels. 

Using soleus muscle extracted from ambulatory and tailed-suspended Wistar-Han rats 

during 1, 2, and 4 days of unloading, we performed a western blot analysis of SUMO1 

and SUMO2/3 followed by the transcriptomic analysis of the SUMO machinery. To 

complete the study, an immunohistochemistry study of cryosections was performed. 

Results showed an increase of SUMOylation levels combined with alterations in the 

enzymes right after unloading before any signs of protein degradation mediated by the 

UPS. This could be explained by a protective effect of the SUMO pathway in the proteins 

by delaying its ubiquitination and further protein degradation (Figure 21). 
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Figure 21: Principle component analyses depicting the effect of unloading the SUMO 

machinery. Note that expression of SUMO related factors changes rapidly within 1 day 

after unloading. 

6.3.5.  PAX6 increase Ubc9 expression in early events of muscle inactivity 

In our papers studying the effect of muscle stress in the SUMO levels (papers I and 

III), we observed an increase in the SUMO conjugated proteins in parallel with the 

treatment at the same time as Ubc9 is overexpressed. 

Deeper bioinformatics inquires of the Ubc9 promoter region gave us a list with 

potential transcription factors including HTF, ARP1, and ATF. We recognized PAX6 as a 

candidate among them and investigated its expression levels and localization by western 

blot and immunohistochemistry. 

Interestingly the overexpression of Ubc9 was not connected to PAX6 overexpression 

but to its accumulation in the nucleus during short times of unloading. Besides we found 

that PAX6 could be SUMOylated as it is mentioned in the bibliography129, which might 

explain its translocation to the nucleus. 

6.3.6.  Conclusion 

We have validated the role of the SUMO network and the expression levels of each 

component linked to the functional requirements of each muscle according to its fiber 

type composition. 

Again, we confirmed the importance of the SUMO network and its alteration during 

muscle pathologies and the possibility of becoming a therapeutic target to alleviate the 

effects of atrophy. For that effect, we showed how PAX6 is involved in the control of 
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Ubc9 expression and its potential use as a target for the regulation of the SUMO 

conjugation. 

6.4. Paper IV 

In this manuscript, we wanted to understand the involvement of the SUMO pathway 

in the regulation of muscle regeneration. Muscle regeneration is one of the outcomes of 

myogenesis along with embryonic muscle development and postnatal growth. In all the 

situations myoblasts follow a very tightly controlled program that leads to the formation 

of myofibers. Finally, we developed an in vitro model using high glucose concentrations 

to study muscle regeneration under hyperglycemic condition, similar to the ones observed 

in diabetic patients. Our hypothesis was that this condition will cause changes in the 

normal behavior of the SUMO pathway.  

6.4.1.  SUMO conjugation changes with the progression of myogenesis 

To answer our question about the effect of the myogenesis progress in the SUMO 

conjugation we performed an analysis of SUMOylated proteins during the different time 

points studied (exponential, confluent, and 1, 3, and 5 days of myogenesis). We observed 

a peak in the proteins SUMOylated by SUMO1 and SUMO2/3 in the confluence stage 

followed by a progressive decrease during myogenesis. 

6.4.2.  The effect of hyperglycemia during myogenesis 

To understand the effect of hyperglycemia in global SUMOylation levels during 

myoblast differentiation, mouse myoblasts were grown and differentiated in normal (NG) 

and high glucose (HG) medium and monitored at the different time points mentioned. 

Myotubes developed faster in the HG, they were bigger, and with a higher nuclei count 

compared with the NG ones. They also started contracting and reached the senescence 

status earlier.  

SUMOylation levels analyzed by western blot also showed a tendency in the decrease 

of SUMOylated proteins along with the development of myogenesis but with maintained 

higher levels for both SUMO1 and SUMO2/3 in the case of HG.  

The alteration in the SUMO pattern matched the results obtained by the transcriptome 

analysis. We found that the gene expression of the SUMO network was rearranged, and 

transcripts levels were easily clustered into NG or HG conditions. 
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6.4.3.  ROS role during myogenesis 

ROS have a crucial function as secondary messengers for a multitude of pathways130, 

and even the SUMO components are regulated by them131. We pursued the investigation 

of the ROS levels during the different stages of myogenesis with and without the 

influence of a high glucose concentration.  

The results obtained from the measurement of both cytoplasmic and mitochondrial 

ROS during the different time points of myogenesis showed alteration of ROS levels. In 

normal conditions, both cytoplasmic and mitochondrial ROS had a higher peak on day 1 

and then decrease. However, in the case of high glucose conditions, the ROS peak was 

reached in the exponential phase and was maintained until the end of the experiment.  

This effect was also associated with the early senescence of the myotubes grown in 

high glucose combined with a disorganized pattern of the striation in the sarcomeric 

structure (Figure 22).  

 

Figure 22: Confocal images of myotubes derived from C2C12 cells after 5 days from the 

differentiation, in NG and HG. Samples were double-stained for fast myosin (F-Myosin, 

red) and slow myosin (S-Myosin, red) together with alpha-actinin (green); the sarcomere 

structure showed partial co-localization with myosin and alpha-actinin (yellow). The 

selected areas (white square) were magnified on the right side. Scale bars = 100 μm, scale 

bars = 10 μm for the magnified images. 

6.4.4.  Anacardic acid protects against hyperglycemia 

We have described that SUMOylation plays an important role in the myogenesis 

process and a pharmacological approach for the reversion of the SUMOylation mediated 
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by SUMO2/3 levels could help the myogenesis in hyperglycemic conditions. This 

approach could be mediated by the use of SUMOylation inhibitors like anacardic acid or 

topotecan.  

The combination of the myogenesis development in NG and HG with the addition of 

the drugs demonstrated our hypothesis but only in the case of the anacardic acid. The use 

of topotecan had not the expected positive effect over the myogenesis since it interfered 

with myoblast fusion. The SUMOylation pattern of the myoblast grown in HG with 

anacardic acid had a significant reduction in the intensity and it was similar to the ones 

grown in NG. We also observed a similar myogenesis development, with no early 

senescence and a normal sarcomeric distribution. Finally, the proteomic and 

transcriptomic expression levels of the SUMO components were similar to the ones of 

cells growing in normal conditions (Figure 23). 

 

Figure 23: Principle component analysis of transcriptome revealed the formation of two 

distinct clusters, indicating differences in SUMO expression signature during myogenesis.  

6.4.5.  SET7/9 regulation by SUMO2/3 

The regulation mediated by SUMO2/3 of the histone-lysine N-methyltransferase 

SET7/9 was previously described for the sarcomeric organization132. We use this property 

to our benefit and performed the immunoprecipitation of SET7/9 in the different 

conditions (NG, HG with and without anacardic acid) and our findings confirmed that 

only in HG conditions SET7/9 was SUMOylated and therefore inactivated. The treatment 

with anacardic acid reduced the SUMO conjugation of SET7/9. 
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6.4.6.  Conclusion 

These results seem to link the correct SUMOylation levels with a viable myogenesis 

process. We also confirmed that during hyperglycemic conditions myogenesis was 

accelerated and senescence was reached earlier than in normal conditions due to a starting 

point with higher ROS levels. 

The transcriptomic and proteomic expression levels of the SUMO machinery 

components were altered due to the excessive ROS production by the HG conditions, but 

this effect could be ameliorated using anacardic acid thanks to its properties as SUMO 

inhibitor and antioxidant. 

Finally, we linked the increase of SUMOylation produced by high glucose with the 

SUMOylation of SET7/9, an important player in myogenesis regulation. The inhibition 

mediated by SUMO conjugation of SET7/9 activity as a transcriptor factor caused the 

disorganization of the sarcomeric structures. 
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7. DISCUSSION  

One of the major problems with muscle pathologies is the lack of early detection 

events to provide immediate treatments. Diseases like muscular dystrophies and 

inflammatory myopathies begin to develop years before their diagnosis, and by the time 

patients suffer the symptoms, only palliative treatments are available. Traditional methods 

of diagnosis include medical history, blood, and genetic tests, biopsies, and imaging. The 

development of new ways for the early detection of pathologies could help with the 

prognosis. 

This thesis provides new potential results for an early diagnosis approach for skeletal 

muscle pathologies, considering the protein regulation mediated by SUMO 

posttranslational modification. Our discovery shows that SUMO enzymes and the global 

SUMOylation process are quickly altered before the activation of protein degradation, in 

the starting phases of the three muscle disorders described (VIDD, muscle inactivity, and 

muscle regeneration in hyperglycemia). Indeed, the expression of some SUMO enzymes 

can be used as biomarkers for the premature detection of muscle pathologies as we 

confirmed in the rat diaphragm and soleus, and in the vastus lateralis from humans.  

Until now, we only had access to few animal models of acquired pathologies, 

however extra studies in animals with inherited myopathies or in human muscle biopsies 

are needed to confirm the potential use of the SUMO network components as biomarkers.  

Regulate the SUMO conjugation in our favor can be beneficial for treating patients. 

An extended analysis of PAX6 role regulating the expression of Ubc9 during muscle 

diseases is necessary to confirm its effect. The development of a pharmacological 

approach to increase o decrease the presence of PAX6 in the myonucleus could interfere 

with the SUMO conjugation levels through the control of Ubc9 expression and reduce or 

block harmful effects of muscle inactivity. 

We discovered a vast amount of new classes of protein related to SUMO. This result 

emphasizes how crucial is the SUMO pathway role in the regulation of muscle functions. 

In-depth analysis performed with some candidates showed the potential protective effect 

against degradation of myosin mediated by SUMO conjugation. More, we confirmed the 

role of SUMOylation of the E3 ubiquitin ligase MuRF1 in lysine 238 and compared the 

negative effect of the SUMOylation impairment in terms of activity and cell localization 
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which can be associate to hypertrophic cardiomyopathy and protein aggregate 

myopathies. Also, we described one potential molecular mechanism describing the 

alterations in the myogenesis process in hyperglycemia; the transcriptor factor SET7/9 

becomes inactivated through SUMOylation and impairs muscle regeneration in high 

glucose conditions. Finally, other SUMO related candidates associated to the calcium 

regulation events (ryanodine receptor, calsequestrin, and triadin), and mitochondrial 

proteins (aspartate aminotransferase, ornithine aminotransferase, ATP synthase subunits-α 

and -ε) were not yet studied, but their involvement in the muscle contraction makes them 

valuable new SUMO targets for potential implication in physiology and myopathies 

studies. 

The positive effect of some drugs, as BGP-15 observed in diaphragm from 

mechanically ventilated rats, and anacardic acid for the treatment of myogenesis in 

hyperglycemic conditions validates our hypothesis that targeting the SUMO network will 

ameliorate the effects of some SUMO-related muscle pathologies. The screening of new 

drugs to interfere with the SUMOpathway will provide new pharmacological approaches 

in the treatment of muscle diseases. 

Future perspectives involve a deeper analysis of the previous findings: 

Develop a CRISP-CAS9 methodology in murine or human myoblasts and generate 

transgenic mouse models with mutations in the SUMO protein consensus domain will 

allow us to understand the physiological function of SUMO PTM to the investigated 

skeletal muscle proteins. To complete the SUMO PTM picture, a unique mouse model 

with inducible expression of UBC9 will give us a better insight into the implications of 

SUMOylation in the regulation of different skeletal muscle activities. 

A specific study of MuRF1 mutations associated with human pathologies found close 

to the SUMO binding site could explain the implication of this E3 ubiquitin ligase in the 

development of human diseases like hypertrophic cardiomyopathy and protein aggregate 

myopathies. 

Cancer is one of the pathologies that beneficiates more for the early diagnosis, 

increasing the chances for successful treatment. Our future project combines the study of 

the alterations in SUMO conjugation and the myogenesis dysregulation in 

rhabdomyosarcoma and the test of new drugs targeting the SUMO pathway.  
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