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ABSTRACT 
The epidermis is a stratified epithelium with continuous self-renewing capacity. As the 
outermost layer of our body, it provides a protective barrier against external trauma, produces 
pigmentation, and keeps the skin hydrated. Keratinocytes are the primary constituent cells type 
within the epidermis. A fine balance is maintained between keratinocyte cell proliferation and 
differentiation to sustain a functional epidermis. The interplay between multiple signaling 
pathways, transcription factors, epigenetic modulators, and non-coding RNAs is the key to 
maintaining this balance. Disrupted epidermal homeostasis can cause various diseases, 
including cancer. Cutaneous squamous cell carcinoma (cSCC) is one such keratinocyte-derived 
cancer that begins with the accumulation of somatic mutations and genetic abnormalities. The 
pigment-producing melanocytes within the epidermis can undergo oncogenic transformation 
due to numerous genetic and environmental factors, and give rise to malignant melanoma.  In 
this thesis, we have explored the role of non-coding RNAs in epidermal homeostasis and the 
development of skin cancers. 

Paper I: In this study, we investigated the role of miR-203 in cSCC, and found that its 
expression was negatively correlated with the differentiation grade of the tumors. Functionally, 
miR-203 inhibited cell cycle progression, self-renewability, motility and proangiogenic-activity 
of cSCC cells in vitro, and reduced xenograft tumor growth and angiogenesis in vivo. We 
identified c-MYC as a potential upstream regulator of the transcriptomic changes caused by 
miR-203 overexpression, and subsequently demonstrated that c-MYC is a direct target of miR-
203 in cSCC. In line with these findings, overexpression of c-Myc rescued the growth-
inhibitory effect of miR-203 in cSCC cell lines.  

Paper II:  In this study, we analyzed the small RNA-seq data from the skin cutaneous 
melanoma (TCGA SKCM-cohort) and found that miR-203 is the most downregulated miRNA 
in metastatic melanoma. Moreover, high miR-203 abundance seems to confer longer overall 
survival to patients with metastatic melanoma. Methylome data from patient samples, together 
with results from in vitro experiments, suggested that promoter hypermethylation could 
suppress miR-203 expression in metastatic tumors. Functionally, miR-203 acted as a tumor 
suppressor by inhibiting cancer/metastatic hallmarks such as cell migration, invasion, self-
renewal, and angiogenesis. SLUG, an essential regulator of epithelial-mesenchymal transition, 
was found to be a direct target of miR-203. In vivo, miR-203 effectively suppressed melanoma 
metastasis to the inguinal lymph nodes and the lungs.  

Paper III:  In this study, we investigated the changes in the coding and non-coding landscape 
in cSCC using RNA-seq. We identified a large number of differentially expressed coding 
transcripts linear lncRNAs and circRNAs. Representative transcripts from each group were 
validated using an extended cohort. We found that several transcription factors regulating skin 
development and cSCC oncogenesis were altered at mRNA level. In addition to various 
lncRNAs with potential oncogenic function, we identified a set of skin-specific lncRNAs, 
which were mostly downregulated in cSCC. We observed a global downregulation of circRNA 
abundance in cSCC. Apart from previously annotated circRNAs, novel skin-enriched circRNAs 
were also identified and validated.  



 
 

Paper IV:  In this study, we characterized a skin-specific lncRNA located at the Epidermal 
Differentiation Complex (EDC) on human chromosome 1. It is highly induced during the late 
stages of keratinocyte differentiation and localized to the granular layer of the human epidermis. 
We showed that transcription factor YY1 suppresses its expression in the progenitor 
keratinocytes. CRISPR-mediated activation of this lncRNA locus led to an increased expression 
of late differentiation marker genes. In contrast, loss-of-function experiment in a 3D 
organotypic skin model resulted in impaired terminal differentiation program and formation of 
thinner cornified envelope. Due to its functional requirement in late differentiation, we have 
renamed this lncRNA as ELDAR (Epidermal Late Differentiation Associated RNA). 
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1   INTRODUCTION 
 

1.1 The Skin 

The skin is the largest organ of our body. Operating as the outermost physical, chemical and 

immunological barrier, it not only protects our body from external trauma, harmful chemicals, 

and microorganisms but also prevents the loss of vital fluids and nutrients (Abdallah, Mijouin, 

and Pichon 2017; Simpson, Patel, and Green 2011). Besides the protective responsibilities, the 

skin also functions as the primary sensory organ. In order to perform this plethora of 

sophisticated functions, the skin has a highly organized and layered structure, along with key 

ancillary components such as hair follicles, nails, sweat and sebaceous gland. From inside to 

outside, three morphologically distinct layers of the skin are present; hypodermis, dermis and 

epidermis (Figure 1) (Abdo, Sopko, and Milner 2020). Hypodermis majorly consists of adipose 

tissues and provides thermal insulation, source of energy storage and a protective cushion to 

the inner organs. Being the middle layer, the dermis contains connective tissues, blood and 

lymph vessels, nerves, hair follicles, sweat and sebaceous glands; and provides physical 

support, oxygen, and nutrient supply to the epidermal cells. Between dermis and epidermis, 

there is a basement membrane, which provides an anchorage for the basal epidermal cells and 

a connecting interface between the two separated layers (Simpson et al. 2011). 

 

Figure 1: Anatomy of the human skin with different layers and appendages. Downloaded from 
http://openstax.org/books/anatomy-anad-physiology/pages/1-introduction. Creative Commons 
Attribution 4.0 International license. 
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1.1.1 The epidermis 

The outermost layer of the skin is the epidermis, a multilayered squamous epithelium. Apart 

from providing a physical barrier against external insults, it also serves as a permeability barrier 

against subcutaneous water and nutrient loss. Keratinocytes are the major constituent cell types 

(~90%) within the epidermis. The remaining cells are the pigment-producing melanocytes, 

specialized cells of the immune system, and the mechanoreceptor Merkel cells. The epidermis 

itself is divided into four different layers with distinct states of differentiation (Figure 2) 

(Simpson et al. 2011). The innermost strata is the basal layer- a single layer reservoir of 

mitotically active progenitor keratinocytes. As the basal progenitor cells detach from the 

basement membrane and move upwards, they withdraw from cell cycle, and undergo a highly 

ordered terminal differentiation program to form the uppermost-cornified layer, via 

transitioning through two other intermediate layers (Blanpain and Fuchs 2009). The spinous 

layer, which is located just above the basal layer, consists of 8-10 layers of keratinocytes 

expressing intermediate keratin filaments and tightly anchored by the desmosomes. In the 

subsequent granular layer (3-5 layers), the cells start expressing the substrates for the barrier 

formation. Finally, in the cornified layer (squames), the enucleated and metabolically inactive 

cells undergo a unique process of cell death (cornification) while being wrapped up in an 

insoluble lipid envelope (Eckhart et al. 2013; Kalinin, Marekov, and Steinert 2001).  

 

1.1.2   Epidermal differentiation and barrier formation  

At the core of epidermal homeostasis is a finely orchestrated interplay between proliferation, 

differentiation and cell death. There are two proposed models to define how basal layer 

keratinocytes maintain a constant pool of progenitor cells, while also generating another group 

of cells programmed to undergo the terminal differentiation program (Fujiwara, Tsutsui, and 

Morita 2018; Ghadially 2012). In the classical model, a small population of long-lived, self-

maintaining keratinocyte stem cells gives rise to short-lived transit-amplifying cells (TA), 

which in turn commit to the differentiation program after a few rounds of cell division (Jones 

and Simons 2008). An alternative model contradicts the stem cells/TA model and hints at a 

constant pool of progenitor keratinocytes undergoing asymmetric and symmetric cell division 

at a fixed probability (Clayton et al. 2007; Lim et al. 2013). While symmetric cell division 

maintains the progenitor keratinocyte pool, the daughter cells from the asymmetric cell division 

are fated to undergo terminal differentiation after receiving various cues such as increasing 
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calcium concentration (both intracellular and extracellular), altered cell-cell communication 

and activation of differentiation-promoting signaling pathways (Clayton et al. 2007; Schepeler, 

Page, and Jensen 2014).  

Epidermal keratinocytes express various differentiation stage-specific keratins- the primary 

structural proteins that assemble as obligate heterodimers into an intricate network of 10-nm 

intermediate filaments (KIFs) (Candi et al., 2005). For instance, keratin 5 (K5) and keratin 14 

(K14) is typically expressed in the progenitor keratinocytes within the basal layer where they 

form stable dimers or tetramers (Figure 2) (Natsuga 2014). As the differentiating cells move 

towards the suprabasal layer, K5 and K14 pairs are replaced by keratin 1 (K1) and keratin 10 

(K10) filaments (Natsuga 2014). Later, the keratinocytes within the granular layer express other 

structural proteins such as loricrin (LOR), trichohyalin (THH), small proline-rich proteins 

(SPRRs), involucrin (IVL), and profilaggrin (precursor for filaggrin monomers) which are 

accumulated within the keratohyalin granules (KHGs) (Figure 2) (Eckhart et al. 2013). Another 

feature of the granular layer architecture is the cytoplasmic accumulation of lamellar bodies, 

which contain pro-barrier lipids (ceramides, free-fatty acid and cholesterol), crucial enzymes 

for cornification and structural proteins for corneodesmosomes as cargo (Menon, Lee, and Lee 

2018).  

As the keratinocytes transition into the cornified layer, profilaggrin is released from the KHGs, 

followed by dephosphorylation and proteolytic cleavage into filaggrin monomers (Eckhart et 

al. 2013). Free filaggrin monomers aggregate and compact the keratins into tight bundles, 

causing a complete collapse of the KIF cytoskeleton. As a result, the cellular structure becomes 

more flat, one of the key characteristics of this layer (Natsuga 2014). Subsequently, filaggrin 

monomers and other structural proteins such as loricrin, SPRRs, involucrin, periplakin and 

envoplakin are covalently cross-linked by a number of transglutaminases (TGM1, TGM3 and 

TGM5) to form a rigid cornified envelope (5-10 nm thick) beneath the plasma membrane 

(Candi et al., 2005, 2016). The process of cornification is also closely accompanied by 

enzymatic degradation of cellular organelles such as nuclei, mitochondria and endoplasmic 

reticulum (Candi et al. 2016; Lippens et al. 2005). In the final step, the lamellar bodies fuse 

with the plasma membrane to extrude their lipid content to the extracellular matrix that forms 

an impermeable lipid lamellae (Eckhart et al. 2013; Menon et al. 2018). This densely packed 

layer of lipid lamellae and corneocytes, which are tightly connected by corneodesmosomes, 

plays a decisive role in preventing the loss of water and electrolytes through the epidermal 

barrier (Candi et al. 2005a; Proksch, Brandner, and Jensen 2008). The cells of the cornified 
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layer are continuously sloughed off and regularly (~4 weeks) replaced by the basal 

keratinocytes committed to terminal differentiation (Blanpain and Fuchs 2009). 

 

Figure 2: Key structural components and the fundamental molecular events associated with epidermal 
stratification and differentiation. Modified from (Eckhart et al. 2013). 

 

1.1.3  The Epidermal differentiation complex 

Majority of the genes encoding for essential structural proteins for the terminal differentiation 

of keratinocytes are clustered together in a 2-Mb long genomic region on the human 

chromosome 1q21 (Abhishek and Palamadai Krishnan 2016; Marenholz et al. 2001). This 

region, known as the Epidermal Differentiation Complex (EDC) contains as many as 63 

different genes and remains under tight epigenetic and transcriptional governance to ensure 

their timely and coordinated expression. This region remains conserved in terms of the linearity 

and synteny of the clustered genes in primates, rodents, marsupials and birds (Oh and de 

Guzman Strong 2017). Interestingly, EDC also turns out to be one of the fastest evolving locus 

as seen from a number of comparative genomics based analysis. EDC-genes in mammals 

(including primates) have been found to have a clear signature of lineage-specific positive 
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selections across all the mammals, including apes and humans (Goodwin and de Guzman 

Strong 2016; Waterson et al. 2005).   

Genes within the EDC, except for loricrin and involucrin, are grouped into four gene families 

based on their structural and functional similarity (Figure 3). The boundary of this gene cassette 

is marked by the presence of the genes coding for EF-hand calcium-sensing proteins of the 

S100 family. In the middle, there are three tandem clusters of gene families, namely, S100-

fused type proteins (filaggrin, filaggrin-2, hornerin, repetin, trichohyalin and trichohyalin-like-

1), late cornified envelope proteins (LCEs), and proteins with small proline rich regions (SPRR) 

(Kypriotou, Huber, and Hohl 2012; Marenholz et al. 2001).  

The EDC-genes are expressed in a coordinated manner and play many important roles in 

terminal differentiation and cornification. For instance, members of the S100 protein family, 

upon calcium-binding, undergo conformational changes and interact with a wide array of target 

proteins and nucleic acids to regulate protein degradation, cytoskeletal assembly, cell 

locomotion, innate immune response, calcium homeostasis and differentiation (Donato et al. 

2013). Prior to cornification, filaggrin monomers bind to the KIFs, leading to their aggregation 

and flattening of the cellular structure. Of note, loss-of-function mutations in filaggrin have 

been identified to be a causative factor for skin barrier disorders like ichthyosis and atopic 

dermatitis (Sandilands et al. 2009). Loricrin, which is expressed at the granular layer, accounts 

for almost 80% of the cornified envelope. Loricrin deficient mice showed delayed barrier 

formation during the mice embryonic development (Koch et al. 2000). Mutation in human 

loricrin is proven to be the underlying reason behind congenital skin disorders (e.g. loricrin 

keratoderma), which are marked by hyperkeratosis and epidermal barrier defect (Schmuth et al. 

2004). EDC's functional significance can also be surmised from the presence of several skin 

disorders-associated (e.g. psoriasis, atopic dermatitis, ichthyosis vulgaris) genetic variants in 

this region (Hoffjan and Stemmler 2007; Oh and de Guzman Strong 2017). Although filaggrin, 

loricrin, involucrin, and S100 proteins are well characterized in the context of terminal 

differentiation, the function of the SPRR and LCE group of proteins remains largely elusive. 

Apart from the protein coding genes, there are numerous uncharacterized pseudogene and non-

coding RNA locus within the EDC, particularly within the disease susceptibility loci (Tsoi et 

al. 2015). A number of recent studies show that the evolutionarily conserved non-coding 

genomic elements within the EDC can regulate the dynamic chromatin architecture and tissue-

specific expression of the EDC genes (Oh and de Guzman Strong 2017). However, systemic 
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characterization of these lncRNA loci and the functional impact of their transcriptional output 

will be necessary to gain a comprehensive understanding of the regulation of EDC gene 

expression in terminal differentiation.  

Figure 3: Schematic representation of EDC on human chromosome: Figure extracted and modified 
from UCSC genome browser using hg38 assembly and Refseq gene predictions from NCBI Homo 
sapiens annotation (release 109.20190905). 

 

1.1.4  Regulation of epidermal differentiation 

Regulation of epidermal differentiation is a multilevel process involving a coordinated interplay 

of signaling pathways, transcription factors, epigenetic modifiers and non-coding RNAs. This 

section will enumerate some of the essential regulatory units and outline their functional 

relevance in the process of epidermal development. 

1.1.4.1 Signaling pathways 

Among various signaling pathways, calcium signaling acts as the pivotal point in keratinocyte 

differentiation (Tu and Bikle 2013). Briefly, the binding of calcium ions to the calcium-sensing 

receptors present on the keratinocytes activates the calcium-signaling pathway that leads to E-

cadherin mediated cell-cell interaction and transcriptional activation of various structural genes. 

Besides, increase in the extracellular calcium leads to activation of phospholipase C (PLC), 

which converts phosphatidylinositol bisphosphate to inositol trisphosphate, which mediates the 

release of intracellular calcium from Golgi and endoplasmic reticulum (ER) and an increased 

calcium influx mediated through calcium channels (Bikle, Xie, and Tu 2012). Loss of 

intracellular calcium results in ER stress signaling, and activating ER-stress associated 

transcription factor XBP, which in turn promotes epidermal differentiation (Celli et al. 2011).  
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Calcium sensing also activates protein kinase C (PKC) that further leads to activation of pro-

differentiation transcription factor AP-1 (Welter et al. 1995a).  

In conjunction with calcium signaling, several other signaling pathways such as Notch, 

mitogen-activated protein kinase (MAPK), transforming growth factor beta (TGF-β), and 

nuclear factor-κB (IKK/NF-κB) play important roles in epidermal differentiation by activating 

downstream transcription factors (Klein et al. 2017; Klein and Andersen 2015; Segre, Bauer, 

and Fuchs 1999:4; Sen et al. 2012).  

Multiple lines of evidence show that Notch signaling plays crucial role both in cell cycle 

withdrawal and in induction of terminal differentiation of keratinocytes. Conditional Notch1 

deletion resulted in keratinocyte hyperproliferation and depleted spinous and granular layer in 

mice epidermis (Moriyama et al. 2008; Watt, Estrach, and Ambler 2008). Using Notch1 

knockout mice, Rangarajan et al., showed that Notch1 activates p21 to induce growth arrest in 

differentiating keratinocytes (Rangarajan et al. 2001). A subsequent study from the same group 

showed Notch1 can also suppress p63, a master regulator of epidermal differentiation, through 

negative regulation of the components of interferon signaling (IRF3 and IRF7) (Nguyen et al. 

2006).  

A number of studies have linked IKK/NF-κB signaling pathway to epidermal homeostasis and 

skin immune response. First, in a knockout mice model of IκB kinase α, an important non-

canonical initiator of the NF-κB pathway, the epidermis failed to differentiate and remained 

hyperproliferative (Hu et al., 1999). A later study reported that independent of NF-κB pathway, 

IKKα functions as a co-factor of SMAD2/3 to induce the inhibitors of c-MYC, which in turn 

leads to the suppression of keratinocyte proliferation (Descargues, Sil, and Karin 2008). A 

functional characterization of the effectors of canonical NF-κB pathway by double deletion of 

transcription factor RelA and c-Rel (in a TNF-α-deficient background) showed reduced 

proliferative and clonogenic capacity of the progenitor cells as well as defective epidermal 

differentiation during mice embryogenesis (Gugasyan et al. 2004).  

Different branches of the canonical MAPK signaling cascade are shown to be indispensable for 

maintaining the balance between cell proliferation and differentiation/cell death. Using 

dominant-negative mutants or kinase inhibitors, several studies have outlined the importance 

of PKC and p38 MAPK pathway in promoting keratinocyte differentiation via transcriptional 

activators such as AP-1, SP1 and C/EBP (Eckert et al. 2002; Efimova, Broome, and Eckert 

2003). In a contrasting manner, MEK1- a mitogen activated protein kinase, which operates 
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within the MAPK pathway, has shown anti-differentiation characteristics by increasing cell 

proliferation and β1 and β4 integrin expression, via ERK phosphorylation in human and mice 

epidermis (Scholl, Dumesic, and Khavari 2004).  

 

1.1.4.2  Transcription factors 

In the past decade, a plethora of transcription factors (e.g. p63, KLF4, AP-1, GRHL3, ZNF750, 

GATA3, MYC, C/EBPα/β, E2F1) have been identified as the primary effector molecules 

driving both the spatial and temporal changes in gene expression for maintaining epidermal 

homeostasis (Dai and Segre 2004; Miyai et al. 2016). Transcription factor p63, a homolog of 

tumor suppressor gene p53, plays the role of a master regulator in maintaining the progenitor 

pool and establishing the basal-spinous switch for epidermal homeostasis (Blanpain and Fuchs 

2007). Strikingly, p63-/- mice completely failed to form stratified epithelia and died at birth due 

to dehydration, underscoring its indispensable role in ectodermal differentiation (Mills et al. 

1999). Although p63 has many isoforms, a later study using a knockout mouse model of 

deltaNp63 isoform reproduced the severe effect showed by a complete p63 knockout on 

epithelial stratification and limb morphogenesis (Romano et al. 2012). Similar to the mice 

models, p63 and deltaNp63 loss-of-function studies in human organotypic skin model resulted 

in the impairment of keratinocyte stratification and differentiation (Truong and Khavari 2007). 

As the part of an extensive transcriptional network, p63 also exerts its pro-differentiation 

function through transcriptional activation of ZNF750, which in turn activates KLF4 (Sen et al. 

2012).  

KLF4, a zinc finger containing transcription factor, has been extensively characterized in the 

context of epidermal differentiation. The first line of evidence about its functional significance 

came from the whole body KLF4-/- mice, which died after birth due to barrier loss and 

dehydration (Segre et al. 1999). Complementing this finding, epidermis-specific ectopic 

overexpression of KLF4 in the basal layer resulted in an accelerated terminal differentiation 

and early barrier acquisition during mice embryogenesis (Jaubert, Cheng, and Segre 2003). A 

follow up study from the same group revealed that KLF4 and differentiation-inducing 

corticosteroids activate an overlapping set of pro-differentiation genes during embryonic barrier 

acquisition (Patel et al. 2006). Using luciferase-reporter assay, this study demonstrated that 

KLF4 binds to the promoter region of several genes (e.g. ALOX12B, CDSN, SPINK5, FAR2) 

associated with different steps in barrier acquisition (Patel et al. 2006). 
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AP-1 family of transcription factors is composed of multiple jun and fos members that are 

triggered upon a wide range of extracellular stimuli (Eckert et al. 2013). Upon activation, they 

regulate various biological pathways such as cell proliferation, differentiation or apoptosis 

(Hess, Angel, and Schorpp-Kistner 2004). Many of the epidermal structural proteins have AP-

1 binding sites within their promoter, indicating a potentially regulatory relationship (Eckert et 

al. 2013; Welter et al. 1995b). Understanding the function of AP1 transcription factors is quite 

challenging because dimerization with different partners (fos-fos, jun-fos or jun-jun) can alter 

their activity in different developmental context (Eckert et al. 2013). A number of studies using 

conditional knockout or embryonic knockout of individual members of AP-1 family provided 

some insights into their potential role in skin development. The epidermis-specific c-Jun 

knockout mice exhibited no defect in skin development. However, the epidermal keratinocytes, 

when isolated and cultured in vitro, displayed reduced proliferative capacity, as well as 

increased differentiation (Zenz et al. 2003). A second study demonstrated that overexpression 

of TAM67, a dominant negative mutant of c-Jun that inactivates all AP-1 transcription factors, 

specifically in the suprabasal layer, causes impaired epidermal differentiation and 

hyperkeratosis (Young et al. 2017).  

 

1.1.4.3  Non-coding RNAs in epidermal homeostasis 

Non-coding RNAs provide an additional layer of regulation for epidermal homeostasis (Figure 

4). One of the earliest evidences of such non-coding regulators came with the investigation of 

miR-203 in skin morphogenesis. A number of complementary studies, using primary human 

keratinocytes and transgenic mice model, reported that PKC and AP-1 signal cascade induces 

miR-203 expression during terminal differentiation, and it plays a pro-differentiation role 

through suppression of cell proliferation in the differentiating layers by directly targeting p63 

(Lena et al. 2008; Sonkoly et al. 2010; Yi et al. 2008). Phenotypically, miR-203-ablated 

epidermis exhibited signs of basal cell depletion and severe impairment of suprabasal layer (Yi 

et al. 2008). In an opposite manner, deletion of miR-205, a progenitor-restricted miRNA in 

epidermis, resulted in an upregulation of phosphatidylinositol 3-kinase (PI3K) pathway and a 

premature exit of epidermal stem cells from cell cycle (Wang et al. 2013).  

A little after the miRNAs, lncRNAs entered this regulatory landscape of epidermal 

development. As one of the first lncRNAs to be characterized in the context of epidermal 

homeostasis- terminal differentiation-induced ncRNA (TINCR) was reported to promote 
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epidermal differentiation by directly binding and stabilizing the mRNAs of pro-differentiation 

genes (Kretz et al. 2013a). Conversely, anti-differentiation ncRNA (ANCR) whose expression 

is strictly restricted to the progenitor layer suppresses differentiation within the basal layer 

possibly by employing repressive chromatin marks to differentiation-promoting genes (Kretz 

et al. 2012). The lncRNA-transcription factor interplay came to the foreground, when a follow-

up investigation revealed that ANCR and TINCR could link up on to a common regulatory 

network, also joined by p63, to regulate the pro-differentiation function of the transcription 

factors MAF and MAFB (Lopez-Pajares et al. 2015). Disrupted functionality of these regulatory 

components at genetic, transcriptional or post-transcriptional level can lead to aberrant 

epidermal homeostasis, and ultimately manifests into cutaneous disorders such as ichthyosis, 

epidermolysis bullosa, psoriasis, basal cell carcinoma and squamous cell carcinoma (Lopez-

Pajares et al. 2013).    

 

Figure 4: Spatial expression of key non-coding RNAs and transcription factors in the different layers of 
the epidermis. Modified from (Klein and Andersen 2015) 
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1.2   Cutaneous squamous cell carcinoma 

1.2.1 Epidemiology 

Non-melanoma skin cancer (NMSC) represents one-third of all the malignancies diagnosed 

worldwide (Alam and Ratner 2001). Although there are many subtypes of NMSC, keratinocyte-

derived cancers, especially basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma 

(cSCC) roughly account for 80% and 20% of the diagnosed cases (Alam and Ratner 2001; 

Rogers et al. 2015). Worldwide, cSCC incidence is increasing steadily among light-skinned 

people, with an estimated annual incidence over a million only in the US (Rogers et al. 2015). 

The trend is no different in Sweden, as we see a yearly increase of 6.5% for men and 5.5% for 

women, making cSCC the second most rapidly increasing malignancy among the Caucasian 

population (Christensen et al. 2019). CSCC poses a significant health hazard owing to its 

aggressive nature; occurrence in multiple locations and in some cases it’s capacity to 

metastasize to regional and distant organs (Kwa, Campana, and Moy 1992). Although 

excision/cryosurgery is the first-line effective treatment for indolent primary tumors (95%), 

patients with metastatic cSCC (5%) face a remarkably high risk of mortality (5-year survival 

rate of 25-35%) due to the inefficacy of systemic chemotherapy (Li et al. 2015; Rowe, Carroll, 

and Day 1992). At present, there are only a few approved therapy available for metastatic cSCC, 

owing to our poor understanding of cSCC molecular pathogenesis.  

 

1.2.2 Risk factors 

Like numerous other cancer types, an individual’s risk for developing cSCC is governed by the 

interaction of phenotypic, genetic, epigenetic and environmental factors (Thompson et al. 

2016). However, it is well understood that the single most important risk factor for the 

development of cSCC is the cumulative exposure to ultraviolet (UV) radiation (Xiang et al. 

2014). Although both UV-A and B radiation have been implicated in cSCC, UV-B (290 to 320 

nm) from sunlight is the most influential risk factor (Marks 1995; Schmitt et al. 2011). 

Cumulative UV-B exposure induces non-sense mutation to the tumor suppressor gene p53, 

which primes the skin for acquiring additional mutations for cSCC development (Brash et al. 

1991). Consistent with this, history of sunburn, skin color and age are some of the secondary 

risk factors for cSCC (Alam and Ratner 2001; Que, Zwald, and Schmults 2018). Notably, organ 

transplant recipients (OTRs) who have taken immunosuppressive drugs are strongly 
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predisposed to develop cSCC (60-100 times higher risk than immunocompetent controls), 

highlighting an important role for the immune system in the protection against cSCCs 

(Hofbauer, Bavinck, and Euvrard 2010). Historically, human papillomavirus (HPV) infection 

remains a highly debated risk factor for cSCC (Chahoud et al. 2016). Patients with a history of 

skin injury or chronic diseases such as radiation dermatitis and long-standing ulcers are also at 

higher risk to develop recurrent cSCC (Longobardi, Sullivan, and Mansour 2011). Genome-

wide association studies have also identified numerous cSCC-susceptibility-loci, some related 

to skin pigmentation and photodistribution, highlighting the heritable phenotypic risk of cSCC 

(Chahal et al. 2016; Sarin et al. 2020). 

 

1.2.3  Molecular pathogenesis 

CSCC, which develops mostly on the sun-exposed skin, proceeds as a progressively invasive 

malignancy (Figure 5, 6). It may arise from precancerous actinic keratosis (AK) or cSCC in 

situ (cSCCIS), and subsequently progress into invasive cSCC and its metastatic variant (Alam 

and Ratner 2001; Dlugosz, Merlino, and Yuspa 2002). The transformation of a normal 

keratinocyte to an SCC cell is caused by the accumulation of genetic changes due to cumulative 

exposure to UV-irradiation (Pickering et al. 2014). The inactivation of p53 is one of the earliest 

events leading towards oncogenic genomic instability (Figure 5) (Jonason et al. 1996; 

Martincorena et al. 2015). Additionally, loss of function mutation in NOTCH1 and activating 

mutations in HRAS have been commonly identified in sun-exposed skin, as well as at the onset 

of cSCC (Martincorena et al. 2015; South et al. 2014). Remarkably, almost 90% of cSCC 

lesions contain signature of UV-B induced mutation (C to T or CC to TT) in the p53 gene 

(BLACK and OGG 2003). Mutation of p53 can be found already in precancerous lesions and 

in sun-damaged skin along with the selective expansion of the mutated clones. Inactivation of 

p53 leads to altered cell cycle regulation and decreased apoptosis, all cumulatively leading 

towards hyperproliferation of keratinocytes (Nakazawa et al. 1994). A p53-/- mice model 

illustrated this  outcome, as they were prone to develop more papillomas (equivalent to AK) 

and SCC upon UV-B exposure (Jiang et al. 1999).  

Loss-of-heterozygosity (LOH) is another common event in AK and cSCC pathogenesis (Figure 

5). Chromosomal locations, often corresponding to different tumor-suppressor gene loci, such 

as Chr: 3p, 13q, 17p, 17q, 9p, and 9q are frequently lost in AK. A far extensive LOH is observed 

in case of cSCC, with recurrent loss of Chr: 9p, 3p, 2q, 8p and allelic gain of chr3q and 8q 
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(Ratushny et al. 2012; Rehman et al. 1996). A study based on somatic mutation and copy 

number analysis of invasive cSCC samples shows a recurrent loss of chr 9p (CDKN2A and 2B), 

7p, 11q and frequent allelic gain in Chr 7p (EGFR), 8q (c-Myc) and 19q (NOTCH3), 

contributing to alteration of Ras pathway, Cell cycle and epidermal differentiation (Li et al. 

2015).  

Activating mutations in the Kirsten/Harvey Rat Sarcoma 2 viral oncogene homolog (KRAS or 

HRAS gene are common features of AK and cSCC. According to the catalogue of somatic 

mutations in cancer (COSMIC), 21% of cSCCs contain Ras activating mutation, with HRAS 

mutation contributing the most (9%) (Bamford et al. 2004). Besides activating mutations, 

genomic amplification and sequence rearrangement can also contribute to Ras upregulation and 

subsequent activation of MAPK pathways (Pierceall et al. 1991). Aberrant activation of EGFR 

by genomic amplification or increased expression of its ligands have been shown to 

downregulate p53 and notch1 signaling to promote epidermal oncogenesis (Kolev et al. 2008). 

A prognostic relevance was uncovered when Cañueto et al. showed that EGFR overexpression 

in the primary cSCC indicated a strong association with invasiveness (Cañueto et al. 2017). 

Notch signaling that has been characterized extensively as a tumor suppressor in keratinocytes 

is also downregulated in cSCC due to low expression of p53, a transcriptional activator for 

Notch1 (Lefort et al. 2007). Notch1 inactivation has been shown to induce oncogenic Wnt 

signaling by aberrantly activating beta catenin (Sherwood and Leigh 2016). Activation of signal 

transducer and activator of transcription 3 (STAT3), a downstream target of EGFR, has also 

been reported to promote cSCC tumorigenesis in a transgenic mice model, by regulating genes 

involved in cell cycle regulation and apoptosis (Kim et al. 2009). In addition to the oncogenic 

mutations in protein coding genes, cSCC pathogenesis could be acutely regulated by the 

changes in the expression and functionality of various non-coding RNAs.   

 

Figure 5: Normal skin (right) vs cutaneous squamous cell carcinoma (left). In the cSCC specimen, the 
tumor cells have invaded into the dermis. However, nest of well-differentiated keratinocytes (keratin-
pearl) within the dermis can be seen in the histology (left). (Yanofsky, Mercer, and Phelps 2011) 
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1.2.4  Treatment 

Electrodessication and curettage are some of the effective treatments against low-grade cSCC. 

For invasive tumors, Mohs micrographic surgery and surgical excision are expensive but 

extremely potent options. Patients, who are unable to undergo surgical process, can take 

radiation therapy in case of low-grade tumors. It can also be used as an adjuvant therapy along 

with surgery against aggressive tumors (Alam and Ratner 2001). For patients with unresectable 

tumors, two other drugs are proven promising in clinical trials. The first one, an EGFR inhibitor 

called cetuximab was used in phase II clinical trial in a cohort containing 36 advanced cSCC 

patients for 6 weeks, resulting in a disease control rate of 69%, with 2 cases of complete and 8 

cases of partial remission with the minimum side effect (Maubec et al. 2011; Montaudié et al. 

2020).  The second drug cemiplimab (PD-1 inhibitor), has been approved by FDA, after it 

produced a promising and durable response in patients with metastatic or locally advanced 

cSCC (Falchook et al. 2016; Research 2019). In this regard, various non-coding RNAs, due to 

their widespread involvement in growth signaling pathways, p53-coordinated gene networks 

and maintenance of epidermal homeostasis, can provide additional targets for treatment (Gomez 

et al. 2013; He et al. 2007). 

 

Figure 6: Progression of cSCC from sun-damaged skin. Key mutations and chromosomal aberrations 
associated with cSCC progression are shown below the intermediate events. Modified from (Dlugosz et 
al. 2002). 
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1.3.    Cutaneous melanoma 

1.3.1  Epidemiology  

Melanoma, a malignancy of melanocytes, accounts for 5% of all skin cancers, and causes 

almost 80% of skin cancer-related deaths (Erdmann et al., 2013). Melanoma is more prevalent 

in the western world, particularly among the fair-skinned Caucasian population (Domingues et 

al. 2018). The incidence of melanoma is increasing rapidly across the world, with about 100,000 

predicted cases in the US only, for 2020 (American Cancer Society, 2020). Although surgery 

is proven effective against early-stage melanomas, invasive and metastatic melanoma, localized 

to distant organs (lymph node, lungs, and brain), have a much worse prognosis (not more than 

19% survival rate for 5 years after diagnosis) (Sandru et al., 2014). 

1.3.2   Cell of origin  

Cutaneous melanoma is a malignancy of the pigment-producing cells known as melanocytes. 

During the course of development, melanocytes, which are neural crest-derived cells, localize 

to the skin, eye, ear, GI tract, oral and genital mucous membranes. Within the skin, melanocytes 

are located in epidermis and hair follicles (Mort, Jackson, and Patton 2015). In the epidermis, 

they are located at the basal layer, interspersed between progenitor keratinocytes (one 

melanocyte per ten keratinocytes). In response to UV-induced DNA damage in keratinocytes, 

melanocytes proliferate and synthesize melanin, a pigment molecule capable of absorbing and 

scattering UV radiation. Upon synthesis, it is transported back to keratinocytes to provide 

protection against UV induced DNA damage (Cichorek et al. 2013). 

1.3.3   Risk factors 

Melanoma development involves a complex interplay between a number of environmental and 

genetic factors. Epidemiological studies have shown that UV-exposure is one of the primary 

risk factors for malignant melanoma (Lawrence et al. 2013). Therefore, individuals with history 

of major sunburn are at greater risk to develop melanoma in the end. The mutagenic effect of 

UV-B radiation becomes more evident from high frequency of C to T and CC to TT mutational 

signatures in cutaneous melanoma samples (Sample and He 2018). Besides UV-induced 

mutations, BRAF, an oncogene acting in MAPK pathway, is recurrently reported to acquire an 

activating mutation in approximately 40-60% of all melanoma cases (Hayward et al., 2017; 

Hodis et al., 2012; Krauthammer et al., 2012). Constitutively active BRAF promotes 
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uncontrolled cell proliferation and growth to potentiate tumor progression. NRAS, a GTPase 

belonging to the RAS-RAF-MAPK pathway, is also frequently mutated (15-20%) in melanoma 

patients (Sample and He 2018). In terms of mutational burden, melanoma displays the most 

mutated genome among all cancer types, as measured by the number of mutations per megabase 

genome (Akbani et al., 2015). Presence of a high number of melanocytic nevi (birthmark or 

moles), a benign neoplasm with high number of melanocytes, is also associated with melanoma 

predisposition. Hereditary causes like light hair, fair skin, eye color, along with mutations in 

cyclin-dependent kinase 4 (CDK4) and cyclin dependent kinase inhibitor 2A (CDKN2A), have 

also been identified as risk factors from various genome wide association studies of malignant 

melanoma (Leonardi et al. 2018). A recent whole genome study by Hayward et al; shows that 

non-coding loci are also heavily mutated in cutaneous melanoma, further strengthening the 

potential functional role of various small and long noncoding RNAs (Hayward et al. 2017) . 

 

1.3.4   Molecular pathogenesis 

The oncogenic transformation of melanocytes to metastatic melanoma has been classically (the 

Clark model) described as a multistep process involving many histopathological intermediates 

such as benign nevus, dysplastic nevus, melanoma in situ in radial growth phase (RGP), 

invasive melanoma in vertical growth phase (VGP) and metastatic melanoma (Miller and Mihm 

2006).  However, a growing number of clinical evidence has refuted the linearity of this 

progression, revealing that invasive melanoma can arise without progressing incrementally 

through the intermediate steps (Figure 7) (Damsky, Theodosakis, and Bosenberg 2014; Varrone 

and Caputo 2020). 

A number of studies indicated strongly that cutaneous melanoma originates from the 

tumorigenic conversion of benign nevi (Bastian 2014), arising from cutaneous melanocytes that 

have acquired initiating mutations in BRAF and NRAS (Pollock et al. 2003). This leads to an 

aberrant activation of the serine/threonine kinase and its downstream MAPK pathway. 

Permanent activation of MAPK pathway contributes fundamentally towards increased cell 

proliferation and suppression of apoptosis (Pollock et al. 2003; Shain et al. 2018). In some 

cases, benign nevi converts to dysplastic nevi, a premalignant lesion with structural atypia 

(Miller and Mihm 2006). Pathogenic mutations in genes acting in the MAPK pathway and cell 

cycle regulator CDKN2A loss are reported in dysplastic nevi (Goldstein et al. 2000). Activating 
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mutations at TERT promoter and loss-of-function mutations within PTEN are also commonly 

associated with this stage (Shain and Bastian 2016). Activated TERT enhances self-renewability 

and cell proliferation of tumor cells (Reyes-Uribe et al. 2018). PTEN inactivation leads to 

induction of PI3K/Akt pathway, leading towards decreased apoptosis, increased cell 

proliferation and protein synthesis (Kwong and Davies 2013).  Only a fraction of dysplastic 

nevi further progress into the early phase of melanoma (radial-growth-phase). In this phase, the 

tumor cells grow in a localized manner between the epidermal layers without forming any 

nodule (Miller and Mihm 2006).  

In the vertical-growth-phase, the lesions undergo a nodular growth, and breach the basement 

membrane to invade deep into the dermis. Invasive melanoma carry forwards important drivers 

like activating mutations for BRAF, TERT and exhibit frequent deactivating mutations in the 

tumor suppressor CDKN2A (Shain et al. 2015). As the malignancy acquires invasiveness, tumor 

cells show reduced expression of E-cadherin and increased expression of N-cadherin (Danen et 

al. 1996; My et al. 2000); one of the key molecular changes associated with epithelial to 

mesenchymal conversion. As the malignancy becomes metastatic, disseminated tumor cells 

first colonize to local lymph nodes and eventually to distant organs such as liver, lungs and 

brain (Damsky et al. 2014).   

 

Figure 7: Key molecular events associated with malignant melanoma and different intermediates 
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1.3.5  Treatment 

For low-grade cutaneous melanoma, surgical removal of the tumor, followed by adjuvant 

therapy, is an effective treatment. For a long time, chemotherapeutic drugs (e.g. dacarbazine 

and temozolomide) were used as the standard treatment with limited efficacy against advanced 

melanoma (Luke and Schwartz 2013). However, with the advent of the target-based approach 

and immunotherapy, chemotherapeutic drugs have taken a back seat. 

When it comes to targeted therapeutics, inhibitors of MAPK pathway are the primary drugs of 

choice for patients with BRAF-mutant melanoma. FDA-approved drugs targeting BRAF 

(vemurafenib and dabrafenib) and MEK (trametinib), have shown great efficacy when used in 

combination (Maverakis et al. 2015). Recently, the new generation of inhibitors of BRAF 

(Encorafenib) and MEK (Binimetinib), due to their increased half-life and enhanced anticancer 

activity, have exhibited further improvement in prolonging the anti-tumor response and disease-

free survival (Sullivan et al. 2020). However, acquired and intrinsic resistance against BRAF 

inhibitors is a key roadblock in melanoma treatment (Luebker and Koepsell 2019).  

Over the past decades, rapid progress in the field of immunotherapy has revolutionized 

melanoma treatment. At present, the most commonly used immunotherapeutics are checkpoint 

inhibitors, which effectively remove the intracellular brake over T-cell activation. Ipilimumab, 

the first FDA-approved checkpoint inhibitor for treating advanced melanoma patients, inhibits 

CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) to promote T-cell activation and 

expansion (Darvin et al. 2018). Subsequently, FDA approved two other antibodies, namely 

nivolumab and pembrolizumab, which are currently used in the clinic. These drugs block the 

interaction between PD-1 and its ligand PD-L1, resulting in the activation of T-cell mediated 

anti-tumor immune response (Grywalska et al. 2018). Many of these drugs, such as nivolumab 

and ipilimumab, are more effective when used in combination than monotherapy (Varrone and 

Caputo 2020). Similar to targeted therapy, acquired resistance is a major problem in 

establishing a long-term efficacy of immunotherapeutics (Restifo, Smyth, and Snyder 2016).  

In this scenario, non-coding RNAs have emerged as exciting novel druggable targets which 

could contribute to overcoming drug-resistance (Caporali et al. 2019). 
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1.4   Non-coding RNAs 

The human genome is made up of approximately 3 billion base pairs, but only a small fraction 

(<2%) of them can code for proteins(Lander et al. 2001). Initially, most of the non-protein 

coding genome was considered “junk DNA” that lacks any functional contribution to the 

survival of the species. Even though ribosomal RNAs (rRNAs) and transfer RNA (tRNAs) were 

proven to play important catalytic roles in protein synthesis (since 1960), it took a long time to 

fully explore the idea of a pervasive RNA-mediated mechanism for regulating gene expression 

that can contribute to the species-complexity (Figure 8) (Kruger et al. 1982). With the discovery 

of catalytically active ribozymes and small nuclear RNAs (snoRNAs), it started to appear that 

RNA, rather than being just a passive intermediate molecule in the scheme of the central dogma, 

can also provide an additional layer to gene expression regulation. However, the biggest 

impetus in the field of RNA biology came through the discovery of a small 21 nt long RNA 

molecule- lin-4 (now classified under miRNAs) in a C. elegans, where it downregulates the 

expression of LIN-14 protein through partial base pairing with the corresponding mRNA (Li et 

al., 1993). The similarity between lin-4 and other small RNA mediated regulation (RNA-

interference) in plants and worms further fueled the interest of finding and studying small RNAs 

exhaustively in higher eukaryotes. Since then, the field of RNA biology has undergone a 

thorough transformation. We have come across many novel classes of non-coding RNAs such 

as – small nucleolar RNA (snoRNAs), which are responsible for chemical modifications of 

rRNAs and tRNAs, and PIWI-interacting RNAs (piRNAs) - responsible for preserving the 

genomic integrity by suppressing mobile genetic elements (Bachellerie et al. 1995; Houwing et 

al. 2007). With the inception of high throughput transcriptomic studies in the recent years, it 

became apparent that a large portion of the eukaryotic genome is actively transcribed (Djebali 

et al. 2012). These studies gave rise to another class of non-coding RNAs (long non-coding 

RNAs) with a transcript length of more than 200 nucleotides. A growing number of studies 

suggest that they play fundamental roles in cellular processes including X-chromosome 

inactivation, epigenetic regulation of transcription, imprinting, chromatin remodeling, and 

regulation of translation (Marchese, Raimondi, and Huarte 2017).  
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Figure 8. Different classes of non-coding RNAs in the eukaryotes. 

 

1.4.1 MicroRNAs 

MicroRNAs (miRNAs) are a class of evolutionarily conserved small ncRNAs (21-23 nt) that 

have emerged as an important player in posttranscriptional gene regulation. Since their 

discovery in 1993, miRNAs have been implicated in virtually every biological process, and 

disease progression in the plant and animal kingdom (Lee, Feinbaum, and Ambros 1993). 

Primarily, miRNAs exert their silencing effect by binding to a short complementary region in 

the 3’-UTR of an mRNA, leading to either its degradation or inhibition of translational (Guo et 

al. 2010).  

 

1.4.1.1 MiRNA biogenesis and mode of function 

The majority of canonical miRNA genes are intragenic (intronic or exonic). Intragenic miRNAs 

are transcribed from either the host promoter or an independent promoter by RNA polymerase 

II (Figure 9) (Lee et al. 2004). However, RNA polymerase III transcribes most intergenic 

miRNAs from an independent promoter (Borchert, Lanier, and Davidson 2006). Upon 

transcription, human miRNAs undergo a multistep step processing to produce a mature miRNA 

transcript. In the first step, a microprocessor complex composed of Drosha – an RNase III 

endonuclease, and its cofactor DGCR8 cleaves the primary transcript to produce a 60-70 
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nucleotide stem looped precursor (Lee et al. 2003). This precursor miRNA (pre-miRNA) is 

transported from the nucleus to the cytoplasm by Exportin 5 (XPO5) and Ran-GTP protein 

complex (Okada et al. 2009). In the cytoplasm, Dicer – another ribonuclease III in association 

with a double-stranded RNA binding protein-TARBP further cleaves the pre-miRNA into a 

shorter, imperfect duplex, with 2-3 nt overhang (Chendrimada et al., 2005). This duplex RNA 

comprises of the mature miRNA and a passenger strand that comes from the complementary 

part of the pre-miRNA transcript (Chendrimada et al. 2005). Subsequently, the matured miRNA 

is incorporated into an Argonaute2 (AGO2) protein that forms an effector complex: RNA 

induced silencing complex (RISC) while the passenger strand is degraded (Hutvagner and 

Simard 2008). Once loaded onto the RISC, the matured miRNA directs target mRNA silencing 

depending on the degree of sequence complementarity between miRNA seed sequence 

(nucleotide 2-8 of 5’ end) and 3’-UTR of target mRNA (Bartel 2009). A perfect 

complementarity leads to the degradation of target mRNA, while an insufficient 

complementarity promotes translational blocking (Brennecke et al. 2005; Doench and Sharp 

2004) (Figure 4). Apart from the miRNA-mRNA seed pairing, length, secondary structure and 

the number of target sites within the 3’-UTR can influence miRNA-mediated regulation (Bartel 

2009). Possibly, through an act of co-evolution, matured miRNA sequence and corresponding 

3’-UTRs have remained evolutionarily conserved (Friedman et al. 2009; Lewis, Burge, and 

Bartel 2005). Depending on the similarity between functionally crucial seed sequences or 

matured sequence, miRNAs are grouped into different families, with overlapping functions 

between the family members (Altuvia et al. 2005). Given that miRNA-mRNA interaction is 

short (6-8 nt), each microRNA can have multiple target mRNAs within the cell. Although the 

silencing effect is modest because of having multiple targets, most of the miRNAs play an 

important role in cellular networks by simultaneously regulating various pathways (German et 

al. 2008). In alignment with one miRNA-multiple targets postulate, more than half of the human 

transcriptome is estimated to be regulated by miRNAs, underscoring the importance of the 

miRNome in virtually every possible gene network (Rigoutsos 2009).  

 

1.4.1.2 Regulation of miRNA biogenesis and function 

Due to the presence of TATA box sequences in the promoter region, initiation elements, and 

various regulatory histone marks, miRNAs are often subjected to transcription factor or 

epigenetic factor mediated regulation (Ozsolak et al. 2008). For example, c-MYC has been 
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shown to induce the expression of miR-17-92 cluster by binding to both the host gene TSS and 

an intronic promoter (Chang et al. 2008). Another study demonstrated that transcription factor 

Zinc Finger E-Box Binding Homeobox (ZEB1 and ZEB2) transcriptionally suppresses the miR-

200c and miR-141 by directly binding to the putative promoter regions (Bracken et al. 2008). 

Through a conjoint effort, epigenetic modifier HDAC2 is recruited by MYCN to activate miR-

183 expression by promoter acetylation in neuroblastoma (Lodrini et al. 2013). Promoter 

hypermethylation has been proven a frequent mode of inhibitory mechanism for miRNA 

expression. For example, miR-34a is frequently downregulated in various cancer types, through 

promoter-associated CpG hypermethylation (Suzuki et al. 2012). Another recent study 

demonstrated that methyl CpG binding protein 2 (MECP2), by binding to the methylated CpGs 

within the miRNA gene body, impedes RNA pol II elongation and miRNA biosynthesis (Glaich 

et al. 2019). MiRNA expression and function is also regulated post-transcriptionally, effectively 

during every step of its biogenesis. For instance, LIN28 has been proposed to recruit TUTase4 

(TUT4) for uridylation of let-7 precursor (or other miRNAs with TUT4 binding site). This in 

turn inhibits dicer mediated processing of the precursors and leads to their degradation (Heo et 

al. 2009). 

 

Figure 9: The canonical miRNA biogenesis pathway and modes of target repression, by either mRNA 
degradation or inhibition of protein synthesis. Adapted and modified from (Mulrane et al. 2013). 
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1.4.1.3   MiRNAs in cancer 

Considering that miRNAs function as fine-tuners of gene expression to maintain cellular 

homeostasis or as regulators of cell responses, especially towards developmental cues, it is not 

a surprise that they have been regularly implicated in a complex developmental disorder like 

cancer (Ebert and Sharp 2012; Peng and Croce 2016). The first reported case of miRNA 

alteration in cancer came in 2002, where miR-15 and miR-16 genes were found to be deleted 

in Chronic Lymphocytic Leukemia (CLL), causing an increase in their direct target- B-cell 

lymphoma 2 (Bcl-2) (Calin et al., 2002). Since then, miRNAs have become the cardinal 

regulators of cancer progression by modulating target genes involved in cell proliferation, 

immune cell evasion, tumor growth, migration, invasion, and neo-angiogenesis (Figure 10) (Di 

Leva, Garofalo, and Croce 2014; Peng and Croce 2016). Moreover, many miRNAs have been 

identified as biomarkers for predicting disease progression, classification, patient survival, and 

treatment outcome (Rosenfeld et al. 2008; H. Wang et al. 2018).   

MiRNAs with functional roles in cancer can be broadly grouped into tumor-suppressive or 

oncogenic miRNAs (Figure 5). One of the most well-characterized miRNAs with tumor 

suppressive function is miR-34. All three members of miR-34 family are downregulated in 

different cancer types such as lung, prostate and breast cancer (Zhang, Liao, and Tang 2019). 

They are transcriptionally regulated by tumor suppressor p53, while regulating cell survival and 

proliferation by directly targeting oncogenic transcription factors such as c-MYC and MET 

(Hermeking 2010; Zhang et al. 2019). Let-7 miRNA family members have also been 

demonstrated to act as a tumor suppressor by directly targeting oncogenic HRAS in breast 

cancer (Johnson et al. 2005). Therapeutically, lipid nanoparticle-mediated delivery of miR-34 

(stand-alone or in combination with let-7) mimic had provided promising early results in several 

solid and hematological tumor models in mice and moved to phase I clinical trial 

(NCT01829971) (Stahlhut and Slack 2015; Wiggins et al. 2010). However, due to multiple 

immune-related adverse effects, this trial was terminated in 2016 (Van Roosbroeck and Calin 

2016). Some other well-characterized miRNAs with tumor suppressive role are- miR-200, miR-

203 and miR-520 (Gregory et al. 2008; Keklikoglou et al. 2012; Saini et al. 2011). Among the 

oncogenic miRNAs, miR-21 is upregulated in breast, and colorectal cancer, and directly targets 

pro-apoptotic protein PDCD4 to trigger tumor metastasis (Asangani et al. 2008; Si et al. 2007). 

Some other well-characterized oncogenic miRNAs are miR-155, miR17-92 and miR-221/222 

(Fuziwara and Kimura 2015; Galardi et al. 2011; Gironella et al. 2007). Several miRNAs within 

the cell or in cell-free circulation have been also proven useful as biomarkers. In one such 
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example, a five-miRNA signature (miR-92a-3p, miR-342-3p, miR-16, miR-21 and miR-199a-

5p) was identified for accurately diagnosing triple-negative breast cancer (Shin et al. 2015).  A 

study by Yokoi et al., has identified a signature of 10 serum-derived miRNAs in ovarian cancer, 

that can be used as a biomarker (Yokoi et al. 2018). 

 

 

Figure 10: MiRNAs regulating the hallmarks of cancer. Modified from (Pichler and Calin 2015) 

 

1.4.1.4 MiRNAs in cutaneous squamous cell carcinoma 

Several studies involving tissue-specific ablation of miRNA processing enzymes highlighted 

that miRNAs play a crucial role in skin morphogenesis and change in their expression can lead 

to abnormal epidermal morphology and altered differentiation program (Andl et al., 2006; Yi 

et al., 2006). Additionally, miRNA expression is differentially regulated in different layers of 

epidermis, during different stages of differentiation, further underscoring the importance of 

miRNA in skin morphogenesis and homeostasis (Sonkoly et al. 2010; Wei et al. 2010; Yi et al. 

2008). A great many studies have demonstrated extensively that the expression of miRNAs is 

altered in chronic inflammatory skin diseases as well as non-melanoma skin cancers (García-

Sancha et al. 2019; Timis and Orasan 2018). Among one the earliest studies about miRNAs in 

cSCC, Wang et al. demonstrated that miR-31 is differentially upregulated in cSCC tumors, and 

it causes increased cell proliferation, migration, and invasion (A. Wang et al. 2014). Later, Xu 

et al. demonstrated that miR-125b acts as a tumor-suppressor in cSCC, by limiting cell 



27 
 

proliferation and motility via targeting matrix metalloprotease 13 (MMP13) in human cSCC 

cell lines (Xu et al. 2012). Pan-cancer tumor-suppressor miR-34a was also found to be 

downregulated in cSCC. Besides, the same work also reported that miR-34a is induced during 

keratinocyte differentiation, and modulates p53-mediated Notch1 expression to regulate 

differentiation  (Lefort et al. 2013). Using patient-derived cSCC cell lines, Mizrahi et al. 

demonstrated that miR-497 is a stage-specifically altered oncogenic miRNA in cSCC and it 

influences epithelial to mesenchymal transition by targeting serpin family E member 1 

(SERPINE1), a serine protease inhibitor (Mizrahi et al. 2018). 

Much of our understanding about the multi-stage development of epithelial cancer comes from 

the studies using a mice model where the sequential application of carcinogenic DMBA (7,12-

dimethylbenz[a]-anthracene) and tumor-promoting ester TPA (12-Otetradecanoylphorbol-13-

acetate) on mice skin leads to the development of skin squamous cell carcinoma (Neagu et al. 

2016). The importance of miRNAs in the pathobiology of SCC development in this model was 

highlighted in a study, which revealed differential expression of 112 miRNAs in the primary 

tumors. Among others, miR-193b/365a cluster seemed to have an inhibitory effect on cSCC 

progression, by directly targeting KRAS and MAX (Gastaldi et al., 2014). Following a similar 

approach, Riemondy et al. has demonstrated using a knockout mice model, that miR-203 

suppresses the expansion of oncogenic HRASG12V transformed tumor-initiating cells, resulting 

in fewer papillomas. MiR-203 exert this tumor-suppressive function, partly by targeting 

regulators of cell division: HBEGF (Heparin Binding EGF Like Growth Factor) and POLA 

(DNA polymerase alpha 1, catalytic subunit) (Riemondy et al. 2015). Another recent study 

using p63-/- mice has uncovered a regulatory axis involving tumor suppressor p63, two miRNAs 

(miR-30c-2* and miR-497) and AURKA in keratinocyte derived malignancy (Davis et al., 

2020). These two miRNAs were found to be downregulated in the p63-/- mice and exhibited 

strong tumor growth suppressive effect in vivo, while chemical inhibition of AURKA (a direct 

target of miR-497) phenocopied the miRNA overexpression (Davis et al. 2020).  

 

1.4.1.5 MiRNAs in cutaneous malignant melanoma 

A growing body of literature suggests that miRNAs can play a vital role in melanocyte 

homeostasis and melanoma pathogenesis. For instance, MITF - the master regulator in 

melanocytes, has been reported to transcriptionally activate DICER during melanocyte 

differentiation, which in turn processes pre-miR-17-92. Successively, members of the miR-17 
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cluster inhibit pro-apoptotic factor BIM (Bcl-2-like protein 11) to promote melanocyte survival 

(Levy et al. 2010). The first indication about the involvement of miRNAs in melanoma came 

from a miRNA-gene-specific DNA copy number analysis, which contained a high proportion 

of copy number alterations (85%) in melanoma patients (Zhang et al. 2006). Another miRNA 

expression profiling, using NCI-60 panel of tumor-derived cell lines (including melanoma), 

revealed a tumor tissue-specific miRNA enrichment when compared with cancer cell lines 

derived from non-melanoma tumors (Gaur et al. 2007). In the following years, many miRNAs 

were characterized in-depth in stage-specific melanoma progression. In one such study, 

multiple members of the let-7 family are downregulated in primary melanoma tissues when 

compared to melanocytic nevi with a potential role in melanoma progression. Functionally, let-

7b downregulates pro-oncogenic cyclins 2 and 3, and CDK4, and suppresses melanoma 

progression (Schultz et al. 2008). MiRNAs are also reported to play vital role in regulating 

MITF during melanoma development. Haflidadottir et al. delineated a mechanism, where miR-

137 and miR-148 directly target MITF and modulates melanoma progression (Haflidadóttir et 

al. 2010). In addition to the functional roles, miRNA-signatures are proven equally useful for 

predicting melanoma progression or long-term survival of the patients. A study by Stark et al. 

detected a panel of seven miRNAs (miR-16, 211, 4887, 4706, 4731, 509-3p, and 5p) which are 

more efficient than the available serological markers in predicting early recurrence and patients’ 

survival (Stark et al. 2015). With a steady increase in our knowledge about the role of miRNAs 

in melanomagenesis, we can clearly envisage their diagnostic and therapeutic potential 

(Varrone and Caputo 2020). However, as always, further research is required to fine-tune the 

treatment and avoid potential pitfalls of non-specific targeting. 
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1.4.2 Long non-coding RNAs 

In recent years, long non-coding RNAs (lncRNAs) have emerged as fundamental regulators of 

various eukaryotic cellular pathways, both in homeostatic and disease conditions. According to 

the present nomenclature of lncRNAs, they can be broadly defined as a functionally diverse 

group of regulatory RNAs without protein coding capacity and having transcripts longer than 

200 nucleotides (Kapranov et al. 2007). A paradigm shift in the field came with the systematic 

identification of more than 20,000 lncRNAs locus through cDNA clone analysis by ENCODE 

and FANTOM consortium (Carninci et al. 2005; Derrien et al. 2012). In terms of biogenesis, 

most annotated lncRNAs are transcribed by RNA polymerase II, undergo splicing, and 

frequently get 5’-capped and 3’-poly-adenylated similar to the protein-coding genes (Carninci 

et al. 2005). Due to their relatively lower abundance and lack of sequence conservation, 

lncRNAs were initially considered as spurious byproducts of leaky transcription (Struhl 2007). 

Later studies revealed that the expression of lncRNAs is stringently regulated in a 

spatiotemporal manner, in particular developmental contexts (Mercer et al. 2008). The 

functional significance of cross-species lncRNAs appears to stem from not only sequence 

conservation but also from the conserved secondary structure and shared synteny (Johnsson et 

al. 2014). A number of genome-wide studies revealed a conserved signature of secondary 

structure and splicing pattern for a large number of lncRNAs, underscoring the multilayered 

conservation in lncRNAs (Ponjavic, Ponting, and Lunter 2007; Torarinsson et al. 2006).  

 

1.4.2.1 Genomic location  

The present nomenclature of uncharacterized lncRNAs is based on their location in relation to 

the proximal protein-coding gene(s) (Figure 11). LncRNAs that are transcribed and spliced 

from the intron of a protein-coding gene are termed Intronic lncRNAs (IT), while lncRNAs 

locus that are located between two protein coding genes are intergenic in nature and presented 

with a prefix- LINC (long intergenic non-coding RNAs). A bidirectional lncRNA transcribed 

from a common promoter of a protein-coding gene has a prefix AU (antisense upstream). An 

antisense lncRNA (AS) is transcribed from the opposite strand of a protein coding gene, while 

the sense lncRNA can exist as an overlapping transcripts (OT) or intronic transcript (Harrow et 

al. 2012). 
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Figure 11: Different classes of lncRNAs (Blue) according to their relative location to the proximal 
protein-coding gene/s (Green). Modified from (Herrera-Solorio et al. 2017). 

 

1.4.2.2  Subcellular localization and functional classes  

Several studies focusing on the subcellular localization of lncRNAs revealed that they 

predominately exhibit three different kinds of expression pattern- i) enriched in the nucleus ii) 

localized to the cytoplasm and iii) comparable abundance in both subcellular compartments 

(Cabili et al. 2015; Mas-Ponte et al. 2017). Subcellular localization can be a useful indicator of 

lncRNA functionality (Figure 12). Nuclear enriched lncRNAs are found to regulate gene 

expression at the transcriptional level by interacting with the transcriptional machinery, 

epigenetic modulators and genomic DNA (Sun, Hao, and Prasanth 2018). On the contrary, 

lncRNAs accumulated in the cytoplasm majorly function as posttranscriptional regulators by 

interacting with the mRNA processing enzymes and the translation machinery (Chen 2016). 

LncRNAs, which can shuttle between the two compartments, often exhibit dual functional 

attributes (Miao et al. 2019). 

Regulation of transcription 

Nuclear localized lncRNAs can regulate transcriptional dynamics either by chromatin 

remodeling or by recruiting transcription factors to the promoter of a proximal (cis) or distal 

(trans) gene locus (Wilusz, Sunwoo, and Spector 2009). Such regulation can be a direct effect 
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of the lncRNA transcript or just a byproduct of transcription initiation at the lncRNA locus, 

which in turn alters the local chromatin accessibility (Kung, Colognori, and Lee 2013). In one 

such instance, the activity of human growth hormone (hGH) enhancer- HSI was reported to be 

influenced by the transcription of a downstream lncRNA locus. Transcription termination 

experiment, in combination with the restoration of enhancer activity by insertion of an unrelated 

bacteriophage RNA, highlighted an RNA independent transcriptional regulatory function of 

this lncRNA locus (Yoo, Cooke, and Liebhaber 2012). Conversely, a lncRNA transcribed 

upstream of the dihydrofolate reductase gene (DHFR) was found to repress the transcription of 

DHFR by physically interacting with transcription factor TFIIB, leading to the dissociation of 

the preinitiation complex from DHFR promoter (Martianov et al. 2007). Interaction with 

transcription factors and epigenetic modulators are often dictated by lncRNAs containing 

distinct structural domains, acting as docking modules for the interacting proteins. This 

archetype mechanism is also common among enhancer-associated lncRNAs with activators like 

function (eRNA and ncRNA-a) function (Ørom et al. 2010). In one such study, Lai et al reported 

that ncRNA-a7, a lncRNA with transcriptional activator-like function, interacts with the 

mediator complex to enhance the expression of neighboring genes- snail family transcriptional 

repression 1 (SNAI1) and aurora kinase A (AURKA) (Lai et al. 2013). 

 

Modulation of epigenetic regulation 
A number of studies have extensively explored the interactive nature between nuclear lncRNAs 

and epigenetic modulators to activate or repress genomic loci. One of the most well-

characterized lncRNAs- XIST coats the X chromosome in female cells and recruits polycomb 

repressive complex 2 (PRC2)-a methyltransferase that trimethylates lysine 27 of histone 3 

(H3K27me3) across the whole chromosome, causing a transcriptionally inert heterochromatin 

formation (Zhao et al. 2008). Similarly, HOTAIR, a lncRNA proximally located to the HOXC 

locus (human chromosome 12), guides PRC2 complex to transcriptionally repress a distal locus 

of HOXD (human chromosome 2) (Rinn et al. 2007). While it interacts with PRC2 via its 5’-

end, HOTAIR can also interact (via 3’-end) with lysine-specific demethylase 1 (LSD1), which 

is responsible for demethylation of lysine 4 and 9 at histone 3, and gene silencing (Tsai et al. 

2010). Consistent with these findings, a study about breast cancer pathogenesis reported that 

HOTAIR overexpression leads to a genome-wide change in PRC2 recruitment, causing 

suppression of vital tumor suppressor genes (Gupta et al. 2010).  
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Maintenance of nuclear architecture                                                                                                      

Recent studies have highlighted that nuclear-retained lncRNAs play fundamental role in the 

establishment and maintenance of nuclear domain structures. Within the nucleus, paraspeckles 

are highly dynamic non-membranous structures enriched with RBPs that can regulate RNA 

splicing and editing (Spector 2001). Paraspeckles also contain a nuclear-enriched lncRNA 

NEAT1. Clemson et al., using gain and loss of function approach illustrated that both NEAT1 

transcript and its active transcriptional foci are indispensable for paraspeckles formation 

(Clemson et al. 2009). In addition, was also reported to control the nuclear retention of Alu 

elemenets containing mRNAs. These mRNAs undergo frequent adenosine to inosine editing 

event at the Alu regions, which in turn alters their half-life (Bond and Fox 2009). MALAT1 

(alternatively called NEAT2), another nuclear-retained lncRNA, is found to be associated with 

serine/arginine splicing factors (SR) to regulate alternative splicing by dictating their activity 

and overall distribution within the nuclear speckle domains (Tripathi et al. 2010). Apart from 

maintaining interchromatin granules, lncRNAs can also facilitate interchromosomal 

interactions. LncRNA Firre, together with nuclear matrix protein hnRNPU, anchors several 

multi-chromosomal interactions in three-dimensional space with high specificity, allowing co-

regulation of genes that are involved in energy metabolism, adipogenesis and pluripotency 

pathways in mice and human embryonic stem cells (Hacisuleyman et al. 2014).  

 

Regulation of mRNA stability  
Cytoplasmic lncRNAs are capable of regulating mRNA stability via interacting with specific 

RBPs. Staufen1 (STAU1) is a double-stranded RBP that governs mRNA degradation via 

STAU1 mediated decay (SMD) pathway. STAU1 has a binding preference towards double-

stranded structure formed within the 3’UTR of a target mRNA, either by intramolecular base 

pairing or by imperfect base pairing with lncRNAs containing Alu repeat elements, which 

primes them for SMD mediated decay (Gong and Maquat 2011). A disparate function of 

STAU1 was uncovered when Kretz et al reported that TINCR, a cytoplasmic lncRNA expressed 

during keratinocyte differentiation, interacts directly with STAU1 to stabilize a host of mRNAs 

expressed during epidermal terminal differentiation in an Alu independent manner (Kretz et al. 

2013b). Another study revealed that lncRNA gadd7 (growth arrested DNA-damage inducible 

gene 7) binds to TAR DNA binding protein (TDP-43) and impairs its interaction with the 

3’UTR of cyclin-dependent kinase 6 (CDK6) mRNA, causing its degradation and ultimately 

affecting G1/S phase entry upon UV irradiation (X. Liu et al. 2012).  
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Regulation of translation 

Yoon et al. showed that cytoplasmic lincRNA-p21, when associated with HuR, undergoes rapid 

degradation by let-7 miRNA. However, in the absence of HuR, lincRNA-p21 accumulates in 

the cytoplasm, and selectively targets JUNB and CTNNB1 mRNA, and facilitates their 

interaction with translational repressor Rck- a DEAD box RNA helicase and FMRP in HeLa 

cells (Yoon et al. 2012). Another study using mice neuronal cell line uncovered the translation 

modulating function of Uchl1-AS, a lncRNA antisense to ubiquitin c-terminal hydrolase L1 

(UCHL1) and highly enriched in mice ventral mid-brain. The authors showed that the 

regulatory feature of Uchl1-AS is dependent on an inverted SINEB2 repeat and a 73 nt long 

complementary sequence overlapping to the 5’-end of Uchl1 mRNA. Uchl1-AS, which is 

nuclear under physiological condition, translocates to the cytoplasm upon activation of cellular 

stress response and base pairs with Uchl1 mRNA to recruit active polysomes, enhancing 5’-

cap-dependent translation (Carrieri et al. 2012).  

 

MiRNA sponges 
Several cytoplasmic lncRNAs act as miRNA sponges (alternatively called competing 

endogenous RNAs-ceRNAs) owing to miRNA binding sites along their transcripts (Ebert and 

Sharp 2010). Therefore, they can indirectly regulate the miRNA-targets by titrating away the 

corresponding miRNA-RISC complex. For instance, oncogenic phosphatase and tensin 

homolog (PTEN) has a pseudogene PTENP1 that acts as a molecular decoy for miRNAs such 

as miR-17, miR-19, miR-21 and miR-26. By hijacking these miRNAs, PTENP1 can fine-tune 

the expression of their target – PTEN, and exert a tumor-suppressive effect (Poliseno et al. 

2010). More recently, another group characterized a novel gall bladder cancer de-regulated 

lncRNA PAGBC (prognosis‐associated gallbladder cancer lncRNA) that exerts its pro-

metastatic function by sponging away tumor-suppressor miR-133b and miR-511. Suppression 

of these miRNAs increases the expression of Phosphatidylinositol 3-kinase regulatory subunit 

gamma (PI3KR3), which in turn activates the Akt/mTOR pathway in gallbladder cancer (Wu 

et al. 2017). 

 

Encoding small functional peptides 
Although most of the lncRNAs do not contain large ORFs, recent evidences from ribosome-

profiling studies however revealed that several cytoplasmic lncRNAs have similar profiling 

characteristics of the 5’-end of coding mRNAs (Ingolia et al. 2014; Ji et al. 2015). Not only 
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unstable byproducts, these translational events can also give rise to functional micropeptides (< 

100 aa). In one such instance, a skeletal muscle-specific micropeptide - MINION (microprotein 

inducer of fusion) was proposed to regulate muscle fusion in mice and humans (Q. Zhang et al. 

2017). In another recent study, CASIMO1 (Cancer-Associated Small Integral Membrane Open 

reading frame 1)- a 10 kDa micropeptide overexpressed in hormone receptor-positive breast 

cancer, was shown to interact with squalene epoxidase (SQLE) and regulate downstream ERK 

phosphorylation, to drive tumor cell motility and proliferation (Polycarpou-Schwarz et al. 

2018). 

 

 
Figure 12. Summary of various modes of function of nuclear and cytoplasmic long non-coding RNAs. 
From left to right (top section), nuclear lncRNAs can act (A) as enhancer RNAs (B) recruit chromatin 
modifiers to activate or repress gene expression (C) regulate transcription factors, (D) alter spatial 
interchromosomal interactions or (E) regulate mRNA splicing. Cytoplasmic lncRNAs (bottom section) 
can influence (F) mRNA stability, (G) protein synthesis, (H) produce functional peptides, (I) miRNA 
activity and abundance by acting as sponge. Modified from (Morlando, Ballarino, and Fatica 2015). 

 

1.4.2.3  LncRNAs in epidermal differentiation and cSCC 

Due to their cell-type-specific expression pattern in particular developmental context, lncRNAs 

have promptly made their way into the regulatory jigsaw of tissue development and 

organogenesis. The earliest evidence of a lncRNA being associated with keratinocyte biology 
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/skin disorder was provided by Sonkoly et al. through the identification of PRINS (Psoriasis 

Susceptibility-Related RNA gene Induced by Stress), a lncRNA upregulated specifically in the 

non-lesional epidermis, and induced by various stress signals in keratinocytes (Sonkoly et al. 

2005). Almost 5 years later, another study using custom-made expression array identified 

hundreds of differentially expressed lncRNAs upon TPA mediated differentiation of primary 

keratinocytes (Ørom et al. 2010). Shortly after, two related studies uncovered hundreds of 

dynamically expressed lncRNAs during calcium-induced differentiation of primary 

keratinocytes, and further characterized two of them having antagonistic roles in epidermal 

differentiation. While intergenic lncRNA ANCR was found to be downregulated during 

terminal differentiation, expression of TINCR was induced. Since ANCR depletion led to 

ectopic expression of differentiation, it seems to enforce an undifferentiated state in the 

progenitor compartment (Kretz et al. 2012). On the contrary, TINCR - an abundant lncRNA in 

terminally differentiated layers of the epidermis, promoted keratinocyte differentiation by 

stabilizing differentiation-specific mRNAs in a STAU1 mediated mechanism (Kretz et al. 

2013a). Another study, using primary human keratinocytes, demonstrated that lncRNA H19 

sponges miR-130b-3p, and thereby releases its inhibitory effect on a differentiation-promoting 

factor Desmoglein1 (Dsg1) (Li et al. 2017). In a separate study, progenitor enriched LINC00941 

has been shown to repress differentiation in the basal layer of the human epidermis, partly by 

suppressing SPRR5- a novel EDC derived transcript (Ziegler et al. 2019:5). In the latest 

example of a lncRNA regulating epidermal differentiation, an ultra-conserved region 

containing lncRNA uc.291 was reported to aid epidermal differentiation by titrating away actin-

like 6A (ACTL6A)- an epigenetic regulator that prevents the binding of SWItch/Sucrose Non-

Fermentable (SWI/SNF) complex to the promoters of vital differentiation genes such as 

filaggrin and loricrin (Panatta et al. 2020:2).  

Since lncRNAs play important regulatory roles in epidermal homeostasis; it is hardly surprising 

to speculate their potential involvement in keratinocyte derived malignancies that are marked 

with altered epidermal homeostasis (Figure 13). An array-based lncRNA profiling first reported 

about thousands of differentially expressed lncRNAs in cSCC (Sand, Falk G Bechara, et al. 

2016). Recently, another deep sequencing-based investigation has identified several 

uncharacterized SCC-misregulated non-coding transcripts (SMRTs), some being regulated by 

oncogenic KRAS and expressed inversely between epidermal differentiation and cSCC (Lee et 

al. 2018). Among the limited number of characterized lncRNAs in cSCC, p38-inhibited 

cutaneous squamous cell carcinoma associated lncRNA (PICSAR) was proposed to activate the 
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MAPK pathway to promote tumor growth (Piipponen et al. 2016). Consistent with the previous 

findings, TINCR, a highly expressed lncRNA in various epithelial tissues (including the skin), 

has been shown to suppress esophageal SCC via a ZNF750 dependent regulatory network 

(Hazawa et al. 2017). Finally, a recent finding has identified a p53-suppressed lncRNA 

(PRECSIT), which promotes cSCC progression via activation of STAT3 pathway (Piipponen, 

Nissinen, Riihilä, et al. 2020). These findings simultaneously form the framework of our 

understanding of ncRNA functionality and provide a resource for future elucidation of 

uncharacterized transcripts in relation to keratinocyte biology.  

 

 

Figure 13: A summary of lncRNAs with regulatory role in epidermal homeostasis and/or cutaneous 
squamous cell carcinoma. Modified from (Piipponen, Nissinen, and Kähäri 2020). 
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1.4.3   Circular RNAs 

Circular RNAs (circRNAs) are a novel class of single-stranded, covalently closed regulatory 

RNA. Just like the early years of lncRNAs, circRNAs were initially considered as junk 

byproducts of faulty splicing (Cocquerelle et al. 1993). However, with the advent of deep 

sequencing, and the development of robust bioinformatics platforms, we have seen an 

exponential increase in the discovery of circRNAs in various eukaryotes.  

 

1.4.3.1   CircRNA biogenesis and turnover 

The primary mode of circRNA biogenesis is through back splicing of a 5’-splice donor site to 

a 3’-splice acceptor site of a single or multiple exon(s). This process is often promoted by the 

physical proximity of the 5’-donor and the 3’-acceptor site by the formation of a loop structure 

(Figure 14) (Memczak et al. 2013). This loop can be formed by either complementary base 

pairing, due to the presence of inverted repeated elements (e.g. Alu elements), or dimerization 

and binding of trans-acting RNA binding proteins (e.g. QKI and FUS) to specific RBP-binding 

motifs present in the flanking introns (Figure 14) (Conn et al. 2017; Errichelli et al. 2017; 

Kristensen et al. 2019). Another study has proposed that looping could be influenced by the 

presence of splicing factors such as hnrnps and SR splicing factors (Kramer et al. 2015). 

Alternatively, circRNAs can be generated from lariats – a canonical splicing intermediate that 

can undergo internal back splicing (Barrett, Wang, and Salzman n.d.; Kristensen et al. 2019). 

Subsequently, the circRNAs are exported into the cytoplasm by dead-box RNA helicases (e.g. 

DDX39A and DDX39B) in a size-dependent manner (Huang et al. 2018).  

Post-biogenesis processing and degradation of circRNAs are still not well understood. Due to 

their lack of free 5’ 7-methylguanosine cap and 3’-polyA tails, circRNAs are remarkably stable, 

and can only be cleaved internally via endonucleases. Like mRNAs, circRNAs are also targeted 

by miRNAs for RISC-mediated degradation. For instance, miR-671 has been demonstrated to 

mediate the degradation of circRNA CDR1as by complementary base pairing and loading into 

the Argonaute-2 (Ago2) complex (Hansen et al. 2011). Another recent study has uncovered a 

group of circRNAs with highly structured 3’-end, which undergoes enzymatic degradation in a 

sequence-independent manner by two key RBPs with helicase function, UBP1 and G3BP1 

(Fischer et al. 2020). Apart from active degradation, circRNAs can also be cleared from 

intracellular space via vesicle-mediated exportation (Lasda and Parker 2016). 
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1.4.3.2   Modes of functions 

Expression profiling data showing tissue/cell-specific expression pattern and altered abundance 

of circRNAs in different disease conditions give a strong indication about their functional 

relevance. Additionally, more than often, circRNA expression does not correlate well with their 

host gene, which can imply a functional divergence (Kristensen et al. 2019). A large number of 

studies have reported that circRNAs can function as miRNA sponges. CDR1as (alternatively 

ciR-7), which contains as many as 70 conserved binding sites for miR-7, has been demonstrated 

to sponge in various tissues (Hansen et al. 2013). Another study in human embryonic stem cells 

reveal that circBIRC6 and circCORO1C titrate pluripotency regulating miRNAs (miR-34a and 

miR-145) (Yu et al. 2017). Besides sponging miRNAs, ciRNAs can also directly interact with 

RBPs to exert their biological function. For instance, circMBNL1 has binding sites for MBNL1; 

a splicing factor encoded by its own host gene muscleblind. Through an autoregulatory loop, 

whenever free MBNL1 is excess within the cell, it can downregulate its own pre-mRNA 

splicing by binding to circMBL1 (Ashwal-Fluss et al. 2014). Apart from its non-coding mode 

of functions, ORF-containing circRNAs can be translated into functional/non-functional 

peptides via internal ribosome entry site (IRES) mediated translation. This has been illustrated 

by FBXW-185aa, a peptide derived from circFBXW7 (F-Box and WD Repeat Domain 

Containing 7), which can act as a tumor suppressor by preventing deubiquitinylation of Myc in 

glioblastoma (Yang et al. 2018).  

 

Figure 14: The different modes of circRNA biogenesis. Modified from (Shang et al. 2019) 
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2   AIMS 
In this thesis, we have aimed to characterize the role of different classes of non-coding RNAs 
in epidermal differentiation and skin cancers. 

The objective of the individual studies are-  

I. To investigate the functional significance of miR-203 in cSCC (Paper I) 

II. To investigate the functional significance of miR-203 in cutaneous melanoma with a focus 

on metastasis (Paper II) 

III. To dissect the changes in coding and non-coding transcriptome in cSCC (Paper III) 

IV. To characterize the role of skin-specific lncRNA ELDAR in epidermal differentiation 

(Paper IV) 
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3 MATERIALS AND METHODS 
 

Cell culture, treatments, transfections, and nucleofection  

Human cSCC cell lines UT-SCC-7 (a kind gift from Veli Matti Kahari, University of Turku) 

and A431 (ATCC) were cultured in DMEM (Gibco) containing 10% FBS (Gibco) and 1% 

streptomycin/penicillin (Gibco) (Paper I). An additional 1% HEPES (Gibco) and 1% non-

essential amino acids (Gibco) were added as supplements for the UT-SCC-7 culture medium. 

Melanoma cell lines BE, DFB and Sk-Mel-28 (kindly provided by Rolf Kiessling and Lars-

Gunnar Larsson from Karolinska Institutet) were cultured in RPMI1640 (Gibco) supplemented 

with 10% FBS and 1% Penicillin/Streptomycin (Paper II). For DNA demethylation 

experiments using melanoma cell lines, we used 10 nM 5-aza-2-deoxycytidine (InvivoGen), 

and harvested the cells after 48 hrs of incubation in 5-aza containing medium (Paper I and II). 

Transfection with miRNA mimics or siRNAs was performed using Lipofectamine 2000 

(ThermoFisher Scientific) according to the manufacturer’s instruction (Paper I and II). Stable 

miR-203 or negative control-overexpressing UT-SCC-7 or BE cell lines were established by 

lentiviral vector pEZX-MR03-eGFP (GeneCopoeia). Transduced cells were sorted based on 

GFP expression using FACS after 48 hrs (Paper I and II). Sorted cells were once again selected 

with Puromycin (1 µg/ml, Gibco). Primary keratinocytes from adult donors (ThermoFisher 

Scientific) were cultured in EpiLife medium supplemented with growth factors (ThermoFisher 

Scientific). Differentiation of primary keratinocytes was induced by switching to growth factor-

depleted EpiLife containing 1.5 mM Calcium Chloride (Sigma) (Paper IV). All the 

experiments with primary keratinocytes were performed when they were in passage 3. LncRNA 

knockdown was executed using an siRNA pool of 11–30 different siRNAs (siTOOLs Biotech). 

For the nucleofection, 5 million primary keratinocytes were electroporated with 1 nmol siPool 

using the Amaxa human keratinocyte Nucleofector kit (Lonza) using the program T-018 (Paper 

IV).  Before seeding them into a 15 cm plate, nucleofected cells were immediately transferred 

to warm complete medium and incubated at 37°C (for 30 mins) to increase cell viability.  

 

CRISPR-mediated transcriptional activation  

In paper IV, for the transcriptional activation of the lncRNA locus, we used the CRISPR/Cas9 

Synergistic Activation Mediator (SAM) system, which uses a dCas9 devoid of endonuclease 

activity. The core component of this system is three plasmids - sgRNA (MS2) cloning backbone 
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(Plasmid #61424), MS2-P65-HSF1_GFP (Plasmid #61423) and dCAS9-VP64_GFP (Plasmid 

#61422), which were purchased from Addgene. Online tool at Crispr.mit.edu was used to 

design the sgRNAs targeting a 500 nt long sequence upstream of the TSS. Individual sgRNA 

expression plasmid was constructed by first annealing the oligonucleotides pair and then 

ligating them to BbsI-linearized sgRNA (MS2) backbone (Konermann et al. 2015). Primary 

adult keratinocytes, at passage 3, with 70% confluence were transfected with all three plasmids 

using Lipofectamine 2000 (ThermoFisher Scientific). Transfected cells were harvested after 24 

hrs for RNA extraction, or subjected to calcium chloride-mediated differentiation up to 96 hrs. 

 

RNA extraction and qRT-PCR                                                                                       

Total RNA from primary keratinocytes and cancer cell lines growing in monolayer was isolated 

using TRIzol reagent (Invitrogen) and Chloroform (Merck) according to the manufacturer’s 

instructions (Paper I, II and IV). For paper III, snap frozen tumor or healthy skin biopsies 

were homogenized using Tissuelyzer LT (Qiagen), followed by addition of QIAzol lysis 

reagent (Qiagen) to the pulverized material. From this point onwards, the protocol for 

miRNeasey (Qiagen) mini kit was followed to extract total RNA. For paper IV, total RNA 

from organotypic skin tissues was isolated using the RNeasy Plus mini kit (Qiagen) according 

to the manufacturer’s instruction. RNA quantity was measured by NanoDrop One 

(ThermoFisher Scientific). For subsequent microarray or RNA-seq based expression analysis, 

RNA integrity was measured using an RNA 6000 Nano kit (Agilent Technologies) in a 

Bioanalyzer-2100 instrument (Agilent Technologies). RNA samples with an integrity score 

more than 8 were used for whole transcriptome analysis.   

For quantifying mRNAs and lncRNAs by quantitative PCR, first, the RNA samples were 

reverse transcribed using a RevertAid First Strand cDNA Synthesis Kit (ThermoFisher 

Scientific) (Paper I, II and IV). For miRNA expression quantification, the reverse transcription 

was performed using a miRNA RT kit (Fisher Scientific) (Paper I and II). Gene expression 

was quantified by SYBR Green expression assays (ThermoFisher Scientific) or TaqMan Real-

Time PCR assays using QuantStudio 7 Real-time PCR system (ThermoFisher Scientific) and 

normalized to housekeeping gene 18S (for mRNAs and lncRNAs) or U48 snoRNA (for 

miRNAs) using the delta-delta Ct-method. 
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Methyl-sensitive restriction enzyme-qPCR                                                                   

For paper II, we performed a methyl-sensitive restriction enzyme-qPCR (MSRE-qPCR) 

analysis to quantify the demethylation in miR-203 promoter upon 5-aza treatment of the 

melanoma cell lines. Methylation-sensitive digestion of the CpGs within the promoter region 

of miR-203 was carried out with the EpiJET DNA Methylation Kit (ThermoFisher Scientific), 

which uses different preference for digestion substrates of MspI and HpaII (ThermoFisher 

Scientific). When an internal tetranucleotide sequence (CCGG) of a CpG is methylated, it 

undergoes digestion by MspI (cuts both methylated and unmethylated sequence) but not 

by HpaII (cuts only unmethylated). We used 150 ng of genomic DNA for the digestion reaction 

for 1 hr at 37°C. Digestion was followed by heat-inactivation at 90°C for 10 mins. The 

methylation levels were quantified by qPCR using primers flanking the CCGG site. qPCR data 

were analyzed by 2-ΔCt method, and presented as the ratio of HpaII-digested methylated DNA 

and input/non-digested DNA.  

 
 
Bisulfite Pyrosequencing  
 
The basis of bisulfite pyrosequencing is the differential conversion of unmethylated cytosines 

to uracils upon sodium bisulfite treatment, while the methylated cytosines remain unchanged. 

For the pyrosequencing analysis in paper II, CpGs within the miR-203 promoter were targeted 

using primers (a forward primer primer, biotinylated reverse primer, and a sequencing primer) 

designed by PyroMark software (Qiagen). Total 500 ng of genomic DNA was bisulfite-

converted using EpiTect Bisulfite Kit (Qiagen) and eluted in a volume of 15 μl, quantified using 

a NanoDrop, and 20 ng of this bisulfite-converted DNA was PCR amplified using PyroMarks 

PCR kit (Qiagen). Epitect control DNA (human), which was either completely unmethylated 

or methylated (Qiagen), was used as a control to assess the efficiency and sensitivity of the PCR 

reaction. In the next step, utilizing a PyroMark Gold 96 reagent kit (Qiagen), we used the entire 

PCR product along with 4 pmol of the sequencing primer, and streptavidin sepharose beads 

(GE) for setting up the pyrosequencing reactions on a PSQ 96 system (Qiagen). PyroMark CpG 

software 1.0.11 (Qiagen) was used for data analysis. 
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Microarray                                                                                                                    

Expression profiling of RNA extracted from monolayer cultures or organotypic skin 

equivalents was performed using Affymetrix Genechip system at the Bioinformatics and 

Expression analysis core facility of Karolinska Institute (BEA) (Paper I and IV). Briefly, 100 

ng of total RNA with RNA integrity value more than 8 were used to prepare cDNA following 

the Affymetrix 3′IVT Express Kit (ThermoFisher Scientific) labeling protocol. Standardized 

array processing procedures recommended by Affymetrix, including hybridization, fluidics 

processing, and scanning, were followed. Transcriptome Analysis Console (TAC, Affymetrix) 

was used for differentiation expression analysis. Statistical filters for individual studies were 

described in the respective articles.  

 

RNA sequencing 

For paper III, RNA extracted from the cSCC and healthy skin biopsies were sent to Exiqon 

(now part of Qiagen) for cDNA library preparation, and sequencing. Before cDNA preparation, 

100 ng of total RNA was depleted of rRNAs using ribo-zero gold kit (Illumina Inc.), and 

enzymatically fragmented. Subsequently, the fragmented RNA was used for first strand and 

second strand cDNA synthesis, followed by DNA purification, end-reparation, 3’-adenylation 

and adaptor ligation. In the next step, cDNA library was PCR amplified and assessed for the 

size distribution using a Bioanalyzer (Agilent Technologies). After quality control, these 

libraries were sequenced using a NextSeq-500 instrument using v2 reagent kits, according to 

the manufacturer instructions (Illumina Inc.). Alignment of sequencing read was done by 

Exiqon/Qiagen using their XploreRNA pipeline based on the Tuxedo suit (Trapnell et al. 2012). 

After data filtering and read-mapping using Bowtie2 and Samtools, we aligned the transcripts 

using Cufflinks suite against the canonical chromosomes from GRCh37.p13. The identified 

transcripts were separated into protein coding and non-coding transcripts based on their 

ENSEMBL biotypes using BiomaRt. A trimmed Mean of M-values (TMM) normalization 

method was utilized to account for the cDNA library size variation before performing the 

differential expression analysis using edgeR (Bioconductor) (Robinson, McCarthy, and Smyth 

2010). All the comparisons were corrected for multiple hypothesis correction by Benjamini-

Hochberg approach. All the heat-maps and hierarchical clustering were made using Multiple 

Experiment Viewer (MeV).  
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NanoString nCounter assay                                                                                           

For the NanoString-based quantification in paper III, a custom CodeSet was designed targeting 

the mRNAs, lncRNAs, and backsplicing junctions of circRNAs to be validated. Reference 

genes RPLP0, PUM1, SF3A1, GUSB, and ALAS1 were used for normalization. Probe-set and 

RNA hybridization reactions were performed according to the manufacturer’s instructions. For 

quantification, the mean of the negative controls was subtracted while analyzing the data using 

nSOLVER 3.0 software (NanoString Technologies). Positive control normalization was 

performed using the geometric mean of all reference genes. A second normalization was done 

using the geometric mean of the three most stable reference genes (ALAS1, PUM1, and 

SF3B1).  
 

Enrichment analysis 

Enrichment of biological processes (GO Biological process) and oncogenic signatures 

(MSigDB v7.1) in the differentially expressed genes were assessed using Enrichr (v1.0) (paper 

I, II, III and IV) (Chen et al. 2013). For the prediction of the potential upstream regulators, we 

employed the transcription factor module of MetaCore (Thomson Reuters, v19.1). MetaCore 

uses publicly available data to assess the over-representation of various transcription factor-

binding motifs among a set of genes. Enriched terms with P < 0.05 upon Multiple-hypothesis 

correction were considered significant. 

 

Cell proliferation assay 

In paper I, the cell proliferation assay was performed using Click-iT™ EdU (a modified 

thymidine analogue) proliferation kit (ThermoFisher Scientific) according to the manufacturer's 

instructions. 48 or 72 h post-transfection, the cells were incubated in complete medium 

containing a 10 μM EdU solution for 2 hrs in a 37°C incubator. Subsequently, after aspirating 

the medium containing Edu, the cells were washed with 1% BSA (in 1X PBS) and fixed with 

Click-it fixative reagent at room temperature in the dark for 20 mins, followed by three wash 

with 1% BSA (in 1X PBS). For EdU detection, the cells were incubated with the EdU reaction 

cocktail for 30 mins on ice in the dark. Finally, EdU-labeled cells were rinsed with 1X PBS, 

and stained with AlexaFluor-647 before flow cytometric analysis. 
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Wound healing assay                                                                                                        

In paper I and II, cSCC or melanoma cell lines were seeded and transfected in 6 well plates 

with miRNA mimic or siRNA. Post-transfection, when the cells were 90% confluent, a scratch 

was made in the middle of the plate using a 10 ul tip. After a wash with 1X PBS (Gibco), cells 

were kept in serum-free medium for up to 24 hrs and photographed at regular intervals to assess 

the closing of the gap made due to the scratch. ImageJ was used for calculating the wound area.  

 

Migration and invasion assay 

In paper I and II, cell migration and invasion assay were performed using the transwell 

migration chamber (Corning) and growth factor-reduced Matrigel invasion chamber (BD 

Biosciences). SiRNA or miRNA mimic transfected cells were resuspended in their respective 

serum-free medium and transferred onto the transwell insert at a density of 1.5X104 (migration) 

and 3 X104 cells (invasion) per well in a 24-well setup. The lower chamber was filled with 

complete medium as the chemoattractant. After 24 hrs (migration) or 48hrs (invasion), cells 

that did not move to the other side of the insert were removed using a cotton swab. Finally, the 

migrated or invaded cells at the lower surface of the insert were fixed with 4% PFA and stained 

with crystal violet (Sigma).  

 

Colony formation assay 
For assessing the colony forming ability of the cancer cells, after transfection with miR-203 or 

negative control mimic, cSCC or melanoma cell lines were seeded at a density of 10000 

cells/well in 24-well plates in their respective complete media containing 0.3% agarose with 

0.6% agarose underlay (Paper I and II).  Approximately, after 10 days, when the colonies are 

large enough (more than 100 cells), they were stained with Crystal Violet and photographed.  

 

Tumor sphere formation assay 
Sphere formation is another way of assessing the self-renewal and proliferative capacity of 

cancer progenitor cells. For that, after transfection with miR-203 or negative control mimic, 

cSCC or melanoma cells were resuspended in mixed medium of DMEM/F12 (1:1) (Gibco) 

supplemented with B27 (ThermoFisher Scientific) and seeded at a density of 4 X104 cells/well 
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in 6-well plates coated with poly-HEMA (Sigma). When the spheroids become larger than a 

diameter of 100 µm, they are counted and quantified (Paper I and II).  

 

Angiogenesis assay 

For the angiogenesis assay in paper I and II, HUVEC cells (ATCC) were cultured in M200 

medium (Gibco) supplemented with low serum growth supplement (LSGS) kit (Gibco). On the 

day of the experiment, HUVEC cells were trypsinized and counted before preparing a cell 

suspension of 4.5×104 cells/well in a mixed media (1:1) containing a conditioned media (from 

mimic or siRNA transfected cancer cells) and M200 medium without growth supplement. This 

cell suspension was plated onto a Matrigel-coated 48-well plate, and cultured for 18-20 hrs at 

37°C, before photographing the wells for quantifying the number of well-formed nodes.  

 

Tumor xenograft and metastasis assay 

To perform the tumor xenograft assays in paper I and II, NSG mice (Jackson Laboratory) were 

purchased and acclimatized for 7 days before injecting 107 stable cell lines (BE or UT-SCC-7) 

subcutaneously into left (negative control) and right flank (miR-203) of each mouse. Prior to 

the injection, a cell suspension was prepared in 100 µl of ice-cold complete medium and mixed 

at equal volume with Matrigel (BD Biosciences). Twice a week, the mice were weighed, and 

inspected for any sign of sickness. Using a caliper, we also measured the size of the tumors on 

a weekly basis. When the tumor volume reached 1000 mm3, the mice were sacrificed, and the 

tumors and organs were harvested and snap-frozen. For the metastasis assay in paper II, BE 

cells overexpressing miR-203-GFP or negative control-GFP tag were injected intravenously 

into the tail vein of the mice. Weekly monitoring was performed to check for weight loss and 

signs of sickness. At a predetermined human end-point, considering their health, the mice were 

sacrificed, and organs such as the brain, lungs, liver, and spleen were harvested. The presence 

of melanoma cells within the organs was measured by quantifying the GFP-positive cells using 

flow cytometry.  

 

Organotypic culture for generating epidermis 

In paper IV, for the generation of lncRNA-depleted organotypic human epidermal tissue, 

primary human keratinocytes were nucleofected with siPool and allowed to recover for 24 hrs 

in complete medium. The next day, the cells were trypsinized, counted, resuspended in a 
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keratinocyte growth medium (66% DMEM, 22% Ham’s F-12, 1% Pen-Strep, 1% Antibiotic-

antimycotic, 10% FBS, 0.2% Hydrocortisone, 0.2% Adenine, 0.1% Cholera toxin, 0.1% 

Insulin, 0.1% EGF, 0.1% T/T3) seeded onto the basement membrane side of the devitalized 

dermis (500,000 cells/dermis) and raised to the air–liquid interface to initiate stratification and 

differentiation, as described previously (Truong and Khavari 2007). Medium for differentiation 

was changed every other day. Organotypic tissues were harvested at day 4 of differentiation.  

 

Immunofluorescence analysis of organotypic epidermis 

Depending on the protein to be detected, skin sections were fixed in methanol, ethanol, or 

acetone (acetone- LOR, Col VII, Ki-67; ethanol- FLG, methanol- KRT1). Following blocking 

with 1% BSA, organotypic tissue sections were incubated overnight at 4°C with the primary 

antibodies (diluted in 1% BCS in 1X PBS) in a humidified condition (Paper IV). The next day, 

sections were washed thrice with 1X PBS before incubation with the fluorescently labeled 

secondary antibodies for one hour at room temperature. After the incubation, the slides were 

gently washed in 1X PBS and incubated with Hoechst solution for nuclear staining for 5 

minutes at room temperature. Washed and air-dried slides were mounted using ProLong Gold 

Antifade Mountant (Thermo Fisher Scientific). Imaging was done with an Axiovert 200 M (Carl 

Zeiss) microscope at 20x magnification. Details about antibody dilutions can be found in the 

individual articles. 

 

Western Blot 

Cells were washed with 1XPBS and then lysed by RIPA buffer (Cell Signaling Technology) 

with EDTA (Sigma) and protease inhibitor cocktail (Roche). 20 µg protein of each sample was 

resolved in 4%-20% SDS-PAGE gel (Bio-Rad), transferred to PVDF membrane and probed 

with primary antibody. Detection was performed by incubation with HRP-conjugated 

secondary antibody (Dako) followed by incubation with chemoillumination detection reagent 

(ECL kit, Amersham). Details about antibody dilutions can be found in the individual articles. 
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RNAscope In situ hybridization 

In paper IV, for detecting the lncRNA in tissue and monolayer cell culture, a custom ISH probe 

was designed for the RNAscope assay (ACD). Cells growing in a monolayer on culture slides 

(Corning) were fixed in cold 10% neutral buffered formalin solution (Sigma) for 15 minutes. 

This was followed by sequential dehydration with 50%, 70%, and 100% ethanol. To block the 

endogenous peroxidases, the cells were treated with hydrogen peroxide (ACDbio) for 5 mins 

at room temperature. Next, the slides were incubated with Protease III (ACDBio) at room 

temperature for 20 minutes, followed by hybridization with a target or negative control probes 

for two hours at 40°C in a HybEZ™ II Hybridization System.  This was followed by washing 

and sequential pre-amplification and amplification using RNAscope® Multiplex Fluorescent 

Reagent Kit v2 (ACDBio). For  ormalin-fixed-paraffin-embedded (FFPE) healthy skin or cSCC 

specimens, the sections were deparaffinized using X-TRA-Solv and serially hydrated using 

alcohol of different concentration (100%, 96% and 70%) and water. A heat-induced antigen 

retrieval was performed with a target retrieval reagent (ACDBio) at 99°C for 10 mins. In the 

next step, the tissue sections were treated with Protease Plus reagent (ACDBio) at 40°C for 30 

minutes, followed by hybridization with the target or negative control probes for two hours at 

40°C. After washing, signal amplification was performed with sequential usage of preamplifier 

and amplifiers and labeling with a suitable fluorophore (TSA plus Fluorescence kit, 

PerkinElmer).  Finally, the slides were air-dried and mounted with ProLong Diamond Antifade 

with DAPI (Thermo Fisher Scientific). Imaging was done using a Zeiss LSM800 confocal 

microscopy with 20x or 63x magnification. Confocal images were analyzed using Zen 3.1 

(Zeiss) imaging software.  

 

Statistical analysis  

For different in vitro and in vivo experiments presented in the thesis, Student’s t-test, Mann-

Whitney U test, two-way ANOVA were used through Prism 7.0 (Graph Pad Software) to 

determine the statistical significance of an outcome (P-values < 0.05 were considered to be 

statistically significant). *P < 0.05; **P < 0.01; ***P < 0.001 and ****P < 0.0001.  
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4   RESULTS AND DISCUSSION 
 

4.1 MiRNA-203 inversely correlates with differentiation grade, targets c-MYC, 
and functions as a tumor suppressor in cSCC 

 
 
Rationale 

MiR-203 is an epithelial tissue-restricted miRNA with the highest expression in the skin. 

Previous work from other groups and we have extensively demonstrated that miR-203 is a pro-

differentiation miRNA which is highly induced during keratinocyte differentiation (Sonkoly et 

al. 2010; Wei et al. 2010; Yi et al. 2008). In our earlier study, a tumor-suppressive role of miR-

203 was uncovered in a keratinocyte-derived malignancy (BCC) (Sonkoly et al. 2012). This 

prompted us to investigate the expression and functional role of this miRNA in another common 

keratinocyte-derived skin cancer, cSCC.  

Main findings 

MiR-203 is downregulated in poorly differentiated cSCC 

Primary cSCC tumors, based on their resemblance to the tissue of origin, are grouped into three 

categories: well-differentiated (Grade I), moderately differentiated (Grade II) and poorly 

differentiated (Grade III) (Stenman et al. 2018), where grade III tumors have the highest chance 

to metastasize. In-situ hybridization and quantification demonstrated that compared to healthy 

skin, miR-203 is significantly downregulated in poorly differentiated cSCC (Figure 15A, B). 

This observation was validated in a separate cohort by qPCR (Figure 15C). Along this line, 

miR-203 abundance was strikingly reduced in patient-derived cSCC cell lines compared to 

primary human keratinocytes (Paper I. Figure 1c). 

 

Figure 15: (A) Representative images of miR-203 ISH in healthy skin (n = 10), and cSCC with 
differentiation grades (n = 40). Scale bar= 100 µm. (B) Semi-quantitative ISH score represented in box-
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plot. (C) Normalized expression of miR-203 in healthy skin (n = 13) and cSCC grade I (n = 20), grade 
II (n = 20) and grade III (n = 15) tumors. . Student’s t test. *P < 0.05, ***P < 0.001. 

 

MiR-203 inhibits cell cycle transition from G1 to S phase 

To gain a broader understanding of the functional relevance of miR-203 in cSCC, we performed 

transcriptome profiling of a metastatic cSCC cell line (UT-SCC-7), transfected with either miR-

203 mimic or a control mimic. The result showed that miR-203 suppresses the expression of a 

number of genes (e.g. MYC, IL8, c-Jun, HGF) previously reported to play regulatory functions 

in cSCC (Ratushny et al. 2012; Syed et al. 2011; Toll et al. 2009; Tuong et al. 2019; Zenz et al. 

2003). Functional categorization of differentially expressed genes upon miR-203 

overexpression resulted in significant enrichment of GO terms such as “Cell proliferation” and 

“Cell cycle process”. To elucidate the effect of miR-203 on cell cycle progression, we 

performed an EdU assay after overexpressing miR-203 in cSCC cell lines (A431 and UT-SCC-

7). The result showed a significant increase in the number of cells in G1 phase and a reduction 

in the number of cells entering S phase (Paper I, Figure 2c), along with a reduction in total 

EdU positive cells in the miR-203-overexpression group. In line with this observation from cell 

cycle analysis, miR-203 overexpression also reduced the expression of proliferation markers- 

Ki-67 and PCNA, at mRNA and protein level.  

 

C-MYC is a direct target of miR-203 and it can rescue miR-203-induced cell cycle arrest 

Next, we aimed to identify the potential mediators of the miR-203-regulated transcriptomic 

changes. MetaCore’s TF enrichment analysis predicted that oncogene c-MYC is one of the top 

upstream regulators of miR-203 regulated genes (Figure 16A). Bioinformatic analysis also 

identified a miR-203 binding site within the 3’-UTR of c-MYC, suggesting that it may be a 

direct target of miR-203. We validated this predicted miRNA-target interaction by a luciferase 

assay using reporter constructs containing either wild type or mutated 3-UTR of c-MYC. MiR-

203 overexpression significantly reduced the reporter activity of the wild type construct, while 

the mutated construct almost rescued the effect (Figure 16B, C). Moreover, a transcription 

factor-activity assay using a DNA-binding ELISA kit showed that miR-203-overexpressing 

cSCC cells have attenuated c-MYC transcriptional activity. This was once again reflected in 

the downregulation of several c-MYC target genes (CCND1, CDK1 and ODC1) after miR-203 

overexpression (Paper I, Figure 5e, and f). Next, we assessed if c-MYC can rescue the 
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inhibitory effect of miR-203 on cell cycle. To this end, we transfected cSCC cell lines with 

miR-203 mimic, either with an empty expression plasmid or expression plasmid containing 

full-length c-MYC sequence and subjected them to EdU assay. The result demonstrated that 

the number of cells accumulated in G1 phase due to miR-203 overexpression was significantly 

decreased upon c-Myc co-expression. Similarly, the number of cells in S phase was increased 

upon c-Myc co-expression with miR-203 (Figure 16D). These results effectively place c-MYC 

and miR-203 in a common regulatory axis to exert a tumor-suppressive role in cSCC. 

 

Figure 16: (A) MetaCore analysis of potential upstream regulators of differentially expressed genes 
upon miR-203 overexpression. (B) Schematic of c-MYC and miR-203 seed pairing. Mutations 
introduced to the 3’-UTR for the luciferase assay are highlighted in purple. (C) Luciferase reporter 
activity measured for c-MYC wild type and mutated 3-UTR, construct in combination with control or 
miR-203 overexpression. (D) c-MYC rescue in EdU cell cycle assay. Student’s t test *P < 0.05, **P < 
0.01, ***P < 0.001. 

 

MiR-203 suppresses cSCC tumor growth in vivo 

In addition to cell cycle and proliferation, we demonstrated that miR-203 suppresses a wide 

array of oncogenic hallmarks such as clonogenicity, cell motility, and angiogenesis in 

vitro (Paper I, Figure 2e, 3, 4). These observations prompted us to evaluate whether miR-203 

has any suppressive effect on cSCC tumor formation in vivo. Therefore, we established UT-

SCC-7 cell lines constitutively expressing miR-203 or negative-control using a lentiviral vector 

system and injected them subcutaneously to the left (negative control) and right (miR-203) 

flank of NSG mice. Tumor progression in these mice was followed up for five weeks (Figure 

17A). In terms of tumor volume and weight, miR-203 overexpressing tumors were significantly 

smaller and lighter (Figure 17B, C), and exhibited diminished expression of proliferation 



52 
 

marker Ki-67. Similar to our observation in vitro, the expression of c-MYC was downregulated 

at the protein level in the tumors overexpressing miR-203 (Paper I, Figure 6d, and f).  

 

Figure 17: (A) Representative images of tumor growth in xenograft assay upon subcutaneous injection 
of UT-SCC-7 cells stably overexpressing miR-203 (right flank) or negative control (left flank), into NSG 
mice. (B) Parameters for calculating the tumor volume ((width2 X length)/2) was measured weekly using 
a caliper. (C) Harvested tumors at humane endpoint. Mean weight ± SD was presented in the table. (D) 
Western blot analysis of c-MYC expression in the harvested tumors after 5 weeks.  

 

Discussion 

In this study, we have demonstrated that the abundance of miR-203 is progressively decreased 

from low-risk (grade I) to high-risk (grade III) cSCC. Particularly in the poorly differentiated 

cSCC, miR-203 expression was significantly downregulated. To corroborate this finding, we 

also performed a correlation analysis between miR-203 and involucrin, a marker of epidermal 

differentiation, and observed a positive correlation in the cSCC samples. These observations go 

consistently with the previous reports about miR-203 being induced specifically during 

epidermal differentiation and demarcating the highly proliferating basal layer and the spinous 

layer, which is committed to terminal differentiation (Sonkoly et al. 2010; Yi et al. 2008).  

Our in vitro functional assays unveiled a tumor-suppressive role of miR-203 in cSCC, where it 

inhibited cell cycle, clonogenicity, cell motility and angiogenesis in vitro, and tumor growth in 

vivo. Consistent with these findings, earlier studies have demonstrated the tumor-suppressive 

role of miR-203 in various epithelial malignancies (e.g. lung, cervical, head and neck cancer) 

(Obayashi et al. 2016; N. Wang et al. 2014; Zhu et al. 2013).  

Target identification, validation, and rescue experiment demonstrated that miR-203 possibly 

exerts a part of its tumor-suppressive role by directly inhibiting c-MYC, a well-known 

oncogene, which is consistently amplified in cSCC (Toll et al. 2009). As a transcription factor, 

it acts downstream of various growth factor signaling pathways (EGFR, NF-kB, PI3K etc.), and 
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induces the expression of genes related to cell proliferation, cell cycle progression, apoptosis, 

metabolism and protein biosynthesis (Gabay, Li, and Felsher 2014). Many of these c-MYC 

upstream signaling pathways are aberrantly activated in cSCC (Kobielak and Fuchs 2006; 

Ratushny et al. 2012). Of note, upon miR-203 overexpression, we observed a consistent 

downregulation of cyclin D1 (CCND1), a key effector of c-MYC (Yue et al. 2017). CCND1 is 

a cell cycle regulator, and often found amplified/upregulated in various types of cancer, 

including cSCC (Liao et al. 2007; SHEN et al. 2014). This aberrant expression can contribute 

to an early exit from G1 phase and uncontrolled cell proliferation during malignant 

transformation. Therefore, by targeting a critical hub like c-MYC, miR-203 can simultaneously 

modulate different nodes of an extensive pro-oncogenic network.  

Although we primarily focused on c-Myc as a direct target of miR-203 in cSCC, various other 

targets have been reported, such as p63 in mice and human epidermal development, c-Jun in 

BCC, and MAPK signaling pathway activator HBEGF in cSCC (Lena et al. 2008; Riemondy 

et al. 2015; Sonkoly et al. 2012; Yi et al. 2008). Our gene set enrichment and upstream regulator 

analysis of miR-203-regulated genes could indeed trace the alterations in the genes downstream 

of these targets (e.g. p63 and c-Jun). A multitude of targets, belonging to a wide array of pro-

oncogenic pathways, make miR-203 an ideal candidate for therapeutic application. Apart from 

standalone therapy, it will be equally interesting to evaluate if miR-203 mimic can supplement 

the effect of MYC-inhibitor drugs (Allen-Petersen and Sears 2019).  
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4.2 Genome-wide screen for miRNAs reveals a role for miR-203 in melanoma 
metastasis 

Rationale 

Malignant melanoma is one of the deadliest cancer types, with its metastatic variant having a 

particularly grim survival rate (5-19%) (Sandru et al. 2014). In this study, we wanted to identify 

the miRNAs associated with metastatic melanoma and explore their functional significance. 

Main findings 

MiR-203 is downregulated in metastatic melanoma, and correlates with overall survival 

To identify the miRNAs deregulated in metastatic melanoma, we performed an in silico analysis 

of the small-RNA expression data of the skin melanoma cohort from The Cancer Genome Atlas 

(TCGA) database. Differential expression analysis between primary (n = 96) and metastatic 

tumors (n = 346) revealed that miR-203 is the most downregulated miRNA in the metastatic 

cohort (log2 fold change= -3.4086, P= 8.49 x 10-28) (Figure 18A, B). Next, we assessed the 

prognostic potential of miR-203 abundance in the metastatic patients by performing a survival 

analysis, which showed that the patients with higher miR-203 expression (RPKM > 7) have a 

significantly longer overall survival compared to the patients with lower miR-203 expression 

(RPKM < 4) (Figure 18C). 

 

Figure 18: (A) Unsupervised clustering and heatmap of differentially expressed miRNAs between 
primary and metastatic melanoma from TCGA SKCM cohort (log2 fold change ± 0.58, FDR < 0.05). 
(B) Expression of miR-203 in RPKM in primary and metastatic melanoma. Mann-Whitney U test. **** P 
< 0.0001. (C) Kaplan-Meier analysis for evaluating the association between miR-203 expression and 
long-term survival of patients with metastatic melanoma (TCGA). 
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Since MIR203 locus is located within a CpG island (chr14, CpG 179), we postulated that DNA 

methylation could be a potential regulatory mechanism to suppress miR-203 expression in 

metastatic melanoma. Therefore, we compared the primary and metastatic tumors in terms of 

the estimated level of methylation within the CpG island overlapping the MIR203 promoter and 

observed significant hypermethylation in the metastatic cohort (Paper II, Figure 1e). To 

substantiate this finding, we performed an in vitro demethylation assay using 5-aza-2-

deoxycytidine in a panel of melanoma cell lines (BE, DFB, and SK-Mel-28), which resulted in 

an increased expression of miR-203 (Paper II, Figure 1f). Both MSRE-qPCR and bisulphite 

pyrosequencing-based analyses targeting the CpGs within the promoter of MIR203 unraveled 

a concomitant hypo-methylation signature in the 5-aza-treated cells (Paper II, Figure 1g, 

Supplementary figure S2).   

 

MiR-203 suppresses oncogenic hallmarks such as cell motility, self-renewability and 
angiogenesis 

Next, we evaluated the functional significance of miR-203 in cutaneous melanoma, by 

assessing its impact on several hallmarks of cancer and metastatic progression, such as the 

capacity of the tumor cells for migration, invasion, enhanced clonogenicity, and formation of 

new blood vessels at the site of dissemination through neoangiogenesis. To this end, we 

transfected three melanoma cell lines with miR-203 mimic or control mimic, and subjected 

them to transwell migration and invasion assays, which showed a significant reduction in the 

number of migrated and invaded cells after miR-203 overexpression (Paper II, Figure 2b). 

MiR-203-overexpressing cells formed smaller and lesser number of spheres in a three-

dimensional sphere formation assay, highlighting the inhibitory effect of this miRNA on the 

self-renewability of melanoma cells in an anchorage-independent growth condition (Paper II, 

Supplementary figure S5). Moreover, in an in vitro angiogenesis assay, HUVEC cells treated 

with the conditioned supernatants from miR-203-overexpressing cells formed a significantly 

lesser number of capillary nodes compared to the control mimic treated group. (Paper II, Figure 

3a). These in vitro functional data suggested that miR-203 has a tumor-suppressive and 

potentially anti-metastatic effect in melanoma.  
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Prometastatic transcription factor SLUG is a direct target of miR-203 in melanoma 

In order to identify a potential direct target through which miR-203 can exert its tumor 

suppressive function, we performed an in silico analysis, which identified SLUG (protein 

SNAI2) with an 8mer binding site in its 3’-UTR. As an essential transcription factor that 

promotes epithelial-mesenchymal transition, SLUG appeared to be a relevant target of miR-

203 in melanoma. Target validation in a luciferase assay, using reporter construct containing 

either wild type or mutated 3’-UTR of SLUG, demonstrated that miR-203 overexpression 

significantly reduced the luciferase activity in the wild type construct while the mutated 

construct could rescue the effect (Paper II, Figure 4a, and b). SLUG expression was also 

markedly reduced at RNA and protein level upon miR-203 overexpression in all three 

melanoma cell lines. SLUG knockdown phenocopied the effect of miR-203 upregulation on 

melanoma cell motility (Paper II, Figure 5). Finally, we assessed if exogenous SLUG 

expression can salvage the inhibitory effect of miR-203 on cell motility. To test this, we double 

transfected melanoma cells with miR-203 mimic and an expression vector containing full-

length SLUG sequence (or empty vector as control) and performed a transwell migration assay, 

which showed that SLUG restoration in miR-203-overexpressing cells increased the number of 

migrated cells drastically (Paper II, Supplementary figure S9).  

 

MiR-203 inhibits primary melanoma growth and metastasis in vivo 

To explore the tumor-suppressive effect of miR-203 in an in vivo setup, we established BE 

melanoma cell lines constitutively expressing either miR-203 or negative control. To perform 

a primary tumor xenograft assay, we injected the miR-203-overexpressing and control cells to 

the right and left flank of NSG mice and followed the tumor growth for four weeks. At this 

point, the volume of the miR-203-overexpressing tumors was significantly lesser compared to 

the control group. The average weight of the miR-203-overexpressing tumors was reduced non-

significantly (P = 0.0571) as compared to the control group (Paper II, Figure 5a, and b). Of 

note, we noticed visibly enlarged inguinal lymph nodes, a sign of metastasis, only on the side 

of the mice injected with control melanoma cells. Immunohistochemical analysis of lymph 

nodes with Melan-A (a marker for melanoma) affirmed the presence of melanoma cells in the 

enlarged lymph nodes, further strengthening our hypothesis about a potential inhibitory effect 

of miR-203 on melanoma metastasis (Paper II, Figure 6f). 
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To evaluate a more direct effect of miR-203 on melanoma metastasis, we injected the miR-203 

or negative control overexpressing BE cells (also expressing reporter GFP) into the tail vein of 

NSG mice. These mice were regularly weighed and monitored for any sign of sickness. 

Surprisingly, while the mice injected with the control cells kept losing weight drastically, the 

miR-203-overexpression group did not show any sign of sickness or substantial weight-loss 

(Figure 19A). Quantification of GFP-expressing melanoma cells metastasized to different 

organs (brain, liver, lung, and spleen) from both groups revealed a significantly lower 

percentage of GFP-positive cells in the lungs of miR-203-injected mice (Figure 19B). 

Histological analysis of lung sections together with immunofluorescence analysis of Melan-A 

highlighted a lesser abundance of melanoma cells in the group injected with miR-203 

expressing BE cells (Figure 19B). Taken together, these findings demonstrate that miR-203 

suppresses melanoma progression by impeding primary tumor growth and metastasis to 

regional lymph nodes and lungs.  

Figure 19: (A) Change in the body weight of the NSG mice intravenously injected with melanoma cells 
stably overexpressing miR-203 or negative-control sequence for in vivo metastasis assay. (B) Flow 
cytometric analysis of GFP-positive cells to estimate the metastatic load in different distant organs 
where melanoma cells metastasize. (C) Representative images of the harvested lungs from miR-203 or 
control cell injected mice. Black arrows indicate metastatic nodules (left panel). Hematoxylin-eosin 
staining (middle panel) and Melan-A IF staining (right panel) in lung tissue sections. Dotted lines in 
the middle panel highlight the tumor (Tu) stroma boundary. ANOVA or Mann-Whitney U test. .*** P < 
0.001. 

 

Discussion 

In this study, we reanalyzed the small RNA-seq data from the TCGA SKCM cohort in order to 

identify the miRNAs associated with metastatic melanoma. We identified 77 differentially 

expressed miRNAs, which included miR-203, miR-224, miR-146a, and several members of the 

miR-200 family (miR-200a, miR-200b and 200c). In addition to miR-203, which we have 

characterized in this article, miR-200c has been identified as a suppressor of EMT and drug 

resistance in melanoma by targeting BMI1 (S. Liu et al. 2012:1). MiR-224 has been reported to 
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act as a tumor suppressor in uveal melanoma by attenuating the PIK3R3/Akt3 signaling 

pathway (J. Li et al. 2019). Previously, miR-146a was shown to be a negative regulator of 

immune activation in melanoma cells (Mastroianni et al. 2019). In addition to the miRNAs 

previously implicated in melanoma, we came across many miRNAs with yet to be characterized 

role in melanoma development. 

MiR-203, which is a well-characterized miRNA in epidermal homeostasis and keratinocyte-

derived cancers, was found to be the top downregulated miRNA in metastatic melanoma. 

Additionally, low miR-203 expression correlated with poor survival in metastatic melanoma 

(Li et al. 2015), underscoring its prognostic value. In this regard, further analysis will be 

required to evaluate the association between miR-203 abundance and different 

clinicopathological features of regional and distant metastatic melanoma. Expression analysis 

in primary cells and melanoma cell lines revealed that miR-203 is expressed in the detectable 

range in primary melanocytes, although less than the level in differentiating keratinocytes, and 

it is further downregulated in the melanoma cell lines of different pigmentation status, 

suggesting a potentially tumor-suppressive role of miR-203.  

Next, we set out to explore the tumor-suppressive role of miR-203 in melanoma using 

different in vitro and in vivo functional assays where miR-203 inhibited cell migration, 

invasion, angiogenesis, growth of primary xenograft tumors, and most importantly suppressed 

metastasis to inguinal lymph and lungs. The anti-metastatic function of miR-203 has been 

previously explored in head and neck SCC, where it directly targets multiple targets for 

regulating cytoskeletal rearrangement and ECM remodeling (Benaich et al. 2014). Consistent 

with our observations, previous studies reported a growth inhibitory and pro-melanogenic effect 

of miR-203 in primary melanocytes and melanoma cell lines (Noguchi et al. 2012, 2014). In 

one such investigations, Noguchi et al. had shown that miR-203 promotes pigmentation in 

melanoma cells by increasing Melan-A and TYR expression through directly targeting kinesin 

superfamily protein 5b (KIF5b) (Noguchi et al. 2014). However, the metastasis-suppressing 

role of miR-203 in melanoma is uncovered for the first time through our study. 

Altered methylation of tumor suppressor genes is a frequent event in melanoma progression 

(Wouters et al. 2017). Given that the MIR203 gene and its promoter are embedded within a 

CpG-island on chromosome 14, we hypothesized hypermethylation events at MIR203-

promoter, which can potentially suppress miR-203 expression in the metastatic cohort. Analysis 

of TCGA methylation data showed that promoter-associated CpGs, as well as the proximal 
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CpGs, are indeed differentially hypermethylated in the metastatic tumors. This finding was 

further corroborated with our 5-aza experiments followed by qPCR and sequencing-based 

quantification of promoter methylation in three different melanoma cell lines. Interestingly, 

bisulfite sequencing highlighted variable baseline methylation across all the cell lines used for 

this study. For instance, Sk-Mel-28, which has the highest miR-203 expression among the three 

cell lines, showed the lowest baseline methylation for the CpGs we analyzed.  

In this study, we have identified SLUG, an EMT-promoting transcription factor belonging to 

the Snail family, as a direct target of miR-203 in melanoma. MiR-203 overexpression and 

SLUG loss-of-function had a similar effect on melanoma cell motility. Moreover, SLUG 

restoration managed to reverse the miR-203 mediated inhibitory effect on cell motility. This 

finding is consistent with the general observation about SLUG being a promoter of EMT and 

upregulated in various types of cancer (Assani and Zhou 2019:2; Pérez-Mancera et al. 2005). 

Similar to our results, Shirley et al. found that SLUG overexpression in primary melanocytes 

and melanoma cells leads to increased cell motility (Shirley et al. 2012). Additionally, our data 

showed a reduced abundance of SLUG protein in miR-203-overexpressing tumor cells, in both 

primary tumors and metastasis. Taken together, our result places SLUG and miR-203 in a 

regulatory axis, which regulates cell motility and metastasis in cutaneous melanoma.  
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4.3   A comprehensive analysis of coding and non-coding transcriptomic changes 
in cSCC 

 

Rationale 

The objective of this study was to establish a robust catalogue of differentially expressed protein 

coding and non-coding transcripts in cSCC. Although a number of articles have reported 

detailed characterization of genetic and transcriptomic changes of protein coding genes in 

cSCC, only a few studies, using array-based profiling approach, have explored the expression 

of lncRNAs and circRNAs in a limited number of samples (Chitsazzadeh et al. 2016; Sand, 

Falk G Bechara, et al. 2016; Sand, Falk G. Bechara, et al. 2016). With a larger sample size, 

increased sequencing depth, and stringent statistical filter, we aimed to generate a 

comprehensive and reliable dataset, which could be a basis for future investigations.  

 

Main findings 

Identification of differentially expressed protein coding genes, including essential 

transcriptional regulators of cSCC pathogenesis 

For the whole transcriptome analysis by RNA-seq (100 bp, paired end), we used a discovery 

cohort of 7 healthy skin and 9 cSCC tumors, and identified 5,352 differentially expressed (FCH 

> 1.5, FDR < 0.05) protein coding genes (3,419 up- and 1,933 downregulated) in cSCC (Paper 

III, Figure I). In the validation cohort, we also included AK samples to get an indication about 

the dynamic expression of the selected transcripts in a precancerous stage. Three of the 

deregulated transcripts (MMP1 and IFN-YR2 upregulated, and NOTCH2 downregulated in 

cSCC) were successfully validated in an expanded cohort (healthy skin n = 11, AK n = 8, and 

cSCC n = 28) using NanoString assay (Paper III, Figure 3). While MMP1 and IFN-YR2 did 

not show any altered expression, NOTCH2 was sigficantly downregulated in the AK samples.   

GO analysis for the upregulated protein coding genes were significantly enriched for terms such 

as “Cellular response to interferon-gamma”, “extracellular matrix organization”, and “negative 

regulation of programmed cell death”. In contrast, terms such as “establishment of skin barrier”, 

and “regulation of water loss via skin” were enriched for the downregulated genes. Besides, 

EGFR, KRAS, mTOR/AKT, MEK and p53-gene signatures were significantly enriched from 

the oncogenic gene sets (Molecular Signature database) (Paper III, Figure 2A, B).  
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To better assess the altered transcriptional network in cSCC, we aimed to identify the potential 

upstream regulators of the differentially expressed genes. Enrichment analysis conducted using 

MetaCore’s TF module identified significant enrichment of 519 TFs whose target genes are 

overrepresented (Figure 22A) in our dataset. ETS1, p63, p53, KLF4, and SP1 were some of the 

enriched TFs, which have been previously functionally implicated in epidermal homeostasis 

and cSCC tumorigenesis (Benjamin and Ananthaswamy 2007; X. M. Li et al. 2019:4; Moses et 

al. 2019; Nagarajan et al. 2010; Nakamura et al. 2007). Out of the 519 enriched TFs, 105 were 

differentially regulated (64 up- and 41 downregulated) at mRNA level (Paper III, Figure 2C, 

D). Several TFs (e.g, FOXP3, USF1, EGR3, and IRF1) with previously unreported function in 

cSCC were found to be both enriched in the MetaCore analysis and differentially expressed at 

transcript level.  

 

Identification of differentially expressed lncRNAs; highlights on oncogenic and skin-
enriched lncRNAs 

Consistent with the literature, we observed an overall lower abundance of lncRNA transcripts 

(Cabili et al., 2011) (Figure 20A). Differential expression analysis identified 908 annotated 

lncRNAs (319 upregulated and 589 downregulated), among which the majority were antisense 

or intergenic (Figure 20B, C). SNHG12, CASC9, LUCAT1, and PVT1 were some of the 

upregulated lncRNAs, which were previously reported for their pro-tumorigenic functions in 

various cancer types. Contrastingly, TINCR, a lncRNA with differentiation promoting and 

tumor-suppressive function in epithelial cancers, was found to be significantly downregulated 

in our cSCC cohort. Using an expanded validation cohort, we successfully validated two 

potentially oncogenic lncRNAs (SNHG3 and MIR31HG), identified to have increased 

expression in the RNA-seq cohort. In the validation cohort, SNHG3 was significantly 

upregulated already in the precancerous AK samples, and MIR31HG was only upregulated in 

the primary cSCC (Figure 20D). SCEL-AS, a previously uncharacterized skin-enriched 

lncRNA was also validated in the expanded cSCC cohort and found to be downregulated 

already in the AK samples (Figure 20D).  
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Figure 20: (A) Median read count distribution of coding vs non-coding transcripts in healthy and cSCC 
samples. (B) Hierarchical clustering all differentially expressed lncRNAs in cSCC (FDR < 0.05 and 
FCH > 1.5). (C) Pie-chart showing the percentage of different classes of lncRNAs identified in the 
expression analysis. (D) Validation of selected lncRNAs (MIR31HG, SNGH3 and SCEL-AS) by 
NanoString nCounter assay. Mann-Whitney U test **P < 0.01, ***P < 0.001, ****P < 0.0001. 

 

LncRNAs, often expressed in a tissue-specific manner, play an important role in tissue 

development and homeostasis. These lncRNAs are also more likely to be deregulated during 

malignant transformation. Therefore, to gain insight into the tissue-specific expression 

signature, we calculated a tissue enrichment score (T) for the deregulated lncRNAs using the 

RNA-seq data from 27 tissues (including adult skin) available through GTEx (Genotype-Tissue 

expression) database. We performed a similar analysis for all the deregulated protein coding 

genes and found that the lncRNAs fare better in terms of skin-specificity (Ts >0.9) as seen from 

the comparison between the two groups for the frequency distribution of their tissue enrichment 

scores (T) (Paper III, Supplementary Figure S2). A snapshot of the top 50 differentially 
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expressed lncRNAs with skin-enriched expression revealed that 47 of them were 

downregulated in cSCC (Figure 21).  

To identify the potential upstream regulators of the deregulated lncRNAs, we performed an 

enrichment analysis for overrepresented transcription factor motifs (Paper III, Supplementary 

Figure S5), which revealed that CREB1, ATF1, and NRF1 were significantly enriched for the 

upregulated lncRNAs, while SP1/SP4 was enriched for the downregulated lncRNAs.  

 

Figure 21: Heatmap showing the enrichment (T) of top 50 skin enriched lncRNAs in different tissue 
types in GTEx and their average expression in healthy skin vs cSCC cohort.  

 

Identification of differentially expressed circRNAs in cSCC 

Using find_circ and CIRCexplorer pipelines and a stringent cutoff of at least five backspliced 

junction-spanning reads, we identified 197 and 139 high confidence circRNAs in healthy skin 

and cSCC samples. Besides the annotated circRNAs, our analysis also identified six novel 

circular transcripts, which were not present in the circ_base annotation catalogue. Based on the 

name of their respective host gene, we have denoted them as circ_IFFO2, circ_PLIN4, 

circ_DMKN, circ_METRNL, circ_KRT1 and circ_POF1B. The majority of the detected 

circRNAs have lower expression in the cSCC samples, which was later reflected in the 
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expression analysis. Interestingly, two of the novel circRNAs (circ_IFFO2 and circ_POF1B) 

were particularly abundant (expression > 1 RPM) in normal skin.   

From the differential expression analysis of high-confidence circRNAs obtained through two 

different pipelines, 55 were (2 up- and 53 downregulated) found to have significantly altered 

expression (P < 0.05) in cSCC (Figure 22A). To understand if the differentially expressed 

circRNAs have any correlation with the expression of their linear host genes, we plotted their 

fold change (RPM in cSCC/ RPM in Healthy skin) against circular to linear (CTL) ratios (Paper 

III, Supplementary Figure S8), and found that most of them were expressed independently of 

their host genes. Using NanoString assay, we validated three of our differentially expressed 

circRNAs. Among them, CDR1as, one of the most widely studied circRNA, and circ_IFFO2, 

a novel circular transcript detected in our analysis, was significantly downregulated both in AK 

and cSCC samples. Circ_TNFRSF21, another novel circRNA identified in our analysis, was 

validated to be upregulated in cSCC without any alteration in the AK samples (Figure 22B). 

We also verified the circularity of the novel circRNA (circ_METRNL, circ_IFFO2, 

circ_POF1B) candidates in a PCR based method using divergent primers that selectively 

amplify the circular transcripts. Not only had we got the amplicons with the correct size but 

also confirmed the correct sequence of the backspliced junctions by Sanger sequencing (Figure 

22C).  

 

Discussion 

In conclusion, using deep-sequencing-based expression analysis, we have generated a 

comprehensive list of differentially expressed coding and non-coding transcripts, providing 

many uncharacterized targets for potential therapeutic interventions in cSCC. Of note, a large 

number of previously unreported mRNAs were detected to be differentially expressed in our 

analysis, presumably due to increased RNA-seq depth. In agreement with the previous findings, 

differentially expressed protein coding genes contained the signatures for extracellular matrix 

disassembly, increased cell proliferation, expansion of progenitor population, decreased 

apoptosis, altered epidermal differentiation, and heightened immune response (Paper III, 

Supplementary figure S1) (Hameetman et al. 2013; Ratushny et al. 2012). Of note, several pro-

angiogenic chemokines related to cytokine-mediated signaling pathway were overexpressed in 

the cSCC samples, which have not appeared so prominently in the previous profiling studies 

(Chitsazzadeh et al. 2016; Hameetman et al. 2013; Keeley, Mehrad, and Strieter 2010). 
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Consistent with the earlier reports, we identified aberrant MAPK/ERK, mTOR/AKT, NF-kB, 

and p53-mediated DNA damage response pathways, which further proved the validity of our 

cohort and the dataset (Liberzon et al. 2015). Our upstream regulator analysis revealed, in 

addition to previously studied TFs in cSCC, a set of regulators with hitherto uncharacterized 

functions in epidermal homeostasis or cSCC development.  

 

Figure 22: (A) Hierarchical clustering of differentially expressed circRNAs in cSCC (B) Validation of 
selected differentially expressed circRNAs by NanoString nCounter assay in a larger cohort. Mann-
Whitney U test ****P < 0.0001. (C) PCR validation of novel circRNAs (circ_METRNL, circ_IFFO2 
and circ_POF1B). Agarose gel image showed the expected size of PCR product (present only in the 
reverse-transcribed samples). PCR products were verified by Sanger sequencing. Arrows point at the 
backspliced junctions. 

 

One of the key findings from this study was the identification of differentially expressed 

lncRNAs, which included several upregulated lncRNAs (MIR31HG, PVT1, LINC00152 etc.) 

with broad oncogenic functions. MIR31HG, one of the most upregulated lncRNAs in our 

dataset, has been reported to be upregulated by BRAF activation, suppresses CDKN2A 

epigenetically, and, promotes tumor cell growth and viability by suppressing senescence 

(Montes et al. 2015:31). Another prominent oncogenic lncRNA PVT1, found to be induced in 
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numerous solid tumors, was also upregulated in our cSCC cohort. It correlates with the disease 

severity, promotes tumor cell proliferation, viability, and contributes to the development of drug 

resistance (Derderian et al. 2019:1). LINC00152 (alternatively CYTOR) has been reported to 

be upregulated in colorectal cancer and contributes to cancer progression by activating NF-κB 

pathway (X. Wang et al. 2018).  Several of these upregulated lncRNAs (e.g. LINC00346, 

PVT1, SNHG12, ZFAS1 and TUG1) were also found to be highly abundant in primary and 

metastatic cSCC cell lines, making them exciting targets for functional characterization 

(Piipponen et al. 2016). While comparing with the previous lncRNA profiling study in cSCC 

with smaller sample size (n = 3), we identified 124 commonly altered (51 up- and 73 

downregulated) lncRNAs, potentially highlighting a set of frequently deregulated lncRNAs in 

a highly heterogeneous malignancy like cSCC (Sand, Falk G Bechara, et al. 2016). Needless to 

say, the majority of these lncRNAs are yet to be characterized in the context of cSCC. 

The skin enriched lncRNAs (e.g. RP13-455A7.1, RP11-73G16.2, TINCR, CHODL-AS) 

identified in our analysis, are equally interesting for further characterization. Given that cSCC 

is a keratinocyte-derived malignancy, it would be intriguing to check their expression in 

primary keratinocytes, explore their potential role in epidermal homeostasis, and finally 

understand their dysregulation in premalignant AKs and primary cSCC tumors.  

Due to the usage of total RNA for RNA-seq, we could simultaneously obtain expression data 

for circRNAs and their host genes. In addition to the previously annotated circRNAs, this 

unbiased approach helped us to detect six novel circRNA candidates, out of which three could 

be validated. In general, we observed a downregulation of circRNA expression in the cSCC 

samples, possibly due to an overall dysregulation of their biogenesis. While looking further for 

possible explanations in our expression data, we found that ADAR, which has been reported to 

suppress backsplicing events and circRNA biosynthesis, was sigficantly upregulated in our 

cSCC cohort (Shi et al. 2017). In contrast, ESRP1 and MBNL1, two of the positive regulators 

of circRNA biogenesis, were downregulated (Li et al. 2018). However, such a systemic change 

in circRNA biogenesis is yet to be put into the context of cSCC development.  

Among the differentially expressed circRNAs, a number of them (e.g. CDR1as, circ_UBAP2, 

circ_SNX27) with previously reported oncogenic functions, demand further attention because 

all of them were downregulated in our cSCC cohort (Huang et al. 2017:100338; H. Zhang et al. 

2017; Zhao et al. 2019). Interestingly, we observed that three circRNAs (circ_MBOAT2, 

circ_PTPN13 and circ_ACVR2A) previously found to be upregulated during epidermal 
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differentiation, were also sigficantly downregulated in cSCC (Kristensen et al. 2018). 

Therefore, they appear to be potential candidates for in depth characterizations in the context 

of epidermal homeostasis and cSCC progression.  
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4.4  Characterization of lncRNA ELDAR as a critical regulator of late epidermal 
differentiation 

 

Rationale 

Disruption of the differentiation program is one of the key features in various epidermal 

disorders, including cutaneous squamous cell carcinoma (Ratushny et al. 2012; Scott et al. 

1988). In our previous whole transcriptome profiling study (Paper III), we identified a set of 

skin-enriched lncRNAs with differential expression in the cSCC patients, wherein ELDAR was 

one of the most downregulated lncRNAs (Das Mahapatra et al. 2020). Since ELDAR locus is 

located within the epidermal differentiation complex (EDC) on human chromosome 1q.21; we 

hypothesized a regulatory role for ELDAR in epidermal differentiation, and set out to 

characterize it. 

 

Main findings  

ELDAR is a skin specific lncRNA, specifically induced during late differentiation 

Using an RNA-seq dataset from a time-course of differentiation in primary keratinocytes (day 

0, 2, 4 and 7), we found a striking increase in ELDAR expression during the late stages (at 4 

and 7 days after calcium induction) of differentiation. Interestingly, the expression dynamics of 

ELDAR was mirrored by FLG and LOR; two other crucial structural proteins expressed during 

late differentiation (Kouwenhoven et al. 2015) (Paper IV, Figure 1A, B). The RNA-seq data 

was further validated in our in vitro differentiation assay using primary human keratinocytes. 

qPCR based analysis showed that compared to undifferentiated keratinocytes, ELDAR is 

induced approximately 56 fold and 1900 fold at day 4 and day 6 of calcium-induced 

differentiation (Figure 23A, B). Confirming our findings in paper III, qPCR analysis of 22 

human organs/tissues demonstrated that ELDAR is a skin-specific transcript. Among different 

skin-constituent cell types (keratinocytes, fibroblasts, melanocytes and immune cells), it is 

highly expressed only in the terminally differentiated keratinocytes (Figure 23C, D). Consistent 

with its induction during late stage of differentiation, RNAscope in-situ hybridization (ISH) 

disclosed that ELDAR transcript is localized at the upper granular layer of the healthy epidermis 

(Figure 23E).  
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Rapid amplification of cDNA ends (RACE) analysis suggested that ELDAR locus produces a 

single 589 nt long isoform (Paper IV, Figure 2A). Next, using bioinformatics tool and 

exogenous expression of the predicted ORFs, which failed to produce any peptide in primary 

keratinocytes, we concluded that ELDAR is a bona fide lncRNA (Paper IV, Figure 2B, E). 

Finally, cellular fractionation-coupled with qPCR and RNAscope ISH-based detection revealed 

that ELDAR is predominantly localized to the cytoplasm (Paper IV, Figure 2F, G).  

 

Figure 23: qPCR analysis to assess the expression of (A) ELDAR and (B) the early (K10) and the late 
(FLG, LOR) differentiation markers during calcium-induced differentiation of primary keratinocytes (n 
= 3). (C) qPCR analysis of ELDAR expression in a panel of 22 human tissues. (D) qPCR analysis of 
ELDAR expression in a panel of 16 cell types from healthy skin. (E) Single-molecule in situ hybridization 
analysis with negative control and ELDAR-specific probes in healthy human skin (n = 6).White arrows 
used to point at the location of the signal. Scale bar = 50 µm. Student’s t-test (two-tailed). **P < 0.01, 
***P < 0.001, ****P < 0.0001. 
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Transcriptional activation of ELDAR locus induces premature differentiation 

In order to assess the role of ELDAR in keratinocyte differentiation, we utilized the CRISPR-

Cas transcriptional activation (CRISPRa) system to induce its expression in primary 

keratinocytes. Interestingly, without a stimulus for differentiation, ELDAR activation in 

undifferentiated keratinocytes managed to sigficantly induce the expression of late 

differentiation genes LOR and LCE2D (Paper IV, Figure 3B, C). However, a more 

comprehensive effect was observed when ELDAR activation was followed by calcium chloride 

treatment for inducing differentiation. This experimental setup demonstrated that ELDAR-

activation has a positive regulatory effect on late differentiation markers (FLG, LOR, LCE2D, 

and LCE3A), without affecting the early differentiation gene K10 (Figure 24A, B, C). 

Transcriptome profiling of keratinocytes transfected with CRISPRa plasmids and induced for 

differentiation further substantiated this observation and affirmed a distinctive upregulation of 

numerous genes for structural proteins and enzymes for terminal differentiation and barrier 

formation (Paper IV, Supplementary Figure 3).  

 

Figure 24: (A) qPCR-based expression analysis of ELDAR upon transcriptional activation by CRISPRa 
followed by calcium-induced differentiation (day 4) in primary keratinocytes (B) Singe-molecule in situ 
hybridization of ELDAR in primary keratinocytes upon CRISPRa. Scale bar = 10 µm. (C) qPCR analysis 
of the early differentiation gene (K10) and the late differentiation genes (FLG, LOR, LCE2D, and 
LCE3A). Fold change was calculated relative to negative control sgRNA treated keratinocytes (n = 3). 
Student’s t-test (two-tailed). ** P < 0.01, *** P < 0.001  
 

ELDAR knockdown impairs terminal differentiation in human organotypic skin 

After finding that activation of ELDAR locus can induce premature differentiation in primary 

keratinocytes, we set out to uncouple the effect of the transcript from the transcriptional event 

at this locus. Therefore, we performed an siPool-mediated knockdown of ELDAR in primary 
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keratinocytes, which were used to build a stratified organotypic skin. In agreement with the 

CRISPRa result, ELDAR-depletion in the organotypic cultures resulted in significant reduction 

of late differentiation genes at mRNA (LOR, LCE2D, and LCE3A) and at protein level (LOR 

and FLG), compared to the control siPool treated tissues (Figure 25A, B, C). Once again, the 

knockdown did not alter the expression of early differentiation genes such as K1 and K10 at 

protein and mRNA level (Paper IV, Figure 4D, Supplementary figure 4). In terms of 

phenotypic effect, ELDAR-depleted organotypic epidermis had a markedly thinner cornified 

layer, as seen from the transmission electron microscopy (TEM) analysis (Paper IV, Figure 

4G).  

A whole transcriptome analysis of ELDAR-depleted organotypic tissues comprehensively 

highlighted a stage-specific effect on epidermal differentiation. Apart from the structural 

proteins (FLG, FLG2, LOR, SPRRs, LCEs), several other enzymes essential for cornified 

envelope formation and desquamation, such as crosslinking enzymes (TGM3 and TGM5), 

lipoxygenases (ALOX12B and ALOXE3) and proteases (KLKs and CTSs) were also 

significantly downregulated (Eckhart et al. 2013; Ishitsuka et al. 2016) (Paper IV, Figure 4J, 

Supplementary table 3). ELDAR-regulated genes were found to be significantly enriched for 

gene ontology terms such as “skin development”, “keratinocyte differentiation” and “peptide 

crosslinking” (Paper IV, Figure 4I).  

 

Figure 25: qPCR analysis of (A) ELDAR expression in 3D organotypic cultures (day 4) made of 
keratinocytes nucleofected with control (siCtl) or ELDAR targeting siPool (siELDAR) and expression 
of (B) the early (K10) and late differentiation genes (FLG, LOR, LCE2D and LCE3A) (n = 3). (C) 
Immunofluorescence analysis of FLG and LOR (red) in ELDAR-depleted organotypic cultures. 
Basement membrane was stained for Col VII (green) and nucleus was stained with DAPI (blue) (n = 3). 
Scale bar = 50 µm. Student’s t-test (two-tailed). *P < 0.05, ** P < 0.01. 
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Transcription factor Yin Yang 1 (YY1) represses ELDAR expression in progenitor 

keratinocytes 

In order identify the upstream regulators of ELDAR expression in the progenitor keratinocytes, 

we extracted 1 kb sequence (putative promoter) upstream of the TSS and used it in PROMO, 

an online TF-predication tool that identifies the cognate motifs associated with the eukaryotic 

TFs. This analysis identified YY1 as one of top transcription factors with multiple binding sites 

within ELDAR promoter. ChIP-seq data retrieved from ENCODE (anti-YY1 in K562 cell line) 

database also showed a distinct peak for YY1 in this region (Paper IV, Figure 5A). Finally, 

our ChIP-qPCR data in progenitor keratinocytes showed a similar YY1-occupancy at ELDAR 

promoter, suggesting that YY1 can regulate ELDAR in primary keratinocytes (Paper IV, 

Figure 5B, C). A second line of evidence about a potentially repressive regulatory relationship 

between YY1 and ELDAR came from their opposite expression pattern during keratinocyte 

differentiation. Our qPCR data suggested that YY1 is significantly downregulated during the 

late time points (day 4 and day 6) of keratinocyte differentiation. To assess the functional 

implication, at first, we tested the effect of YY1 depletion in undifferentiated keratinocytes, 

where it failed to induce ELDAR expression significantly (Paper IV, Supplementary figure 6). 

However, when coupled with calcium-induced differentiation, YY1 knockdown not only 

upregulated ELDAR (~6 fold) but also increased the expression of FLG and LOR, two genes 

which are previously shown to be regulated by ELDAR during terminal differentiation (Figure 

26A, B, C).  

 

Figure 26: qPCR analysis of (A) YY1 expression in primary keratinocytes transfected with siRNA 
followed by calcium-induced differentiation (day 4). (B) Expression of ELDAR and (C) ELDAR 
regulated late differentiation genes (FLG and LOR) (n = 3). Student’s t-test (two-tailed). **P < 0.01, 
***P < 0.001.  
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Discussion 

In this study, we have delineated the functional implications of a previously uncharacterized 

skin-specific lncRNA in epidermal differentiation. ELDAR is strikingly induced during the late 

stage of keratinocyte differentiation, and localized primarily to the cytoplasm. CRISPR-

mediated activation of ELDAR locus led to a precocious expression of several genes associated 

with terminal differentiation program. Similarly, knockdown of the ELDAR transcript in 

organotypic-skin-equivalent tissues resulted in significant downregulation of the terminal 

differentiation-associated genes, without altering the early differentiation markers. Among the 

late markers, FLG, FLG2, LOR, SPRR proteins are key structural components of the cornified 

envelope (Candi, Schmidt, and Melino 2005b). A large number of genes from the LCE cluster 

which encodes for cornified envelop precursors were markedly downregulated. Several peptide 

cross-linking enzymes, which are crucial for the formation of the cornified envelope, were also 

downregulated. ELDAR knockdown caused a significant decrease in corneodesmosin (CDSN), 

which is an essential component of corneodesmosomes (cornified envelope specific junctional 

complex) (Kitajima 2015). Parallel to the transcriptomic changes, ELDAR-depleted epidermal 

tissues developed a markedly thinner cornified layer. Considering that cornification is a 

fundamental process for acquiring a functional epidermal barrier, it will be crucial to assess the 

effect of ELDAR loss directly on the barrier integrity (outside in and inside out) by dye 

diffusion assay and measurement of transepidermal water loss (TWEL).  

Although we have explored the functional ramifications of ELDAR through gain and loss-of-

function studies, the mode of its function currently remains unexplored. Since it is primarily 

localized to the cytoplasm, we can assume various post-transcriptional regulatory mechanisms. 

For instance, it can provide increased stability to a selected set of pro-differentiation mRNAs 

via interacting with RBPs like STAU1 or polyadenylate-binding protein PABPC1 (Kretz et al. 

2013b; Webster et al. 2018). As the ELDAR-regulated genes show altered expression already 

at the RNA level; it is unlikely that this lncRNA specifically increases their translational output. 

In this scenario, poly-A interacting RBPs could be particularly interesting as they also promote 

the formation of translation pre-initiation complex during 5’-cap mediated translation (Benoit 

et al. 2005; Sachs and Davis 1989). A number of studies report that lncRNAs can alter protein 

half-life by modulating the interaction between the ubiquitin-proteasome complex and its 

substrate (Ma et al. 2019). This can be can also be applicable for ELDAR mediated regulation 

of pro-differentiation proteins. Further in silico and in vitro studies will be required to shed light 

on the various functional interacting partners of ELDAR. 
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YY1 is a zinc-finger containing TF that is shown to regulate cell proliferation, differentiation, 

and tissue development (Alvarez-Salas, Benitez-Hess, and Dipaolo 2005:1; Gregoire et al. 

2017:1; Lu et al. 2018). By ChIP-qPCR and loss-of-function study, we show that transcription 

factor YY1 binds to the promoter of ELDAR and represses its expression in progenitor 

keratinocytes. Previous studies in primary murine keratinocytes and 3D culture using HaCaT 

cells show that YY1 has an inhibitory effect on epidermal differentiation (Taguchi et al. 2011; 

Xu et al. 2004). Other than validating the dynamic YY1 expression in differentiating primary 

human keratinocytes, our data propose that ELDAR acts as an additional player, which 

contributes to the YY1-mediated inhibitory effect on epidermal differentiation. Although we 

show that YY1 depletion in differentiated keratinocytes induces ELDAR expression, it is 

unclear whether YY1 is the stand-alone factor here. Given that calcium induction can activate 

a number of pro-differentiation signaling pathways and their downstream transcription factors, 

it is possible that not merely the removal of YY1 from its promoter, ELDAR expression also 

requires the presence of additional transcriptional activators (Ng et al. 2000; Toufighi et al. 

2015). Interestingly, YY1 is an important polycomb-group protein that can establish repressive 

chromatin marks (Wilkinson, Park, and Atchison 2006). In addition to that, YY1 can also 

interact with CCCTC-binding factor (CTCF) and establish stable chromatin architecture to 

regulate enhancer-promoter interactions (Weintraub et al. 2017). Therefore, it will be 

compelling to evaluate the effect of exogenous overexpression of wild type or a mutant YY1 

lacking the recruitment of polycomb (REPO) domain on ELDAR expression. Similarly, it will 

be intriguing to see if CTCF knockdown has an additive effect on ELDAR expression.  

 

Since altered epidermal differentiation and barrier formation are essential hallmarks of a diverse 

group of cutaneous disorders (e.g. cSCC, psoriasis, atopic dermatitis, and ichthyosis); it will be 

intriguing to assess the change in ELDAR expression and its epidermal distribution in those 

conditions. In this regard, our initial assessment shows that ELDAR expression is significantly 

downregulated in primary cSCCs and patient derived cSCC cell lines, compared to normal skin 

and primary keratinocytes respectively. However, much work lies ahead to understand if 

ELDAR gain-of-function can suppress cSCC development, potentially by re-differentiating the 

tumor cells.  
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5   CONCLUDING REMARKS 
The delicate interplay between various signaling pathways, transcription factors, epigenetic 

modulators, and non-coding RNAs is the key to maintaining a functional epidermis. Disruption 

to this process through deregulation of any component of this multilayered organization can 

lead to various diseases, including skin malignancies. The central aim of this thesis is to identify 

and functionally characterize the dynamically expressed non-coding RNAs in epidermal 

differentiation, and malignancies arising from different cell types (keratinocytes and 

melanocytes) within the epidermis. One of the recurring highlights in our studies' outcome was 

the nexus between non-coding RNAs and transcription factors in regulating gene networks, 

which ultimately manifests in the alteration of various cancer/metastasis-associated hallmarks. 

We show that the expression of non-coding RNAs is often tightly regulated by transcription 

factors and epigenetic regulators in both homeostatic and disease conditions. Finally, using 

suitable disease models, we have demonstrated that some of the ncRNAs could be useful targets 

for therapeutic interventions in skin cancers. 

In Paper I, we have identified an inverse correlation between miR-203 expression and 

differentiation grades of cSCC, with a significant downregulation in the poorly differentiated 

tumors. Functionally, miR-203 inhibited the cell cycle by arresting cSCC cells at G1 phase. We 

identified oncogene c-MYC as a direct target of miR-203 in cSCC. C-MYC restoration rescued 

the cell cycle inhibitory effect of miR-203 in cSCC cell lines. Additionally, miR-203 affected 

key oncogenic hallmarks such as self-renewal, cell motility, and angiogenesis of cSCC cells. In 

line with the in vitro effects, miR-203 overexpression led to a significant reduction of tumor 

volume and weight in a xenograft assay. Further studies will be necessary for an in-depth 

assessment of miR-203/c-MYC axis as a therapeutic target in cSCC.  

In Paper II, using TCGA small-RNA-seq data of primary and metastatic melanoma, we have 

reported that miR-203 is the most downregulated miRNA in the metastatic tumors. The 

protective clinical relevance of miR-203 was identified when we found that higher miR-203 

abundance confers longer overall survival to patients with metastatic melanoma. Using 

methylation data from TCGA, and our in vitro demethylation assay, we demonstrated that 

promoter hypermethylation could be partly responsible for miR-203 deregulation in metastatic 

melanoma. Functional assays using melanoma cell lines showed that miR-203 inhibits many 

key hallmarks of tumor progression and metastasis, such as self-renewability, angiogenesis, and 

cell motility. EMT-promoting transcription factor SLUG was identified as a direct target of 
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miR-203, and its downregulation partially explained the inhibitory effect of miR-203 on 

melanoma cell motility. In addition to suppressing tumor growth in vivo, miR-203 showed a 

strong anti-metastatic function by inhibiting dissemination of cancer cells to local lymph nodes 

and the lungs. In summary, our study has explored a prognostic and therapeutic potential of 

miR-203 in the context of metastatic melanoma. In this regard, it will be interesting to assess 

the changes in miR-203 abundance in different mutational and clinical subtypes of melanoma. 

Further studies using patient-derived-xenograft models of melanoma could provide a better 

assessment of its therapeutic potential.    

In Paper III, we aimed to construct a robust catalogue of differentially expressed coding and 

non-coding transcripts in cSCC, with a particular aim to improve upon previously published 

lncRNA and circRNA profilings in cSCC. This is also the first study identifying both protein 

coding and long non-coding transcripts (linear and circular) from the same samples. Potentially, 

due to higher sequencing depth in comparison with the previous studies focusing on the coding 

transcripts, we have identified many previously unreported genes including transcription factors 

in cSCC. Apart from several uncharacterized lncRNAs, our expression analysis identified 

multiple lncRNAs with reported oncogenic functions, as well as several skin-enriched 

lncRNAs. Using circRNA identifying pipelines and differential expression analysis, we 

discovered both novel and annoted circRNAs with altered expression in cSCC. In addition, we 

successfully validated three representative transcripts from each group in an expanded cohort, 

including precancerous AKs, which gave further insight into the dynamic changes of these 

transcripts during cSCC progression. Nevertheless, a future study with a cohort made of AK, 

cSCC in situ, and different grades of cSCC will get us closer to understanding the dynamic 

changes in the non-coding transcriptome during cSCC progression. In conclusion, our study 

has generated a robust and comprehensive list of coding and non-coding transcripts, which will 

be useful in identifying novel regulators of cSCC pathogenesis in future.  

In Paper IV, we have characterized ELDAR, a skin-specific lncRNA located at the EDC on 

human chromosome 1q.21. ELDAR is induced strikingly at the late stages of keratinocyte 

differentiation and located at the granular layer of the epidermis. Gain and loss-of-function 

studies in differentiating keratinocytes or organotypic skin equivalent tissues unveiled that 

ELDAR positively regulates various essential components (i.e. structural proteins, proteases, 

crosslinking enzymes) of terminal differentiation and cornification program. ELDAR-depleted 

epidermal tissues also developed markedly thinner cornified layer. All these observations raise 

a relevant question about the potential role of ELDAR in barrier acquisition, which could be 
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addressed using different barrier integrity assays. Future works should also focus on dissecting 

the mode of function and interacting partners of this cytoplasmic lncRNA. We have identified 

transcription factor YY1 as a negative regulator of ELDAR in progenitor keratinocytes. Given 

that YY1 often acts as a cofactor, it will be equally interesting to identify other YY1-associated 

transcription factors at the ELDAR promoter and understand their united role in regulating this 

lncRNA locus. Finally, this study opens up further questions about the deregulation and 

functional implications of ELDAR in various epidermal disorders (such as cancer, psoriasis, 

atopic dermatitis, etc.) where terminal differentiation program is impaired/altered. 
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