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ABSTRACT 
Dementia is becoming a growing healthcare crisis, therefore identifying individuals at risk or in the 
earliest stages of dementia is essential if prevention or disease modification is to be achieved. The 
objective of this thesis was to examine cognitive performance and decline during the preclinical phase 
and explore the ability of cognitive and biological markers to identify those at risk of future dementia. 
Data from a population-based longitudinal study, SNAC-K, were used to investigate this aim.  
 
Study I examined the ability of neuropsychological tests, genetics, and structural MRI volumes to 
predict dementia six years later. Models were systematically created to identify the best combinations 
for prediction. A model containing all three modalities: hippocampal volume, a task of category fluency, 
presence of an APOE ɛ4 allele, white-matter hyperintensities volume, and a task of general knowledge, 
displayed the most predictive value (AUC=.924; C.I=.883–.965). However, this model did not 
significantly improve predictive value over one containing only cognitive and genetic markers, 
suggesting that minor increases in predictivity should be weighed against the costs of additional tests.  

Study II investigated the benefit of DTI, alongside neuropsychological tests, genetics, and brain volume 
markers in predicting future dementia. MD values for tracts CHC, CS, FMAJ, and IFOF (AUC=.837–
.862) and the FA IFOF latent factor (AUC=.839) were significantly associated with dementia at six 
years. A final model consisting of a measure of perceptual speed, hippocampal volume, and MD of the 
FMAJ tract was created with the highest predictive value (AUC=.911). Assessment of microstructural 
white matter integrity via DTI was associated with future dementia but the additional benefit when 
combined with other markers was relatively small. 

Study III narrowed its focus to the ability of cognitive markers alone and the effect of modifying 
factors (age, sex, education, the presence of an ɛ4 allele, AD–only dementia, and time to diagnosis) on 
identifying those at risk of dementia. The most predictive model, consisting of category fluency, word 
recall, and pattern comparison, achieved good prediction values (AUC=.913) for dementia six years 
later. Tests in the domains of category fluency, episodic memory, and perceptual speed were, in general, 
good predictors across all subgroups and up to 6 years before a dementia diagnosis. However, cognitive 
tests became increasingly unreliable at predicting dementia beyond that time.  

Study IV explored the trajectories of cognitive decline over a 12-year period during the preclinical stage 
of dementia, before examining the ability of early cognitive decline in identifying those with increased 
likelihood of future dementia. Persons in the preclinical phase showed increased rate of decline in all 
cognitive domains compared to those who did not develop dementia (β:-.07 to -.11), this difference was 
particularly noticeable closer to diagnosis. Those classified as fast decliners for 3 or more cognitive tests 
demonstrated the highest risk of dementia (HR: 3.38, CI: 1.91-6.01). Although, changes in early rates of 
decline were small and rates of decline may be more predictive closer to diagnosis.  
 
Collectively, these studies confirm a long preclinical period in dementia development, which allows for 
the use of a wide range of markers (cognitive, genetic, MRI, and DTI) capable of identifying those at 
high risk of dementia. The ability of these markers to predict future dementia is increased through 
combining within and between modalities.  
 
Key words: Preclinical dementia, cognition, biomarkers, prediction, longitudinal





 

 
 

SAMMANFATTNING 
Demens är ett växande problem för samhället och vården. Därför är det viktigt att identifiera personer i 
riskzonen eller i de tidigaste stadierna av demens, så att förebyggande eller sjukdomsmodifierande åtgärder 
kan sättas in i tid. Syftet med denna avhandling var att undersöka kognitiv prestation och försämring under 
den prekliniska fasen och utforska förmågan hos kognitiva och biologiska markörer att identifiera de som 
riskerar att utveckla demens. För detta ändamål användes data från en populationsbaserad longitudinell 
studie, SNAC-K. 

Studie I undersökte förmågan hos neuropsykologiska tester, genetik och strukturella MRI-volymer att 
förutsäga demens sex år senare. Modeller skapades systematiskt för att identifiera de bästa 
kombinationerna för att predicera framtida demens. En modell som innehöll alla tre modaliteter: 
hippocampusvolym, verbalt flöde, närvaro av en APOE ɛ4-allel, hyperintensitet i vit hjärnsubstans och ett 
allmänbildningstest kunde bäst förutsäga demens (AUC = .924; CI = .883 -.965). Men denna modell 
förbättrade inte förutsägelsevärdet signifikant jämfört med en som endast innehöll kognitiva och genetiska 
markörer, vilket tyder på att mindre ökningar i prediktivitet bör vägas mot kostnaderna för ytterligare test. 

Studie II undersökte fördelen av DTI, tillsammans med neuropsykologiska tester, genetik och 
hjärnvolymmarkörer för att förutsäga demens. MD-värden för CHC, CS, FMAJ och IFOF (AUC = .837 – 
.862) och FA för den latenta IFOF-faktorn (AUC = .839) var signifikant förknippade med demens sex år 
senare. En slutlig modell bestående av ett mått på perceptuell snabbhet, hippocampusvolym och MD för 
FMAJ hade det högsta prediktiva värdet (AUC = .911). Bedömning av mikrostrukturell 
vitsubstansintegritet via DTI var kopplad till utveckling av demens, men det adderade värdet i kombination 
med andra markörer var relativt liten. 

Studie III fokuserade enbart på förmågan hos kognitiva markörer och effekten av modifierande faktorer 
(ålder, kön, utbildning, närvaron av en ε4-allel, AD-demens och tid till diagnos) på möjligheten att 
identifiera de med ökad risk att utveckla demens. Den mest prediktiva modellen, bestående av 
kategoriflöde, fri återkallning av ord och perceptuell snabbhet, uppnådde goda prediktionsvärden (AUC = 
.913) för demens sex år senare. Tester inom områdena kategoriflöde, episodiskt minne och perceptuell 
hastighet var i allmänhet bra prediktorer i alla undergrupper och upp till 6 år innan en demensdiagnos. 
Kognitiva tester var mindre tillförlitliga längre än 6 år innan diagnos. 

Studie IV undersökte kognitiv nedgång under en 12-årsperiod av den prekliniska fasen av demens. 
Kognitiv försämringstakt tidigt i den prekliniska fasen användes sedan för att identifiera personer med ökad 
sannolikhet att utveckla demens. Personer i en preklinisk fas av demens uppvisade en ökad försämringstakt 
för alla kognitiva domäner jämfört med de som inte utvecklade demens (ß: -. 07 till -.11), denna skillnad 
var särskilt märkbar närmare diagnos. De som uppvisade snabb nedgång i 3 eller fler kognitiva test hade 
den högsta risken för demens (HR: 3,38, CI: 1,91-6,01). Skillnaderna i förändringstakt tidigt i den 
prekliniska fasen var små, och kognitiv försämring kan ha högre prediktivitet närmare en demensdiagnos. 

Sammantaget bekräftar dessa studier förekomsten av en lång preklinisk period i demensutvecklingen, 
vilket möjliggör användning av ett brett spektrum av markörer (kognitiva, genetiska, MRI och DTI) för att 
identifiera personer med hög risk för demens. Dessa markörers förmåga att förutsäga demens kan förbättras 
genom att kombineras med ytterligare markörer, inom samma eller andra modaliteter. 

Nyckelord: Preklinisk demens, kognition, biomarkörer, förutsägelse, longitudinell  
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INTRODUCTION 
As the population ages, the total number of people affected by dementia is rising and may 
potentially reach 75 million by 2030 and 132 million by 2050 [1]. Alongside the personal toll 
of cognitive decline and loss of independence there is the burden of informal care, which 
typically falls on the families or relatives of those affected, and formal care, provided by 
governments. This means that the effects of dementia are varied and can be felt far beyond 
the individual, clinical symptoms. These effects are further exacerbated by the fact that the 
only current, effective treatments for dementia focus on managing symptoms rather than 
preventing or reversing underlying pathology. Due to these issues, dementia is becoming one 
of the most challenging public health crises that the world will have to face. 

 

 

Cognitive aging 

Cognition is the ability to use conscious mental processing and covers a wide range of 
domains including multiple types of memory, language, executive function, verbal fluency, 
and perceptual speed. As part of the normal aging process many of these abilities decline over 
time. Measures of fluid cognition, including the above mentioned, episodic memory, 
executive function, and perceptual speed often see the greatest changes as part of normal 
aging [2, 3]. The onset of this decline differs depending on the methods used [4, 5], with 
decline suggested by cross-sectional studies to begin earlier than has been found in 
longitudinal research. Research of the same individuals over time has shown that these 
domains typically remain stable throughout adulthood until around the age of 60-70 years 
old, when a relatively consistent decline begins [6]. For measures of crystallized cognition, 
such as semantic memory, performance has been shown to remain intact or even improve 
over the life course until very late life [2, 3]. Regardless of discrepancies within the research, 
a shared conclusion is that decline in cognitive ability is a common feature of aging. 
However, despite the ubiquity of cognitive decline not everyone will experience these age-
related changes in the same way and there are large individual differences in baseline 
performance, onset of decline, and rate of decline [7-9], as illustrated by Figure 1.  

As with cognition, extensive changes also occur in the brain during the normal aging process 
[2, 10-12] and large individual differences are present [10, 12]. As a part of normal aging, 
neuronal atrophy, which is the loss of neurons, results in decreases in both grey and white 
matter volume [2, 10, 12]. While this decline is most obvious in frontal regions, it has also 
been shown in multiple brain areas, including parietal and medial temporal lobes (MTL) [12-
14]. That grey matter atrophy in these regions has been associated with the cognitive domains 
most likely to decline with aging, such as episodic memory and the hippocampus/MTL [15, 
16], is testament to the intrinsic link between brain structure and cognition.  
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Figure 1: Graphical illustration of individual memory performance over a lifespan. The bold 
line represents mean performance across individuals. Based on data from Schaie (1996)[17], 
de Frias et al., 2007[18], Rönnlund et al., 2005[6], and Rönnlund et al., 2007[19]. 

 

 

Dementia 

Dementia is a syndrome characterised by ongoing cognitive decline. It should be noted that 
dementia, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM), has 
recently undergone major revisions for the latest edition (DSM-V). The term ‘dementia’ has 
been replaced with ‘major neurocognitive disorder (NCD)’, however the main criteria remain 
largely the same. Major NCD requires a significant decline in one or more domains of 
cognition, the cognitive decline must interfere with independence, and must not be due to 
delirium or other mental disorders. In the DSM-V, mild NCD was also introduced to bridge 
the gap between normal cognitive aging and dementia/major NCD. It allows for moderate 
cognitive decline, which does not interfere with independence, similar to the related 
classification ‘mild cognitive impairment’ (MCI). The mild NCD classification acknowledges 
the often gradual nature of cognitive decline which leads to dementia. 

This thesis will refer to ‘dementia’ rather than ‘major NCD’ as dementia is typically 
associated with cognitive decline in older persons and a part of pathological aging, as 
opposed to major NCD which may be attributed to non-age-related causes, such as traumatic 
brain injury or complications from HIV infection.  
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Dementia subtypes 

While dementia is defined by cognitive decline, there are many potential causes and 
pathologies underlying this process. Common causes include Alzheimer’s disease (AD), 
vascular dementia (VaD), frontotemporal dementia, dementia with Lewy bodies, and 
Parkinson’s disease dementia, or pathologies from two or more of these diseases. As they 
represent the most frequent causes of dementia, the focus of this thesis will be on AD, VaD, 
or a combination of the two, which will be referred to as ‘mixed dementia’.  

 

Alzheimer’s Disease 

AD, often considered to be the most common cause of dementia [20], is a degenerative 
disorder characterised by the accumulation of amyloid-beta (Aβ) as plaques and aggregates of 
hyperphosphorylated tau as neurofibrillary tangles (NFTs) within the brain. There are two 
main forms of AD: familial, where AD is inherited in an autosomal dominant fashion and 
onset is earlier in life, and sporadic, which is due to a mix of genetic and environmental 
factors and occurs later in life. Familial AD is responsible for between <1-5% of all AD cases 
[21, 22], depending on the subtype and definition, while sporadic AD accounts for the vast 
majority of AD cases (~95%).  

The exact cause of AD pathology is still debated, however the most common theory is the 
Amyloid Cascade Hypothesis [23, 24]. This theory postulates that the pathological process 
begins with an increased production of the Aβ peptide, the inability to remove the excess Aβ 
leads to an accumulation of oligomerised peptides which deposit as plaques. These plaques 
then cause a chain reaction of direct and indirect effects, including pathological changes in 
astrocyte and microglial activation and phosphorylation of tau causing neuronal damage. This 
damage eventually leads to cell death and subsequent dementia. Alternative hypotheses 
include the Mitochondrial Cascade Hypothesis [25] and the Inflammation Hypothesis [26, 
27]. The Mitochondrial Cascade Hypothesis suggests that AD-pathology, including 
amyloidosis, is due primarily to age-related mitochondrial dysfunction [25]. While the 
Inflammation Hypothesis proposes that chronic inflammation, alongside dysfunction of 
microglia and astrocytes, is not merely a product of amyloid deposition but a key driver in 
AD pathology [26, 27]. 

Although the exact mechanisms are debated, accumulation of Aβ is one of the primary 
symptoms of AD and a key component in defining the disease [28, 29]. Other markers 
include the presence of NFTs [30], neural atrophy [31-34], and cognitive deficits over a range 
of different domains but most commonly associated with episodic memory loss [35-40].  
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Vascular dementia 

Vascular dementia (VaD) ranks as the second most common dementia type [41]. As indicated 
by the name, VaD is caused by problems in the vascular system. While it may be a 
heterogeneous condition, there are two main forms: cortical and subcortical [42, 43]. Cortical 
VaD is often associated with stroke and follows a step-wise progression as cognitive function 
remains stable between events but declines rapidly after each subsequent infarct. Subcortical 
VaD refers to small vessel disease and lesions in subcortical white matter, which gradually 
accumulate, causing damage over time [44]. 

It therefore makes sense that many markers for vascular dementia are related to white matter 
damage, such as white-matter hyperintensities (WMHs), lesions, and microinfarcts, which 
can be identified using magnetic resonance imaging (MRI) [45]. Cognitive impairment is a 
feature of both cortical and subcortical VaD, although presentation of cognitive deficits can 
differ between the two. The symptom profile of cortical VaD depends on the location of the 
infarcts so can vary greatly between cases, while cognitive symptoms in subcortical VaD 
primarily include executive functioning and attention deficits [42, 46]. 

 

Mixed dementia 

Although AD and VaD represent two different etiologies of dementia, it is worth noting that 
there is substantial overlap in AD and vascular pathology, particularly in the oldest old [47, 
48]. While AD is often touted as the most common form of dementia, evidence is emerging 
to suggest that mixed dementia may be more common than either pure AD or VaD [48, 49], 
especially in the general population [41].  

In addition to the pathological overlap between these conditions, there is evidence that AD 
and VaD share many common symptoms. Cognitive deficits in episodic memory, semantic 
memory, executive function, and visuospatial tasks are frequently observed in both diseases 
[50, 51] and cognitive tests may have limited ability to distinguish between the two 
conditions [52]. There is also evidence of additive effects of mixed pathology on memory 
deficits [53] and synergistic effects of vascular pathology, such as WMHs and vascular 
lesions, on hippocampal atrophy in AD [54-56]. Common risk factors, such as hypertension, 
have been related to both pathological aspects of AD, through NFTs and senile plaques, and 
VaD, through development of WMHs [57].  

The common presence of both pathologies in dementia patients, as well as the overlap in 
symptoms and risk factors, suggests that separating these two conditions may not be the 
optimal way of addressing their impact or treatment. It stands to reason that mixed dementia 
should be considered as a whole rather than the sum of its component parts. 
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Effects of demographic factors  

As mentioned, dementia is a heterogeneous disorder with multiple causes, however, the 
underlying pathology is not the only thing that can affect dementia expression. Various 
demographic factors can affect these underlying pathologies, as well as the effect of potential 
risk factors, and symptom presentation. The main three are discussed below: 

 

Age  

Dementia is often seen as a sign of pathological aging, with the biggest risk factor in 
developing dementia being increasing age. The prevalence and incidence of dementia has 
been observed to increase exponentially for those over the age of 65 [58, 59].  

Risk factors for dementia may differ depending on age, with risk factors in mid- to late-life 
no longer applicable for the oldest old [60-62]. It has been the case that what may be 
considered a risk factor in middle age can be protective in later life, for example high BMI in 
midlife is considered a risk factor for future dementia, whereas it is considered protective in 
late life [63].  

There is also strong evidence to show that the symptoms of dementia can differ between age 
groups. Those in early old age are more likely to show episodic memory deficits and a pattern 
of cognitive decline more closely associated with AD [64, 65]. Whereas, those in later old 
age (85+) exhibit a broader range of cognitive deficits, spanning multiple domains [64, 65]. 
This may partially be explained by differences in underlying pathology between the two age 
groups as mixed pathology is more common in the older old than in the younger [47, 48]. 
Therefore, cognitive deficits in those 85+ would present as a mixture of those found in both 
pathologies.  

 

Sex 

It is well documented that women are more likely to develop dementia than men, with the 
remaining life time risk of a 65 year old woman almost double that of a man of the same age 
[66]. This difference is particularly noticeable in AD-type dementia [66, 67]. While this can 
partially be explained by increased life expectancy for women than men, this is unlikely to be 
the only factor involved [67]. Speculation as to the causes of sex differences in dementia risk 
have included differences in a range of modifiable and non-modifiable aspects, from 
hormones, to access to education, to differences in brain structure and chemistry [67]. 
However, no conclusive evidence has emerged to explain sex differences in the development 
of dementia. 
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It is known however that risk factors for dementia differ between the sexes, for example 
stroke has been considered a more important factor for men, whereas clinical and sub-clinical 
depression is a greater risk factor for women [68, 69]. There is also evidence to suggest that 
the APOE ɛ4 allele is a greater risk factor for future AD in women than in men [70] and that 
cardiovascular risk factors for dementia differ between the sexes [71]. 

Even when accounting for the same underlying cause, cognitive profiles of dementia between 
men and women differ over the course of the disease. For example women often perform 
better at verbal tasks and men on visuospatial/motor tasks [72] and this advantage is often 
retained during the preclinical phase of AD [73, 74].  

Understanding and accounting for sex differences is an essential part of controlling the 
disorder, as differences in dementia type and presentation of symptoms can have an important 
effect on dementia screening and the production of potential cures [73]. 

 

Education 

Strong evidence supports an increased risk of dementia with low education, particularly in 
those with very low or no education [75, 76]. However, the ability of increased years of 
education in attenuating risk of dementia is less clear, and it was theorised that additional 
education would only be beneficial if it matched cognitive capacity.  

The link between low education and dementia may not be as simple as it seems, both 
education and dementia can be affected by factors such as parental socioeconomic status, 
heath behaviours, such as good nutrition and exercise, and genetics [75]. Although, the 
association between low education and dementia can remain when these factors are 
controlled for [77, 78]. The most common theory behind a protective effect of increased 
education lies with the idea of cognitive reserve [79-81], which suggests that education can 
increase the ability of the brain to adapt to pathological changes, such as AD or VaD. This 
allows the brain to maintain normal cognitive functioning, despite pathological accumulation, 
for a certain period, before these coping mechanisms begin to degrade due to pathological 
burden. However, it should be noted that the idea of cognitive reserve has a number of 
criticisms including reflecting, rather than expanding on, known mechanisms, as well as 
reliance on proxy measures [82-84]. 

Despite the mechanisms behind low education as a risk factor for dementia not being fully 
understood, the size of the effect and the fact that it is a modifiable risk factor, particularly in 
low economic status countries, which would struggle with the economic burden of dementia, 
means that education is potentially an important factor in dementia prevention.  

 



 

  
            7 

Preclinical dementia and MCI 

As mentioned, dementia typically develops over a long period. The term ‘preclinical 
dementia’ refers to the early phase of the disorder where disease progression has begun but 
symptoms are not severe enough to warrant a clinical diagnosis. This preclinical phase can 
span years or even decades before a clinical diagnosis and can be seen through a range of 
markers, including cognitive deficits, abnormal cerebrospinal fluid (CSF) markers, and neural 
atrophy [85]. In this thesis, the term preclinical dementia refers to those individuals that are 
known to have received a dementia diagnosis at a later follow-up occasion. 

With the failure of treatments to address AD and dementia pathology [24, 86], a greater focus 
has been applied to the earliest stages of the disease process. More detailed knowledge 
regarding the preclinical stages of dementia would allow for the identification of individuals, 
and initiation of treatments, before severe neural damage has had time to accumulate, 
therefore limiting the impact of the disorder. 

Often discussed in relation to the preclinical or prodromal stages of dementia is the concept 
of MCI. It is a classification which refers to minor cognitive deficits found in one or more 
domains in individuals that do not meet the diagnostic criteria of dementia. Those with MCI, 
particularly amnestic-MCI, with a pronounced deficit in episodic memory, have an increased 
conversion rate to AD-type dementia [87-89]. However, there are also those who will remain 
cognitively stable [90-93]. Therefore, although MCI is often considered an intermediate stage 
in dementia development, this category is highly heterogeneous. One way to conceive of 
MCI is as a risk factor for future dementia and that studies of MCI alongside studies of 
preclinical dementia represent two complementary lines of research. MCI is particularly 
important in clinical settings, as it can be used as a diagnostic entity to refer those with 
cognitive complaints to memory clinics for further testing or observation. 

 

Individual markers of preclinical dementia 

Cognition 

Early markers of AD may be present years, if not decades, before a clinical diagnosis. Subtle 
impairments to episodic memory have been shown up to 22 years before an AD diagnosis 
[37, 40, 94]. Although, it should be noted that few studies have restricted samples specifically 
for these long periods and preclinical dementia cases in these studies typically span a wide 
timeframe before diagnosis. While preclinical AD is most associated with deficits in episodic 
memory [35-38], early deficits can be seen over a number of cognitive domains [39, 95, 96]. 
Individual domains of perceptual speed [97-99], executive functioning [38, 94, 97, 100], 
verbal fluency [36, 101, 102], visuospatial ability [38, 97, 103], and attention [104-106] also 
show varying degrees of deficits in preclinical AD. Alongside individual domains, measures 
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of global cognition, including the Mini-Mental State Examination [MMSE; 107], show 
reduced functioning in preclinical AD [36, 108]. A meta-analysis by Bäckman et al. [39] on 
47 individual studies, observed that global cognitive ability, perceptual speed, and executive 
function had a similar or even larger effect size than episodic memory. Whereas, verbal 
ability, visuospatial ability, and attention, showed lower, but still observable deficits. 

While the majority of the studies cited above have focused exclusively on AD, similar 
patterns of broad decline across multiple cognitive domains has also been shown in 
preclinical and clinical VaD [42, 46]. Often these patterns are overlapping to the point of 
being almost indistinguishable from one another [51, 109, 110]. 

Therefore, cognitive deficits are a well-established characteristic of preclinical dementia and 
the use of such markers in predicting future dementia has yielded some promising results, 
albeit with some limitations. While there are studies showing significant prediction of 
dementia up to 18 years before a diagnosis [37, 40, 94], it is well documented that cognitive 
tests perform better closer to a diagnosis as cognitive deficits become more pronounced [95]. 
In addition, a number of studies combining multiple tests and cognitive domains have shown 
increased predictivity, however these often show high levels of specificity but only low to 
moderate sensitivity, somewhat limiting their application potential [36, 111-113].  

 

Rates of cognitive decline 

As mentioned, cognitive deficits can be seen far in advance of an AD diagnosis and may be 
useful markers for dementia prediction, in relation to this, the rate at which cognition declines 
during the preclinical phase represents complementary information. This pattern of cognitive 
decline often involves a shallow rate of decline in most cognitive domains followed by a 
more rapid increase when compared to normal aging [100, 114-120]. While there is a 
consensus of acceleration in cognitive decline during preclinical AD, results from research 
into when and how rapidly different cognitive domains begin to decline is mixed. Studies 
have estimated that the acceleration in cognitive decline for episodic memory occurs up to 7 
years before diagnosis [100], with some reporting earlier occurrences [114, 116, 117]. 
Acceleration in decline for semantic memory has ranged from 3 [115] to 6 years [116] before 
diagnosis. Likewise, verbal fluency appears to begin more rapid decline approximately 3-5 
years before diagnosis [115, 117, 119]. Consistent with these patterns, Thorvaldsson et al. 
[121] noted differential rates of decline between cognitive domains along a fluid/crystallized 
spectrum, with fluid abilities, such as word recall or tasks measuring perceptual speed, 
declining earlier than crystallized abilities, such as verbal ability.  

A number of studies [35, 96, 100, 108, 122-124] have also suggested a non-linear decline in 
cognition: a shallow rate of decline, followed by a plateau, before a steep rate of decline 
closer to diagnosis. This plateau may represent the use of neural mechanisms or cognitive 
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reserve to maintain functioning to compensate for losses due to dementia pathology [79, 123, 
125]. This would indicate that the rapid rate of decline which follows afterward is due to 
failure of compensatory mechanisms under the increasing pathological burden [79, 123, 125]. 

However, it should be noted that there is great variation in onset and rate of decline of the 
various cognitive domains between studies [126]. This may be due to differences in study 
population (MCI vs general population), sample demographics (e.g. age, education), length of 
study, apolipoprotein E (APOE) status, and other factors. Studies also differ in whether they 
attempt to determine acceleration in cognitive decline at more than one time point. Change 
points close to a diagnosis of AD may also suffer from time periods of uncertainty around a 
dementia diagnosis where a person may have clinical AD but have not yet received a 
diagnosis. 

While many of these studies are focused on AD-type dementia, a long preclinical phase has 
also been observed for VaD. Compared to AD, the change point for VaD occurs later for 
global cognition, as well as almost all cognitive domains, but, once cognitive decline starts to 
accelerate, the rate of decline is more pronounced [127, 128]. 

As dementia is characterised by progressive cognitive decline, rather than stable low 
cognition, it has been hypothesised that rate of decline may be better at identifying those at 
risk of dementia compared to single time-point scores. Although, few studies have 
investigated cognitive decline as a predictor of future dementia. One such study by Nation et 
al. [129] found that those with cognitive decline over a 12 month period showed increased 
risk of future dementia even when accounting for baseline cognition. This suggests that rate 
of decline may add unique risk above that found from single time-point cognitive scores and 
represents a potentially interesting topic for further research.  

 

Genetics  

While there are a number of genes linked to AD [130, 131], carrying the ε4 allele of the 
APOE gene is the strongest genetic risk factor for non-familial AD [132-134]. As ε4-carriers 
have an increased risk of developing MCI [135-137] and dementia, in particular AD [134], it 
is therefore a useful biomarker for future dementia.  

APOE ε4 allele has been linked to reduced baseline episodic memory function and a steeper 
rate of decline in cognitively normal older adults [138, 139], as well as reduced global 
cognition and executive functioning [140, 141]. Links to poorer episodic memory [139, 142] 
and a potential faster rate of cognitive decline [143-145] have also been found in preclinical 
AD and MCI. Although, the effect on rate of decline is debated [136, 146]. The APOE gene 
can also act as a moderator to other AD pathology, for example, hippocampal atrophy in AD 
is accelerated in those with an ε4 allele [147-149]. This also includes Aβ, but not tau 
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pathology [150], with ε4 carriers showing greater Aβ deposition in the brain [151, 152] and 
lower levels in the CSF [150]. 

As noted, while the APOE ε4 allele may not be a symptom or classical biomarker of 
preclinical dementia, it is an established risk factor with effects on other markers of dementia, 
such as hippocampal atrophy and Aβ deposition. In combination with other markers, it has 
also shown some added predictive value for future dementia [153, 154], although this is not 
always replicated when in competition with other markers [155-157]. 

 

Neuroimaging 

MRI macrostructure 

As with other markers for dementia, neuroimaging markers for preclinical dementia show 
promise due to how far in advance of a clinical diagnosis they appear. Neural atrophy in the 
hippocampus and medial temporal lobe (MTL), as seen in Figure 2, is one of the most 
common markers of AD dementia [11]. Atrophy of the entorhinal cortex and hippocampus, 
as seen through MRI, can be viewed up to 10 years before a formal diagnosis of AD [31]. 
With atrophy beginning in the entorhinal cortex before spreading to the hippocampus and 
medial temporal structures [32, 33], and eventually to more distant brain regions in a 
temporal fashion as the disease progresses [34]. 

Figure 2: MRI images of MTL and hippocampus during healthy aging (left) and preclinical 
dementia (right), from participants (78yo, male) involved in SNAC-K. 

 

Another common neuroimaging biomarker is WMHs, representing white matter damage 
from small vessel disease [55]. WMHs have been shown to have a higher prevalence in 
various dementias, including AD, VaD and dementia with Lewy bodies, compared to controls 
[55, 158]. During the preclinical phase of dementia, they have been associated with faster 
cognitive decline and greater risk of developing dementia [159, 160].  
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As with cognitive markers, the ability of neuroimaging markers alone to predict future 
dementia is limited. Evidence for the usefulness of WMHs as individual predictors is mixed 
[159, 161]. While, studies of hippocampal or MTL volumes [49, 162, 163] or even combined 
imaging methods [164] show prediction values lower than would be ideal for clinical use.  

 

DTI microstructure 

While grey matter atrophy is a well-researched and established biomarker for preclinical 
dementia, less research has been conducted into the usefulness of diffusion tensor imaging 
(DTI) for this purpose. It has been shown that alongside grey matter atrophy, dementia is also 
associated with a decline in white matter microstructure [165, 166]. Changes in white matter 
microstructure integrity are measured with DTI primarily via mean diffusivity (MD), a 
reflection of the translational water diffusion within a given space, and fractional anisotropy 
(FA), a reflection of directional diffusion associated with fibre density and myelination. 
[167]. Low FA and high MD indicates poor white matter integrity.    

Loss of white matter integrity has been shown in AD and VaD [168, 169]. It has been 
suggested that loss of white matter integrity and changes to white matter microstructure in 
AD typically begin in the limbic tracts, followed by lateral temporoparietal tracts and long-
ranging association tracts, including the frontal lobe [170-172]. 

While the use of DTI in predicting future dementia has been less studied than more routinely 
used structural MRI markers, such as grey matter volume, there are studies showing the 
benefits of using DTI in risk assessment [173] and MCI to dementia conversion [174-176] 
with high accuracy. However, it should be noted that many studies using DTI tend to involve 
very small samples and so results should be taken with some degree of scepticism until they 
can be confirmed by larger-scale studies.  

 

Combining preclinical markers 

As mentioned in previous sections, the ability of individual tests or modalities to predict 
future dementia is limited. Recent research has therefore focused on the possible benefits of 
combining markers across modalities [177] and studies combining neuropsychological tests, 
structural MRI and APOE, among other tests, have often reported increased predictivity. 
Devanand et al. [155] reported increased predictivity through the inclusion of multiple tests, 
with a final model including an informant questionnaire on daily functioning, verbal memory, 
olfaction, and hippocampal and entorhinal volume producing the highest predictive value. A 
study by Gomar et al. [178] found that a model of two memory tasks along with hippocampal 
volume had the highest predictivity. While, Dukart et al. [179] reported multiple models with 
strong predictivity, the strongest including markers from APOE, positron emission 
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tomography (PET), and structural MRI. More recent studies [180, 181], have replicated these 
findings on the benefits of combining multiple markers. Beyond neuropsychological tests, 
structural MRI and APOE, many studies have found positive results when including CSF 
biomarkers [181-187]. There is also evidence that combining between modalities yields 
higher predictive value than combining within modalities [188], although, the evidence for 
this is mixed [178]. 

It should be noted that many studies show a numerical, but not statistically significant, 
increase in predictivity, which has still been interpreted as showing the benefit of predictive 
models over individual predictors in some research [154, 182-184]. There is therefore much 
room in further studies for the use of statistical testing between prediction models to come to 
an empirically tested conclusion in this matter. 

In the effort to increase predictive power through combining multiple markers, large, multi-
centre studies are becoming increasingly common, addressing the problem of small sample 
sizes found in many studies [157, 183, 184]. The Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) is a database of cognitive, genetic, neuroimaging, and biological markers 
from multiple sites for dementia free, MCI, and dementia subjects. This large scale, 
longitudinal database has many benefits, as it contains a wide range of potential predictors 
and a large sample of convertors. However, follow-up time is often short (~2 years) and data 
are collected from a select group of participants [154, 156, 178, 179, 182, 185]. While 
valuable, this leaves an important role for population-based research.  

 

Applications of dementia prediction 

While the number of individuals affected by dementia is expected to increase dramatically 
over the next 30 years [1], in some cases the incidence appears to be falling. Several 
population-based studies in Western countries have shown a trend of lower age-specific 
incidence in the past few decades [189-192]. Although, this reduction may primarily apply to 
dementias other than AD [193]. It has been hypothesised that the lower incident rates are due 
to modifiable lifestyle factors [76, 194], such as increased education during early life or better 
identification and treatment of diseases such as hypertension and diabetes in later life. In any 
case, these findings give encouragement that dementia can be prevented.   

To date there has been limited success in developing a treatment for AD or other dementias 
[195, 196]. Numerous clinical trials have moved to Stage 2 or 3 but ultimately failed to 
provide a drug that can combat disease progression. One of the issues cited in drug and 
intervention trials is the long period over which dementia develops. Dementia pathology such 
as Aβ deposition can occur over decades with pronounced cognitive deficits occurring much 
later. It is therefore important to identify people as early as possible in disease progression for 
future interventions and trials.  
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Progress on this is currently being made, several risk scores already exist which focus on 
lifestyle risk factors across various target populations [197-199]. These have also shown 
promise in identifying individuals at high risk for dementia for inclusion in dementia 
intervention trials [200], which themselves have shown encouraging results [201]. While this 
represents a complimentary line of research to our own, further progress is needed. Greater 
understanding of the preclinical phase of dementia can help in the identification of more 
specific markers, more efficient screening tools to identify at-risk populations, and the 
development of new drugs and clinical interventions. 
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AIMS 
The main objective of this doctoral project is to further our understanding of the preclinical 
phase of dementia and identify useful predictors for early identification of high-risk 
individuals. To do this, we compare and combine multiple cognitive measures and biological 
markers, such as structural neuroimaging and genetics. Alongside this over-arching aim, each 
study includes its own specific objectives.  
 
Study I: to identify prediction models with the highest accuracy for detecting persons with 
increased dementia risk and to evaluate how different combinations of cognitive and 
biological markers can affect model accuracy.  
 
Study II: to evaluate the usefulness of measures of microstructural white matter integrity 
during the preclinical stage of dementia and understand the individual contribution of white 
matter integrity in predicting future dementia.  
 
Study III: to focus on the predictive ability of cognitive tests in identifying those at higher 
probability of developing dementia, including the effects of time to diagnosis and other 
modifying factors. 
 
Study IV: to investigate the patterns of rate of cognitive decline, in multiple cognitive 
domains, during the preclinical dementia phase and how early rates of decline can be used to 
predict development of future dementia.
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METHODS 
Study populations 
All data for this thesis were collected from participants recruited in the ongoing Swedish 
National Study on Aging and Care - Kungsholmen (SNAC-K). This is a part of a larger 
longitudinal and population-based study, the Swedish National study of Aging and Care 
(SNAC) which consists of four regional data collection centres across Sweden. SNAC-K 
specifically focuses on a random sample of individuals, over 60 years old, living in the 
Kungsholmen region of Stockholm, Sweden. Of the 5111 individuals invited to participate in 
SNAC-K, 4590 were eligible, and 3363 (73.3%) agreed to take part in the baseline data 
collection from March 2001 to June 2004. Participants belong to specific age cohorts (60, 66, 
72, 78, 81, 84, 87, 90, 93, 96 years, and 99 years and older). The older age groups (≥78 years) 
are re-examined every 3 years and the younger age groups (60-72 years) every 6 years, with 
up to 12 years of data (see Figure 3). The assessment at each wave consists of a nurse 
interview, a medical examination, and a neuropsychological testing session. Data from the 
national hospital and death registers has been linked to SNAC-K to provide further 
information. 
 

 

Figure 3: Data collection timeline for SNAC-K over the age cohorts.  

 

Sample for Study I 

Of the 3363 baseline responders, a subsample of 555 participants also underwent MRI 
scanning. It was from this subsample that the sample for Study I was taken. From the original 
555, participants were excluded due to poor quality images or technical issues (n= 52), 
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missing cognitive data (n=12), infarct/tumour/neural abnormality (n=31), neurological 
disorder (n=7), autoimmune disorder (n=1), and drop-out (n=94). Thus, data were available 
for 418 participants. Of those, 354 remained dementia free, 28 developed dementia, and 36 
died during the 6-year follow-up.  

Compared to the full baseline sample, participants in the MRI sample were significantly 
younger, had more years of education, achieved higher MMSE scores, and included a larger 
proportion of women (p<.01). 

 

Sample for Study II 

Among the individuals who underwent MRI scanning (n=555), a DTI sequence was available 
for a subsection of this sample (n=260). Due to exclusion (poor image quality/technical 
issues: n=17, infarct/meningioma: n=6, missing cognitive data: n=7) and drop out (n=18), the 
final analytical sample consisted of 212 participants. Of these, 173 remained dementia free, 
16 developed dementia, and 23 died during the six-year follow-up.  

Compared to the original sample, including all SNAC-K participants (n=3363), this sample 
was significantly younger (p=.002) and performed better on the MMSE at baseline (p<.001). 
There were no significant differences between the samples in sex distribution or educational 
level. 

 

Sample for Study III 

The populations for Study III were recruited from the main SNAC-K sample (n=3363). For 
the main analysis, 669 of these participants were excluded at baseline (no baseline cognitive 
data: n=515, dementia diagnosis: n=122, Parkinson’s disease: n=21, schizophrenia: n=10, and 
developmental disorder: n=1). A further 337 were excluded due to drop out (n=336) and 
uncertain dementia diagnosis (n=1) at follow-up. An analytical sample of 2357 participants 
remained, of which 246 developed dementia, 378 died, and 1733 remained dementia free.  

For the time-to-diagnosis sample, of the original 3363 baseline participants, exclusions were 
removed from each follow-up point. At baseline, the same 669 participants were removed as 
above. At three years, 384 participants were excluded due to dementia (n=121), death 
(n=161), and dropout (n=102). At the six year follow-up, participants (n=704) were removed 
due to dementia (n=127), death (n=217), dropout (n = 233), and lack of cognitive data 
(n=127). At nine years, 1169 participants were excluded for dementia (n=68), death (n=94), 
dropout (n=38), and lack of cognitive data (n=47). An additional 922 participants were not 
scheduled to be included in this wave of data collection. Finally, there were 30 participants 
removed at twelve years due to drop-out. After exclusions, data from 407 participants were 
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available: 48 who whom developed dementia, 75 of whom died, and 284 who remained 
dementia free at the 12-year follow-up.  

 

Sample for Study IV 

Of the original sample (n=3363), exclusions were made at baseline (dementia: n=417, 
Parkinson’s disease: n=25, developmental disorder: n=4, and schizophrenia: n=15) and for 
those with cognitive data available for fewer than two time-points (n=698). Drop-outs 
throughout the 12-year period accounted for the removal of 658 participants. Thus, 1646 
individuals remained for analysis using mixed models, of whom 1092 remained dementia 
free, 334 died, and 220 developed dementia by the 12-year follow-up. A restricted sample of 
1491 participants (1092 dementia free, 252 dead, and 147 dementia cases) was analysed 
using Cox regressions, after the removal of those who died (n=155) or developed dementia 
(n=73) during the first 6 years of the study. 

 

Dementia diagnosis 

Within SNAC-K, dementia diagnoses were made according to the Diagnostic and Statistical 
Manual of Mental Disorders, 4th edition [202]. A preliminary diagnosis was made by the 
examining physician, this was followed by a secondary diagnosis based on computerised data 
from the medical examination. In cases of disagreement, a final decision was made by a third 
physician. A differential diagnosis of AD was made according to the National Institute of 
Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and 
Related Disorders Association (NINCDS-ADRDA) criteria [203]. The cognitive assessment 
used for diagnosis included the MMSE [107], the Ten Point Clock test [204], and items 
regarding memory, executive functioning, problem solving, orientation, and interpretation of 
proverbs. Performance on the neuropsychological battery was not used for diagnostic 
purposes. Additional cases of dementia were added from death certificates and medical 
records for those who died before receiving a dementia diagnosis in SNAC-K. 

 

Materials and data collection 

Clinical testing 

MMSE 

The MMSE was used to assess global cognitive functioning. This is a short 30-point 
questionnaire covering a range of cognitive abilities such as orientation, attention, memory, 
language, and visual-spatial abilities.   
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Neuropsychological testing 

Neuropsychological testing in SNAC-K was performed at each assessment wave. The 
cognitive test battery was conducted by trained test leaders and was typically completed in 2 
hours. There are three versions of the test battery and two test orders. All testing was 
conducted in Swedish. The tests that were used in this thesis are presented below according to 
cognitive domain.  

 

Episodic memory 

Episodic memory was assessed using a word list of 16 unrelated nouns, words were presented 
individually every five seconds. To assess free recall, a two-minute recollection task was 
presented immediately after the word list and number of correctly remembered words was 
recorded. Word recognition was assessed with an untimed list of 32 nouns, including the 
original words and an equal number of distractors, where recognition reflected number of hits 
minus number of false alarms. 

 

Semantic memory 

Two tasks of semantic memory were administered: a general knowledge task consisting on 
10 moderately difficult questions covering a range of topics, participants were asked to pick 
the correct answer from two alternatives, and a vocabulary task which involved matching 30 
target words to the correct synonym among five alternatives. Number of correct answers was 
recorded from each test. 

 

Verbal fluency 

Letter and category fluency tests were used to assess verbal fluency. These tasks involved 
generating as many words as possible within 60 seconds, either starting with the letters ‘F’ 
and ‘A’ (letter fluency) or belonging to the categories ‘animals’ and ‘professions’ (category 
fluency). The fluency measures were derived by averaging the total number of words 
produced within each task. 

 

Perceptual speed 

Three tasks were used to assess perceptual speed. Digit cancellation [205] comprised 11 rows 
of random digits, participants were required to mark the target number (4) whenever they 
encountered it during a 30 second time period. The second task was pattern comparison 
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[206], which consisted of pairs of basic line constructs; 30 seconds were given to mark the 
pairs as “same” or “different”. The average number of correct answers was calculated from 
two trials. Trail Making Test (TMT) part A [207] was the final test and involved connecting 
13 encircled digits in numeric order as fast and accurately as possible. Time to complete the 
task was recorded as the test score. However, time was only taken for those who completed 
the task correctly, with a maximum of 1 careless connection.  

 

Executive function 

Executive function was measured using TMT-B [207]. In this task, circles with numbers and 
letters were connected based on numeric and alphabetical order, alternating between the two 
categories (1-A, 2-B, etc.). As with TMT-A, time taken to complete the task was considered 
the as the test score and scores were only recorded for those who completed the task 
correctly, or had a maximum of one careless connection.  

 

MRI 

Collection   

MRI data were acquired using a 1.5T scanner (Philips Intera, Netherlands). The protocol 
included an axial 3D T1-weighted fast field echo (FFE) sequence with repetition time (TR) 
15 ms, echo time (TE) 7 ms, flip angle (FA) 15°, field of view (FOV) 240, 128 slices with 
slice thickness 1.5 mm and in-plane resolution 0.94×0.94 mm, no gap, matrix 256×256, and 
an axial turbo FLAIR sequence (TR 6000 ms, TE 100 ms, inversion time 1900 ms, FA 90°, 
ETL 21, FOV 230, 22 slices with slice thickness 5 mm and in-plane resolution 0.90×0.90 
mm, gap 1 mm, matrix 256×256). 

For the DTI images, a single-shot diffusion-weighted echoplanar imaging sequence with the 
following parameters was conducted: FOV = 230x138 mm2, 128x77 matrix, TE = 104 ms, 
TR = 6838 ms, slice thickness 5 mm with 1 mm gap and b-value 600 s/mm2. A DTI scheme 
with six non-collinear diffusion-weighting gradient directions was used to determine the 
diffusion tensor set. 

 

Post-processing 

The T1-weighted images were first segmented into grey matter, white matter and CSF using 
the unified segmentation method approach [208] and SPM12b (Statistical Parametric 
Mapping, Wellcome Trust Centre for Neuroimaging).  Further removal of odd voxels from 
the segments was achieved through the ‘light clean-up’ option. Total intracranial volume 
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(ICV) was obtained by adding grey matter, white matter, and CSF volumes. All volumes 
were corrected for ICV using the analysis of covariance approach [209]. Automatic 
segmentation of hippocampal volumes was performed using the Freesurfer image analysis 
suite (v. 5.0.1, Martinos Center for Biomedical Imaging, Harvard-MIT, Boston, USA). This 
procedure has previously been described by Gerritsen et al. [210]. WMHs were manually 
delineated on the FLAIR images by a single rater.  

The DTI images were pre-processed using an iterative optimisation algorithm for the 
diffusion tensor calculation. In the next step, fractional anisotropy (FA) and mean diffusivity 
(MD) were derived on a voxel-by-voxel basis using the approach from Bassar & Pierpaoli 
[211]. Further processing of the FA data was conducted using the tract-based spatial statistics 
(TBSS) tool of the FMRIB Software Library Analysis Group (FMRIB, Oxford, UK) [212]. 
Fourteen masks, one for each tract of interest in both hemispheres, were created and used to 
extract the FA and MD values of each participant. These tracts were the cingulum cingulate 
gyrus (CCG), the portion of cingulum that extends to the hippocampus (CHC), the 
corticospinal tract (CS), the forceps major (FMAJ), the forceps minor (FMIN), the inferior 
fronto-occipital fasciculus (IFOF), and the superior longitudinal fasciculus (SLF). 

 

Genotyping 

DNA was obtained from peripheral blood samples and genotyping was performed using 
MALDI-TOF analysis on the Sequenom MassARRAY platform [213]. The APOE 
(rs429358, rs7412) polymorphism was included in this thesis.  

 

 

Statistical analysis 

Descriptive statistics 

All variables in the study were examined prior to advanced analysis. The variables were 
checked for outliers and missing data points. Measures of central tendency (mean, median, 
and mode), variability (standard deviation and variance), and distribution (skewness and 
kurtosis) were inspected.  

 

Structural equation modelling 

Structural equation modelling (SEM) is a statistical method of drawing connections between 
measured variables and the latent constructions which underpin them. Models can be 
estimated with full maximum likelihood, which allows for the estimation of parameters that 
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involve missing values by utilising information from the full data set. Model fit was evaluated 
with the Comparative Fit Index (CFI) and the Root-Mean-Square Error of Approximation 
(RMSEA), where a CFI above .95 and an RMSEA below .08 indicates acceptable model fit. 

SEM was used to generate latent factors for the cognitive domains and white matter tracts in 
Study II. Three models (DTI MD, DTI FA, and cognition) were created with regard to the 
specific domains (see Figure 4). In addition, three global models were created based on the 
same data. 

 

Figure 4: Graphical representations of structural equation models for 7 specific latent 
microstructural white matter integrity factors (a) and 5 specific latent cognitive factors (b). 
The same model applies to FA and MD. Latent factors are depicted with circles, endogenous 
variables with rectangles, regressions with one-headed arrows, and covariance with two-
headed arrows. Adapted from Laukka et al. [214]. 

 

 

Multinomial logistic regression 

The multinomial logistic regression is used to model the probability of a categorical/nominal 
dependent variable from an independent variable, which may be continuous or categorical. 
Multinomial logistic regressions are a variation of logistic regressions, while standard logistic 
regressions have a dependent variable with a binary outcome, multinomial logistic regression 
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allows for the dependent variable to have more than two possible discrete outcomes. In this 
thesis, the three available outcomes included: remaining dementia free, dying, or developing 
dementia, during a specified time period. As with standard logistic regressions, the 
multinomial regression uses maximum likelihood estimation to evaluate that probability of 
membership to each possible outcome.  

This regression analysis was used in Studies I, II, and III to assess the ability of a range of 
cognitive and biological markers to predict future dementia.  

 

Model building 

For Study I, the building of prediction models began with the systematic inclusion of 
variables, beginning with the best predictor based on area under the curve (AUC) values, 
from there a second variable was added until all available 2-variable combinations had been 
tested. The 2-variable model with the highest AUC was then used as a base, with the 
remaining variables added until the 3-variable model with the highest AUC was revealed. 
This process continued until no predictor could add further unique variance without losing 
statistical significance. When this occurred the model was then considered final. This 
procedure was repeated, using the best cognitive, genetic, and neuroimaging predictor as the 
base, respectively. 

For Study II, the ability of each individual marker to detect future dementia was assessed. 
Subsequently, every possible variable combination for models containing two, three, and four 
predictors was assessed at each step to establish the most predictive model. Final models 
were created when the maximum number of predictors that could still add unique information 
to the model had been reached. Separate models were created for global and specific markers. 
Bayesian information criterion (BIC) was used as a marker of model fit in both studies. 

For Study III, the same procedure as in Study I was employed, although with a larger sample 
size and restricted to the cognition modality. 

 

Cox proportional hazards model 

Cox regression assesses the association between variables and survival time (time-to-event) 
outcomes. The hazard rate is the probability of experiencing a specified event, assuming the 
individual survives to a designated time point. Hazard ratios are used to determine the 
differences in risk between groups, with one group acting as the control group.  

In Study IV, Cox regressions were used to determine the extra risk associated with having fast 
cognitive decline, compared to those with no fast decline, on likelihood of developing future 
dementia.  
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Tests of predictive value 

To evaluate the accuracy of the created prediction models, three measures were used: AUC 
values, concordance indices (C-index or C-statistic), and DeLong’s tests. 

The AUC values are obtained from a receiver operating characteristic curve (ROC). The 
ROC is created by plotting the true positive rate (sensitivity) against the false positive rate (1-
specificity) and shows all possible cut-off points. The AUC provides a simple measure of 
how well the model is performing across all possible cut-off points. An AUC of .5 would 
indicate that the model is not predicting above the level of chance, an AUC of 1 would 
represent a model with perfect predictive accuracy. The AUC values were used in Studies I, 
II, and III to assess model predictivity. 

Harrell’s C-index is equivalent to the AUC for models which produce risk scores, such as the 
Cox regression. It evaluates the accuracy of the predictions made by comparing the number 
of correct prediction outcomes with the total number of possible outcomes. The C-statistic 
also ranges from .5 to 1, with values closer to 1 denoting better model predictivity. Harrell’s 
C-index was used in Study IV as a guide to model predictivity.  

The DeLong’s test statistically evaluates the difference between two AUC values to 
determine if there is a significant difference between the two. A significant result when 
comparing the AUCs from two prediction models would indicate that one model is 
significantly better at predicting the outcome than the other. DeLong’s test was used in 
Studies I, II, and III to determine if increases in the AUC between models were statistically 
significant. 

 

Linear mixed-effects models  

Linear mixed-effects models (LMM) are another type of regression modelling, one which is 
particularly useful for longitudinal data, as it allows for both fixed and random effects. LLMs 
can handle missing data and unequal follow-up times. 

Piecewise linear mixed-effects models (pLMM) are a variation of LMMs and allow for more 
than one slope to be plotted. A knot can be placed in the model to separate the slopes before 
and after this designated point.   

Study IV used LMMs to investigate the linear rate of decline in dementia free and preclinical 
dementia groups over a period of twelve years. Time was recorded as ‘time to event’, the 
event for dementia free was the twelve-year follow-up or date of death and for the dementia 
group was mid-point between the last follow-up and date of diagnosis. pLMMs were used to 
assess changes in rate of decline before and after the knot, which was placed at six years 
before the event. 
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Fast decliners 

Rate of decline from twelve to six years before the event, based on the pLLMs, was also used 
to define fast decliners for use in the Cox regressions. Participants declining ≥ 1.5SDs faster 
than the mean rate of decline of their age category (<78 vs. ≥78 years), with mean rate based 
on decline in the dementia free group, were classified as fast decliners for that cognitive 
domain. Similarly, participants scoring ≥ 1.5SDs below the mean baseline score of their age 
group were classified as having a low baseline score for that domain. 

 

Ethical considerations 

All data collection waves of SNAC-K received ethical approval from Karolinska Institutet 
ethical committee or Stockholm ethical review board, see Table 1 for registration numbers 
relevant for the included studies. Everyone involved in data collection and analysis in SNAC-
K follows the ethical guidelines of the World Medical Association Declaration of Helsinki 
and research ethics principles in humanistic-social scientific research developed by the 
former Swedish Council for Research in the Humanities and Social Sciences. 

All data collected is done so with the consent of those involved, participants are informed that 
participation is voluntary and that they are free to withdraw from the study at any time 
without explanation. Written informed consent is collected when participants are still 
cognitively intact and a proxy is asked for consent in cases of severe cognitive impairment. If 
the participant expresses anguish or discomfort during the examination, the interview is 
terminated regardless of whether the person, or a proxy, has given consent. All data in 
SNAC-K is pseudonymised to ensure participant confidentiality. 

MRI is generally considered a safe procedure as it does not involve radiation; however, the 
procedure is not safe for all individuals, for example those with pace-makers. In regard to 
this, the subjects are given an extensive check-list before the scan to determine their ability to 
safely participate. Any abnormalities on a scan are diagnosed by a radiologist and reported to 
the participant’s physician. Blood is taken from the participants to measure a range of 
variables and genotyping is performed. A registered nurse draws the blood sample so there is 
low risk of infection and participants can refuse the procedure if they wish. 

Table 1. Ethical registration numbers SNAC-K
Study Ethical registration numbers 
Study I 01-114; 04-929/3; Ö 26-2007; 2009/595-32 
Study II 01-114; 04-929/3; Ö 26-2007; 2009/595-32 
Study III 01-114; 04-929/3; Ö 26-2007; 2009/595-32; 2010/447-31/2; 2013/828-31/3 
Study IV 01-114; 04-929/3; Ö 26-2007; 2009/595-32; 2010/447-31/2; 2013/828-31/3 
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RESULTS 
Preclinical dementia markers 
Multimodal predictors 

Combining cognition, genetics, and MRI 

Study I investigated the ability of neuropsychological assessments, the APOE ε4 allele, grey 
matter volume, and white matter hyperintensities volume to predict dementia six years later. 
The study focused on a subsample of 418 individuals within the SNAC-K sample. 

The results of multinomial logistic regressions revealed that a test of perceptual speed 
(pattern comparison) and the presence of at least one APOE ɛ4 allele were the joint highest 
individual predictors of future dementia (AUC=.875). Within the MRI modality, 
hippocampal volume showed highest predictivity (AUC=.859). However, results from the 
DeLong’s tests demonstrated that no single test or marker showed a significant improvement 
in prediction of future dementia when compared to a model of covariates (age, sex, and 
education: model 0). 

Predictive models were built within and between the modalities of cognition, genetics, and 
MRI. Intra-modality models were created for cognitive and MRI variables, as these 
modalities contained at least two significant predictors each. A final model of cognitive 
markers was created and contained a task of word recall and pattern comparison (AUC=.901; 
C.I=.858-.944). The final model of the MRI variables included hippocampal volume and 
WMHs volume (AUC=.878; C.I=.828–.928). 

When combining between the modalities, a model beginning with a cognitive base of pattern 
comparison (AUC=.875; C.I=.822–.928) was combined with word recall (AUC=.901; 
C.I=.858–.944), and finally hippocampal volume to create a 3-variable model with the 
highest predictive value (AUC=.913; C.I=.874–.952). Both models 2 (p=.012) and 3 (p=.007) 
were a significant improvement over model 0. Models with a genetic base (APOE ɛ4: 
AUC=.875, C.I=.826–.923), were added with word recall to create a 2-variable model 
(AUC=.908; C.I=.867–.949), and with general knowledge to create a final 3-variable model 
(AUC=.922; C.I=.883–.960). Predictivity for models with 2 or more variables was a 
significant increase over a model of only covariates (p=.001). 

The most predictive final model was created using hippocampal volume as the base 
(AUC=.859; C.I=.798–.920), this was most improved by adding a task of category fluency 
(AUC=.895; C.I=.845–.944). Adding the presence of at least one ɛ4 allele resulted in a 3-
variable model including tests from each modality (AUC=.911; C.I=.869–.953). Further 
predictive value was gained by the inclusion of WMHs (AUC=.921; C.I=.882–.960). General 
knowledge was added as the final variable, which resulted in a model with the highest 
predictivity of all models tested (AUC=0.924; C.I=.883–.965). As with the other modality 
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bases, there was no significant increase in predictive value from the inclusion of only one 
variable (p=.476). Although, all models with three or more variables showed a significant 
increase in predictive value (p<.05) above that found in model 0.

All model bases showed a significant increase in AUC from model 0 to the final models 
(cognitive base, p=.007; genetic base, p=.001; MRI base, p=.005). However, it should be 
noted that there was no significant difference in predictivity between any of the final models,
see Table 2.

Table 2. Multinomial logistic regressions for intermodality models (Study I).

a Incident dementia vs no dementia. Model 0 includes sex, age and education.

Variables No 
dementia 
(n)

Incident 
dementia 
(n)

OR 95% C.I. p
value

ROC 
–
AUCa

Lower Upper

Model 0 Covariates 354 28 .845
Cognitive
Model 1 Pattern comparison 352 26 2.48 1.37 4.50 .003 .875
Model 2 Pattern comparison 352 26 2.02 1.10 3.73 .025 .901

Word recall 2.46 1.42 4.25 .001
Model 3 Pattern comparison 344 25 1.96 1.04 3.69 .036 .913

Word recall 2.18 1.24 3.82 .007
Hippocampal volume 2.07 1.11 3.86 .022

Genetic
Model 1 APOE (ε4 vs no ε4) 349 28 4.89 2.02 11.85 .000 .875
Model 2 APOE (ε4 vs no ε4) 348 28 5.48 2.16 13.94 .000 .908

Word recall 2.50 1.49 4.19 .001
Model 3 APOE (ε4 vs no ε4) 347 28 5.81 2.21 15.28 .000 .922

Word recall 2.47 1.46 4.19 .001
General knowledge 1.96 1.21 3.16 .006

MRI
Model 1 Hippocampal volume 346 27 2.15 1.23 3.79 .008 .859
Model 2 Hippocampal volume 345 26 2.68 1.44 4.99 .002 .895

Category fluency 2.56 1.40 4.70 .002
Model 3 Hippocampal volume 340 26 2.17 1.16 4.05 .015 .911

Category fluency 2.58 1.37 4.85 .003
APOE (ε4 vs no ε4) 4.09 1.51 11.06 .005

Model 4 Hippocampal volume 328 26 2.04 1.08 3.85 .028 .921
Category fluency 2.60 1.39 4.89 .003
APOE (ε4 vs no ε4) 4.04 1.46 11.18 .007
WMH volume 1.81 1.05 3.09 .031

Model 5 Hippocampal volume 327 26 2.16 1.14 4.11 .019 .924
Category fluency 2.45 1.28 4.69 .007
APOE (ε4 vs no ε4) 4.15 1.47 11.71 .007
WMH volume 1.75 1.00 3.07 .049
General knowledge 1.77 1.05 2.97 .031
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Additional benefits of microstructural white matter integrity 

Study II also combined markers between modalities to create accurate prediction models of 
dementia at 6 years, this time with a focus on the benefits of markers of microstructural white 
matter integrity. Besides cognitive tests, APOE, and MRI macrostructure markers, this study 
also included the use of DTI data, specifically the MD and FA values of selected tracts. The 
ability of all markers as both global and specific measures in predicting future dementia was 
investigated.

Global cognition, a composite of all the cognitive tests available, was the strongest global 
predictor of future dementia (AUC=.878), followed by total brain volume (AUC=.858), and 
global MD (AUC=.846). Global measures of FA were not significantly predictive of future 
dementia (p=.131). 

Of the specific markers, episodic memory was the best predictor (AUC=.865), with other 
significant cognitive domains also showing good prediction values (AUC=.864-.852). The 
APOE ɛ4 allele (AUC=.857), white matter- (AUC=.826), hippocampal- (AUC=.857), and 
WMHs volumes (AUC=.841) were slightly worse performing than the cognitive variables but 
still significantly predicted dementia 6 years later. For the DTI modality, the MD latent 
factors CHC, CS, FMAJ, and IFOF (AUC=.837–.862) were significant predictors of future 
dementia. Among the FA latent factors, only IFOF (AUC=.839) was significantly associated 
with dementia at six years.

When considering global measures, see Table 3, markers of microstructural white matter 
integrity were not included in the final model, which started with global cognition 
(AUC=.878), with the addition of the ɛ4 allele (AUC=.900), and finally total brain tissue 
volume (AUC=.920). Models of more than two variables were a significant improvement 
over model 0 of covariates only (p<.05).

When combining specific measures, see Table 3, for a model beginning with episodic 
memory (AUC=.865), prediction was improved with the presence of an ɛ4 allele 
(AUC=.910). A final model included perceptual speed, hippocampal volume, and MD of the 
FMAJ tract (AUC=.911). As with the global models, only models of more than two variables 
were a significant improvement over model 0 (p<.01).

Cognitive predictors

Study III investigated the ability of cognitive markers alone in predicting future dementia. 
Thus, for this study, the full cognitive sample in SNAC-K was used. Baseline tests covering 
domains of episodic memory, semantic memory, verbal fluency, perceptual speed, and
executive function were examined individually and in combination to identify the best 
individual predictor and predictor models for future dementia.
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When predicting dementia at 6 years, category fluency was the strongest individual predictor 
(AUC=.903), followed by word recall and pattern comparison (AUC=.893), digit cancellation 
and TMT-A (AUC=.891), TMT-B (AUC=.886), word recognition (AUC=.881), vocabulary 
and letter fluency (AUC=.877), and lastly general knowledge (AUC=.874). For the creation 
of a 2-variable prediction model, both word recall and pattern comparison increased 
predictive value (AUC=.907) when added to category fluency (AUC=.903). A combination 
of all three tests created the most predictive model (AUC=.913).  

 

Effects of modifying factors 

Study III also examined the effects of age, sex, education, the presence of an ɛ4 allele, AD-
only dementia as the outcome, and time to diagnosis on the prediction ability of cognitive 
markers. Tables for modifying factors can be found in the Appendix (Supplementary Tables 
1-5). For the subsample analysis, the demographics were split in a binary fashion. For age, 
the “old-old” group was ≥78 years and the “young-old” was <78 years old at baseline. High 
education was defined as those who had attended high school (“gymnasium”) or above, 
whereas low education included those with maximum 9 years of education. APOE ɛ4 status 
was a binary subgrouping of carrying at least one ɛ4 allele or no ɛ4 allele. Of the dementia 
subtypes, AD-only dementia was the only grouping explored, as the other dementia 
categories were too small to investigate.  

When dividing the sample by age, the strongest individual predictor of the old-old group was 
category fluency (AUC=.731), with a final model of category fluency, word recall, and TMT-
B (AUC=.764). While for the young-old, category fluency and digit cancellation were 
equally predictive as individual variables (AUC=.867). However, the most predictive final 
model included only digit cancellation with word recall (AUC=.885). 

The same strongest predictor (category fluency; AUC=.905) and pattern of domains (verbal 
fluency, episodic memory, and perceptual speed; AUC=.914) were apparent in the final 
model of the female only sample. While for men, the strongest individual predictor was a test 
of perceptual speed (AUC=.909) and, again, the final model included tests of verbal fluency, 
episodic memory, and perceptual speed (AUC=.930). 

Category fluency was also the strongest individual predictor for both high- (AUC=.924) and 
low-educated (AUC=.878) subgroups, with tests of verbal fluency, episodic memory, and 
perceptual speed present in the final models (AUC=.937; AUC=.896, respectively).  

For those carrying at least one ɛ4 allele, word recall (AUC=.899) was the strongest individual 
predictor, while the most predictive model included word recall, pattern comparison, and 
category fluency (AUC=.910). For APOE ɛ4 non-carriers, episodic memory was less 
important than for ɛ4 carriers, and category fluency was the most predictive individual 



 

32 

marker (AUC=.922). The final model, however, revealed the same pattern of cognitive tests 
for the final model as the ɛ4 carriers (AUC=.930). 

For those who would develop AD-type dementia, category fluency and word recall 
performed equally well (AUC=.905). A final model included tests of category fluency, 
episodic memory, and perceptual speed (AUC=.920), strengthening the evidence that, 
overall, these tests work well as predictors in models for all the subgroups analysed.  

 

Time to diagnosis 

The effects of time to diagnosis on the predictive value of numerous cognitive domains was 
investigated using a subsample of older individuals with cognitive data at three time points 
and a dementia diagnosis at 12 years.  

Word recall, vocabulary, general knowledge, category fluency, pattern comparison, and 
TMT-B were all significant predictors of future dementia 12 years later, with pattern 
comparison being the most predictive test (AUC=.686). Category fluency, in line with the 
main sample analysis, was the most predictive individual test 6- (AUC=.733) and 3- 
(AUC=.781) years before diagnosis, see Table 4. 

Twelve years before diagnosis, no additional tests could be added to the model starting with 
pattern comparison (AUC=.686), as the strongest individual predictor. A six years before 
diagnosis, a measure of TMT-B was added to category fluency (AUC=.733) to arrive at a 
final two-variable model (AUC=.784). While 3 years before diagnosis, category fluency was 
once again the most predictive variable (AUC=.781), before the addition of TMT-A to create 
a two-variable model (AUC=.794), and a final three-variable model was achieved by 
including word recall (AUC=.814).  

Twelve years before a diagnosis, none of the individual variables were significantly more 
predictive than a model containing covariates only. However, 6 years before diagnosis, 
category fluency alone (p=.01) and the two-variable model of category fluency and TMT-B 
(p<.05) both performed better than model 0. Three years before a diagnosis, all models were 
significantly more predictive than a model of covariates (p<.001). 

There was no significant difference in predictivity from 12 to 6 years before a diagnosis when 
comparing between the final models. However, from 12 to 3 years (p=.001), and from 6 to 3 
years (p=.021), there was a significant increase in predictivity. 

 

Rate of decline 

Study IV investigated the ability of rate of decline to predict future dementia. Rate of decline 
was assessed 12 to 6 years before a diagnosis of dementia and those with a rate of decline  
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>1.5SDs below the age-adjusted mean were classified as ‘fast decliners’. The ability of fast
decline to predict dementia 3 to 6 years later was analysed using Cox regressions.

For the individual tests, this study found that being a fast decliner was associated with 
increased risk of future dementia for word recall (HR: 1.92, CI: 1.15-3.19, p=.013) and 
category fluency (HR: 2.42, CI: 1.54-3.80, p<.001). While being a fast decliner in tests of 
word recognition (HR: 1.46, CI: .88-2.42, p=.139), vocabulary (HR: 1.61, CI: .98-2.63,
p=.060) and a composite of perceptual speed tests (HR: 1.24, CI: .73-2.12, p=.424) was not 
significantly associated with future dementia, see Table 5. After including low baseline score 
as a covariate in the model, only being a fast decliner in category fluency remained a 
significant predictor of future dementia (HR: 2.86, CI: 1.13-7.22, p=.026).

Further analysis investigated the association between declining fast on a single test vs. 
declining fast on several of the included tests/domains with future dementia. These results 
showed that being a fast decliner on one (HR: 1.30, CI: .88-1.92, p=.189) or two (HR: 1.22, 
CI: .61-2.44, p=.583) tests/domains was not significantly associated with future dementia. 
However, being a fast decliner in ≥3 cognitive tests/domains was associated with over a 
threefold increase in dementia risk (HR: 3.38, CI: 1.91-6.01; p<.001).

Table 5. Cox regressions for individual variables. Risk of future dementia for fast decliners.

Trajectories of cognitive decline 

Study IV also explored the trajectories of cognitive decline over a 12-year period during the 
preclinical stage of dementia. Linear mixed models were used and a knot was added at six 
years to create two slopes to highlight changes in rate of decline. 

Those in a preclinical phase of dementia declined significantly faster in all cognitive domains
compared to those who remained dementia free throughout the 12-year follow-up period, 
with average additional increase ranging from β:-.07 to -.11. Rate of decline was shown to be 
affected by age, with a stratified analysis showing that old-old participants (≥78 years) had a 

Hazard ratio 
(95% C.I.)

p-value c-statistic

Word recall 1.92 (1.15-3.19) .013 .809
Word recognition 1.46 (.88-2.42) .139 .809
Vocabulary 1.61 (.98-2.63) .060 .808
Category fluency 2.42 (1.54-3.80) .000 .807
PS composite 1.24 (.73-2.12) .424 .793
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steeper rate of decline in normal aging compared to the young-old. However, the difference 
in rate of decline between dementia free and preclinical dementia groups, was larger in the 
young-old than the old-old, see Table 6.

The piecewise mixed effects models (Figure 5) showed a significant difference in rate of 
cognitive decline between dementia free and preclinical dementia groups for word recall at 
both -12 to -6 years (β: -.06, 95% CI: -.10 to -.03) and -6 to 0 years (β: -.10, CI: -.13 to -.07). 
Word recognition displayed no difference in rate of decline between the groups far from 
event (β: -.01, CI: -.05 to .03) but declined significantly faster in the preclinical compared to 
the dementia free group closer to diagnosis (β: -.17, CI: -.21 to -.14). Similar results were also 
found for vocabulary and perceptual speed, with no significant difference in rate of decline    
-12 to -6 years before the event (vocabulary: β: -.01, CI: -.03 to .02; perceptual speed: β: -.02,
CI: -.04 to .00). However, both domains showed a significantly faster decline in the 
preclinical dementia group closer to event (vocabulary: β: -.15, CI: -.17 to -.13; perceptual 
speed: β: -.11, CI: -.12 to -.09). As with word recall, category fluency showed a significant 
difference in rate of cognitive decline in the preclinical dementia compared to the dementia 
free group at both time periods (β: -.04, CI: -.07 to -.01; β: -.15, CI: -.17 to -.13). 

Within the preclinical dementia group, rates of cognitive decline increased significantly 
between the -12 to -6 years and -6 to 0 years time periods in all cognitive tests (p<.000), 
except for word recall (p=.150; Figure 5).
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Table 6. Mixed‐effect models' β‐coefficients and 95% confidence intervals (95% CIs) of the 
associations between preclinical dementia status and baseline performance (intercept), and 
annual changes over 12 years (dementia status × time), in multiple cognitive domains. 
Further stratified for age.

a All models adjusted for age, sex, and education.

Mixed modelsa Word
Recall

Word
Recognition

Vocabulary Category 
Fluency 

Perceptual 
Speed

Overall study population
Dementia status (intercept)

Dementia free Ref Ref Ref Ref Ref
Preclinical dementia -.53

(-.64 to -.42)
-.60
(-.73 to -.48)

-.38
(-.51 to -.25)

-.52
(-.64 to -.41)

-.38
(-.48 to -.28)

Time, years -.05
(-.05 to -.04)

-.02
(-.02 to -.01)

-.02
(-.03 to -.02)

-.05
(-.05 to-.04)

-.05
(-.05 to -.05)

Dementia status x time (years)
Dementia free x time Ref Ref Ref Ref Ref
Preclinical dementia x time -.09

(-.10 to -.07)
-.10
(-.12 to -.08)

-.09
(-.10 to -.07)

-.11
(-.12 to -.09)

-.07
(-.08 to -.05)

Young old
Dementia status (intercept)

Dementia free Ref Ref Ref Ref Ref
Preclinical dementia -.62

(-.82 to -.42)
-.64
(-.85 to -.42)

-.50
(-.71 to -.29)

-.70
(-.92 to -.49)

-.48
(-.66 to -.30)

Time, years -.04
(-.05 to -.03)

-.01
(-.02 to -.01)

-.02
(-.02 to -.01)

-.04
(-.04 to-.04)

-.05
(-.05 to-.04)

Dementia status x time (years)
Dementia free x time Ref Ref Ref Ref Ref
Preclinical dementia x time -.11

(-.14 to -.08)
-.11
(-.14 to-.08)

-.07
(-.08 to -.05)

-.10
(-.12 to -.08)

-.07
(-.09 to -.05)

Old old
Dementia status (intercept)

Dementia free Ref Ref Ref Ref Ref
Preclinical dementia -.48

(-.61 to -.35)
-.58
(-.76 to -.40)

-.30
(-.48 to -.13)

-.46
(-.58 to -.34)

-.32
(-.45 to -.20)

Time, years -.07
(-.08 to -.06)

-.04
(-.05 to -.02)

-.05
(-.06 to -.04)

-.07
(-.08 to -.06)

-.07
(-.08 to -.07)

Dementia status x time (years)
Dementia free x time Ref Ref Ref Ref Ref
Preclinical dementia x time -.05

(-.08 to -.03)
-.08
(-.12 to -.05)

-.07
(-.10 to -.05)

-.09
(-.11 to -.07)

-.05
(-.07 -.03)
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DISCUSSION 
Summary of main results 

This doctoral project investigated the rates of cognitive decline during the preclinical phase of 
dementia, and examined the ability of biological and cognitive markers to identify those at 
risk of future dementia. Study I investigated the benefit of combining markers from the 
cognitive, genetic, and MRI brain volume modalities and concluded that combining markers 
from all modalities increases their ability to predict future dementia. Similar results were 
found in Study II, with the usefulness of DTI further explored. A number of measures of 
white matter microstructure integrity were found to be predictive of future dementia. 
However, the additional benefit of DTI markers to models including cognitive tests, genetics, 
and MRI macrostructure was small. Both Studies I and II found a relative benefit of cognitive 
markers over that of biological markers and concluded that small increases in predictive value 
should be weighed against the cost of additional tests. Study III, which focused on the ability 
of neuropsychological tests to predict dementia among a range of modifying factors, 
determined that tests of category fluency, episodic memory, and perceptual speed were 
consistently good predictors of future dementia across all subgroups and independent of time 
to diagnosis. Finally, in Study IV, the rate of cognitive decline during the preclinical phase of 
dementia was observed to be non-linear, apart from word recall, and showed a greater 
acceleration closer to dementia diagnosis. Individuals identified as fast decliners, based on the 
first 6 years of cognitive decline, were shown to be at higher likelihood of developing 
dementia in later years.  

 

 

Markers of future dementia  

Cognition 

Neuropsychological tests have frequently been shown to be good predictors of future 
dementia as they are capable of detecting subtle changes in cognition, which occur before the 
more marked deficits needed to diagnose dementia [39, 215, 216]. A number of previous 
studies have noted deficits over a range of cognitive domains, beyond the typically expected 
episodic memory or executive function deficits associated with AD or VaD [99, 215, 217]. 
Many of the findings within this thesis also support that a variety of cognitive domains show 
deficits during the preclinical phase of dementia. Across Studies I, II, and III the ability to 
predict dementia six to twelve years later was found using neuropsychological tests of global 
cognition, episodic memory, semantic memory, verbal fluency, perceptual speed, and 
executive functioning. This wide range of affected domains may be due to multiple 
pathologies underlying the dementia as evidence suggests mixed pathology in a majority of 
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dementia cases [41, 47, 48]. The broader patterns of cognitive deficits would therefore reflect 
these respective pathologies. For example, presence of both episodic memory deficits, due to 
hippocampal atrophy found in AD, and executive functioning deficits, due to vascular 
damage found in VaD. It may also be a product of time to diagnosis, as the scale of cognitive 
deficits is often reflective of pathological burden, which increases as the underlying disease 
progresses. Therefore, single domain deficits may be more common in the earliest stages of 
disease progression.  

This being said, while all cognitive domains provide some predictive value of future 
dementia, a few specific domains show greater promise than others. Across the four studies 
of this thesis, tests of episodic memory, in particular word recall, category fluency, and 
perceptual speed, were shown to be superior cognitive predictors compared to other domains. 

Episodic memory tests have frequently been found to be good predictors [40, 188, 215] as 
deficits in this domain are a primary symptom of AD. That the studies in this thesis support 
this evidence is likely due to the majority of dementia cases in the SNAC-K population being 
AD-type or mixed dementia. Alongside cross-sectional performance, rates of episodic 
memory decline were also predictive of future dementia (Study IV). However, not all aspects 
of this domain are equally useful. Our own research, supported by some literature [218, 219] 
suggests that tests of free recall are superior predictors to tests of recognition. Potential 
benefits of free recall may be due to this aspect of memory declining earlier in the preclinical 
phase of dementia (Study IV) [124], making it a more suitable predictor far from diagnosis. It 
was also found to be highly predictive independent of time to diagnosis (Study III), and more 
predictive than recognition throughout the preclinical phase, suggesting that free recall is a 
better predictor in general. This is potentially due to the more challenging nature of this task, 
which allows for the detection of more subtle deficits than is possible with a task of word 
recognition. Although, the results on this are mixed, Russo et al. [219] found a measure of 
pure recognition to be a poor predictor of conversion from MCI to AD but that a recognition 
discriminability index (hits – false alarms) provided good predictive value. This benefit of 
discrimination indices has been replicated [220], although our recognition task was also based 
on discrimination ability and did not support these findings. Despite these discrepancies, 
overall, tests of episodic memory have proven to be extremely useful predictors of dementia.  

Category fluency also ranks amongst these noted cognitive domains and has previously been 
used as a predictor of future dementia [153, 156, 221]. Evidence shows deficits in both 
category and letter fluency in preclinical dementia and MCI [102, 222] but that category 
fluency may decline faster and have greater discriminatory/predictive value than letter 
fluency [223]. Among our own research, category fluency was found to be a strong predictor 
but letter fluency was typically not. This may be due to the different aspects of language that 
underpin each test, as category fluency relies more on semantic understanding and letter 
fluency on phonetic aspects. Category fluency has also been suggested to rely on episodic 
memory ability, as the task allows for the application of strategies which can involve episodic 
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memories [224]. As previously mentioned, episodic memory tasks are commonly used in 
dementia prediction and so this aspect of category fluency may somewhat explain its ability 
to identify those with MCI and preclinical dementia. In relation to this, the specific activation 
of temporal regions [224, 225] found with category fluency and semantic processing may 
make it particularly useful in identifying AD-type dementia. However, the neural base of 
category fluency is broad, also covering frontal and parietal regions [225, 226], and it is 
therefore likely to be affected by a large range of dementia pathologies, making it a useful 
predictor for multiple subtypes of dementia. Category fluency was also the only domain 
where rate of decline was a significant predictor of future dementia after accounting for 
baseline score (Study IV), suggesting a particular benefit of multiple aspects of category 
fluency, both single time-point and rate of decline, increasing its utility as a marker of future 
dementia.  

Finally, perceptual speed was noted as another particularly strong marker of future dementia. 
In our own studies, a test of perceptual speed was the strongest cognitive predictor in Study I 
and at 12 years before diagnosis in Study III. This is relatively unsurprising as perceptual 
speed, or processing speed, tends to show disproportionate slowing in both AD [227, 228] 
and VaD [229]. It is typically considered to be related to white matter [214, 230-233], 
although most of this research has been conducted in samples of healthy individuals. 
Perceptual speed may therefore be susceptible to a wide range of damage to white matter 
integrity, such as that caused by AD or VaD pathology [42, 166, 234]. This is supported by 
the presence of perceptual speed deficits in preclinical AD and MCI [99, 217] and its ability 
to predict future dementia [178, 183]. When considering its ability as a practical marker of 
preclinical dementia, the relative ease of administrating a task of perceptual speed is also 
important to consider. This ease of application to large samples and its documented predictive 
value make perceptual speed, alongside tests of episodic memory and category fluency, a 
useful tool for identifying those at risk of future dementia. 

That these three domains were also frequently present in final prediction models of dementia 
created in various subgroups, such as AD-only dementia and divided by age, sex, educational 
attainment, and APOE status (Study III), further attests to their robustness as cognitive 
predictors. That being said, there is still some differential ability of cognitive tests in relation 
to a number of these modifying factors. The ability of cognitive tests to differentiate between 
subtypes of dementia [50, 51] was somewhat reinforced with word recall as joint strongest 
predictor with category fluency in those with AD-only type dementia, supporting the 
importance of episodic memory as a marker of AD. In relation to this, in line with the role of 
the ɛ4 allele in AD-type dementia, word recall was the most predictive cognitive test for ɛ4 
allele carriers. Differences found in the most predictive domains between sexes, category 
fluency for women and perceptual speed for men, may be reflective of underlying subtype of 
dementia pathology with men being more likely to develop VaD and women AD [67]. With 
differing patterns and severity of cognitive deficits and rates of decline between dementia 



 

42 

subtypes [51], ages [64, 65], sex [72], education [125], and APOE status [235], finding 
markers which can be applied across these groups to identify those at high risk is particularly 
useful for large scale recruitment, for example in preventative interventions.  

Another important aspect of these noted domains is that they typically fall under the 
definition of fluid cognition. Episodic memory, executive function, perceptual speed, and 
verbal fluency have been shown to be some of the first domains affected in dementia [121, 
126], making them good early markers compared to crystallized domains [99]. A finding 
supported by our own research as these domains were relatively better predictors than 
crystallized domains, such as semantic memory, throughout Studies I-IV. The only exception 
to this pattern may be for executive function, which has a mixed prediction ability throughout 
the studies of this thesis. However, this may be due to fewer participants completing this task. 
As our measure of predictive ability (AUC) is sensitive to sample size, this would put 
executive function at a disadvantage compared to the other domains. Onset of decline is not 
the only factor to consider, however. Cognitive decline in fluid domains is not restricted to 
preclinical dementia or pathological aging, within normal aging some cognitive decline is to 
be expected [2]. Most of this decline is centered on fluid domains, with mental processes 
associated with crystallized cognition, such as general knowledge, remaining relatively intact 
throughout the lifespan [2, 236]. Consequently, differentiating between normal cognitive 
decline, as result of aging, and cognitive decline driven by an underlying pathological 
process, may be more difficult for domains of fluid intelligence than for crystallized [121]. It 
may therefore be necessary to take into consideration the magnitude of decline, compared to 
that of normal aging, when using rate of decline as a marker of preclinical dementia.  

Much of the discussion so far has specifically focused on single time-point or cross-sectional 
scores of cognition. However, while cognitive deficits have been associated with increased 
likelihood of future dementia [215], a relatively high proportion of those with low cognitive 
scores remain stable or even improve [92, 237, 238], suggesting that those individuals were 
never in a preclinical phase of dementia. In this regard, change in cognitive performance or 
rate of decline may potentially be more informative as a predictor. An abundance of research 
into rates of cognitive decline during the preclinical dementia phase exists [100, 108, 126] 
but, so far, few studies have attempted to utilise this for prediction. One such study, by Nation 
et al. [129], found that those with cognitive decline over a 12 month period showed increased 
probability of future dementia, even when accounting for baseline cognition. This finding 
suggests that rate of decline adds unique information on dementia likelihood above that found 
from single time-point cognitive scores. This finding is supported by our own research (Study 
IV) for tests of word recall and category fluency, although this result only remained 
significant for category fluency once baseline score was taken into account. The odds ratios 
for cognitive decline were smaller than for baseline score in Nation et al., suggesting that low 
baseline scores may result in higher risk of future dementia compared to cognitive decline. 
Although, this is likely dependent on factors such as time to diagnosis. That the opposite was 
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true in our study, where rate of decline for category fluency was a stronger predictor of 
dementia than baseline scores, may attest to the usefulness of rate of decline as a marker of 
preclinical dementia. Despite representing a very preliminary line of research, this provides 
some evidence that rates of cognitive decline may be useful in identifying those likely to 
develop future dementia.  

 

MRI - Grey and white matter macrostructure 

Beyond neuropsychological tests, biological markers have an important role in dementia 
prediction. Hippocampal atrophy is one of the defining features of AD and may act as an 
early marker, as grey matter atrophy has been shown to precede cognitive deficits [239]. A 
number of studies have investigated the ability of grey matter volume to predict future 
dementia and found promising results, particularly from the hippocampus and MTL [162, 
163]. In line with this, Studies I and II found good ability of hippocampal volume to predict 
dementia at 6 years but not total grey matter volume. Although markers of total grey matter 
volume have previously been shown to be predictive [31], this is not a consistent result [240], 
and hippocampal volume is likely to represent a much more specific marker of dementia. 
However, this may be dependent on time to diagnosis as the temporal unfolding of grey 
matter atrophy in AD typically begins in the entorhinal and hippocampal regions before 
spreading to parietal and frontal cortices [34]. Therefore, total grey matter volume may 
become more salient closer to diagnosis. These results may also have been improved by using 
a different measure of neuronal atrophy. Cortical thickness has been touted as a potentially 
better measure of grey matter atrophy in relation to future dementia and has shown promising 
results [188, 241, 242]. While grey matter volume is subject to factors such as TIV, which 
must be adjusted for, cortical thickness measures have the benefit of needing no additional 
statistical correction. However, there is no strong evidence to support greater accuracy of 
cortical thickness over volume measures in predicting future dementia [243], suggesting that 
markers of grey matter atrophy are useful predictors regardless of the exact method used. 

Beyond grey matter, measures of white matter macrostructure, through WMHs, were also a 
significant predictor of dementia up to six years later. WMHs as an individual marker of 
future dementia has mixed results within the literature but typically leans towards attributing 
some risk or predictive value [159, 161]. With the addition of our findings, it appears that 
WMHs may have some benefit as a marker of future dementia, particularly in populations 
with higher incidence of mixed dementia, such as the oldest old [41, 48]. Although WMHs 
are typically associated with vascular dementia, they should not be discounted for the 
prediction of AD, particularly as WMHs can exacerbate the effect of other AD pathology, 
such as hippocampal atrophy [54]. In relation to this, we found evidence to support its 
predictive value in AD-only [161] and mixed dementia samples (Studies I and II).  
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DTI - White matter microstructure  

Measures of white matter microstructure via DTI have been much less studied in relation to 
preclinical dementia than the other markers previous discussed. However, white matter 
microstructure integrity is typically reduced as a part of normal aging [244] and during the 
dementia process [165, 245]. Previous research exists to support the ability of white matter 
microstructure integrity to predict future dementia [166, 174-176]. This is in line with our 
findings as global MD, as well as MD in a number of tracts (CHC, CS, FMAJ, and IFOF) and 
FA in the FMAJ, were all significant predictors of dementia six years later. Global MD [166] 
and specific tracts of the basal region of the IFOF [176] and CHC [174, 175] have previous 
evidence of predictive value, in support of our findings (Study II). While most of our 
associations between white matter microstructure integrity and dementia were found only for 
MD, as with Brueggen et al. [176], many studies report predictive value of both MD and FA 
[166, 174, 175]. This finding is difficult to explain and there is no solid evidence as to why 
this has occurred. However, the lack of findings for FA in our study may be a product of 
small sample size, with the study by Power et al. [166], which found both FA and MD to be 
predictive of future dementia, including a much larger sample. 

An interesting observation from Study II was that a number of tracts also displayed better 
predictivity than WMHs, suggesting that measures of microstructural integrity may be 
capable of capturing changes beyond that of traditional macrostructural MRI sequences. 
These findings, when taken into account with research suggesting that changes to white 
matter microstructure integrity may precede the development of WMHs and white matter loss 
[246, 247], suggest that white matter microstructure integrity may be a beneficial early 
marker of pathological changes to white matter. However, the information from white matter 
microstructure integrity may not be complimentary or may be out-competed by other factors 
when combined in prediction models, as evidenced by the failure of most DTI markers to 
contribute to the final models created in Study II. It should also be noted that many of the 
findings in our study, and within the literature as a whole, are gathered from small samples 
and should be taken with caution. Our research into this was also limited by the scanner and 
sequences used; newer scanners and sequences for DTI are likely to provide clearer results as 
to the usefulness of DTI in dementia prediction. Although, despite these issues, the findings 
are promising and warrant further exploration. 

 

APOE 

While considered a risk factor, rather than a marker of dementia, the presence of the APOE ɛ4 
allele exhibited good prediction ability in this study. Known to be the strongest genetic risk 
factor for AD, the mechanisms of the ɛ4 allele in AD are complex and still not fully 
understood [248]. However, those with preclinical dementia or MCI and presence of one or 
more ɛ4 alleles, typically display increased neuronal atrophy and increased Aβ deposition 
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[249], greater cognitive deficits [235], and potentially faster rates of decline than ɛ4 non-
carriers [144, 145], although this last point is debated [136, 146]. In line with our own 
findings (Studies I and II), there is support in the literature as to its value as a predictor [153, 
178, 248]. Although, typically considered a non-modifiable risk factor, there is some 
evidence to suggest that ɛ4 carriers may particularly benefit from lifestyle interventions in 
reducing dementia risk [250]. Therefore, making it a useful marker in identifying individuals 
who may experience the most benefit from preventative lifestyle interventions.  

 

Comparison between modalities 

How these individual modalities compare to one another is an important step in determining 
their practical use for dementia prediction. In Studies I and II, cognition was shown to be the 
strongest predictor among all of the modalities tested (joint with genetics in Study I). 
Particularly in domains of global cognition, episodic memory, category fluency, and 
perceptual speed. Although, it should be noted that there were no statistical differences 
between best individual markers of any domain in Study I. As dementia is defined by 
cognitive decline it is not surprising that levels of cognitive ability are strong predictors of 
future dementia. Particularly as decline can begin far in advance of dementia diagnosis [37, 
40, 94]. Although we found good predictive ability of cognitive tests compared to the other 
modalities, this may, in part, be due to time to diagnosis in these studies being relatively 
short, at six years. The Cascade Hypothesis [23, 24] for development of AD, for example, 
suggests a sequential development of symptoms where neural atrophy would precede 
cognitive decline. Biomarkers have also been suggested to reflect this sequential staging 
[251]. It would therefore be reasonable to assume that MRI/DTI markers would be more 
predictive in the earliest stages and cognitive deficits in the later stages of preclinical 
dementia. While this is specific to AD pathology, VaD also shows a long preclinical phase 
[44] and any neurological changes would also be expected to precede cognitive symptoms. 
Therefore, it is important to consider the time from diagnosis when interpreting the 
usefulness of marker modalities as this is likely to change over the course of the preclinical 
period.  

 

 

The additional benefits of combining multiple markers 

All of the markers mentioned above hold some predictive value for future dementia in their 
own right. However, this ability is limited when using individual markers [36, 111-113, 162, 
163]. Across all studies in this thesis, combining markers led to a significant increase in 
ability to predict future dementia. This was observed for both single time-point markers 
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(Studies I, II, and III) and rate of decline (Study IV), and within and between modalities 
(Studies I and II). This is also a common finding among the literature [155, 156, 178-181, 
183-185, 187, 188].  

While it is possible to increase predictivity through combinations within modalities (Study I) 
[153, 155, 188], the models with the highest predictive value in Studies I and II were created 
through a mixture of markers from multiple modalities. Increases in predictive value when 
combining markers may be restricted by intercollinearity, or how closely related the markers 
are to one another, which can limit the amount of unique variance added by each marker. 
Therefore, model building using multiple markers is not as simple as combining the best 
individual predictors. This is because the effects may not be additive, which is particularly 
noticeable in the cognitive modality. Neuropsychological tests, despite coming from multiple 
domains, may still be highly correlated (Study I and II) and overlap in terms of added 
variance, therefore reducing their predictive ability when combined. Whereas, the addition of 
markers from other modalities is more likely to account for greater unique variance and 
increase in predictive value [188]. The importance of compatibility of markers, above that of 
individual predictivity, is highlighted by the presence of WMHs in the most predictive model 
of Study I, despite it being a relatively poor individual marker.  

That being said, the ability of models only containing cognitive markers was not statistically 
different to models of multiple modalities (Study I). While increasing the predictive value of 
these models is important, the AUC score, or raw predictive ability, is not the only factor to 
consider. Other issues such as financial and time constraints are important when considering 
practical applications and minor increases in predictive value may, in some cases, be 
outweighed by such concerns. Cognitive tests in that regard could be considered especially 
useful predictors due to their high predictive value, low cost, and relatively short time to 
administer. On the other hand, the use of biological markers may be essential for differential 
diagnosis between dementia types. It is therefore important to tailor the modalities used to the 
individual needs of the situation.  

It should also be noted that whatever the markers used, much of the predictive value of 
individual and combined models was accounted for by demographic factors (age, sex, 
education). The presence of at least two additional markers was often required before 
significant predictive value was added, beyond the model of demographic factors (Studies I, 
II, and III). This, in addition to previous research outlining the risk associated with older age 
[58, 59], lower education [75, 76], and the female sex for future dementia [66, 67], suggests 
that simple demographic factors play an important role in dementia prediction. This is a 
concept that has frequently been overlooked in previous literature due the lack of statistical 
testing when evaluating the additional increases in predictivity of added markers, either from 
demographic factors or between markers themselves.  
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Trajectories of decline 

An essential factor in the study of cognitive markers and their utilisation for dementia 
prediction is a thorough understanding of their development during the preclinical phase and 
how this development differs from normal aging.  

That decline during preclinical dementia occurred over all domains examined (Study IV) 
adds weight to the idea that dementia is characterised by extensive cognitive changes, over a 
range of domains [39, 99]. However, this decline was not uniform. The onset of decline for 
the preclinical group was earliest for domains of episodic memory (word recall) and category 
fluency, as both displayed significantly increased rate of decline between twelve and six 
years before a diagnosis, compared to the no dementia group. That episodic memory [40, 
188, 215] and category fluency [153, 156, 221] are good early predictors of dementia (Study 
I-IV) is likely due to this early onset of decline found in both domains. For word recognition, 
semantic memory, and perceptual speed, preclinical decline only significantly differed from 
the dementia free group during the last six years prior to diagnosis. This is in keeping with 
findings that suggest episodic memory is the first domain effected [100, 119, 126] and that 
domains of fluid cognition are the first to decline [100, 121, 126]. However, we were not able 
to pinpoint the onset of accelerated decline due to the study design. A knot was artificially 
placed at 6 years before diagnosis due to time-point limitations. For this reason, specific 
change points for each specific domain could not be estimated.  

Alongside onset, pattern of decline during the preclinical dementia phase is an important 
aspect. All tests, except for word recall, exhibited a non-linear rate of decline, with 
accelerated cognitive decline closer to diagnosis. This pattern is supported by previous 
studies [100, 108, 119] and likely reflects the increasing pathological burden of the disease 
and potential breakdown of mechanisms used to control it. Most studies [100, 108, 119] also 
show a non-linear rate of decline for episodic memory, which was only partially supported by 
our results as word recall showed a linear rate of decline, whereas word recognition exhibited 
a non-linear trajectory. That these tests differ in onset and trajectory is not unheard of though, 
as different aspects or tests of memory performance have previously been shown to exhibit 
different patterns of trajectory [119, 252]. This accelerated decline closer to diagnosis, noted 
in all tests except for word recall, will inevitably mean that many markers are better 
predictors during later stages of the preclinical phase, as found in Study III, and that their 
usefulness far from diagnosis may be limited (Study III and IV). 

It has also been suggested that, while fluid measures may begin declining earlier than 
crystallized measures in relation to dementia onset, crystallized domains show a steeper rate 
of decline compared to normal aging [121]. This was somewhat supported by the results of 
Study IV, which show a larger difference in rate of decline between the two groups 
(preclinical dementia and no dementia) closer to diagnosis in tests of word recognition and 
vocabulary compared to word recall, category fluency, and perceptual speed. As previously 
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touched upon, the masking effects of normal, age-related decline may be greater for domains 
of fluid cognition than for crystallized [2]. Fast decline in crystallized measures may therefore 
be a more reliable indicator of pathology compared to decline in fluid measures.  

 

 

Methodological considerations and limitations 

With all research it is important to note limitations and methodological issues which should 
be taken into account when considering the results, conclusions, and implications of a study, 
and this is no different for the studies which comprise this thesis. While limitations of the 
individual studies are discussed in their respective papers, this section will focus on the 
overarching considerations and limitations that affect all of the studies contained in this 
thesis.  

 

Sample considerations 

Although one of the great benefits of the research conducted for this thesis is due to the 
longitudinal, population-based sample, there are methodological issues to consider in relation 
to this. Generalisability refers to the extent to which the findings of a study can be applied to 
other settings or populations. Population-based samples often have better generalisability than 
samples from highly selective populations such as memory clinics, as the subjects represent a 
more diverse, heterogeneous group, closer in characteristics to the general population. 
However, there are limitations to this, as individuals in the SNAC-K sample used throughout 
this thesis were recruited from a wealthy suburb of Stockholm and were overall more highly 
educated and had a higher social-economic status (SES) than the general population of 
Sweden. This higher SES can confer better overall health in old age [253, 254] and so it is 
probable that this sample is healthier than average. The SNAC-K population is also 
predominantly Caucasian and there are known differences in dementia risk, aetiology, 
symptoms, and outcome between ethnic groups and races [255-257]. All of these things limit 
generalisability and should be considered when attempting to apply the results to other 
populations. Although, it should be noted that this would likely result in an underestimation 
and that the true effects would be larger in the general population.  

As mentioned, while population-based samples tend to be more generalisable as recruitment 
is based on geographical location, rather than specific characteristics or diagnoses, there are 
still selection biases in population samples and attrition bias in longitudinal studies. Although 
everyone who met the age criteria and lived within the Kungholmen surburb of Stockholm 
was offered a chance to join the study, only 73.3% agreed to be part of the baseline data 
collection. It has been known that, in general, healthier and more cognitively intact 



 

49 

individuals are likely to take part in scientific studies. Therefore, the SNAC-K population 
likely under-represents those with worse health or cognition who may be at greatest risk of 
dementia. Who chooses to remain in the study for further time-points may also be biased. 
Once again, those with better overall health and cognition are more likely to continue their 
participation in longitudinal studies, while those with deteriorating health or cognition 
disproportionately have missing data or drop out completely. This missing data can be a 
particular problem for statistical analysis. Although some analyses take into account missing 
data, such as linear mixed models, the data is often assumed to be missing at random, which 
as mentioned, is not always the case.  

It should also be noted that there was an overlap of participants across the samples used in 
this thesis. As the participants were drawn from the overall SNAC-K population, a number of 
individuals are likely to be present in more than one study. This should be taken into account 
when drawing conclusions across the studies as similarities in results may be influenced by 
the presence of the same individuals over multiple studies.  

 

Dementia Classification 

The dementia diagnosis within SNAC-K was a thorough process based on the DSM-IV 
criteria, as detailed in the ‘Methods’ section. With the addition of cases derived from registry 
data, the chance of missing a diagnosis was further reduced. However, classification of the 
specific subtype of dementia should be taken with caution. Participants in SNAC-K were not 
subject to testing of biological markers, such as Aβ or tau through CSF or PET imaging. MRI 
imaging was available for a subsample of individuals but was not used for dementia 
diagnosis. Diagnoses were made based on the medical interview and examination along with 
background health information. While this reduced circularity, as markers for prediction were 
not used for diagnosis, it also limits the accuracy of the diagnosis for dementia subtypes.  

 

 

Implications and future directions 

Due to the pressures of dementia at both an individual and societal level, exacerbated by lack 
of available cures, there is high demand for new treatments or preventative strategies. In order 
to implement these strategies, the identification of those in the earliest stages of the dementia 
process is vital. This thesis has explored the preclinical phase of dementia in relation to 
cognitive and biological markers, which may be beneficial for identification of at-risk 
individuals. As mentioned previously, one way of achieving this may be through the 
development of risk scores based on demographic and lifestyle profiles. However, using 
markers that would suggest an individual is likely on the dementia pathway already may 
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increase identification accuracy. This would aid targeting to those most likely to respond to 
intervention or treatment and avoid the inclusion of individuals for whom treatment, and any 
potential side effects, would be unnecessary.  

The use of singe time-point cognitive performance over a range of domains, but particularly 
episodic memory, category fluency, and perceptual speed, was a good predictor of future 
dementia status. This predictive ability was maintained even over a range of modifying 
factors, further establishing these cognitive markers as useful predictors. These findings, 
alongside the relatively low cost and easy application of neuropsychological tests, is 
promising for wide-scale testing.  

Biological markers, such as genetics, neural atrophy, and white matter integrity, were also 
good individual predictors and added unique contributions when combined in models with 
markers of cognition. Although not established in this thesis, biological markers may also be 
particularly important when identifying likely dementia development earlier in the preclinical 
phase, as cognitive markers were typically only reliable up to six years before a dementia 
diagnosis. DTI markers of white matter microstructure integrity have so far been little 
explored in relation to this but have shown potential and warrant further research with more 
current technology and over longer time periods with larger samples.  

Although each marker provided some predictive value, combining markers ensured the best 
ability to identify those likely to develop future dementia. While increases in predictivity 
could be achieved by combining cognitive markers alone, the greatest increases were found 
through the combination of markers from multiple modalities. It is therefore important to 
consider a range of markers when predicting future dementia.  

How the predictive value of markers changes over time, in relation to the stage of preclinical 
dementia, should also be more thoroughly examined as it is likely to have profound impact on 
their use for prediction. 

While all of these implications have focused on single time-point markers, the ability of rate 
of decline to identify those likely to develop dementia was promising, albeit constrained by 
the limitations of cognitive markers to identify those in a preclinical phase further from 
diagnosis. As dementia is characterised by cognitive decline compared to their usual 
performance level, the utilisation of rates of decline or change in cognition may provide more 
information than static performance scores, as single time-point scores are unable to 
determine if low cognitive ability is a stable factor for that individual or due to dementia. It is 
therefore important that more research be conducted to this end.  

Many of these recommendations involve investigating even earlier stages of the preclinical 
process over multiple time points, which would require longitudinal data over a time period 
that has been relatively little examined. Although costly and associated with multiple 
difficulties, such as attrition and practice effects, the only reliable way of identifying markers 
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capable of predicting future dementia is by thoroughly understanding dementia development 
and the preclinical phase, which requires a longitudinal perspective. 
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CONCLUSIONS 

Over the four studies which comprise this thesis, cognitive performance and decline in the 
preclinical phase of dementia has been explored. The ability of these cognitive markers, 
alongside various biological markers, to identify those at risk of future dementia was 
investigated. 

The trajectories of cognitive decline over twelve years during the preclinical stage of 
dementia was observed and accelerated decline, over multiple domains, clearly 
differentiated normal cognitive aging from pathological decline found in preclinical 
dementia. The patterns of decline gave some insight into the benefits of these cognitive 
domains as predictors for future dementia. Episodic memory and category fluency both 
showed early decline, up to twelve years before diagnosis, and they also represented some 
of the strongest individual predictors amongst the cognitive domains, across the four 
studies. That obvious decline was present over all of the domains studied supports the idea 
that preclinical dementia is characterised by extensive changes within the brain, resulting in 
a broad range of cognitive deficits.  

While these cognitive deficits and decline could be utilised for dementia prediction, an 
additional advantage in identifying those at greater risk of future dementia came from the 
inclusion of biological markers. Individually, markers of neural atrophy, macrostructural 
(white matter hyperintensities) and microstructural (mean diffusivity and fractional 
anisotropy) white matter integrity, and genetics (APOE), were all significant predictors of 
future dementia. However, combining markers, both within and between, modalities 
increased predictive ability due to the unique variance contributed.  

In addition, this thesis has highlighted the importance of longitudinal data when conducting 
aging research. The work in this thesis has greatly benefited from the population-based, 
longitudinal sample, which allowed for the tracking of cognitive decline and prediction of 
dementia over a period of time which has rarely been studied.  
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APPENDIX  
 

Supplementary Table 1. Multinomial logistic regressions for combined models – young-
old vs. old-old 

 

 

 

 

  

 No 
dementia 
(n) 

Incident 
dementia 
(n) 

OR 95% C.I. for OR p-
value 

ROC – 
AUC 
 

Lower Upper 

Young-old (<78)        
Model 0 Covariates 1278 38     .832 
Model 1 Category 

fluency 
1275 37 2.61 1.62 4.22 .000 .867 

Model 2 Category 
fluency 

1271 37 2.10 1.28 3.45 .004 .879 

Word recall 1.73 1.14 2.61 .009 
Or         
Model 1 Digit 

cancellation 
1272 34 2.81 1.82 4.33 .000 .867 

Model 2 Digit 
cancellation 

1269 34 2.60 1.68 4.02 .000 .885 

Word recall 1.96 1.29 2.99 .002 
Old-old (≥78)        
Model 0 Covariates 455 87     .642 
Model 1 Category 

fluency 
455 87 2.82 1.98 4.04 .000 .731 

Model 2 
 

Category 
fluency 

449 
 

85 
 

2.21 1.52 3.20 .000 .750 
 

Word recall 2.03 1.47 2.81 .000 
Model 3 
 

Category 
fluency 

385 
 

56 
 

1.77 1.13 2.78 .013 .764 
 

Word recall 2.02 1.36 3.00 .001 
TMT B 1.68 1.19 2.36 .003 
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Supplementary Table 2. Multinomial logistic regressions for combined models – female 
vs. male 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 No 
dementia 
(n) 

Incident 
dementia 
(n) 

OR 95% C.I. for 
OR 

p-
value 

ROC – 
AUC 
 Lower Upper 

Female         
Model 0 Covariates 1063 178     .866 
Model 1 Category 

fluency 
1060 176 3.56 2.69 4.69 .000 .905 

Model 2 Category 
fluency 

1043 151 2.75 2.01 3.78 .000 .911 

Pattern 
comparison 

2.37 1.73 3.25 .000 

Model 3 Category 
fluency 

1040 150 2.19 1.57 3.06 .000 .914 

Pattern 
comparison 

2.21 1.60 3.04 .000 

Word recall 1.76 1.34 2.32 .000 
Male         
Model 0 Covariates 670 68     .878 
Model 1 TMT A 657 58 2.08 1.53 2.83 .000 .909 
Model 2 TMT A 655 58 1.81 1.29 2.52 .001 .923 

Word recall 2.85 1.90 4.27 .000 
Model 3 TMT A 655 57 1.53 1.07 2.19 .019 .930 

Word recall 2.63 1.72 4.00 .000 
Category 
fluency 

1.73 1.12 2.67 .013 
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Supplementary Table 3. Multinomial logistic regressions for combined models – low vs. 
high education 

 

  

 No 
dementia 
(n) 

Incident 
dementia 
(n) 

OR 95% C.I. for 
OR 

p-
value 

ROC – 
AUC 
 Lower Upper 

Low Education        
Model 0 Covariates 863 182     .820 
Model 1 Category 

fluency 
862 180 3.66 2.79 4.79 .000 .878 

Model 2 Category 
fluency 

847 154 2.96 2.19 4.00 .000 .887 

Digit 
cancellation 

2.00 1.53 2.61 .000 

Model 3 Category 
fluency 

845 153 2.17 1.58 2.99 .000 .896 

Digit 
cancellation 

1.93 1.47 2.53 .000 

Word recall 1.99 1.51 2.62 .000 
High Education        
Model 0 Covariates 870 64     .902 
Model 1 Category 

fluency 
868 63 2.62 1.77 3.86 .000 .924 

Model 2 Category 
fluency 

863 
 

60 
 

2.15 1.42 3.27 .000 .933 
 

Word recall 2.38 1.62 3.48 .000 
Model 3 Category 

fluency 
859 57 1.73 1.12 2.70 .014 .937 

 
 Word recall 2.15 1.44 3.20 .000 

Pattern 
comparison 

2.51 1.56 4.04 .000 
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Supplementary Table 4. Multinomial logistic regressions for combined models – no ɛ4 vs. 
any ε4 

 

 

 

 

  

 No dementia 
(n) 

Incident 
dementia 
(n) 

OR 95% C.I. for 
OR 

p-
value 

ROC – 
AUC 
 Lower Upper 

No ɛ4        
Model 0 Covariates 1223 137     .887 
Model 1 Category 

fluency 
1221 137 3.85 2.83 5.23 .000 .922 

Model 2 
 

Category 
fluency 

1207 
 

116 
 

3.38 2.40 4.76 .000 .927 
 

Digit 
cancellation 

1.74 1.30 2.33 .000 

Model 3 
 

Category 
fluency 

1205 
 

115 
 

2.52 1.76 3.61 .000 .930 
 

Digit 
cancellation 

1.65 1.23 2.21 .001 

Word recall 1.93 1.43 2.61 .000 
Any ɛ4        
Model 0 Covariates 485 87     .866 
Model 1 Word recall 482 86 2.92 2.06 4.15 .000 .899 
Model 2 
 

Word recall 474 
 

79 
 

2.53 1.73 3.71 .000 .908 
 Pattern 

comparison 
2.65 1.68 4.17 .000 

Model 3 
 

Word recall 474 
 

79 
 

2.25 1.52 3.34 .000 .910 
 Pattern 

comparison 
2.19 1.36 3.53 .001 

Category 
fluency 

1.70 1.10 2.62 .018 
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Supplementary Table 5. Multinomial logistic regressions for combined models – AD type 
dementia 

 

  

 No 
dementia 
(n) 

Incident 
dementia 
(n) 

OR 95% C.I. for 
OR 

p-
value 

ROC – 
AUC 
 Lower Upper 

Model 0 Covariates 1733 96     .873 
Cognitive base        

Model 1 Word recall 1722 94 3.50 2.62 4.67 .000 .905 

Or        
Model 1 Category 

fluency 
1730 95 3.97 2.86 5.51 .000 .905 

Model 2 Category 
fluency 

1720 93 2.63 1.85 3.73 .000 .914 

Word recall 2.54 1.86 3.46 .000 
Model 3 Category 

fluency 
1687 83 2.32 1.58 3.40 .000 .920 

Word recall 2.41 1.73 3.37 .000 
TMT A  1.61 1.23 2.11 .000 
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