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ABSTRACT 

Human exposure to pesticides has increased exponentially in recent decades, especially in 

low- and middle-income countries where regulations on the use of pesticides and personal 

protective equipment (PPE) are not fully controlled. Studies have shown that compared to 

the general population, people occupationally exposed to pesticides have a higher risk of 

developing acute and chronic adverse health effects, and increased risk of genotoxic damage 

and cancer. The general objective of this thesis was to evaluate the correlation between 

exposure to mixtures of pesticides and genotoxicity in the agricultural Bolivian population. 

For this, a cross-sectional study was used in three agricultural communities, whose 

production represents almost the entire diversity of the country. The use and exposure to 

pesticides were determined by applying a survey on lifestyle factors, behaviors, and pesticide 

management, and by analyzing 10 urine pesticide metabolites (UPM). Our results 

demonstrated that the Bolivian agricultural population is highly exposed to mixtures of 

pesticides. High exposure levels of chlorpyrifos, 2,4-D, and some pyrethroids were found, 

and especially among men. Furthermore, we found that farmers who were better at following 

directions for using pesticides and PPE, in general, were less exposed to pesticides (Paper I). 

We also investigated the correlation between pesticide exposure and genotoxic effects. We 

found that high exposure levels of certain pesticides, e.g. tebuconazole, 2,4-D, and cyfluthrin, 

was associated with high levels and increased risks of genotoxic damage (Paper II). To gain 

a better understanding of possible cellular effects of pesticide mixtures, we studied 

cytotoxicity and genotoxicity in human liver carcinoma cells (HepG2 cells) exposed to 

mixtures of pesticides, which were based on UPM and survey profiles. Our results showed 

that while neither of the mixtures nor their constituent pesticides induced formation of 

reactive oxygen species, increased levels of genotoxic damage were observed. Mixtures that 

were primarily composed of paraquat and cypermethrin demonstrated the highest genotoxic 

potency, as did paraquat and cypermethrin as single compounds. (Paper III). In conclusion, 

the results from our population and in vitro studies suggest that specific pesticides may act 

as drivers of toxic effects observed from exposure to mixtures. More studies are however 

necessary to get a clearer understanding of these effects. Finally, we want to emphasize the 

need to train farmers in pesticide management and personal protection to reduce exposure 

levels and thereby decrease the risk of health adverse effects. 

  



RESUMEN 

La exposición humana a plaguicidas ha aumentado exponencialmente en las últimas décadas, 

especialmente en países de bajos a medianos ingresos donde las regulaciones sobre el uso de 

plaguicidas y equipos de protección personal (PPE) no están completamente controlados. 

Estudios han demostrado que, en comparación con la población general, las personas expuestas 

ocupacionalmente a los plaguicidas presentan mayor riesgo de desarrollar efectos adversos a 

la salud, y un mayor riesgo a desarrollar daño genotóxico y cáncer. El objetivo general de esta 

tesis fue evaluar la correlación entre la exposición a mezclas de plaguicidas y la genotoxicidad 

en poblaciones agrícolas bolivianas. Se utilizó un estudio de corte transversal en pobladores de 

tres comunidades agrícolas, cuya producción representa casi toda la diversidad agrícola del 

país. El uso y la exposición a los plaguicidas se determinó aplicando una encuesta sobre estilo 

de vida, comportamientos y manejo de plaguicidas, y analizando 10 metabolitos de plaguicidas 

en la orina (UPM). Nuestros resultados demostraron que la población agrícola boliviana está 

altamente expuesta a mezclas de plaguicidas. Se encontraron altos niveles de exposición a 

clorpirifos, 2,4-D y algunos piretroides, especialmente en varones. Además, descubrimos que 

los agricultores que seguían las instrucciones para usar plaguicidas y PPE, estaban menos 

expuestos a los plaguicidas (Publicación I). Además, se investigó la correlación entre la 

exposición a plaguicidas y los efectos genotóxicos. Descubrimos que altos niveles de 

exposición a ciertos plaguicidas (tebuconazol, 2,4-D y ciflutrina) estaban asociados a altos 

niveles y mayor riesgo de presentar daño genotóxico (Publicación II). Por otra parte, para 

entender mejor los posibles efectos celulares de las mezclas de plaguicidas, se estudió la 

citotoxicidad y la genotoxicidad en células de carcinoma hepático humano (células HepG2) 

expuestas a nuestras mezclas de plaguicidas, basadas en UPM y perfiles de encuestas. Los 

resultados mostraron que, aunque ninguna de las mezclas ni sus plaguicidas constituyentes 

indujeron la formación de especies reactivas de oxígeno, si se observaron niveles aumentados 

de daño genotóxico. Las mezclas que estaban compuestas principalmente de paraquat y 

cipermetrina demostraron la mayor potencia genotóxica, al igual que cuando fueron evaluados 

individualmente (Publicación III). En conclusión, los resultados de nuestra población y los 

estudios in vitro sugieren que algunos plaguicidas pueden actuar como impulsores de los 

efectos tóxicos observados por la exposición a mezclas. Sin embargo, se necesitan realizar más 

estudios para comprender más claramente de estos efectos. Finalmente, queremos enfatizar la 

necesidad de capacitar a los agricultores en el manejo de plaguicidas e incentivar el uso de PPE 

para reducir los niveles de exposición y, de esa forma, disminuir el riesgo de efectos adversos 

a la salud.  



 

 

LIST OF SCIENTIFIC PAPERS 

 

I. Barrón Cuenca J., Tirado N., Vikström M., Lindh C., Stenius U., 

Leander K., Berglund M., Dreij K. "Pesticide exposure among Bolivian 

farmers: associations between worker protection and exposure biomarkers". 

Journal of Exposure Science & Environmental Epidemiology, 2019, 

https://doi.org/10.1038/s41370-019-0128-3. 

 

 

II. Barrón Cuenca J., Tirado N., Barral J., Ali I., Levi M., Stenius U., 

Berglund M., Dreij K. "Increased levels of genotoxic damage in a Bolivian 

agricultural population exposed to mixtures of pesticides." Science of the 

Total Environment 695, 133942, 2019. 

 

 

III. Barrón Cuenca J., De Oliviera Galvão MF., Ünlü Endirlik B., Tirado N., 

Dreij K. “In vitro cytotoxicity and genotoxicity of single and combined 

pesticides used by Bolivian farmers” (Manuscript). 

  

  

https://doi.org/10.1038/s41370-019-0128-3


CONTENTS 

1 INTRODUCTION .......................................................................................................... 1 

1.1 PESTICIDES IN AGRICULTURE THROUGH THE HISTORY ..................... 1 

1.2 PESTICIDE CLASSIFICATION ......................................................................... 2 

1.3 RISK ASSESSMENT AND HUMAN EXPOSURE TO PESTICIDES ............ 3 

1.3.1 Health risk assessment of pesticides ......................................................... 3 

1.3.2 Human exposure to pesticides .................................................................. 4 

1.3.3 Personal protective equipment (PPE) ....................................................... 6 

1.4 Pesticide use in South America ............................................................................. 7 

1.4.1 Pesticides use in Bolivia ........................................................................... 8 

1.5 HEALTH EFFECTS LINKED TO PESTICIDE EXPOSURE .......................... 9 

1.5.1 Acute pesticide poisoning (APP) .............................................................. 9 

1.5.2 Chronic diseases ...................................................................................... 10 

1.5.3 Chronic effects in vulnerable populations .............................................. 11 

1.6 MECHANISM INVOLVED IN PESTICIDE CARCINOGENESIS ............... 12 

1.6.1 Indirect DNA damage ............................................................................. 13 

1.6.2 Direct DNA damage ............................................................................... 14 

1.7 HUMAN BIOMARKERS .................................................................................. 15 

1.7.1 Biomarkers of susceptibility ................................................................... 15 

1.7.2 Biomarkers of exposure .......................................................................... 16 

1.7.3 Biomarkers of effect ................................................................................ 18 

1.7.4 Biomarkers of genotoxic effects ............................................................. 18 

2 AIM OF THE STUDY.................................................................................................. 21 

3 METHODOLOGIES .................................................................................................... 22 

3.1 PAPER I AND II ................................................................................................. 22 

3.1.1 Design and study areas ............................................................................ 22 

3.1.2 Participant recruitment and ethical considerations ................................ 23 

3.1.3 Evaluation of pesticide exposure ............................................................ 24 

3.1.4 Evaluation of metal exposure ................................................................. 25 

3.1.5 Evaluation of genotoxic damage and glutathione transferase 

polymorphism ......................................................................................... 26 

3.1.6 Use of text mining for analyzing mode of action ................................... 27 

3.1.7 Statistical methods .................................................................................. 28 

3.2 PAPER III ............................................................................................................ 30 

3.2.1 Pesticide selection criteria and mixture compositions ........................... 30 

3.2.2 Cell model ............................................................................................... 32 

3.2.3 Evaluation of cell viability ...................................................................... 32 

3.2.4 Evaluation of reactive oxidative species generation .............................. 33 

3.2.5 Evaluation of gene expression ................................................................ 33 

3.2.6 Evaluation of genotoxicity ...................................................................... 34 

3.2.7 Statistical methods .................................................................................. 35 



 

 

4 RESULTS AND GENERAL DISCUSSION .............................................................. 36 

4.1 POPULATION STUDIES IN PAPER I AND II ............................................... 36 

4.1.1 Population characteristics ....................................................................... 36 

4.1.2 Usage and handling of pesticides and PPE ............................................ 36 

4.1.3 Health effects related to exposure to pesticides ..................................... 38 

4.1.4 Exposure assessment and relationship between PHI score and risk 

of high pesticide exposure ...................................................................... 39 

4.1.5 Influence of population characteristics and farming activities on 

levels of genotoxic damage ..................................................................... 39 

4.1.6 Associations between pesticide exposure and levels of genotoxic 

damage ..................................................................................................... 40 

4.1.7 Impact of exposure to pesticide mixtures on levels of genotoxic 

damage ..................................................................................................... 41 

4.1.8 Influence of GST genotypes on levels of genotoxic damage ................ 42 

4.2 IN VITRO STUDIES IN PAPER III ................................................................... 43 

4.2.1 Induction of cytotoxicity and oxidative stress ........................................ 43 

4.2.2 Activation of DNA damage signaling .................................................... 43 

4.2.3 Induction of genotoxic damage............................................................... 45 

5 CONCLUSIONS ........................................................................................................... 47 

6 ACKNOWLEDGMENTS ............................................................................................ 49 

7 REFERENCES .............................................................................................................. 53 

 

  



LIST OF ABBREVIATIONS 

2,4-D 2,4-dichlorophenoxyacetic acid 

3-PBA 3-phenoxybenzoic acid 

4F3PBA 4-fluoro-3-phenoxybenzoic acid 

5-OH-TBZ 5-hydroxytiabendazole 

8-OHdG 8-hydroxy-2-deoxyguanosine 

AChE Acetylcholinesterase activity 

APP Acute pesticide poisoning 

CBMN Cytokinesis-block micronucleus assay 

CFCA Chloro-3,3,3-trifluoro-1-propen-1-yl−2,2-

dimethylcyclopropanecarboxylic acid 

Com1 Community of Sapahaqui 

Com2 Community of Villa Bolivar 

Com3 Community of Villa 14 de Septiembre 

DCCA Cis/trans 3-(2,2-dichlorovinyl) −2,2-dimethylcyclopropane 

carboxylic acid 

ECL Enhanced chemiluminescence 

ED Endocrine disruptors 

EDTA Ethylenediaminetetraacetic acid 

EFSA European Food Safety Authority 

FAO Food and Agriculture Organization of the United Nations 

GHS Globally Harmonized System 

IARC International Agency for Research on Cancer 

IPCS International Programme on Chemical Safety 

IPM Integrated Pest Management 

LMICs Low-middle income countries 

LOD Limit of detection 

MCPA 4-chloro-2-methyl phenoxy acetic acid 

MOA Mode of action 

OCPs Organochlorine pesticides 

OH-PYR 3-hydroxy-pyrimethanil 



 

 

OPs Organophosphates 

PHI Protection and handling index 

PPE Personal protective equipment 

TCP 3,5,6-Trichloro-2-pyridinol 

TEB-OH Hydroxy-tebuconazole 

UPMs Urinary pesticide metabolites 

US EPA United States Environmental Protection Agency 





 

 1 

1 INTRODUCTION 

Agricultural production uses pesticides widely to prevent or reduce losses by pests, improving 

in some cases the quality of the product, and giving to the farmers a labor-saving, efficient and 

economical tool against the pest. Pesticides have been designed to kill and control certain 

organisms, and indeed, they create a risk of harm in people who use them [1]. 

During the last decade, the use of pesticides became very popular, especially in developing 

countries, to get into an international competitive agricultural market. However, the extensive 

use together with a lack of control by the authorities and the unconcern of the farmers has 

caused increased health risks. Additionally, the non-governmental environmental organization 

Greenpeace has identified different studies made in the general population showing detectable 

levels of pesticide metabolites in urine, indicating a possible indirect exposure through food 

and water contaminated with pesticides or by the air and dust in agricultural communities [2]. 

At present, the frequency of acute pesticide poisonings has increased among farmers and most 

likely due to the application of pesticides without previous training or knowledge of safety 

procedures, such as the use of personal protective equipment (PPE). Moreover, the routine of 

spraying pesticides during long periods of time exposes the farmers to chronic health problems 

such as diabetes or high blood pressure [3, 4]. On the other hand, long-term exposure to 

pesticides has been suggested to induce DNA damage and oxidative stress, increasing the risk 

of developing chronic diseases, or cancer in early adulthood [5, 6].  

This thesis will focus on general concepts of exposure and health effects of pesticides and more 

specifically on the mechanisms involved in chronic health effects such as carcinogenesis. The 

use of biomarkers for determining exposure, effect, and susceptibility to pesticide exposure are 

also described. 

 

1.1 PESTICIDES IN AGRICULTURE THROUGH THE HISTORY 

Agriculture has been practiced for almost 10,000 years. Since ancient times, farmers have tried 

to find ways of controlling pests in order to avoid harvest loss. Sumerians used sulfur as pest 

control and other minerals such as mercury and arsenic were used by the Chinese. Greeks and 

Romans used mixtures of plants and some minerals for that effect. It is also known that smoke 

of different plants and some animal remains were used against mildew, blights, and insects. 

Pyrethrum, a natural insecticide made from the dried flower heads of chrysanthemum, has been 
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used for over 2000 years as a protection for stored grain, and a mixture of copper sulfate and 

lime called Bordeaux mixture, is still used as a fungus controller [7].  

Arsenic–based pesticides were used for weeds and fungus control, but also in rice-killing 

operations during the Vietnam War [8]. In the 1940s, dichlorodiphenyltrichloroethane (DDT) 

was developed for insect control in crops, homes, and gardens as a controller of insect-borne 

diseases such as malaria. After their high persistence and environmental impact were 

demonstrated in the 1970s, the organochlorine pesticides were slowly replaced by other less 

persistent compounds like organophosphates (OPs) and carbamates (CBs) [7, 9]. However, 

since the 20th century, a large number of pesticides have been developed and their use has 

increased around 50-fold, especially in developing countries. As a result, regulatory agencies 

were created to control the use of pesticides to reduce the exposure population and 

contamination of the environment [10, 11]. From the 1990s, new pesticides with greater 

selectivity and better toxicological and environmental profiles were developed. However, in 

1994, genetically modified crops (GM crops) were introduced to the market, designed to 

interact with their own pesticide [12]. Consequently, the concept of Integrated Pest 

Management (IPM) was introduced with the aim to reduce the use of pesticides in order to 

avoid mishandling and overuse of toxic pesticides through training in different pest-control 

techniques [13, 14]. 

 

1.2 PESTICIDE CLASSIFICATION 

Pesticides can be classified based on their type of chemical e.g. organochlorines (OCPs), OPs, 

S-triazines, pyrethroids, etc., but also based on their target organism or targeted use as 

insecticides, herbicides, rodenticides, fungicides and so on. The World Health Organization 

(WHO) has also classified them by their health risk or hazard. This classification was based on 

a single or repeated exposure in a relatively short period of time, according to their oral or 

dermal toxicity. The classification goes from Ia (Extremely hazardous), Ib (Highly hazardous), 

II (Moderately hazardous), III (Slightly hazardous), and Unlikely to present a hazard in normal 

use [15]. The International Agency for Research on Cancer (IARC) has classified several 

pesticides according to their carcinogenic potential to humans [16, 17]. Another classification 

was made for the Globally Harmonized System, based on intrinsic properties of the pesticide, 

including physical, health and environmental hazards of the chemicals, along with some 

graphical communication such as pictograms, hazard statements, and the signal words 

“Danger” and “Warning” [18]. 
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1.3 RISK ASSESSMENT AND HUMAN EXPOSURE TO PESTICIDES 

1.3.1 Health risk assessment of pesticides 

Since pesticides are extensively used worldwide in agriculture, they represent a significant risk 

of exposure to people occupationally exposed to them as well as the general population. 

Because of their hazardous properties and for being non-selective, even low levels can affect 

non-target organisms, especially susceptible populations [4]. In pesticide risk assessment, dose-

relationships, exposure assessment, and potential health hazards must be identified. However, 

correlation (or association) does not always imply causation, therefore, many other possible 

causations (models) must be studied and eliminated before concluding causality. Nonetheless, 

the relationship between dose (magnitude of exposure) and the outcome incidence/severity can 

also help to prove causality [19]. To control several pests, pesticides are commonly applied as 

mixtures. Most of the risk assessment models were developed for single pesticide exposure, 

which might not be fully applicable for mixtures. For example, toxicokinetic interactions of 

one compound can alter the absorption, distribution, metabolism, or elimination of other 

compounds, making it difficult to know the cumulative effects of the exposure to a mixture of 

pesticides [20].  

The Agency for Toxic Substances and Diseases Registry in the USA (ATSDR) have used 

physiologically based pharmacokinetic/toxicodynamic (PBPK/TD) models to assess the 

combined effects of mixtures. These models can predict internal doses levels and toxicokinetic 

parameters in different conditions for hypothetical exposures, and they can provide 

scientifically supportable results [21]. As an example, a PBTK/TD model was designed for 

assessing the interaction threshold for the combined toxicity of chlorpyrifos and parathion in 

rats. The results showed an additive interaction when the values were under the threshold and 

an antagonist effect when the values were above [22]. However, there are still many limitations 

for studying mixture effects by different pesticides in complex exposure scenarios, and ATSDR 

concluded than many more studies are needed for better understanding the toxicodynamic 

interactions of mixtures. To minimize that issue, the European Food Safety Authority (EFSA) 

in 2019 has published a guidance for using across their scientific committee when there is a 

necessity for evaluating the combined effects of chemical mixtures that potentially can be in 

food and feed [23]. Since the number of possible combinations of the mixtures can be infinite, 

the guidance works similarly as an evaluation of a single compound, and in the end, the risk 

can be quantified by comparing combined exposure and combined toxicity. This guidance also 

tries to estimate the overall risk adding up the doses for common effects and possible 

interactions, especially if the combined effect increases the toxicity [23]. 
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1.3.2 Human exposure to pesticides 

Pesticide exposure may occur in different ways, directly by the occupational activity and in 

domestic use, and indirectly through the consumption of food and water that contains remains 

of pesticides [24]. As with most chemicals, pesticides can enter the human body by skin 

absorption, ingestion, inhalation, and other routes of exposure. Moreover, the presentation, 

concentration, and formulation of pesticides are also important to consider [25].  

The rate of absorption by the human body differs depending on the route of exposure. Human 

skin is considered the largest organ in the human body, and it has a great capability of 

absorption of substances such as pesticides [26]. This exposure may vary broadly depending 

on the amount of nude skin surface is in contact with the pesticide and the duration of the 

exposure. Sometimes other factors such as temperature, the humidity, and the lack of use of 

PPE can increase the skin absorption in people in direct contact [4, 27]. Oral exposure may 

occur for voluntary reasons or by accident due to carelessness, due to the reuse of empty bottles 

for storage of food or when the pesticides are transferred from their original bottle to a food 

container [28]. Additionally, drops of pesticides may reach the eye making a high local injury 

[29]. Moreover, its known that some pesticides have transplacental absorption properties that 

expose the fetus to high concentrations of pesticide metabolites [30, 31]. Many OCPs can 

accumulate in the adipose tissues. During the production of breast milk, the human body uses 

lipids from the adipose tissue, and accumulated OCPs in the adipose tissue can migrate to breast 

milk [32].  

1.3.2.1 Populations exposed to pesticides 

The worldwide and extensive use of pesticides makes almost all populations susceptible to 

exposure [33, 34]. Although exposure levels are highest in people who work in the manufacture 

of pesticides, exterminators of vector-diseases in public health, and farmworkers (occupational 

settings), the general population may also be exposed to low levels of pesticide mixtures 

throughout their lives. There are different sources of pesticide residues in the environment, 

such as in water supplies, fruits, and vegetables, or in the air that they breathe by living in the 

vicinity of areas where pesticides are applied [35]. To monitor the exposure levels for the 

general population health authorities have initiated surveillance programs. For example, the 

French Agency for Food, Environmental and Occupational Health & Safety (ANSES) started 

the French observatory for pesticide residues (ORP) in order to collect and analyze information 

on the presence of pesticides in different environments (e.g. phytosanitary products, biocides, 

etc.) for risk assessment purposes [36]. Moreover, the National Health and Nutrition 

Examination Survey (NHANES) led by the Center for Disease Control and Prevention (CDC) 
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in the USA collects information and biological samples, such as blood and urine, from the 

civilian population of all ages for biomonitoring proposes [37]. For example, a study used this 

database for evaluating urine concentrations of OP metabolites in relation to serum 

concentrations of testosterone and estradiol. They could detect OP metabolites in more than 

50% of their samples and found a statistically significant inverse relationship between levels 

of the OP diethyl phosphate and testosterone [38].  

1.3.2.2  Farmworkers 

Agricultural activity is considered high risk for pesticide exposure. Farmworkers are highly 

exposed not only when they mix, load, transport, and apply pesticides, but also through 

accidental spills, leakages, or faulty spraying equipment. These factors may increase the 

frequency of pesticide use and the hours spending in the cultivation area during long periods 

of time and thus make them more vulnerable to develop chronic diseases [39, 40]. The use and 

type of pesticides can vary depending on the crops that the farmers are growing, the season, 

and the pest that they want to control or eliminate. The exposure could increase even more if 

the farmers mix many different pesticides at the same time for one application and if they do 

not follow the instructions on how to apply the pesticides, especially when they are unaware of 

safety guidelines on the use of PPE [21, 24]. Studies have demonstrated that farmers may forget 

fundamental sanitation practices such as taking a shower or washing hands after pesticide 

handling; therefore, family members of farmers may be exposed to pesticides through the take-

home pathway [41]. In addition, agricultural work does not require that farmers are well 

educated, as a result, many farmers in low-to-middle income countries (LMICs) are illiterate 

or only have primary studies. This is of special concern for women, which increases the risk of 

not knowing which pesticides they are applying, or not understanding or even ignoring the 

instructions of handling and basic safety guidelines that are printed on the bottle of the 

pesticides [42].  

It is important to point out that many studies have demonstrated that exposure to pesticides can 

be reduced if the farmers use PPE and fundamental sanitation practices and if they are trained 

in the safe handling of pesticides. Many projects have been working with farmers in IPM 

through educational intervention programs, improving the knowledge of pesticide safety use, 

recommending as a conclusion to continue with training programs especially in young people 

from developing countries [43, 44]. A good example was demonstrated by an educational 

program among 74 pesticide handlers in southern India who were evaluated in knowledge, 

attitude and practices (KAP) before, immediately after, and one month after training, and 

showed that the KAP for safe pesticide handling score greatly improved after training [45]. 
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To improve the knowledge and assessment of occupational exposures job-exposure matrices 

(JEM) were developed. These JEMs were designed as an indirect way to connect occupational 

exposures where biological monitoring data, industrial hygiene measurements, or industry 

records are difficult to perform, unavailable, scarce, or inaccurate. These tools are used to 

estimate the quantity of pesticide used and the probability of exposure, being vulnerable to 

misclassification [46, 47]. For example, using a JEM in fruit farmworkers from South Africa, 

an association between long-term OP exposure and neurologic and neurobehavioral effects was 

found [48]. Moreover, a modestly increased risk of multiple myeloma was associated with 

occupational pesticide exposure in a large population case-control study performed in three US 

states [49]. In 2010, another group of researchers used the Task-Exposure Matrix (TEM) for 

Pesticide Use (TEMPEST) using seven decades of information (1945 – 2005) from Scotland, 

concluding that this JEM could be used for retrospective assessment of occupational exposure 

to pesticides [50]. In 2018, a generic job-exposure matrix (PESTIcides in general POPulation, 

PESTIPOP) for measuring occupational pesticide exposure in French general population was 

applied. The results showed the highest exposure probability of jobs with agriculture exposure 

in comparison with those jobs with non-agricultural exposure such as wood preservation, and 

parks maintenance, and pest control, especially agricultural jobs exposed to insecticides. The 

conclusion of this study suggested that this JEM can be used in future epidemiological studies 

[51].  

 

1.3.3 Personal protective equipment (PPE) 

Once the pesticide hazard and how it can enter the human body were understood, international 

guidelines were created for educating the farmers on the relationship between pesticide 

toxicity, exposure, and hazard. The Food and Agriculture Organization of the United Nations 

(FAO) created guidelines for PPE when working with pesticides in tropical climates, where 

among many other recommendations, the importance of education and training the farmers in 

handling pesticides were the main points [52]. The FAO recommends minimizing skin 

contamination as much as possible since this is the most likely route of exposure. For that, they 

recommend the use of working clothing such as coveralls, hat, gloves, eyewear, and protective 

footwear, as the first line of defense. The clothing must be comfortable, lightweight covering 

most of the body protecting against pesticide penetration [52]. The efficiency of these 

recommendations was successfully demonstrated in a study using water-repellent finish 

working coverall, which reduced the body surface exposure by a factor of approximately 95% 

in vineyards workers [53]. Another study showed that a larger number of Indonesian red-onion 
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farmers who used PPE were categorized as healthy/not sick in comparison with those who did 

not use it [54]. However, the effectiveness of the use of PPE for avoiding/reducing pesticide 

exposure is clearly reduced due to the negligence of the users themselves, this was 

demonstrated in a Canadian study, where farmers claimed they avoided using PPE because it 

was uncomfortable to wear, took too long to put on, or because farmers simply forgot about it 

[55]. The use of recommended PPE can be especially challenging in tropical areas due to high 

temperatures and humidity [52, 56].  

 

1.4 PESTICIDE USE IN SOUTH AMERICA  

The use of agrochemicals in South America has been increasing during the last decades. 

According to data from FAO, countries like Ecuador, Brazil, and Argentina have increased the 

average amount of pesticide used per area of cropland 7-fold during the last 20 years, similar 

numbers are reported for the rest of the South American countries [35]. Moreover, the 

governments are dealing with the smuggling of pesticides by which more pesticides are 

introduced without any control and thus becoming a potential public health problem. Moreover, 

despite human health hazards and environmental pollution, waste from unused and obsolete 

pesticides in South America is around 30 000 to 50 000 tonnes yearly according to the FAO 

[35]. Of concern is also the habit of storing waste close to important water bodies, such as main 

rivers or lakes (water for drinking), or burying waste close to communities where people 

probably are unaware of their existence [35]. In addition, there is a lack of training in pesticide 

handling and underestimation of the advantages of the use of PPE which contributes to the 

overuse and misuse of pesticides. Together this contributes to a large health risk for both the 

occupational and general population. For example, Brazil and Ecuador report an average of 12 

000 and 6 400 cases of pesticide poisonings per year, respectively [57, 58]. Acute health effects 

related to pesticide intoxication have been reported in studies performed in Chilean and 

Peruvian farmers exposed to OPs [59, 60]. Besides, genotoxic damage and chronic health 

effects related to long-term exposure were also found in Argentinean farmers exposed to 

glyphosate (herbicide) among other pesticides [61] and in Colombian children exposed to 

atrazine (herbicide) [62]. Those studies remarked that education and the use of PPE should be 

promoted for reducing pesticide exposure during agricultural activities. 
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1.4.1 Pesticides use in Bolivia 

The Plurinational State of Bolivia is located in western-central South America, with an area of 

1 098 581 km2. The main economic activity of Bolivia is the agriculture, consisting of around 

2 760 000 km2 of cultivated area, with 871 927 agricultural production units according to data 

from the 2013 Bolivian agricultural census [63]. Bolivia has a large climate variability which 

allows for the cultivation of a large number of different crops during the whole year.  

Bolivia is part of the Rotterdam, Stockholm, and Basel conventions, and based on article 16 of 

the Political Constitution of the Bolivian State, the government must guarantee food security 

through healthy, adequate, and enough food for the entire population. Therefore, a National 

Technical Committee on Pesticides was created for the Registration and Control of Chemical 

Pesticides for agricultural use in 2016 [64]. This committee has the mission among other 

functions, to control and register the entry of pesticides into the country, avoiding the entry of 

obsolete, illegal, or dangerous pesticides to protect the population and the environment. 

However, Bolivia as a LMIC has problems with the extensive use and misuse of pesticides 

[65]. According to statistics from FAO, Bolivia had a 2-fold increase in the use of pesticides 

per area of cropland from 1.86 kg/ha in 1997 to 3.29 kg/ha in 2017 [35]. In Bolivia, pesticides 

are not produced, but around 500 000 tons of active ingredients per year are legally imported 

to the country [66]. However, pesticides can enter the internal market by smuggling, in many 

cases pesticides that are obsolete or banned in other countries due to their high toxicity [67]. 

Even though the laws exist, the control at the borders and penalties for illegal importation or 

sale is poor or non-existent. Therefore, pesticides are available at an accessible price to the 

minor consumer on the streets or in the stores, where even highly toxic pesticides can be found 

[67].  

Studies performed in local markets where common people buy their groceries found residues 

of OCPs and OPs above the maximum residue limit in tomatoes from Cochabamba and 

Chuquisaca [68]. A recent study performed in markets from La Paz City found residues of 

cypermethrin, chlorpyrifos, difenoconazole, or/and lambda-cyhalothrin in lettuces, where 20% 

of them were above the maximum residue limit. However, the concentrations obtained did not 

exceed the acceptable daily intake and could be reduced by 50% after washing [69]. In both 

studies, the use of mixtures of pesticides was a remarkable finding where the total 

concentrations applied were difficult or impossible to obtain [68, 69].  

One study showed that from 2007 to 2012, 70% of the committed suicides among young adult 

men were by the use of pesticides [70]. Other studies performed in Bolivia demonstrated that 

farmers use very toxic pesticides in their crops together with a lack of knowledge about safe 
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pesticide handling [71, 72]. Moreover, these studies reported that farmers presented symptoms 

of acute intoxication and neurotoxicity related to OP spraying operations [71, 72]. As a result 

of these studies, the same researchers together with the non-governmental organization called 

Plaguicidas Bolivia (PLAGBOL) [73], have been training some farmers from small Bolivian 

communities in the safe use of pesticides and IPM during the last decade in order to reduce 

these intoxications [72, 74]. Their results showed that 23 trained farmers and 47 neighboring 

farmers improved and maintained their training on IPM, knowledge, and pesticide handling in 

comparison with the control group [44]. However, from approximately 1.7 million people 

dedicated to agriculture in Bolivia (among livestock farming, hunting, fishing, and forestry) 

[66], there is a general lack of training in handling pesticides, inadequate or lack of information 

on hazards, and the unwillingness of farmers to accept the risks of crop loss. Moreover, the 

impact of this lack of knowledge on the level of exposure to pesticides is not known. 

 

1.5 HEALTH EFFECTS LINKED TO PESTICIDE EXPOSURE 

Pesticides were from the beginning developed to kill and suppress pests, but they might also 

be dangerous to humans and especially at high levels of exposure. Exposed individuals may 

develop acute pesticide poisoning (APP) a few hours after exposure, but also develop chronic 

diseases after a longer exposure period (years) [75, 76].  

 

1.5.1 Acute pesticide poisoning (APP) 

An APP is any health effect resulting after exposure to a pesticide or several pesticides within 

48 h and could be from occupational, non-intentional exposure or suicide attempts which could 

end in death if the person does not receive medical attention [28, 77]. Health effects may be 

local (dermal and ocular) and/or systemic depending on the route/routes of exposure. These 

effects can be respiratory, cardiovascular, gastrointestinal, nephrotoxic, neurotoxic, or allergic 

reactions, depending on the amount, the time of exposure, and the type of pesticide(s) to which 

the person was exposed to [78, 79]. The effect on the central and peripherical nervous system 

is one of the most common toxic effects by many pesticides including the OPs such as 

chlorpyrifos and CB (insecticides). The symptoms occur rapidly, during or shortly after 

exposure, affecting the enzyme acetylcholinesterase (AChE), which hydrolyzes the 

neurotransmitter acetylcholine. The inhibition of AChE causes accumulation of acetylcholine 

at cholinergic synapses, in both the peripheral and the central nervous system, leading to 

overstimulation of muscarinic and nicotinic receptors [80, 81]. This effect can be an additional 
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risk for people with lung disorders, convulsions, and the effects can increase with alcohol 

consumption. The acetylcholinesterase inhibition symptoms go from fatigue, headache, and 

lacrimation among others in a mild exposure, symptoms that can mimic a simple flu, making 

farmers or common people do not realize that they are having a health exposure-pesticide side 

effect. The severity of the symptoms increasing to moderate and severe poisoning by showing 

a marked pupils constriction, chest discomfort, inability to walk, incontinence and 

unconsciousness, seizures, and without the proper and opportune medical attention, the person 

can die [80, 82]. Studies performed in farmers from Peru and Chile exposed to mixtures of OPs 

and CBs showed a reduction in the cholinesterase activity in comparison with their control 

groups [60, 83]. Skin irritation because of dermal contact is a primary effect of pyrethroids. 

Intoxication by bipyridyls herbicides such as paraquat provokes severe irritation to mucous 

membranes of lungs and respiratory failure after 2 or 3 days. Moreover, symptoms of 

intoxication by chlorophenoxy herbicides such as 2,4-D and MCPA cause dizziness, mental 

confusion which may progress to unconsciousness [80].  

 

1.5.2 Chronic diseases 

Long-term exposure to pesticides can increase the incidence of chronic diseases, including 

diabetes and cancer [3, 84-86]. Moreover, the European Union (EU) together with the EFSA, 

has listed some pesticides, such as cyhalothrin (insecticide) and mancozeb (fungicide), as 

proven or possible endocrine disruptors (EDs). The list includes pesticides with evidence for 

ED properties in at least one study [87, 88]. As a result, in that list several pesticides have been 

classified as ED, among them, atrazine, bifenthrin, deltamethrin (interferes in the estrogenic 

activity), lambda-cyhalothrin (thyroid hormone production), and mancozeb (thyroid hormone 

production) have been listed [89]. EDs can affect multiple functions in many organs that 

respond to endocrine signals [1, 90], including decreasing fertility in both sexes, low quality of 

semen, demasculinization, and changes in the pattern of maturity [91]. Other pesticides have 

the property of affecting the production of the thyroid hormone inducing hypothyroidism 

(aldrin) or hyperthyroidism (mancozeb and metalaxyl) [92, 93]. Moreover, studies have 

associated exposure to pesticides with other chronic diseases such as rhinitis (glyphosate and 

chlorpyrifos), non-Hodgkin's lymphoma (NHL), asthma, chronic bronchitis (glyphosate and 

paraquat), and neurodegenerative disorders such as Parkinson and Alzheimer's later in life [5, 

94-96].  
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Cancer incidence is increasing since the population is aging but also since they are more 

exposed to carcinogenic agents including pesticides [97]. Moreover, farmworkers are at a 

greater risk of developing cancer due to exposure to pesticides since they show higher 

cumulative exposures than the general population and especially if they are exposed to 

pesticides that contain arsenic or are using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which 

are both known as human carcinogens by the IARC (Group 1) [98]. Moreover, IARC has 

classified some pesticides such as malathion, glyphosate, and parathion as probable/possible 

carcinogenic to humans (Group 2A – Group 2B), due to multiple mechanisms including genetic 

damage, tumor promotion, immunotoxicity, hormonal action, and epigenetic modifications 

[16, 17]. In systematic reviews and meta-analyses performed by Bassil et al., Parrón et al., and 

Mostafalou et al., a positive association with exposure to pesticides, especially insecticides and 

herbicides, and a positive association of cancer incidence of the brain, prostate, breast, 

colorectal, pancreas, and lung was found [5, 85, 86]. In addition, an increased risk of prostate 

cancer was found in farmers exposed to methyl bromide (a fumigant used against a wide variety 

of pests) [99] and of kidney cancer in sawmills workers exposed to pentachlorophenol 

(herbicide) [100]. Other studies showed an increased risk of developing leukemia in farmers 

exposed to OPs and OCPs [86, 101]. 

Many studies have found an increased risk of NHL for several pesticides [86, 102]. For 

example, in two meta-analyses an increased risk for NHL has been linked to exposure of 

glyphosate-based herbicides [103] and to 2,4-D [104]. Moreover, in a cancer incidence study 

performed in paraquat pesticide applicators from Iowa (USA), a significantly elevated risk for 

NHL was found in comparison with those applicators who never applied paraquat, the study 

also showed that there were no associations between paraquat and other types of cancers [105]. 

Contrary to the above-mentioned studies, a meta-analysis did not find any associated risk 

between OPs (malathion, diazinon, and terbufos) with NHL [106]. Moreover, a pooled analysis 

of agricultural cohorts from France, USA, and Norway concluded that the associations between 

NHL and pesticides dependent on the subtype of NLH and on the type of pesticide. They also 

remarked about the necessity of more exposure-response analysis in the future for a better 

understanding of the association between pesticide exposure and NHL [107].   

 

1.5.3 Chronic effects in vulnerable populations  

Pesticides can induce damage in humans in periods of rapid development, such as fetal period 

through transplacental absorption causing in some cases teratogenic effects in the offspring, 
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especially in the first eight weeks after conception [108]. There are organ systems such as the 

central nervous system, external genitalia, and eyes that are susceptible to teratogenic effects 

throughout the whole pregnancy due to exposure to pesticides [91, 109]. A study performed in 

Egypt found that the probability of having a child with a congenital malformation was 3.4-

times higher if the father was occupationally exposed to pesticides compared with the general 

population [110]. Additionally, birth defects were associated with exposure to glyphosate in 

farmer families from the Red River Valley of Minnesota, USA [111]. Other studies have shown 

that altered growth, such as low birth weight, prematurity, and intrauterine growth restriction, 

mental and motor delay, attention deficit hyperactivity disorder (ADHD), and reduced IQ, can 

be linked with pesticide exposure to pyrethroids and chlorpyrifos [109, 112]. 

 

1.6 MECHANISM INVOLVED IN PESTICIDE CARCINOGENESIS 

Long-term exposure to pesticides has been linked to genotoxic effects in exposed humans in 

many studies [113-115]. For example, levels of genotoxic damage were higher in farmers from 

Brazil, Ecuador, and Argentina exposed to single pesticides or mixtures compared with their 

respective control groups [61, 116, 117]. Besides genotoxicity, the mechanisms of 

carcinogenesis by exposure of pesticides goes through tumor promotion, hormonal action, 

immunotoxicity, and epigenetic effects [118]. Here, the focus is mainly on genotoxic 

mechanisms (Figure 1).  

 

 
 

Figure 1. Genotoxicity mechanisms by pesticide exposure. 



 

 13 

 

Induction of genotoxicity may lead to the formation of irreversible genomic mutations.  

Mutations can in turn activate oncogenes and inactivate tumor suppressor genes, leading to 

initiation and progression of cancer [119]. Most pesticides do not induce mutations in test 

systems. The pesticide cyclophosphamide has been shown to be mutagenic in vitro, animals, 

and humans due to metabolic activation into an alkylating agent. Induction of genetic changes, 

including sister chromatid exchanges and chromosomal aberrations, have been observed 

following exposure to cyclophosphamide in rats and cancer patients [120]. 

 

1.6.1 Indirect DNA damage 

1.6.1.1 Reactive oxygen species (ROS) and oxidative stress 

Pesticides and products of their metabolism can induce oxidative stress (disbalance between 

reactive oxygen species production and antioxidant mechanisms of defense), but the 

mechanisms by which pesticides do this is not well established [121, 122]. Oxidative stress 

provokes a loss of cellular integrity and function by accumulation of reactive oxygen species 

(ROS), this process is induced by protein oxidation, lipid peroxidation, and DNA oxidation. 

For example, studies in rats and hamsters have shown that some pesticides such as disulfiram 

and zineb (dithiocarbamates) result in oxidation of glutathione, thereby impairing the cellular 

response to ROS [123, 124]. Oxidative stress is considered to be a central mechanism by which 

pesticides induce degenerative-chronic diseases such as diabetes, atherosclerosis, autoimmune 

diseases, neurodegenerative diseases, and cancer [3, 125]. Studies in lung fibroblasts of 

hamsters have demonstrated that the cytotoxicity mechanisms of pesticides such as zineb and 

thiram (dithiocarbamates) include ROS formation [124, 126]. Other studies have shown a 

significant association between the increase of ROS and antioxidant depletion with 

acetylcholinesterase enzyme inhibition in farmworkers exposed to OPs and bipyridyls such as 

paraquat [127, 128].  

Studies performed in rodents and in vitro (different human cells of the nervous system) have 

shown that OPs can induce mitochondrial damage [129, 130]. Pesticides may affect the 

structure of the mitochondria by damaging the internal membrane, which increases its 

permeability. Furthermore, energy production is halted by damage to the respiratory chain, and 

the Ca2+ homeostasis is also impaired, through the oxidation of specific thiol groups in proteins 

[131]. At the same time, the mitochondrial defense system that prevents lipid peroxidation is 

may be affected [132]. The mitochondrial dysfunction caused by OPs can promote oxidative 
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and genotoxic damage by triggering cell death [129]. Another study has shown the effect of 

low dose exposure to pesticides, such as paraquat and chlorpyrifos (among others), on 

mitochondria morphology in SH-SY5Y cells and its potential link with pesticide-induced 

Parkinsonism [133].  

 

1.6.2 Direct DNA damage 

1.6.2.1 DNA adducts 

A DNA adduct is a covalent interaction between an electrophilic compound and a nucleophilic 

site in DNA. Due to the role of ROS as a mechanism in pesticide toxicity, oxidative DNA 

damage has gained a lot of attention and pesticides have been shown to induce a number of 

oxidative damage, including damage to individual nucleotide bases, DNA strand breaks, and 

the formation of adducts  [121]. The most susceptible nucleic acids to react with ROS are 

thymine and guanine and the 8-hydroxyguanine (8-OH-G) is the most common mutagenic 

oxidative DNA damage. Previous studies have shown an increase in 8-OH-G in farmers 

exposed to mixtures of pesticides [134, 135]. Moreover, a study performed in farmers 

chronically exposed to OP pesticides concluded that chronic exposure can induce the 

stimulation of antioxidant enzymes and at the same time an increase in DNA damage [136]. 

1.6.2.2 Strand breaks 

Pesticide exposure can provoke single‐strand breaks (SSBs) and double‐strand breaks (DSBs) 

because of direct DNA damage or indirectly by ROS formation. DSBs are the most severe 

since they can result in cell death (if unrepaired) or can cause chromosomal aberrations (if 

misrepaired) which are an early step of carcinogenesis [137]. These lesions can also block 

genomic replication and transcription. Many human diseases are related to these two 

premutagenic damages, such as ataxia-telangiectasia and neurodegeneration (SSBs), and 

developmental abnormalities and cancer predisposition (DSBs) [137], especially when the 

individuals are exposed to xenobiotics such pesticides [138, 139]. The correlation between 

pesticide exposure and the induction of strand breaks is described in more detail in Section 

1.7.4.1.   

1.6.2.3 Chromosomal aberrations 

Exposure to pesticides also produces DNA lesions which may affect DNA replication and 

transcription. Therefore, a well-conserved DNA repair system is necessary to avoid mutations 

or wide-scale genome aberrations which can affect the cell viability. Chromosomal aberrations 
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(CAs) show abnormalities in the number and structure at the chromosomal level. A high 

number of CAs have been associated with an increased risk of developing cancer and chronic 

diseases I populations exposed to pesticides  [118, 140]. Many aberrations provoke loss of 

chromosomal material in one of the daughter cells, a phenomenon observed as a small nucleus 

or micronucleus (MN) besides the nucleus. Aberrations can also disrupt cellular division itself, 

with a high probability of dysfunction or death [141, 142]. See Section 1.7.4.2 for more details 

on MN. 

 

1.7 HUMAN BIOMARKERS 

Biomarkers can be used to help detect diseases in their early stages of evolution and to evaluate 

the effectiveness of medical treatment. In addition, they are also used to detect people at risk 

of being exposed to a toxic agent (i.e. carcinogens), such as in environmental or occupational 

exposure. Also, they can be used to determine intrinsic individual differences, also called 

individual susceptibilities to these toxic agents. Once the above points have been identified, the 

results obtained can give a clearer idea, at the molecular level, about the etiology and 

pathophysiology of the disease, and can be used to find a possible solution to prevent this 

disease, such as the use of protective measures. [143, 144]. Even though pesticides can be 

measured in tissue or human fluid, the test can vary according to each chemical’s properties. 

For that reason, biomonitoring of pesticides in biological samples is often a challenge since not 

all pesticides have the same half-life and both their metabolism and their excretion often vary 

to such an extent that many pesticides cannot be properly monitored, especially when the 

individuals are exposed to a mixture of pesticides [145]. In addition, for many pesticides, 

metabolism is not well studied.  

Biomarkers are usually divided into three categories as markers of susceptibility, exposure, and 

effect. 

 

1.7.1 Biomarkers of susceptibility 

Biomarkers of susceptibility are factors that may make certain individuals or populations more 

sensitive to the influence of chemical exposure, meaning that not all individuals present the 

same degree of risk against a specific exposure. Several enzyme families (oxidases, reductases, 

etc.) participate in the biotransformation of pesticides. However, individual differences 

(genetic variations, polymorphisms) in the genes encoding these enzymes exist. For example, 
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in the enzymes that help detoxify pesticides, such as paraoxonase (PON1), cytochrome P450 

(CYP) and glutathione transferases (GST). As a consequence, different metabolic capacities 

can be developed, reducing, their activity, and effectiveness against xenobiotics.[143, 144, 

146].  

1.7.1.1 Glutathione transferase (GSTs) 

The human cytosolic GSTs are a superfamily of multifunctional and ubiquitous enzymes, 

which are classified into eight families (alpha, kappa, mu, pi, sigma, theta, zeta, and omega). 

Since GSTs are enzymes that act in phase II of the metabolic detoxification process, protecting 

the cells from attack by environmental carcinogens, ROS, and chemotherapeutic agents, 

genetic variants of the GSTs may impact the elimination and detoxification of pesticides [144]. 

A commonly studied genetic variant of GSTs is the null genotype of GSTM1 and GSTT1, this 

is a partial deletion of the gene, which leads to a total loss of enzyme activity. The null 

frequencies are usually measured by specific multiplex PCR and analyzed by electrophoresis 

[147, 148]. GSTM1 and GSTT1 null genotypes have been associated with an increased risk of 

developing some specific cancers, such as gallbladder and gastric cancer, in people 

occupationally exposed to pesticides such as OPs, CBs among others [149, 150]. This risk 

further increases when there is a combination of GSTM1 and GSTT1 null genotype and 

especially depending on the ethnicity and the exposure to certain genotoxic pesticides [151, 

152]. 

 

Concerning GSTs and genotoxicity, an increased susceptibility to induction of DNA damage 

was observed in Indian farm workers exposed to different mixtures of pesticides with GSTM1 

null, and especially with GSTT1 null genotype, compared with the non-null genotype [153]. A 

Bolivian study showed that farmers with GSTM1 null genotype had a non-significant 1.39-fold 

increased risk of having higher genotoxic damage compared with those with active GSTM1 

[148]. Another study performed among Italian farmers showed that subjects with GSTM1 null 

genotype displayed an increase of the GSTT1 activity after exposure to pesticides, suggesting 

some interaction between the regulation of GSTs [154].  

 

1.7.2 Biomarkers of exposure 

Biomarkers of exposure are measurements of internal substances (parent compound itself, or 

its metabolites) and thus reflect internal manifestations that may result from exposure to 

chemicals or toxicants. Measures of the internal dose can be made in biological samples such 

as blood, urine, breast milk, or breath level of a chemical. The exposure biomarkers most 
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commonly monitored, typically reflect only those exposures occurring during the last 24 – 48 

h [144, 155].  

During the past years, many studies have been performed to investigate the levels of exposure 

to pesticides in different populations. However, each pesticide has a different half-life, some of 

them are quickly excreted during the first 24 h (short half-life e.g. OP), making biomarker 

measurements a challenge. On the other hand, some pesticides have the property of 

bioaccumulation in the fatty tissues and are persistent in the body during long periods of time. 

This is the case of OCPs with a slow elimination rate that can be measured in human breast 

milk and adipose tissue among others. For example, a systematic review performed in 2015, 

revealed that the amounts of OCP in human breast milk in Asian, African, and South American 

countries were higher than those of European countries [32]. However, the elimination rate of 

pesticides in blood for many other pesticides, such as OPs, CBs, and pyrethroids, is quite fast 

and may represent a lower concentration than what was truly absorbed by the body [144, 145].  

For these reasons, probably, the most common measurement for pesticide metabolites is 

analyzed in urine samples.  

1.7.2.1 Urine pesticide metabolites (UPMs) 

Metabolites of certain pesticides excreted in urine have been used as a biomonitoring measure 

of exposure in different countries [156-158]. This is a simple, non-invasive, and quick to 

analyze technique, which only requires a sample of the first urine in the morning or a 24 h urine 

collection. UPMs as biomarkers of exposure should be selective for each pesticide or group of 

pesticides measured. For example, OPs are hydrolyzed in six dialkylphosphates (DAPs), 

pyrethroids metabolites that are excreted in the urine are 3-PBA, DCCA, F-PBA, and DBCA, 

among other pesticide metabolites [159]. However, UPMs have to be stable, without any 

artifactual formation of the measured compound [160]. Many studies have been performed for 

detecting exposure to pesticides using UPM. For example, a study showed an evident reduction 

of lung function in a Canadian population in correlation with high concentrations of urine 

pyrethroids metabolites[161]. Another study found 2.5 times higher UPM levels of OP 

pesticides in pregnant women living in an agricultural area compared to the US general 

population [98]. Moreover, another study using UPM performed in adults from Shandong, 

China showed a wide exposure to chlorpyrifos in farmers compared with non-exposed urban 

adults [162].  
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1.7.3 Biomarkers of effect 

Biomarkers of effect identify changes in biological function caused in response to exposure to 

chemicals or agents. These biomarkers are more directly related to the health effects that can 

potentially cause, such as chronic diseases. [144]. Unlike biomarkers of exposure that are 

mostly specific for exposure chemicals, biomarkers of effect are often nonspecific for the 

substance in question. This feature may suggest that they have a strong ability to reflect 

complex exposures, such as mixtures of pesticides, and therefore, they should also be able to 

include sequential and summative exposures over time. On the other hand, its use in complex 

exposures could also be used to identify active components in mixtures as a consequence of 

combined exposures and also to identify the adverse effects that this mixture can cause [163]. 

For example, changes in the hemoglobin synthesis and other hematological effects have been 

found in populations exposed to OCPs [164]. In other studies, the inhibition of AChE has been 

observed in farmers and their children exposed to OP pesticide [165, 166]. Moreover, products 

of oxidative DNA damage can be used for biomonitoring. For example, a positive correlation 

between oxidative stress biomarkers (8-OH-G levels, malondialdehyde, and isoprostane) and 

oral exposure to mixtures of OP pesticides was found in male farmers [167]. 

 

1.7.4 Biomarkers of genotoxic effects 

These biomarkers are usually considered the first biological changes as a consequence of a 

carcinogenic process. They can be measured for human biomonitoring usually in lymphocytes 

of peripheral blood using two gold standard techniques: the comet assay and the cytokinesis-

block micronucleus cytome assay [168]. There are also other methods for detecting DNA 

damage. Quantification of DNA adducts can be done at target organs for monitoring external 

exposure and can integrate measurements of the effects of factors like absorption, distribution, 

metabolic activation, and/or DNA repair [169]. Another example is the measurement of 

γH2AX which also was used in the present thesis in vitro. The two gold-standard assays and 

γH2AX measurements are described in more detail below.  

1.7.4.1 Comet assay 

The comet assay is a fast and sensitive technique, used to detect DNA strand breaks in 

individual cells, in response to DNA damaging agents [170]. The single-cell gel electrophoresis 

(SCGE) or the alkaline comet assay is well-known for measuring genomic stability changes, 

being one of the most accepted techniques by many governmental regulatory agencies. Since 

2014, the OECD guidelines included the comet assay as a part of the assays for testing 
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chemicals (Test No. 489) [171]. The test detects SSBs and DSBs, alkali labile sites, and DNA 

cross-linking in individual cells [139, 172]. In a study performed in Brazilian farmers exposed 

to mixtures of pesticides a statistically significant increase in strand breaks was found in 

comparison with the control group [113]. In two studies performed by How et al. in 2015, and 

Carbajal et al. in 2016, were shown that chronic exposure to OPs and pesticide mixtures among 

farmers increased the level of strand breaks 2-fold in comparison with the non-exposed groups 

[173, 174].  

1.7.4.2 The cytokinesis-block micronucleus cytome (CBMNcyt) assay 

This is a powerful tool for the measurement of chromosomal aberrations. Micronuclei (MN) 

refers to a third nucleus or more formed during the metaphase/anaphase transition of mitosis 

after chemical exposure, as a result, one of the daughter cells doesn’t have a part or all 

chromosome [143]. Nuclear abnormalities such as MN, nuclear outbreaks (NBUD), and 

nucleoplasmic bridges (NPB), are manifestations of chromosomal instability that are 

commonly observed in cancer, which is why they are considered biomarkers with a genotoxic 

effect. These abnormalities provide measurements of poorly repaired DNA breaks, defective 

sister chromatid separations, absence or dysfunction of telomeres, formation of repair 

complexes, and DNA amplification. [175]. As examples, high frequencies of MN and other 

nuclear abnormalities were detected in Brazilian, Mexican, and Bolivian farmworkers exposed 

to mixtures of pesticides [148, 174, 176]. Moreover, studies and reviews performed by 

Bolognesi et al in 2016 and Bonassi et al in 2011, showed that a high frequency of MN in 

peripheral blood lymphocytes was associated with an increased risk to develop cancer in 

populations occupationally exposed to pesticides compared with their respective control [177, 

178]. Additionally, a recent study showed that soybean farmers who were working with long-

term exposure to low levels of complexes mixture of pesticides showed significantly increased 

levels of MN compared with the control group [115]. 

1.7.4.3 γH2AX 

Histone 2AX (H2AX) is a key protein in the activation of DNA damage response and DNA 

repair. H2AX is activated by phosphorylation, named  γH2AX, by several kinases in response 

to DNA damage such as DNA adduct and strand breaks [179]. The induction of γH2AX can 

be visualized as foci by immunocytochemistry and is one of the earliest events detected 

following exposure to DNA damaging agents [180]. γH2AX has been used as a real-time 

method to image DNA damage, for biomonitoring DNA damage in cancer treatment in vivo. 

In a study performed by Cornelissen et al., anti-γH2AX probes were used as a non-invasive 

imaging method to monitor DNA damage using a mouse xenograft model of human breast 
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cancer treatment [181]. Besides, Sak et al., have shown high sensitivity of γH2AX in in vitro 

radiations, summarizing the possibilities of using γH2AX as a clinical biomarker during 

radiotherapies such as the monitoring of drug effects on DNA damage responses pathways 

after in vivo drug exposure and a subsequent in vitro radiation [182]. Moreover, since the risk 

of exposure to complex mixtures is difficult to estimate. In order to improve health risk 

assessment, researchers have been measured in HepG2 cells, the additive effects of binary 

exposure to complex mixtures of polycyclic aromatic hydrocarbons (PAHs) with other 

mixtures in urban air PM extracts (e.g. dibenzo[a,l]pyrene and benzo[a]pyrene). Their results 

showed the effective use of γH2AX in the DNA damage signaling and DNA damage response, 

and concluded that γH2AX can be used as a biological marker for analyses of complex mixtures 

of PAHs [183, 184]. Therefore, the γ-H2AX assay could represent an effective approach for 

quantifying DNA damage by pesticide exposure.  
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2 AIM OF THE STUDY 

The overall aim of this project was to evaluate the correlation between exposure to pesticide 

mixtures and genotoxicity for the population in Bolivia. The specific aims of the included 

studies were as follows: 

- To characterize the lifestyle factors, handling, and exposure to pesticides in a Bolivian 

agricultural population (Paper I).  

 

- To investigate the correlation between exposure to pesticides, genetic susceptibility, 

and genotoxic effects in a Bolivian agricultural population (Paper II). 

 

- To determine possible mixture effects for genotoxic damage of commonly used 

pesticides in our studied Bolivian population (Paper III). 
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3 METHODOLOGIES 

This thesis combines epidemiological studies to show the effects of the mixtures of pesticides 

in the studied populations (papers I and II), and in in vitro studies in order to improve the 

understanding of possible effects of those mixtures using human liver HepG2 cells (paper III). 

This chapter provides an overview of the different methodologies used in the three papers.  

 

3.1 PAPER I AND II 

3.1.1 Design and study areas  

Paper I and II had a cross-sectional study design based on populations of three agricultural 

communities of Bolivia. Taking into account that cross-sectional studies can be done at one 

determined point of time and the fact that the obtained data can be used to create new theories 

or hypotheses, this design fits perfectly in this thesis, making the first approach to study the 

pesticide exposure and their effects on this population. 

The study was carried out in three agricultural Bolivian communities where, according to the 

Bolivian census, 65 - 79% of the population is farmers [63, 185]. Sapahaqui (Com1) located at 

3134 m above sea level in the second municipal section of Loayza province in the Department 

of La Paz, Villa Bolivar and Villa 14 de Septiembre (Com2 and Com3, respectively) at 200 m 

above sea level in the third municipal section of the Chapare Province in the Department of 

Cochabamba (Figure 2). Their agricultural production is based mainly on vegetables, citrus, 

and other kinds of fruits [63]. 
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Figure 2. Map of Bolivia and the three farming communities studied. Sapahaqui (Com1) 

located in La Paz, Villa Bolívar (Com2) and Villa 14 de Septiembre (Com3), both located in 

Cochabamba. 

 

3.1.2 Participant recruitment and ethical considerations 

The study population was recruited for participating in the project with the help of health 

promoters and local government authorities who were previously contacted by our team. They 

organized meetings where the people were informed orally about the project and after that, 

people (farmers and no farmers) who were interested in participating booked a date for being 

included in the study. Once the dates were fixed, our team traveled to the communities to 

perform the fieldwork, and we informed them again about the project and our aims. Each 

participant voluntarily signed informed consent and a copy of the information sheet was given 

to them. They were informed about their right to leave the study at any time they wanted. 

People who were included in the study were women and men with an age range of 17-70 years 

old who had lived in the area at least five years ago. These ages represent years that farmers, 

in general, are active in Bolivia. In total, 297 people participated in the study.  

Ethical permits were obtained from the national ethics committees of Bolivia and Sweden, and 

the study was conducted following the principles of the Helsinki Declaration. An individual 

code was assigned to each participant and the original data was saved in a place where only the 

principal investigators have access to the identifiers. 
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3.1.3 Evaluation of pesticide exposure 

In order to get an overview of the pesticide exposure situation in the three communities, we 

combined two sources of information. The first was by collecting information using an 

exposure survey, where the most frequently used pesticides, among other questions, were 

assessed. The second source was by collecting urine samples for measuring pesticide 

metabolites. Both methodologies are explained in the next pages. 

3.1.3.1 Exposure survey 

To characterize the exposure situation concerning lifestyle factors and behaviors related to the 

use and handling of pesticides, face-to-face interviews were done by trained members of the 

staff from the Genetic Institute at Mayor of San Andres University (UMSA) in La Paz City, 

Bolivia. A survey based on a questionnaire employed previously in Bolivian farmers [65, 186] 

with some modifications for the current study was applied. The survey contained closed- and 

open-ended questions related to their general personal information and lifestyle, use of 

pesticides, and PPE and with a special section aimed at women’s health. Besides, questions 

related to acute health effects and chronic diseases by pesticides were included. 

3.1.3.2 Collection of urine samples and urine pesticide metabolite analysis 

We collected spot samples of the first urine in the morning in empty sterile polypropylene 

containers. These were given to the participants the day before the sample collection with some 

hygienic recommendations for avoiding contamination. The urine samples were collected 

before the start of the interview, aliquoted, stored at -18 °C, transported to the Genetic Institute, 

UMSA, La Paz City, Bolivia, and then shipped to Lund University in Sweden to the Division 

of Occupational and Environmental Medicine, where concentrations of ten UPMs were 

analyzed. The samples were adjusted for the degree of dilution, in this case by urine creatinine. 

The measured UPMs (Table 1) were 3-phenoxybenzoic acid (3-PBA), the sum of cis/trans 3-

(2,2-dichlorovinyl)−2,2-dimethylcyclopropane carboxylic acid (DCCA), chloro-3,3,3-

trifluoro-1-propen-1-yl]−2,2-dimethylcyclopropanecarboxylic acid (CFCA) and 4-fluoro-3-

phenoxybenzoic acid (4F3PBA) for measuring pyrethroids, 2,4-dichlorophenoxyacetic acid 

(2,4-D) and 4-chloro-2-methyl phenoxy acetic acid (MCPA) for measuring phenoxy 

herbicides, hydroxy-tebuconazole (TEB-OH), 5-hydroxytiabendazole (5-OH-TBZ) and 3-

hydroxy-pyrimethanil (OH-PYR) for measuring fungicides, and 3,5,6-Trichloro-2-pyridinol 

(TCP) for measuring the organophosphate chlorpyrifos. Briefly, using a β-

glucuronidase/arylsulphatase, the urine samples were de-conjugated and prepared with solid-

phase extraction. Following a modified method and using a liquid chromatography-triple 
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quadrupole linear ion trap mass spectrometer, a quantitative analysis was performed [160, 187]. 

Limits of detection (LOD) were 0.10 ng/mL for all the metabolites except for 5-OH-TBZ that 

was 0.05 ng/mL. For metabolites in which concentrations were under LOD, LOD/2 was used 

for statistical analysis. 

Table 1. Urine pesticide metabolites analyzed in the thesis 

UPM Pesticide(s) Chemical family Type of pesticide 

2,4-D, 

MCPA 
Phenoxy herbicides Phenoxy acetic acid Herbicide 

TCP Chlorpyrifos Organophosphate Insecticide 

3PBA, 

DCCA 

Cypermethrin, 

Permethrin, and 

Cyfluthrin 

Pyrethroid Insecticide 

4F3PBA, 

CFCA 

Bifenthrin and 

Cyfluthrin 
Pyrethroid Insecticide 

5-OH-TBZ Thiabendazole Benzimidazole Fungicide 

OH-PYR Pyrimethanil Aminopyrimidine Fungicide 

TEB-OH Tebuconazole Triazole Fungicide 

 

3.1.4 Evaluation of metal exposure 

Most people from rural areas in Bolivia do not have access to clean drinking water, many of 

them have to drink water from different natural sources such as the nearest river, underground 

water, and/or spring water [185]. Since previous studies showed that some parts of Bolivia have 

high levels of metal in surface and groundwater [188, 189], 20 urine samples from farmers that 

claimed to consume groundwater from a well or water from the river were selected for metal 

analysis. Samples were analyzed at the Institute of Environmental Medicine, Karolinska 

Institutet, Sweden by using Agilent 7700x Inductively Coupled Plasma Mass Spectroscopy 

(ICP-MS) [189, 190] (Agilent Technologies, Tokyo, Japan), which is capable of detecting 

metals at very low concentrations, equipped with an ORS collision/reaction cell to minimize 

spectral interferences. Concentrations of cadmium (Cd), lead (Pb), and arsenic (As) were 

determined and normalized using the urinary density.  
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3.1.5 Evaluation of genotoxic damage and glutathione transferase 

polymorphism 

3.1.5.1 Collection of blood samples  

On the day of the interview two whole blood samples were taken, one in heparin and the other 

in EDTA vacutainer tubes with approximately 3 mL for each tube. After the respective 

codification, samples were stored at 4 °C and transported to the Genetic Institute, UMSA, La 

Paz City, Bolivia. Within 20 h of collection, the samples were subjected to different techniques 

for genotoxicity and genotyping assessment. 

3.1.5.2 Alkaline comet assay in peripheral blood lymphocytes 

The comet assay can be applied to any cell type, detecting biomarkers of interest such as single- 

and double-strand breaks or DNA repairing capacity in its alkaline version [170, 191]. Briefly, 

isolated single cells (lymphocytes) were embedded in agarose and then lysed with lysis solution 

and non-ionic detergent for removing their cell membranes and all cell contents except the 

DNA attached to a nuclear scaffold. Next, the nucleus was treated with a high alkaline solution 

(pH ≥ 13) for unwinding the supercoiled DNA. Subsequently, electrophoresis was run, and 

undamaged DNA sequences remain closer to the nuclear scaffold, and DNA breaks migrate 

towards the anode, resembling the shape of a comet. To minimize artifactual DNA damage, 

the whole procedure was performed in dimmed light and ethidium bromide was used for 

staining the samples. Thereafter, using specific software, 100 comets were scored from each 

sample and evaluated based on the length of DNA migrated in tail, expressed as a percentage 

of DNA in tail, tail length, and tail moment. The most recommended parameter generally is the 

percentage of DNA in tail for being easy to interpret [192]. 

3.1.5.3 Cytokinesis-block micronucleus (CBMN) assay 

The application of this assay in lymphocytes is a well-known technique for measuring 

chromosomal damage. Using morphological criteria, the CBMN assay makes possible the 

detection of genotoxic and cytotoxic effects, such as MN that originated from chromosome 

breaks or whole chromosome loss that lag during nuclear division. Other chromosomal 

aberrations that can be measured are NPBs that show DNA misrepair or telomere end-fusions, 

NBUDs that show elimination of amplified DNA and/or DNA repair complexes. This 

technique also allows for measuring cytostatic effects and cytotoxicity (cell division inhibition, 

and necrosis and apoptosis respectively) [175, 193, 194]. MN must be scored after nuclear 

division in binucleated cells that are in the telophase stage and using cytochalasin-β for 
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blocking the cytokinesis allows for this. Many studies have shown that MN formation is a good 

predictor of cancer risk because it is associated with early events in carcinogenesis [178, 195]. 

Here, whole blood samples were cultivated for 72 h in medium with phytohemagglutinin M, 

antifungal, and antibacterial solutions at 37 °C. Cytochalasin-β was added after 44 h. 

Lymphocytes were collected and a hypotonic solution was added for swelling the cytoplasm, 

after that, samples were washed in fixative methanol and loaded on microscope slides. 

Subsequently, slides were stained with Giemsa for microscopic evaluation. The scoring was 

done on 1500 binucleated lymphocytes per sample following scoring recommendations [193, 

196].  

3.1.5.4 Genetic variants of glutathione transferases 

In paper II, following a protocol described by Abdel-Rahman et al. with modifications by 

Tirado et al. [147, 148], the frequency of GSTM1 and GSTT1 polymorphisms were analyzed 

using a multiplex PCR approach. The following PCR primers were used: GSTM1, 5′-

GAACTCCCTGAAAAGCTAAAGC, and 5′-GTTGGGCTCAAATATACGGTGG; GSTT1, 

5′-TTCCTTACTGGTCCTCACATCTC, and 5′-TCACCGGATCATGGCCAGCA. As an 

internal control, exon 7 of the CYP1A1 gene (312 bp) was co-amplified using primers 5′-

GAACTGCCACTTCAGCTGTCT and 5′-CAGCTGCATTTGGAAGTGCTC. 

Electrophoresis was then performed with ethidium bromide stain, and the scoring was 

evaluated by the presence or absence of bands at 480 (GSTT1) and 215 (GSTM1) bp, 

respectively.  

 

3.1.6 Use of text mining for analyzing mode of action 

Text mining is a useful tool that helps researchers to reduce the searching literature time-

consuming process by classifying abstracts, of the desired chemical(s), by their similar 

toxicological profiles for being assessed in groups rather than as a single compound. To analyze 

the literature related to the measured pesticides, the text mining tool CRAB3 

(http://crab3.lionproject.net) was employed. This is an automated text-mining tool used to 

identify information on the carcinogenic mode of action (MOA) for any chemical of interest. 

The carcinogenic taxonomy covers non-genotoxic and genotoxic MOAs and can thus be used 

as a support in risk assessment and for grouping chemicals [197, 198]. Since our study 

population used and were exposed to a large number of pesticides that were classified as 

possible carcinogenic to humans by IARC [199] and US EPA [200], we used CRAB3 to get a 
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better understanding of the carcinogenic MOA of the measured pesticides. With that in mind, 

the 10 most frequently used pesticides were analyzed and from the 14,214 abstracts found in 

PubMed, 30% were relevant for the classification of genotoxic and non-genotoxic MOAs. 

Based on these abstracts, and in agreement with reports published by IARC and US EPA, the 

most common carcinogenic MOAs associated with pesticides were mutations, cell 

proliferation, and oxidative stress. Applying an assessment score found a slightly higher 

proportion of genotoxic and non-genotoxic MOA for pesticides found in Com3, especially for 

cell proliferation and oxidative stress, compared with the other two communities. 

 

3.1.7 Statistical methods 

For the population study, an Excel database was created where all the information was collected 

and codified. All the participants were assigned with an individual number (code) to avoiding 

the use of names. Once all the questions and answers were codified (variables dichotomic or 

continuous), the database was transferred to Statistical Package for the Social Sciences 

software (SPSS Statistics 25) for statistical analysis. The choice of statistical tests was based 

on the central limit theorem, which allows the use of parametric test when the sample size is 

large enough to consider that the sample means are approximately normally distributed (usually 

n ≥ 30). Our sample sizes ranged from 30 to 297. Accordingly, we used Student's t-test or one-

way ANOVA with Dunnett's or Bonferroni's test for multiple comparisons. Significances were 

determined with a p ≤ 0.05.  

To test if there was an association between the use of PPE and the handling of pesticides and 

the risk of exposure to pesticides, a score called “protection and handling index” (PHI) was 

created. The PHI score was based on international recommendations for the use of PPE and 

handling [52, 201], and the use of a PPE or following recommendations was assigned a point. 

For example, if the person was using an overall while spraying, they were given 3 points. The 

maximum point was 16 and represented the use of recommended PPE and best behavior (Table 

2). For the statistical analysis, if the score obtained by an individual was above the median, 

they were classified as well-protected.  
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Table 2. Values for calculating the PHI score. 

Variable Farmer answer Points 

Overall Yes 3 

No 0 

Hat Yes 1 

No 0 

Mask/Scarf Yes 1 

No 0 

Boots Yes 1 

No 0 

Gloves Yes 1 

No 0 

Glasses Yes 1 

No 0 

Apron Yes 1 

No 0 

Pesticide information source Read labeled information/Agricultural engineer 1 

Own experience/Pesticide seller 0 

Amount of pesticide used in 

each application 

Recommended amount 1 

Doesn't measure at all 0 

Chew coca meanwhile 

spraying 

Yes 0 

No 1 

Change spraying clothes Yes 1 

No 0 

Storage spraying clothes Outside the house separately 1 

With all other clothes inside the home 0 

Wash clothes for spraying Separately 1 

With all other clothes 0 

Storage pesticides and 

equipment 

Outside the house 1 

Inside the house 0 

 

To classify the level of exposure, individuals who had UPM concentrations above the 75th 

percentile were classified as highly exposed. The testing was performed by logistic regression 

and including confounding factors (gender, age, BMI, source of drinking water, and 

geographical area) to reduce the bias in our study. Confounders were selected based on expert's 

knowledge. 

To analyze if exposure to pesticides was associated with an increased risk of genotoxic damage, 

linear (Pearson) and logistic regression were applied. As above, the exposure levels were 

classified as high if UPM concentrations were above the 75th percentile. Similarly, individuals 
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with levels of genotoxicity above the 75th percentile were classified as having increased levels 

of genotoxic damage.  

To test if we could identify typical profiles of pesticide exposure and if they were associated 

with an increased risk of genotoxic damage, the UPM data were clustered using Ward’s 

hierarchical linkage. All 10 UPMs were included and exposure was classified as binary being 

either below or above 75th percentile. As a result, 8 clusters were identified, wherein cluster 0 

was included all the participants with lower exposure levels to any pesticide (< 75th percentile), 

and for that reason, it was used as the reference category. After that, logistic regression and 

one-way ANOVA with Dunnett's testing were used to analyze the resulting clusters.  

 

3.2 PAPER III 

3.2.1 Pesticide selection criteria and mixture compositions 

The exposure assessments in papers I and II showed that Bolivian farmers were highly exposed 

to some pesticides. Based on those results, and to study possible mixture effects of the most 

common pesticides, eight of the most frequently used and those found at highest urinary 

concentrations were chosen to be tested alone or as mixtures in vitro (Table 3). Except for 

paraquat and glyphosate that were diluted in deionized sterile water, dimethyl sulfoxide 

(DMSO, 99%, from Sigma Aldrich) was used for diluting all pesticides. Single pesticides were 

tested at up to 0.1 mM except for glyphosate, which was tested up to 0.07 mM due to lower 

solubility. Four mixtures were made, three of them were prepared to represent typical 

community exposure profiles (mixtures U1, U2, and U3) and one mixture was based on the 

overall most frequently used pesticides (mixture S1) (Figure 3). For all the mixtures, 

cypermethrin was selected as a representative of all the pyrethroids (e.g. bifenthrin, cyfluthrin, 

cypermethrin, and permethrin). The sum of concentrations was used in all experiments. The 

same approach was recently used for assessing the genotoxicity of pesticide mixtures identified 

in the diet of the French population in HepG2 cells [202, 203]. All mixtures were used at up to 

1 mM except mixture S1 whose maximum concentration was 0.2 mM due to solubility issues 

with paraquat.  
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Table 3. The pesticides tested in vitro. 

Source of information Pesticides CAS numbera 

UPM 2,4-D 94-75-7 

Chlorpyrifosb 2921-88-2 

Cypermethrinb 52315-07-8 

Tebuconazole 107534-96-3 

Survey Glyphosate 1071-83-6 

Methamidophos 10265-92-6 

Paraquat 75365-73-0 

Profenofos 41198-08-7 
aAll the pesticides were PESTANALTM analytical standard, with purity ≥ 90% and purchased 

from Sigma-Aldrich. 
bPesticides found in both sources of information (UPM and survey). 

 

 

 

Figure 3. Overview of the prepared pesticide mixtures. The pie charts show the relative 

proportion of each pesticide.  
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3.2.2 Cell model 

3.2.2.1 HepG2 cells 

Pesticides and all kinds of xenobiotics can enter the body through many routes. The oral route 

is one of the most important for the general population, and exposure through dermal 

absorption and inhalation probably the most important for occupational settings. As motivated 

below, we choose to use an in vitro model based on liver cells rather than skin cells or 

lymphocytes.  

After oral exposure, these substances are absorbed by the intestines, transported via the 

bloodstream to the liver, where the hepatocytes carry out biotransformation reactions that are 

essential for the detoxification process [204-206]. Biotransformation has also been shown to 

be important for some of the toxic effects associated with exposure to pesticides, such as the 

production of reactive oxygen species (ROS) [121, 122]. One of the most common liver cell 

lines to study toxicity in vitro is the human hepatocellular carcinoma HepG2 cells. These cells 

were chosen based on their metabolic competence and because the genotoxicity of many 

classes of environmental carcinogens, including pesticides, have been extensively studied in 

this cell line [207-209]. Also, and because genotoxicity was one of our main interests, 

activation of DNA damage signaling through phosphorylation of Chk1 at Ser-317 (pChk1) and 

H2AX at Ser-139 (γH2AX) in HepG2 cells has been shown to be good markers for genotoxic 

and carcinogenic potency of environmental pollutants including polycyclic aromatic 

hydrocarbons [184, 210]. 

HepG2 are epithelial cells derived from the liver tissue of a young 15-year-old Caucasian male 

[211]. These cells were purchased from the American Type Culture Collection (Rockville, MD, 

USA). Cell culture was performed in Minimum Essential Medium (MEM), supplemented with 

10% fetal bovine serum, penicillin (100 units/ml), streptomycin (0.1 mg/ml), sodium pyruvate 

(1 mM) and non-essential amino acids (0.1 mM) all from Gibco by Life Technologies, 

Stockholm, Sweden. Cells were kept at 5% carbon dioxide / 95% air in an incubator at 37 °C. 

 

3.2.3 Evaluation of cell viability 

3.2.3.1 Alamar blue assay 

The Alamar blue assay is one of the most referenced cytotoxicity assays. The assay is based on 

the capacity of healthy cells to maintaining their reducing environment converting resazurin 



 

 33 

which is a blue non-fluorescent dye to resorufin that is a highly fluorescent pink dye [212]. 

Cells with conserved metabolic activity convert resazurin to resorufin, therefore the 

fluorescence and the color change of the media can be detected by measuring the increasing 

fluorescent signals at excitation wavelength 530-560 nm and emission wavelength 590 nm. 

This is a highly sensitive assay that provides time-course measurements, is permeable through 

cell membranes, and can be used with different cell models. Alamar blue is considered safe for 

the user and the environment since it is not toxic or radioactive. One of the disadvantages of 

this technique is a possible fluorescence interference that can be detected from the currently 

tested compounds. This technique can also be used as a cellular proliferation assay since the 

health status of the cells can be assessed based on the cell number and their metabolic activity 

[213].  

 

3.2.4 Evaluation of reactive oxidative species generation 

3.2.4.1 DCFH-DA assay 

The evaluation of intracellular reactive oxidative species (ROS) was measured through the 

dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. This is a low-cost assay, easy to use, 

highly sensitive to redox state changes of the cell and the changes in ROS can be followed over 

time [214]. DCFH-DA is de-acetylated to DCFH2 and converted to DCFH anion by 

intracellular hydrolyzation, this compound subsequently can be oxidized by intracellular ROS 

to DCF. DCF is a fluorochrome that can be detected with fluorometric techniques after 

excitation with blue light (around 488 nm) which emits green light (around 525 nm) that can 

be measured by a plate reader. The technique can react with alkoxyl, hydroxyl, peroxyl, and 

carbonate radicals and with hydrogen peroxide, but cannot distinguish which type of ROS is 

detected [215, 216].  

 

3.2.5 Evaluation of gene expression 

3.2.5.1 Real-time PCR 

One variant of the polymerase chain reaction (PCR) is the real-time PCR (RT-PCR) which can 

be used for measuring expression levels of genes of interest. Briefly, total RNA was isolated 

from cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany). This kit avoids the use of 

hazardous reagents such as phenol or chloroform and minimizes DNA and protein 
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contamination when purifying RNA. Using a Nanodrop platform, total RNA was quantified, 

and quality checked. Subsequently, total RNA was used to generate cDNA using a reverse 

transcription kit (Applied Biosystems, Foster City, CA, USA) following protocol. Using 

SYBR® green qPCR Master Mix with detection on a QuantStudio 5 Real-Time PCR System 

(both from Applied Biosystems) gene expression was analyzed using specific primers for 

oxidative stress (SOD1, CAT1, GPX1, and HMOX1) and DNA damage response (CDKN1A) 

genes and with GAPDH as a housekeeping gene. SYBR Green is a fluorescent dye with the 

property of binding to all newly synthesized double-strand DNA at each round of amplification. 

The fluorescence will accumulate and measured at the end of every PCR cycle. The amount of 

fluorescence is proportional to the quantity of double-strand DNA in the reaction (given as a 

CT value). Relative gene expression quantification was performed based on the comparative 

threshold cycle method (2−ΔΔCt) [183, 217]. Also, a melting curve analysis can be used for 

confirming the specificity of the RT-PCR reaction, discriminating between primer-dimers and 

false amplification due to contamination. 

 

3.2.6 Evaluation of genotoxicity 

3.2.6.1 Mini-gel comet assay 

The mini-gel comet assay used the same method described above for the human samples, but 

3 samples (gels) were loaded onto one single microscope slide, giving the same reliability as 

the classic alkaline comet assay but saving time. In short, after exposure, trypsin was used for 

harvesting the cells, hydrogen peroxide was used as a positive control (25 µM) and the mini-

gel comet assay was performed following the protocol described by Di Bucchianico et al [218, 

219]. Samples were fixed with methanol and stained with SYBR® green. The scoring was 

performed as described above for paper II.  

3.2.6.2 Western Blot 

Protein immunoblot or Western Blot, is an important technique for the immunodetection of 

proteins, especially proteins that are at low abundance [220]. This immunoassay uses specific 

antibodies to identify proteins in an electrophoresis gel that has been separated by their size. 

Then the gel is placed next to an absorbent membrane of nitrocellulose or PVDF 

(polyvinylidene fluoride) where the proteins are transferred by an electrical current by 

migration, which is known as western blotting or protein blotting. Furthermore, the membrane 

is processed with specific antibodies of interest, and using secondary antibodies and detection 



 

 35 

reagents the proteins can be visualized [220]. Here, primary antibodies from rabbit were used 

against Chk1 phosphorylated at Ser-317 (pChk1, 1:300 in 5% BSA), H2AX phosphorylated at 

Ser-139 (γH2AX, 1:500 in 5% BSA), and the endogenous control Cdk2 (1:4000 in 5% of milk). 

Secondary rabbit antibodies were prepared following manufacturer recommendations for 

pChk1 (1:1000), γH2AX (1:1000), and CDK2 (1:10000) all diluted in 5% milk. Immediately 

an X-ray film cassette was prepared and exposed films/membranes to enhanced 

chemiluminescence (ECL). Films were developed in a dark room, after that the densitometric 

band analysis was performed to convert qualitative band intensities into quantitative 

information [183, 221].  

 

3.2.7 Statistical methods 

GraphPad Prism 8 (GraphPad Software LLC) was used for all the statistical analyses. At least 

three independent experiments were done, for all the techniques, and mean values and standard 

errors were determined. Non-linear regression was used to determine EC50 values for the 

Alamar Blue assay. One-way ANOVA was used for finding significances and Dunnett’s or 

Kruskal-Wallis’ tests were applied for multiple comparisons between exposures and the 

reference control. 
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4 RESULTS AND GENERAL DISCUSSION 

4.1 POPULATION STUDIES IN PAPER I AND II  

4.1.1 Population characteristics 

A total of 297 people participated in the study, 130 women (44%) and 167 men (56%). Many 

of the participants were farmers (94%, n = 275) and had been working in the field for eight 

years or more. We could see that women to a higher degree than men were doing other activities 

not related to farming (non-farmers). In general, we did not find big differences in the 

population's characteristics among the communities. In agreement with previous studies 

performed in agricultural communities in other LMICs [222, 223], the education level in this 

population was low, 62% had only gone to primary school, and 12% never went to school. This 

was especially observed among women. According to the international guidelines concerning 

BMI measurements [224], a larger number of women were obese (BMI ≥ 30, 33%) compared 

to the men. None of the participants were heavy smokers or drinkers, but cigarettes and alcohol 

consumption were more frequent among men. Since the municipal water access is limited in 

some parts of Bolivia [225] and there is evidence that the water of some natural resources 

contains traces of metals [189], only 39% of our studies population could buy clean water in 

bottles and/or have access to municipal water. As a result, the majority used water from other 

sources like the nearest river, spring, or underground water for drinking and cooking.  

 

4.1.2 Usage and handling of pesticides and PPE 

We found that farmers in all 3 communities used a large number of different pesticides. 75% 

of the farmers mixed at least two pesticides for spraying the same crop. Methamidophos, 

paraquat, and glyphosate were the most commonly applied pesticides (Figure 4). Com2 and 

Com3 used paraquat and glyphosate more often, while Com1 applied chlorpyrifos and 

profenofos to a larger extent. Since Com2 and Com3 are located in the tropical area of Bolivia, 

farmers sprayed more than 20 days per month. In comparison, farmers in Com1, which is 

situated in a temperate region, only sprayed 2 to 10 days per month. Men sprayed more days 

per month and more hours per day than women. Notably, 26% claimed not to measure the 

amount of pesticide used for spraying.  
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Figure 4. Some of the most commonly used pesticides in the three communities. 

 

For applying pesticides, the FAO recommends that around 85% of the body should be covered 

with recommended PPE [52]. Here, only 17% of the farmers were well protected according to 

FAO criteria. Additionally, most of them only used one piece of clothing as PPE (41%), and 

most commonly a hat (76%) (Figure 5A). By comparison, women were less protected than 

men. Furthermore, only 59% of the farmers claimed to store the pesticides, PPE, and the rest 

of the equipment outside their houses.  

Even though the FAO states: do not bury or burn pesticide containers as a disposal method 

[226], some pesticide traders and some Integrated Pest Management (IPM) trainers inform the 

farmers that burning small quantities of pesticide containers is allowed [73]. Consequently, 

burning was the most common way to get rid of the empty pesticide containers. It is well known 

that empty containers of pesticides abandoned in the environment can pollute the environment, 

implying a risk for human health [227]. Notably, 27% of the farmers stated that they throw the 

empty containers in the closest river, probably affecting the water quality (Figure 5B).  
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Figure 5. (A) Frequency of clothing as PPE. (B) Frequency of final disposal of pesticide 

containers. 

 

4.1.3 Health effects related to exposure to pesticides 

Since these are agricultural communities, crops grow close to the farmers’ living areas. 

Consequently, 75% of the participants stated that they had felt pesticide odor around their 

houses. When asked if the farmers had experienced any health effects while or after they were 

applying pesticides, 80% of the farmers claimed to have been experienced one or several 

symptoms at least at one occasion, and especially women. More seriously, 52% reported having 

had at least three different symptoms that can be classified as acute pesticide poisoning. 

Headache was the most common, followed for burning eyes, dizziness, and red skin. Notably, 

women had experienced more APP symptoms than men, and especially in Com2. This finding 

was in accord with that only 4% of the women wore recommended PPE. Similar results and 

frequencies of APP were reported in Brazil, Spain, and northern Thailand, where neurological 

symptoms were the most common acute health effects after spraying pesticides [75, 228, 229]. 

Farmers in Thailand also reported a higher frequency of acute dermal effects compared with 

other symptoms [230]. These effects are expected when PPEs are not used as recommended 

but also depend on the type of pesticides that are applied. 

Similar to other studies on women in farming communities [231, 232], against all the 

recommendations and probably due to lacking training, 31% of the women reported having 

sprayed pesticides while breastfeeding and 36% during pregnancy. Possibly, as a result, almost 

50% of the women reported having had at least one miscarriage. These frequencies are much 

higher than the official reports from the Bolivian health authorities in 2015, which reported 

only 14% and 22% of miscarriages in La Paz and Cochabamba respectively [233]. Besides, 

17% of them reported having delivered a child with a malformation/stillbirth. 
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4.1.4 Exposure assessment and relationship between PHI score and risk of 

high pesticide exposure 

UPM analyses showed that the farmers were highly exposed to chlorpyrifos and 2,4-D. When 

the data were compared between men and women, significantly higher concentrations of 

pyrethroids metabolites (3PBA), 2,4-D, and pyrimethanil (OH-PYR) were found in men and 

for cyfluthrin (4F3PBA) and thiabendazole (5-OH-TBZ) in women. Farmers in Com3 showed 

the highest concentrations of 2,4-D, which agreed with what was reported about the use of this 

pesticide in this community. High levels of chlorpyrifos were also observed in people who had 

worked < 3 years as farmers in comparison with those who had worked for ≥ 8 years. This 

suggests that less experienced farmers may be more exposed to some pesticides while spraying 

compared to the more experienced farmers.  

Farmers from Com1 showed a higher PHI score in comparison with the other two communities. 

Importantly, we found a reduction of risk of high pesticide exposure among farmers with a high 

PHI score for most of the pesticides. However, a significant protective effect was only shown 

for chlorpyrifos and cyfluthrin. This effect was also observed when the model was adjusted for 

gender and age. Likewise, in a study performed in Canadian farmers exposed to phenoxy 

herbicides, significantly lower urinary concentrations of 2,4-D were found because of the use 

of PPE in comparison with those farmers who did not use it [234]. However, in the same study, 

an association between higher urinary levels of MCPA and the use of complete PPE was found 

but in a very small number of farmers [234]. These results are also in agreement with what we 

found here with chlorpyrifos which rather indicated an increased risk of exposure among 

farmers who were better at following PPE recommendations. With these results, we confirmed 

the necessity of education and training in handling pesticides and the use of proper protection, 

not only for the Bolivian farmers but also for farmers in LMICs, in order to decrease exposure 

levels and harmful health effects produced by pesticides. 

 

4.1.5 Influence of population characteristics and farming activities on levels 

of genotoxic damage 

The results showed that women and participants over 42 years had higher levels of genotoxic 

damage. Age and gender were also correlated with high levels of DNA damage in other studies, 

concluding that those differences should be due to the DNA repair capability and differences 

in lifestyle factors [235, 236]. Men who were smokers showed higher levels of DNA strand 

breaks compared to female smokers. Although many studies showed an association between 
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alcohol consumption and a higher frequency of MN in peripheral lymphocytes [237], an 

opposite effect was found in this study. People who used to drink water from other sources but 

not from municipal water or water in bottles had higher levels of DNA strand breaks. This 

effect can probably be explained by the fact that some participants used to drink water from the 

river or underground water where many farmers claimed to dispose of the empty bottles or 

remains of pesticides [238].  

Farmers from Com1 and Com3 were found to have higher levels of DNA strand breaks and 

MN frequencies compared with Com2. A possible explanation of that finding, and in 

agreement with other studies, could be that farmers in Com2 were younger compared with the 

other two communities, showing clearly the effect of the age and thus lifestyle factors and DNA 

repair capability [235, 236]. Also in agreement with other studies performed in non-farming 

populations [62, 239], our results showed that participants not actively spraying had similar 

levels of DNA damage to farmers who were spraying. Farmers who were actively working for 

8 years or more showed a higher frequency of MN in comparison with farmers with fewer 

years actively working on the farm. This was most likely due to a higher age in the former 

group.  

 

4.1.6 Associations between pesticide exposure and levels of genotoxic 

damage 

The results revealed higher levels of DNA strand breaks in participants highly exposed to 

tebuconazole, 2,4-D, and cyfluthrin (UPM levels ˃ 75th percentile). Comparable outcomes were 

shown in farmers exposed to some OPs but in oral leukocytes and sperm of Polish and 

American men [240-242]. High exposure to cyfluthrin was also associated with a high 

frequency of NBUDs (p < 0.001). Additionally, similar results were found for tebuconazole 

and cyfluthrin in in vitro studies performed in peripheral lymphocytes [243, 244]. No other 

significant associations were found between genotoxic damage and high exposure levels for 

the other pesticides. 

Logistic regression analysis between DNA strand breaks, MN frequency, and exposure levels 

was performed to assess the impact of high exposure to pesticides on the risk of having 

increased levels of genotoxic damage (> 75th percentile). The model was adjusted for age, 

gender, smoking, and alcohol consumption. The results showed a significantly increased risk 

for tail moment (OR = 1.99, CI: 1.10 – 3.60), and a borderline significant result for %DNA in 

tail (OR = 1.74, CI: 0.96 – 3.17) for 2,4-D. An increased risk of DNA strand breaks (OR ˃ 1) 
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was also observed for tebuconazole and chlorpyrifos. This result was also found for 2,4-D and 

MN formation. In the recent classification on 2,4-D by IARC, it was concluded that oxidative 

stress is a likely important mechanism for the observed genotoxicity [245]. Although not 

studied here, the induction of oxidative stress was likely behind the strong observed correlation 

between exposure to 2,4-D and genotoxicity in our study. But we also have to consider that 

these farmers were not only exposed to one single compound but many other pesticides at the 

same time. The impact of exposure to mixtures is presented below.  

Contrary to other researchers who showed genotoxic effects by pyrethroids in human 

peripheral blood lymphocytes [246, 247], here surprisingly, high exposure levels of pyrethroids 

(3-PBA) were associated with lower levels of DNA strand breaks. Similarly, high exposure 

levels of cypermethrin and permethrin (DCCA) was associated with a reduced risk of high 

levels of DNA damage (OR = 0.49 %DNA in tail; OR = 0.53 tail moment). The US EPA in 

1988 [200], has classified cypermethrin in group C, as possible human carcinogen. Other 

studies have shown the genotoxic effect of cypermethrin in CHO cells and in organs and tissues 

of mice [248-250]. A systematic review of studies on cancer risk in humans from 2018 

concluded that permethrin does not imply a risk of cancer in humans [251]. This protective 

effect found here for the pyrethroids must be interpreted with caution since the UPM most 

likely reflects an acute exposure, probably only from the day or days before the sampling. For 

that reason, more studies are needed to clarify this association. 

 

4.1.7 Impact of exposure to pesticide mixtures on levels of genotoxic damage 

The analysis of the exposure clusters showed that all clusters except cluster 3 displayed 

increased levels of DNA strand breaks compared to the control cluster 0. Participants included 

in cluster 7, which was mainly dominated by exposure to pyrethroids and one organophosphate 

(51% 4F3PBA, 27% of DCCA, and 18% TCP), displayed significantly higher levels of DNA 

strand breaks compared with cluster 0. This result was in accordance with the significant 

association that we found between cyfluthrin (4F3PBA) and DNA strand breaks. Since the 

logistic regression analysis for 2,4-D showed a significantly increased risk of genotoxic 

damage, it was not surprising that cluster 2, which was dominated by 2,4-D (80 %), showed an 

increased risk for genotoxic damage for DNA strand breaks (OR of 2.94, 95 % CI: 1.12–7.73). 

In contrast, all the clusters had similar or lower MN frequencies and with ORs ≤ 1, compared 

with cluster 0 (Figure 6). These results indicated a clear association between high exposure 

levels to some pesticides with increased DNA strand breaks but not with increased 
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chromosomal aberrations. Similar findings have been shown by other studies, suggesting that 

this effect could be a result of effective cellular repair mechanisms that respond to DNA 

damage (e.g. DNA strand breaks), reducing severe mutagenic effects such as micronuclei 

formation that can lead to malignant transformation of the cells [252, 253]. 

 

Figure 6. Associations between pesticide mixture exposures (by clusters) and risk of genotoxic 

damage. ORs for DNA strand breaks (A) %DNA in tail and (B) Tail moment. (C) ORs for 

chromosomal aberrations – Micronucleus. 

 

4.1.8 Influence of GST genotypes on levels of genotoxic damage 

Previous studies showed an association between an increased risk of genotoxic damage in 

farmers exposed to pesticides and null genotypes of GSTM1 and GSTT1 [149, 254, 255]. We 

found that 54% were GSTM1 null and 69% GSTT1 positive in our populations. Like other 

studies performed in occupational workers exposed to OPs and mixtures of pesticides in India 

[255, 256], higher levels of DNA strand breaks were found in individuals with GSTM1 null 

genotype than in those with GSTM1 positive genotype. Even though individuals with GSTT1 

null genotype also had higher levels of DNA strand breaks, they were not statistically 

significant compared with GSTT1 positive. Moreover, the frequency of MN in both genotypes 

was higher in the positive individuals compared with the null genotypes, this was observed 

especially for GSTM1. This phenomenon was also found in a meta-analysis and other studies 

performed in South American countries and is probably due to the ability of GSTs to activate 

some chemicals into more reactive compounds [113, 148, 257]. Our results confirm that in 

order to reduce the risk of developing cancer, it is important to identify individuals who carry 

a GST null genotype, especially when they are occupationally exposed to environmental 

pollutants, such as pesticides [150]. 
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4.2 IN VITRO STUDIES IN PAPER III 

4.2.1 Induction of cytotoxicity and oxidative stress 

The results showed a clear concentration-dependent reduction of HepG2 cell viability in 

response to most pesticides. Paraquat, methamidophos, and tebuconazole were the most potent 

pesticides with EC50 values of 0.25, 0.30, and 0.42 mM, respectively. Similar EC50 values were 

detected in other studies in HepG2 cells and other human cell lines for these three pesticides 

[258-260].  For the mixtures, the results showed that U3 was the only mixture that caused a 

significant reduction of cell viability and at its highest dose (74%, 1 mM). Since none of the 

mixtures caused a > 50% reduction of cell viability, EC50 values were not determined. 

We found that the single and mixtures of pesticides neither affected the intracellular ROS 

induction nor transcription levels of genes involved in oxidative stress response (SOD1, CAT1, 

GPX1, and HMOX1). Even though paraquat previously has been used as a positive control to 

induce ROS formation [261, 262], it did not induce increased levels of ROS formation in this 

study. However, similar negative results were found in other studies when different human 

lung cancer cells were exposed to similar or lower concentrations of paraquat [259, 263]. Other 

studies, in human and animal cell lines, have shown that pesticide mixtures (e.g. different 

pyrethroids) may induce oxidative stress and/or neurotoxicity in a dose-dependent manner 

[264-266]. A remarkable finding here was that although we used concentrations below the EC50 

for all the pesticides and mixtures, paraquat, profenofos, and mixture U3 caused ROS levels 

lower than what was observed for the DMSO control in response to their highest doses, which 

can suggest some type of cellular stress that was not detected with the viability assay.  

Our results and the contradicting results found in published articles suggest that induction of 

ROS and oxidative stress in response to pesticides most likely depend on the time of 

exposure, concentration applied, and the type of cell model used and should thus be taken 

into consideration when planning in vitro experiments and interpreting results.  

 

4.2.2 Activation of DNA damage signaling 

Levels of pChk1 and γH2AX were determined 6 and 24 h after exposure, showing different 

time- and dose-dependent activations. At the earliest time point, the levels of pChk1 were 

increased by cypermethrin, paraquat, and tebuconazole. At the later time point, the levels of 

pChk1 were sustained for cypermethrin but increased up to 10-fold for paraquat in comparison 

with the control. The same effect was not found for tebuconazole, which seemed to provoke 
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only a transient activation of signaling. Also, at 24 h the highest concentration of profenofos 

(0.1 mM) induced high levels of Chk1 up to 5-fold. Very few studies have looked at the 

activation of Chk1 in response to pesticides. Huang et al. showed a concentration-dependent 

activation of Chk1 in response to the herbicide atrazine in normal human breast epithelial cells 

(MCF-10A) [267]. For γH2AX, all the pesticides caused a stronger induction at 24 h compared 

with the earlier time point. The induction of γH2AX was also stronger than for pChk1. At the 

late time point, paraquat and profenofos caused a concentration-dependent increase. Strong 

γH2AX induction has previously been shown in human lymphocytes exposed to glyphosate in 

vitro and in mammalian cells exposed to cypermethrin and paraquat [268-270]. In agreement 

with our observations, Huang et al. reported that activation of Chk1 by atrazine also was 

associated with increased levels of γH2AX [267]. Despite many in vitro studies have 

demonstrated the expression of γH2AX in human cells exposed to different xenobiotics [210], 

few studies have validated this biomarker in human populations. One study performed in an 

Indonesian population exposed to high natural radiation and other performed in Danish-twins 

aged 40 – 70 years reported a higher expression of γH2AX with non-significant differences or 

associations in gender or age [271, 272], concluding that more studies must be done for having 

better results and conclusions, On the other hand, in vivo studies performed in rats, have 

concluded that γH2AX is an ideal biomarker for genotoxicity testing [273, 274].  

Since the single pesticides in general induced a stronger DNA damage response 24 h after 

exposure, all the mixture experiments were performed at this time point. The lowest 

concentration of mixture U2 and the highest concentration of S1 caused a significantly 

increased activation of pChk1. Similar to what we observed for the single pesticides, mixtures 

induced a stronger response for γH2AX compared with pChk1. γH2AX showed an evident 

dose-dependent increase in response to the mixtures U2, U3, and S1. We did not expect to have 

such a strong effect from mixture U3, since 2,4-D, which is the more abundant pesticide in this 

mixture (61%), did not induce γH2AX activation in vitro by itself. Other in vitro studies found 

that the combined effect of different pesticides can induce higher levels of γH2AX compared 

to single pesticides and probably due to the interaction effects of the pesticides [202, 275]. This 

could explain the strong effects observed here with mixture U3. Moreover, we found that the 

highest doses of paraquat (0.1 mM) and mixture S1 (0.2 mM) were the only exposures that 

induced gene expression of CDKN1A (Figure 7). These findings agree with the observed effects 

on pChk1 and γH2AX by the same compounds. Similar results for CDKN1A were found in a 

study performed on human lung A549 cells exposed to paraquat [259]. Together, these results 

suggest that even though some single pesticides are well-known genotoxicants, the combined 

effect of the pesticide mixtures may not always be predicted.  



 

 45 

 

Figure 7. Gene expression analysis of CDKN1A at 24 h in response to (A) Paraquat and (B) 

mixture S1 (Data shows mean SE, n = 3) **p ≤ 0.01, p ≤ 0.0001.  

 

4.2.3 Induction of genotoxic damage 

Based on the DNA damage signaling results we tested paraquat, cypermethrin, tebuconazole, 

profenofos, and the 4 mixtures for their ability to induce DNA strand breaks. Single pesticides 

were tested at 6 and 24 h, and mixtures at 24 h. All the mixtures and the single pesticides 

induced a dose-dependent DNA damage increase (%DNA in the tail) at one or both time points. 

Paraquat was the most potent genotoxicant, its highest concentration induced up to 25-fold and 

30-fold increase of DNA damage levels compared with DMSO at the two-time points, 

respectively (Figure 8). A significant increased effect was also caused by cypermethrin with its 

highest dose at the later point. Other in vitro and in vivo studies have reported that cypermethrin 

and profenofos can cause DNA and chromosomal damage [250, 276, 277]. Comparing the 

early with the later time point, DNA damage levels were either maintained or increased in 

response to all the pesticides but tebuconazole. This suggests that DNA damage induced by 

tebuconazole was more efficiently repaired in comparison with the other pesticides. This is 

further supported by our western blot results, which showed a transient activation of pChk1. In 

agreement, based on negative findings for cancer, genotoxicity, and mutagenicity in vivo and 

in vitro studies, tebuconazole was classified as non-genotoxic by the EFSA and WHO/IPCS 

[278, 279].  

In agreement with what we observed for γH2AX in response to the mixtures, we observed a 

significant increase in the levels of DNA damage in response to the highest concentrations of 

mixtures U2 and S1 (Figure 8). The potent effect of S1 can probably be explained by the 25% 

of paraquat present in its composition since paraquat is considered as highly toxic and has 

classified as a possible carcinogen by the US EPA [200]. Moreover, in vitro and in vivo studies 

performed with paraquat have shown an induction of strand breaks and base modifications as 
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a consequence of oxidative damage to DNA [280, 281], Even though mixture U3 induced high 

levels of γH2AX, this was not associated with a significant DNA damage increase. Since 

mixture U1 did not show a strong activation of DNA damage signaling or induction of 

genotoxic damage, this mixture was considered as the least genotoxic of the mixtures.  

 
Figure 8. DNA damage at 24 h in response to (A) Paraquat and Cypermethrin and (B) mixtures 

U2 and S1 (Data shows mean SE, n = 3) **p ≤ 0.01.  

 

In paper II we reported that farmers belonging to Com3 had the highest levels of DNA strand 

breaks and micronuclei in peripherical lymphocytes followed by farmers from Com1 and 

Com2. The contradictory in vitro results for mixture U3 that we found here, could probably be 

explained by the limited number of pesticides that were combined in the mixture in vitro, which 

was based on UPM detection and probably not reflecting the real exposure levels/composition. 

Another explanation could be the fact that we are comparing two different studies, one in vitro 

in human liver cells, where all the variables were under control, and the other in vivo on 

peripheral human lymphocytes from exposed farmers, where many uncontrolled variables 

could have interacted, thus affecting the results in a positive or negative way. However, these 

in vitro results may provide guidelines for continuing to investigate the different mechanisms 

involved in this field and to use them as a basis for future studies. 
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5 CONCLUSIONS 

This thesis had the aim of biomonitoring the agricultural Bolivian population to assess if there 

was a correlation between exposure to pesticide mixtures and genotoxicity. Therefore, 

population and in vitro studies were performed in order to achieve this objective. The most 

important findings in this thesis can be divided into population and in vitro findings.  

From our population results we can conclude that (i) the Bolivian agricultural community is 

highly exposed to mixtures of hazardous pesticides which could constitute a major health risk, 

(ii) the low use of PPE and the mishandling of pesticides constitute major determinants for high 

exposure to pesticides, and (iii) high exposure to some pesticides might cause an increased risk 

of genotoxic damage among Bolivian farmers. One additional crucial conclusion is the 

importance of education and training in the use of pesticides in LMICS such as Bolivia. In 

general, we found that farmers who were better at following recommendations for handling 

pesticides and the use of PPE had a significantly lower risk of being highly exposed to 

pesticides. Due to the necessity of a practical and easy to understand information about PPE 

and handling of pesticides, we designed a short brochure explaining these points. The brochure 

was distributed for free to all the participants of our study and to who was interested (see 

appendix).  

Because both natural and artificial substances are mixed and interact in the environment, people 

are rarely exposed to single substances. Due to the possible combined action of these 

substances in the body, the toxic effects they may cause can be difficult to assess in populations. 

To mimic similar exposure scenarios as observed in populations, and to study possible mixtures 

effects, the use of in vitro studies is a good option.  

Based on this, we carried out our in vitro studies, from which we can conclude that: (i) we 

confirmed and demonstrated the in vitro genotoxicity induced by common pesticides used in 

agricultural Bolivian populations and worldwide, (ii) the role of oxidative stress as a 

mechanism of DNA damage induction was not confirmed by our results, even though it was 

proved by other studies. This effect could be due to that we could not include all the pesticides 

that the population is really exposed to or the choice of cell model. (iii) Similar to our 

population study, we can conclude that some pesticides may act as drivers of toxic effects in 

our pesticide mixtures. This was clearly reflected in the mixture which contained paraquat in 

its composition, which was shown to be the most genotoxic mixture.  
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Besides these conclusions, I would like to emphasize that most of the studies about mixtures 

of pesticides and risk assessment approaches were based on the additivity effect, contrary, other 

studies have suggested the presence of a non-additive effects. Even though the additive or non-

additive effects induced by mixtures were not studied in this thesis, our results can be used as 

a motivation for further studies. 

Finally, the results of this thesis demonstrate that in vitro and population studies can be 

combined to support to each other in order to obtain a better understanding about the 

mechanisms of human health-effects from exposures to potentially harmful agents including 

mixtures of pesticides.  
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great professional. Good luck with everything Adhe!... Marianela, my tender little friend. It's 

amazing how compatible we are. We understand each other very well. Thank you for all our 

good times in Stockholm and Göteborg. I do wish you all the best Nelita, my brave friend!  
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To my Bolivian group "Los Huevos Revueltos" (former and current SIDA Ph.D. students), 

thanks for sharing many pleasant moments facing this adventure in the Scandinavian lands. We 

have placed the name of our country on the top because we are good people and good 

professionals. Thank you, Mariel and Monica, for our nice dinners, parties, and our "Día de 

Comadres". Thanks, Jerry, Jhonny, Luis, and Fabian for our nice parties, travels, and after-

works. Skål!... I wish you all the best, wherever you decide to stay. Enrique Mejia, thanks for 

your advice, nice talks, and for supporting our right to get back to the Bolivian sea! ...hahaha. 

Diana, thanks for your friendship, I like the way that you are, Mexican style... I hope to see 

you in Bolivia, my friend! 

Finally, the most important people in my life, I would like to thank my family: Daniel, my son, 

thank you for waiting for me. I am sorry that I have not been there for you during these years, 

but I know that you will understand that I had to do this because it was part of my personal 

growth. You will face something similar in the future and I will be there for supporting you. 

Thanks to my mother, Arminda, for loving me so much, for being responsible for all my duties 

in Bolivia, and even for taking care of my son. Words are not enough to express how grateful 

to you I am. Gracias mamá!... Gustavo, my brother, thank you for always being there and for 

supporting our family in the way that you do. I love you all. Now we will be together again! 

 

Tack så mycket till alla! 

 

Jessika 
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