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ABSTRACT 

Air pollution is one of the major risk factors to human health, causing both short- and long-term 

effects and the global burden on mortality is estimated in more than 4 million deaths every year. 

Most of the evidence on the short-term effects is based on studies conducted in major cities, 

because data or estimates of air pollutants exposures in non-urban settings have been historically 

lacking. This is a limitation, because a large fraction of the population lives outside the cities, 

where the vulnerability profile is different from that of urban populations. 

In the last decade, several attempts were made to estimate daily concentrations of particulate 

matter (PM) with high spatial resolution over large geographical domains. However, 

applications in Italy and Sweden, and on other pollutants as nitrogen dioxide (NO2) and ozone 

(O3), are almost lacking, leaving a gap in the knowledge of their health effects outside cities. 

This thesis has been designed to fill this gap, by providing daily estimates of multiple air 

pollutants at the national level, and exploring the spatial heterogeneity in their health effects. 

Italy represented a testing ground for the development of innovative mixed-effects regression 

models which combined PM measurements with satellite data, land-use parameters and 

meteorological fields, and produced daily estimates of PM10 (PM with diameter smaller than 10 

m) for each squared kilometer of the country, and each day in 2006-2012 (Study I). More 

recently, machine learning methodologies have been tested in the U.S., therefore, we have 

updated estimates of PM10 till 2015 and produced new estimates of PM2.5 (PM < 2.5 m), using 

a random forest (RF) algorithm (Study II). We replicated the same approach in Sweden, to 

which we added models for NO2 and O3, and a few spatiotemporal predictors aimed at capturing 

sources of air pollutants’ variations missed in the previous studies (Study III). 

We collected national data on hospital discharges for all Italian public and private hospitals 

during 2013-2015. We created municipality-specific time-series of daily counts of acute 

admissions for multiple cardiovascular (CVD) endpoints, which we related to daily mean PM10 

and PM2.5 concentrations. We found evidence of adverse effects of PM on total CVD admissions 

and on specific outcomes such as heart failure and atrial fibrillation. Also, we estimated highest 

effects at the lowest PM concentrations, also in non-urban municipalities (Study IV). 

Similarly, we collected daily mortality counts at small area level in the Stockholm county, that 

we analyzed in relation to daily mean exposure to PM10, PM2.5, NO2 and O3. We found evidence 

of an association between daily O3 and non-accidental mortality in the year-round analysis, and 

significant associations with PM and O3 in the warm (April-September) period only. Effects 

were slightly higher in more densely inhabited areas, but we found associations also in non-

urban areas outside the Stockholm city (Study V). 

In conclusion, we developed novel spatiotemporal models to estimate air pollutant 

concentrations at fine spatial and temporal resolution in Italy and Sweden. These allowed us to 

document adverse short-term effects on mortality and morbidity at very low concentrations and 

in areas (and among populations) previously neglected by epidemiological investigations.  
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 INTRODUCTION 

Air pollution is recognized as one of the major risk factors to human health. The most recent 

update of the Global Burden of Disease compared 84 behavioral, environmental and 

occupational risk factors in terms of attributable mortality and disability-adjusted life-years lost 

globally, and ranked ambient air pollution as the 10th leading cause of mortality (Stanaway et al. 

2018). Similarly, the World Health Organization (WHO) has estimated more than 4 million 

deaths as attributable to ambient air pollution every year worldwide (Prüss-Ustün et al. 2016). 

Epidemiological investigations of the adverse health effects of air pollution have a long history, 

tracing back 70 years when the first documented macroscopic episodes of air pollution peaks 

were related to mortality in Donora, U.S. in 1948 (Schrenk et al. 1949) and in London in 1952 

(Logan 1953). Only a few decades later, however, researchers realized that even small 

concentrations of air particles and gases might trigger adverse effects in the general population 

(Ostro 1984). In this period the first time-series studies were designed, initially in single cities in 

the U.S. and Europe (Hatzakis et al. 1986; Schwartz and Marcus 1990), then in multiple locations 

(Biggeri et al. 2001; Katsouyanni et al. 1996; Samet et al. 2000). Concurrently, the first cohort 

studies started to test the hypothesis that not only daily peaks but also chronic exposures to air 

pollutants might cause adverse effects in the long term (Dockery et al. 1993; Pope et al. 1995). 

Despite the abundance of scientific evidence produced in the last 50 years, there is still 

uncertainty, if not skepticism (Goldman and Dominici 2019), on the causal role of air pollution 

in deteriorating human health or triggering acute responses in the body. This is partially 

attributable to the complexity of understanding the spatial and temporal variability of different 

air pollutants, a necessary requisite to properly attribute exposures to individuals and populations 

in the epidemiological studies. 

Most of this thesis will focus on this aspect, namely what are the driving forces of the spatial and 

temporal distribution of air pollutants across large geographical domains, how these components 

can be represented by proxy variables in order to define suitable exposure models, and why such 

spatiotemporal exposures are relevant for epidemiological investigations. Along the thesis, the 

major challenges about the definition of spatiotemporal exposure models, and the design of 

epidemiological studies for evaluating short-term effects, will be presented and discussed. 

 

1.1 AIR POLLUTANTS 

The air we breathe contains a complex mixture of solid, liquid or gaseous compounds. 

Broadly speaking, air pollutants in the solid phase are called “particles”, and are usually 

classified on the basis of their size into PM10 (particles with aerodynamic diameter smaller than 

10 m, sometimes called “inhalable” particles), PM2.5 (particles smaller than 2.5 m, also called 

“fine” particles), PM2.5-10 (particles between 2.5 and 10 m in diameter, referred to as “coarse” 

particles), and UFP (“ultrafine particles”, particles ≤ 0.1 m). Different particles have different 

physical and chemical properties, and are originated by different sources. For example, UFP and 

PM2.5 in urban environments are mostly of primary origin, i.e. they are directly generated by 
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anthropogenic sources such as industrial activities, motor vehicles and domestic heating. In 

contrast, fine particles in non-urban areas are mostly secondary, meaning that they are generated 

by chemical reactions involving gaseous precursors such as sulfur dioxide, nitrogen oxides 

(NOx), ammonia, and volatile organic compounds (VOCs). Finally, coarse particles are mostly 

of primary origin, composed by sea salt and crustal materials, and, in cities, brought by long-

range transportation patterns or originated by mechanical processes of dust resuspension. 

Nitrogen dioxide (NO2) is a gaseous air pollutant composed of nitrogen and oxygen derived from 

burning fossil fuels (coal, oil, gas or diesel) at high temperatures. Therefore, the largest sources 

of ambient NO2 are motor vehicles and industrial plants, and NO2 concentrations are highest in 

urban and industrial areas, and lowest in rural and remote settings. 

Tropospheric ozone (O3) is a highly reactive component of the photochemical air mixture. In the 

stratosphere it protects the earth by shielding it from the ultraviolet radiations emitted by the sun. 

However, at ground level, it is an oxidant air pollutant generated by photochemical reactions of 

NOx and VOCs and can be harmful to human health. It displays an inverse relationship with 

NO2, because, near combustion sources, the directly emitted nitrogen oxide reacts with O3 

producing NO2 and depleting ozone, while away from the sources NOx emissions and VOCs 

react, increasing O3 concentrations. 

 

1.2 SPATIAL AND TEMPORAL VARIABILITY OF AIR POLLUTANTS 

Air pollutants vary in space and time as a consequence of the distribution of their sources and 

the prevalent meteorological conditions. 

The source profile of air pollutants is different between urban and non-urban areas. In cities, 

anthropogenic sources are the most relevant ones, and each pollutant (or fraction of PM) can be 

dominated by a specific mixture of sources. Exhaust emissions from vehicular traffic, non-

exhaust emissions from tires and brakes erosion or dust resuspension, heating of domestic or 

commercial buildings, emissions from industrial activities, are the main contributors to urban air 

pollution. These sources can be highly variable across space (i.e. vehicular traffic) and display 

long-term, seasonal and weekly time trends mirroring human activities. As a consequence, while 

data on measurements of the sources can be difficult to retrieve, proxy variables of vehicular 

traffic (i.e. road network or average traffic load by road type), domestic heating (i.e. resident 

population by small areas) and industrial emissions (i.e. distance from the closest industrial site) 

can be easy to access and might represent valid surrogates. Outside the cities, natural sources 

and long-range transport patterns are the main drivers of air pollution variability, and proxy 

variables of land cover, combined with satellite retrievals and orography/altitude parameters can 

be extremely useful to capture the main spatial contrasts in air pollutants. 

Synoptic weather conditions and atmospheric dynamics influence the amount of pollution in the 

atmosphere (Beaver and Palazoglu 2009; Dayan and Levy 2005; Demuzere et al. 2009; Russo 

et al. 2015). For example, conditions of thermal inversion (when a layer of cool air lies below 

one of warmer air) prevent emissions from dispersing and pollutants build up under the 

inversion. On the other hand, single meteorological variables also influence air pollution 
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concentrations, transformation and chemical reactions (Csavina et al. 2014; Shenfeld 1970; 

Zhang et al. 2015). Temperature and sunlight (solar radiation) for example play a key role in the 

chemical reactions occurring in the atmosphere. Solar radiation is required for the photochemical 

production of oxidants forming smog. Precipitation has a scavenging effect in washing out 

particles in the atmosphere. Finally, humidity and water vapor are involved in many thermal and 

photochemical reactions in the atmosphere. The amount of water vapor in the atmosphere 

depends, in fact, by proximity to water bodies and by wind direction and air temperature. Finally, 

wind velocity, turbulence and stability of the atmosphere may affect the transport, dilution and 

dispersion of air pollutants. 

 

1.3 MODELS FOR EXPOSURE ASSESSMENT 

Modelling spatial and temporal variability of air pollution for epidemiological studies remains a 

challenging task. Initial studies relied on averages of monitoring stations as proxies of individual 

exposure, and focused on comparisons between locations (Dockery et al. 1993; Pope et al. 1995). 

However, it was soon realized that within-city variability was larger, and more related to health 

effects, than between-city differences (Eeftens et al. 2012; Miller et al. 2007), therefore new 

methods based on monitors were introduced, such as proximity to monitors and geo-statistical 

approaches for spatial interpolation. More recently, satellite retrievals have been exploited for 

two main reasons: first, they allowed to cover geographical areas previously neglected because 

of lack of data, such as rural and remote settings; second, they provided a fine temporal resolution 

to capture not just spatial but also daily variation. Land-use regression (LUR) techniques have 

had an exponential growth in the last three decades, because they present several advantages: 

first, they are trained on observations; second, they are fairly easy to apply with conventional 

statistical software; third, they allow to increase the spatial resolution of the final estimates by 

incorporating predictors at fine scale. Concurrently, dispersion and chemical transport models 

have been sometimes used in epidemiological applications as a valid alternative, as they 

provided fairly good approximations of air pollution fields over space and time, especially for 

air pollutants with limited spatial variability. In the last years, “hybrid” or “ensemble” models 

have been introduced, the idea being to exploit the relative advantages of some of the previous 

methods by averaging more of them, sometimes using complex machine learning statistical 

methodologies. 

1.3.1 Monitor-based approaches 

The approximation of individual or population exposure by use of an average of monitors 

common to all subjects within a location, or the closest monitor to the receptor point (residential 

address), have the clear advantage of simplicity, but make the assumption that exposure does not 

vary over space, or that monitors are representative of the mean exposure of the general 

population. This is reasonable in short-term epidemiological studies conducted in small cities 

with several monitoring stations, because day-to-day contrasts in exposures are likely to be 

similar in different places and well captured by the available sampling points. In practical terms, 

it can often be the only option when health data (mortality or hospitalizations records, for 
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example) are available at the city level, with no detail on individual addresses or small-area 

classifications. 

Approaches based on spatial interpolation, such as ordinary kriging (Künzli et al. 2005) and 

inverse-distance weighting (IDW)(Beelen et al. 2008), have been used to overcome some of the 

limitations mentioned above. These are quite easy to implement but have the limitation of 

producing over smoothed surfaces of exposure, with negative consequences on the resulting 

health effects estimates. 

1.3.2 Satellite data 

Satellite retrievals are an appealing source of information to complement monitoring stations 

and to capture spatial and temporal variability of air pollutants, because they are virtually 

available everywhere every day, with fine enough spatial and temporal resolution to design 

proper epidemiological studies for short-term and long-term health effects. The main limitations 

of satellite retrievals are the discrepancy between columnar estimates and ground-level 

concentrations, the interference of clouds and water bodies, and the complexity of downloading 

and processing huge amount of spatiotemporal data. 

Depending on the pollutant, different products from different sensors are available at different 

spatial resolutions. In this thesis, the main parameter of interest has been the “aerosol optical 

depth” (AOD), a measure of the light extinction from particles suspended in the column of air. 

Put it simply, the more light is absorbed/refracted by suspended particles, the less it reaches the 

sensor, which translates this information into a parameter, AOD, directly proportional to the 

number of particles present in the column of air, from ground to the atmosphere. AOD is 

currently measured both from the moderate resolution imaging spectroradiometer (MODIS) 

onboard the NASA Terra and Aqua satellites, and onboard the ESA Sentinel satellite. However, 

historical data are available only from the former. 

Columnar NO2 and O3 are measured by the ozone-monitoring instrument (OMI) on board the 

Aura satellite. These estimates, however, are less useful because they are provided at a coarse 

spatial resolution, not sufficient to capture the highly variable NO2 concentrations in urban 

environments. For ozone, also, these are less useful because of the interference from the high 

concentrations in the stratosphere, which limit the possibility to estimate ground-level 

concentrations with accuracy.   

1.3.3 Land-use regression 

The first application of a land-use regression (LUR) model dates back to 1997 (Briggs et al. 

1997). Since then, their use has grown exponentially (Nieuwenhuijsen 2015). LURs are 

statistical regression models which combine observations from a limited set of monitors with 

land-use variables defined using geographic information system (GIS) techniques. First, a 

statistical relationship is established between such variables, generally chosen as representative 

of air pollution sources, and the measured concentrations at specific sampling points. Then, the 

same variables are computed at receptor points (individual addresses or centroids of a fixed grid), 

and the model output is predicted there, so obtaining estimates of air pollutants exposures at each 
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point. Key aspects for a good LUR model are: a) the number and positioning of sampling points, 

which should cover a large variability of the target pollutant; b) the definition of a large set of 

explanatory variables, capturing different sources at fine spatial resolution; c) the strategy for 

variable selection, which should be inclusive of all the main sources, but not too much, in order 

to avoid “overfitting” of the data; and d) the strategy for cross-validation, aimed at checking the 

performance of the model on external points.  

In most cases, LURs have been developed in specific cities to represent long-term (e.g. annual) 

average concentrations, and represented good approximations of chronic exposures to 

investigate long-term effects in prospective cohort studies (Beelen et al. 2014; Cesaroni et al. 

2013). More recently, temporal covariates have been incorporated in the models, with the effort 

to modulate the spatial contrasts over time, and obtaining estimates for each day to be related to 

short-term health effects (Vedal et al. 2013; Yanosky et al. 2014). In addition, conventional 

multivariate regression models have been replaced by more flexible approaches based on 

machine learning, such as random forests (Hu et al. 2017), extreme gradient boosting (Chen et 

al. 2019), support vector machines (Leong et al. 2020) and neural networks (Di et al. 2016).  

The appealing features of LURs are the simplicity of application and the high spatial resolution 

of the final outputs. The main limitation is the extrapolation of the model output, often based on 

few sampling sites, to many receptor points, sometimes in the order of hundreds of thousands 

(Basagana et al. 2013), with the inevitable consequence of introducing measurement error in 

exposures, and bias and/or imprecision in the health effects estimates (Gryparis et al. 2009). 

1.3.4 Dispersion models 

Dispersion and chemical transport models represent a shift in paradigm compared with LURs, 

because they, rather than establishing statistical relationships with observations, try to model the 

dispersion of emissions from source to receptors using deterministic approaches. They have been 

historically used for regulatory and monitoring purposes, with some applications in 

epidemiology (Cesaroni et al. 2013; Nyberg et al. 2000; Raaschou-Nielsen et al. 2012). They 

can provide outputs with very high temporal (hourly) and spatial (few meters) resolutions, 

however they are computationally intensive and require a high level of expertise, generally 

beyond the scope of epidemiological researchers. In addition, they are not based on 

measurements, therefore their results rely on the correctness of the assumptions behind the 

mathematical formulas, although recently it has become common practice for modelers to 

combine actual measurements with theoretical formulas, by use of “data assimilation”. 

1.3.5 Hybrid approaches 

The latest generation of models to predict spatial and temporal variability in air pollutants is the 

one of “hybrid” or “ensemble” approaches, which acknowledge the pros and cons of the previous 

methods, and try to exploit their full potential by averaging them or use some of them as predictor 

variables for others. For example, satellite data have been often used in LURs as covariates 

(Novotny et al. 2011; Vienneau et al. 2013), dispersion models have been used as covariates for 

LURs (Korek et al. 2017), and multiple machine learning methods have been used as individual 

learners in “ensemble” approaches (Di et al. 2019; Shtein et al. 2020). 
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1.4 HEALTH EFFECTS OF AIR POLLUTION, AN OVERVIEW 

1.4.1 Short-term versus long-term effects 

Health effects of air pollution have historically been distinguished into “short-term” (i.e. acute 

effects due to short-term exposures) and “long-term” (i.e. chronic effects due to long-term 

exposures). 

The etiological hypothesis of short-term effects studies, and its translation into the statistical 

question directly addressed by the epidemiological analysis, are depicted in Figure 1.1. 

 

 

 

Figure 1.1 Conceptual 

scheme of the 

etiological hypothesis, 

and the corresponding 

statistical question, 

underlying short-term 

effects studies 

 

 

 

 

It is assumed that short-term (e.g. daily) peaks in air pollution might trigger an acute response in 

the population, especially among susceptible individuals (in the figure, it is represented by the 

metaphor of an almost filled glass, which spills water because of the last drop). This translates 

into the statistical question: “is there a statistical correlation between daily time series of air 

pollutants’ concentrations and daily counts of a health outcome (for example, mortality), upon 

adjustment for time-varying confounders?”. The best study design, largely applied in 

epidemiological applications, is the time-series approach, with Poisson multivariate regression, 

where daily counts of an outcome (usually cause-specific mortality or disease-specific hospital 

admissions) are regressed against daily mean concentrations of an air pollutant, possibly with a 

latency of few days, and adjustment is made in the regression by adding terms for long-term and 

seasonal time trends, meteorology, influenza epidemics and days of the week. 

The most interesting feature of this study design is that, since the interest lies in day-to-day 

contrasts in exposures within the same population, perfect adjustment for known or unknown 

time-fixed covariates (e.g. sex distribution) or slowly varying ones (e.g. age structure, smoking 

habits, prevalence of chronic conditions, socio-economic status, etc.) is achieved by design. 

The main limitation of this approach is the ecological fallacy of assuming a common exposure 

for all the individuals of the population on a given day, an assumption that might not be true in 

areas characterized by large exposure variability, especially if daily data on the health outcome 
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of interest can be retrieved at a spatial resolution finer than the city or the municipality as a 

whole. Under these circumstances, a spatiotemporal exposure model might be warranted, and 

area-specific time-series, or the case-crossover design (Maclure 1991), can be preferable 

alternatives to the conventional time series design, because they allow to reduce exposure 

measurement error and exploit the full extent of exposure variability, an important advantage 

when the effect under estimation is very small. 

The etiological hypothesis of long-term effects studies, and its statistical counterpart, are 

depicted in Figure 1.2. 

 

 

 

 

Figure 1.2 Conceptual 

scheme of the 

etiological hypothesis, 

and the corresponding 

statistical question, 

underlying long-term 

effects studies 

 

 

 

In this case, the researcher seeks to understand whether long-term exposure to air pollution, over 

years or decades, might be responsible for a chronic process of health deterioration (the filling 

of the glass), ultimately leading to an observable health effect in the population. This translate 

into the statistical question: “is mortality higher for subjects residing in areas with higher-than-

average air pollution, compared to subjects less exposed, holding other factors constant?”. In this 

situation the exposure contrast of interest is purely spatial, and, since exposed and unexposed 

individuals are different, individual-level and area-level covariates become eligible confounders 

to be adjusted for. Among the different study designs applicable, the prospective cohort study is 

the elective one, and multivariate survival models have been the most common choice in the 

literature, in small cohorts rich of individual-level covariates, in large administrative population-

based longitudinal studies, and in large multi-center projects combining many cohorts from 

different countries. 

Prospective cohort studies for long-term health effects present the opposite strengths and 

limitations compared to time-series designs. They are focused on the individual and exposure is 

often available at fine spatial resolution, sometimes at the residential address level. On the other 

hand, they are more prone to confounding from omitted covariates because the design, per se, 

does not control for any individual-level or area-level covariate. 
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1.4.2 Epidemiological evidence and biological mechanisms 

Respiratory effects 

There is a large convergence of the epidemiologic literature in showing a relationship between 

short-term exposure to several air pollutants and respiratory outcomes, such as asthma 

exacerbation, chronic obstructive pulmonary disease exacerbation, respiratory infections, 

increased respiratory symptoms, and mortality (U.S. Environmental Protection Agency 2009). 

Such evidence is corroborated by toxicological studies reporting asthma-related responses, 

enhanced lung inflammation and greater susceptibility to bacterial infection in animals exposed 

to fine particles (Harkema et al. 2004; Morishita et al. 2004; Saldiva et al. 2002). 

Similarly, effects of long-term exposure to air pollutants have been estimated on lung function 

growth, asthma prevalence or development in children, and pulmonary inflammation (U.S. 

Environmental Protection Agency 2019). Also these results have been supported by animal 

toxicological studies showing impaired lung development (Mauad et al. 2008), increased airway 

responsiveness and inflammation (De Grove et al. 2018), oxidative stress (Deiuliis et al. 2012), 

and morphological changes in airways (Kim et al. 2016) upon chronic exposure to air pollutants, 

especially PM2.5.  

Cardiovascular effects 

The cardiovascular effects of air pollution exposure are even larger than those reported for 

respiratory outcomes. Epidemiological studies on the short-term effects documented 

associations with mortality, hospital admissions and emergency-room visits for total 

cardiovascular diseases, heart failure, ischemic heart diseases, stroke and, recently, rarer 

outcomes such as pulmonary embolism and deep vein thrombosis (U.S. Environmental 

Protection Agency 2019). These findings were confirmed by controlled human exposure studies 

which reported changes in endothelial function and blood pressure, decreased cardiac 

contractility and left ventricular pressure in relation to short-term exposure to air pollutants (U.S. 

Environmental Protection Agency 2019).  

Prospective cohort studies conducted in the U.S., Canada and Europe reported strong 

associations between long-term exposure to multiple air pollutants, including PM10, PM2.5 and 

NO2, and CVD mortality (Cesaroni et al. 2013; Chen et al. 2016; Pope et al. 2015), as well as 

incidence of ischemic heart diseases and stroke (Crouse et al. 2015; Turner et al. 2016). Only 

few studies focused on alternative cardiovascular outcomes, such as coronary events among 

post-menopausal women (Chi et al. 2016), progression of atherosclerosis (Künzli et al. 2010), 

heart failure (Atkinson et al. 2013), blood pressure (Chan et al. 2015), hypertension (Zhang et 

al. 2016b) and subclinical cardiovascular biomarkers (Zhang et al. 2016a), and reported evidence 

of an association with long-term PM exposure. 

In general, there is a wide consensus among cardiovascular experts that a mixture of several 

mechanisms is involved in the air pollution-CVD relationship, including atherosclerotic 

processes and vascular dysfunction, systemic inflammation and oxidative stress, 

thrombogenicity, mechanisms inducing heart failure, and epigenetic changes (Newby et al. 

2015). These are consistent with both short-term (trigger) and long-term (accumulation) effects. 
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Other health effects 

Other health effects of air pollution include cancer incidence and mortality, neurodegenerative 

diseases among the elderly, neurodevelopment in children, adverse outcomes in pregnant women 

and on newborns (U.S. Environmental Protection Agency 2019). 

 

1.5 RESEARCH GAPS MOTIVATING THIS THESIS 

Most of the existing studies on the short-term health effects of air pollutants have been conducted 

in large cities and have commonly used air pollutants measurements from routine monitoring 

stations to assign a common daily exposure to all subjects. In contrast, spatially resolved 

exposure estimates from LUR or dispersion models have been historically used to describe 

annual averages and to investigate long-term effects only. 

One of the reasons behind such research gap has been the absence of exposure models capable 

to describe the air pollutants’ variability over space and time at a fine resolution and covering 

large geographical domains. Therefore, researchers have usually made the implicit assumption, 

possibly generated by lack of viable alternatives, that daily variability in air pollutants is constant 

over space, at least within a city, and that short-term effect estimates reported in urban 

environments could be generalized to the entire population. 

This is a major limitation, for at least three reasons. First, it precludes the possibility to study 

non-urban populations. These are of high public health interest because of their non-negligible 

size and because they are likely characterized by a different vulnerability profile (in terms of 

socioeconomic status, lifestyle characteristics, access to healthcare services, composition of the 

air mixture, etc.) compared to urban ones. Second, it limits the statistical power to estimate 

exposure-response functions at low levels of air pollution. In fact, air pollutants’ concentrations 

in non-urban areas are lower than those reported in cities, and national and international agencies 

(e.g. WHO) are currently seeking for new evidence on the shape of the relationship between air 

pollution and health at the lower end of the air pollutants’ distributions. Third, it makes it 

impossible to investigate the extent of the spatial heterogeneity in the short-term health effects 

within urban areas. It is, in fact, plausible that individual-level risk factors (smoking, alcohol 

consumption, physical inactivity, old age, etc.), area-level risk factors (socio-economic status, 

disease prevalence, accessibility to health infrastructures, etc.) and environmental determinants 

other than air pollution (proximity to green spaces, noise exposure, urban heat islands, road 

density, etc.) might concur in altering daily air pollution variability and its health effects, over 

space, even on a small scale. 
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 AIMS 

The overarching aim of this thesis was to investigate the short-term effects of particulate matter, 

NO2 and O3 on mortality and hospital admissions, using innovative approaches for spatio-

temporal investigations.  

Specific aims were: 

− To provide novel estimates of air pollution concentrations at fine spatial and temporal 

resolution over large geographical domains useful for epidemiological investigations 

(Studies I, II and III); 

− To investigate short-term effects of particulate matter at the national level, in order to 

cover large and previously neglected populations, and explore concentration-response 

relationships at low levels (Study IV); 

− To investigate the spatial heterogeneity of the short-term effects of air pollutants in a 

region encompassing both urban and non-urban areas (Study V). 
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 MATERIALS AND METHODS 

3.1 EXPOSURE ASSESSMENT 

Studies I, II and III describe in details the process of data selection and model building for the 

estimation of daily air pollutants’ concentrations at the national level in Italy and Sweden. The 

first step has been, for both countries, to define fixed grids of 1x1-km size as target areas, and 

to collect monitoring data of PM10, PM2.5 (both countries), NO2 and O3 (Sweden only) available 

from the national environmental protection agencies or downloaded from the Airbase database 

collected by the European Environmental Agency (https://www.eea.europa.eu/data-and-

maps/data/aqereporting-8). The study periods of the analyses were 2006-2012 (study I), 2013-

2015 (study II) and 2005-2016 (study III). Figure 3.1 displays the study areas, with a zoom of 

the metropolitan areas of Rome and Stockholm, and the location of the monitoring stations. 

 

Figure 3.1 Study areas, 1x1-km fixed grids and monitoring stations 

For each grid cell we built a number of spatial variables (i.e. variables changing from cell to 

cell, but assumed constant over the study period) aimed at capturing spatial sources of air 

pollution variability, possibly linked to the main emission sources and land use. In addition, we 

defined a number of spatiotemporal variables (i.e. variables changing from cell to cell and day 

to day) aimed at capturing spatial and temporal sources of air pollution variability (such as 

seasonal patterns, meteorological conditions, etc.). All them are briefly reported below, and 

described in details in studies I, II and III. 

https://www.eea.europa.eu/data-and-maps/data/aqereporting-8
https://www.eea.europa.eu/data-and-maps/data/aqereporting-8
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3.1.1 Satellite data 

Aerosol Optical Depth (AOD) 

In studies I, II and III we have used AOD estimates from the algorithm Multi-Angle 

Implementation of Atmospheric Correction (MAIAC), developed by NASA at 1x1-km 

resolution from collection 6 MODIS Aqua L1B data (Lyapustin et al. 2011b, 2011a, 2018). 

MAIAC AOD data can be unavailable on a large sample of grid cells and days because of cloud 

coverage, water/snow glint reflectance and satellite calibration. Therefore, in studies II and III 

we also downloaded modelled AOD estimates from the Monitoring Atmospheric Composition 

and Climate – Interim Implementation (MACC-II) project, developed within the Copernicus 

Atmosphere Monitoring Service (CAMS). CAMS provides predicted total AOD as the sum of 

five types of tropospheric aerosols: sea salt, dust, organic and black carbon, and sulfates. 

CAMS AOD was downloaded for 2006-2015 (study II, Italy) and 2005-2016 (study III, 

Sweden) at the finest spatial resolution available, equal to 0.125°×0.125° (approximately 

10×10-km). 

Normalized Difference Vegetation Index (NDVI) 

NDVI is a satellite-based indicator assessing whether the target being observed contains live 

green vegetation or not. Generally, healthy vegetation will absorb most of the visible light that 

falls on it, and reflects a large portion of the near-infrared light. Unhealthy or sparse vegetation 

reflects more visible light and less near-infrared light. Bare soils on the other hand reflect 

moderately in both the red and infrared portion of the electromagnetic spectrum. We 

downloaded monthly data on NDVI from the NASA website, using the publicly available 

MODIS NDVI product (MOD13A3) at 1x1-km spatial resolution. The monthly resolution was 

chosen under the assumption that NDVI values do not change considerably within months. 

Light-at-night (LAN) 

LAN data are a proxy indicator for major conurbations and human activities. They were 

collected from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band, year 

2015, at a spatial resolution of ~750 m. 

3.1.2 Meteorological data 

In study I meteorological data were collected from ground-level measurements available from 

several sources: airport data of the World Meteorological Organization, data from sites owned 

by region-specific environmental protection agencies, and additional data from personal 

stations included in the Weather Underground network. Grid cells were matched to the closest 

weather station with non-missing meteorological observations on a specific day. We used the 

following daily parameters: air temperature, relative humidity, visibility and wind speed. 

For studies II and III meteorological parameters (daily mean air temperature, sea-level 

barometric pressure, precipitations, relative humidity, wind speed and direction) and planetary 

boundary layer (PBL) height were retrieved by the ERA-Interim reanalysis project (Dee et al. 

2011), the latest global atmospheric reanalysis produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF). Data have been downloaded at the spatial resolution of 



 

14 

0.125°×0.125° for the hours 0.00 and 12.00 for each day in 2006–2015 (study II) and 2005-

2016 (study III). 

3.1.3 Dispersion models 

For study III we retrieved parameters of global atmospheric composition from ERA-Interim 

project (total column ozone, 2005–2016), MACC-II re-analysis (PM2.5, PM10, and total column 

nitrogen oxides, 2005–2012), and CAMS near-real time models (PM2.5, PM10, and total column 

nitrogen oxides, 2013–2016). Each parameter was downloaded for the 8 three-hour windows 

from 0:00 to 21:00 each day in 2005–2016, at the finest spatial resolution available 

(0.125°×0.125°, approximately 10x10-km). 

3.1.4 Other predictors 

Other predictors used in the three studies of exposure assessment are reported in Table 3.1. 

Table 3.1 Other spatial and spatiotemporal predictors used in studies I, II and III 

Variable Description Source Resolution Study 

Administrative 

areas 

Regions, provinces/counties, 

municipalities 
ISTAT 

SCB 
Polygons I, II, III 

Geo-climatic zones 
Alpine ridge, Po valley, high Adriatic, Appennine, 

high Tyrrenum, mid Tyrrenum, low Adriatic and 

Ionium, low Tyrrenum and Sicily, Sardinia 

ISPRA 9 macro-areas I, II 

Population density Resident population, Census 2011 (Italy) 

Resident population, 2016 (Sweden) 
ISTAT 

SCB 

Census blocks 

DeSO 
I, II, III 

Industrial emissions 
Point emission sources, year 2010, 
tons/year of PM10, SO2, NO2, CO, NH3; 

Distance between each cell and the closest plant 

ISPRA 743 points I, II 

Elevation Mean elevation (meters) CLMS /  

EU-DEM 
30 m I, II, III 

Imperviousness 

surface areas (ISA) 

Indicator of artificial areas (houses, airports, harbors, 

roads, industrial and commercial areas, construction 

sites), year 2012 

CLMS 20 m I, II, III 

Corine Land Cover 

(CLC) 

Land cover data, 2012. Defined as % of each grid cell 

covered by: high/low development, urban green, 
industries, arable land, pastures, deciduous, evergreen, 

forest, shrubs, water 

EEA 100 m I, II, III 

Roads 
Road density (meters within the cell) and proximity 

(distance from the closest road) by road type: 

highway, major, secondary, local 

TeleAtlas Lines I, II, III 

Proximity to other 

features 

Distance between grid cells centroids and other 

features: ports, airports, sea, lakes 
- Polygons I, II, III 

Saharan dust 

Days in 5 macro-areas of Italy (North, Centre, 
South, Sicily, Sardinia) classified as dust-affected 

(DUST=1) or not (DUST=0) based on a 

combination of multiple meteorological models 

(Pey et al. 

2013) 
5 macro-areas I, II 

3.1.5 Statistical methods for air pollution estimation 

The objective of the three exposure studies was to train spatiotemporal models on air pollutants’ 

measurements, using all (or a subset of) the above spatial and spatiotemporal covariates as 
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predictors, and predict the model for all the grid cells of the national domains and all days of 

the study periods. This has been achieved with slight differences among studies. 

Study I 

We have adopted a strategy based on five steps: 

1. Inverse Probability Weighting (IPW): define a model for the probability of non-missing 

AOD, to account for the fact that missingness in AOD data can be related to PM10 

concentrations (for example, when it is due to cloud coverage or snow contamination). 

In such cases, we need to overweight observations without AOD and downweight those 

with AOD, so that the final prediction is balanced and representative of the whole 

spatiotemporal domain. The model in step 1, detailed in study I, provides estimates of 

such probabilities, that are used as (inverse) weights in models of later steps: 

�̂�𝑛𝑜𝑛.𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝐴𝑂𝐷~𝑓(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑃𝐵𝐿 + 𝑎𝑖𝑟. 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑚𝑜𝑛𝑡ℎ) 

1

𝑝
 = IPW: Inverse probability weigths used in following steps 

2. Calibration: define a mixed-effects multivariate regression model for the relationship 

between measured PM10 concentrations and the spatial and spatiotemporal covariates. 

In such a model, random intercepts by day and random slopes of AOD by day are used 

to account for the changing relationship between AOD and PM10 every day. In addition, 

the model incorporates weights from the previous step for balancing observations based 

on the predicted probability of non-missing AOD. 

3. Prediction: Predict the previous model in all grid cells and days with AOD data. 

4. Imputation: define a mixed-effects multivariate regression model to impute daily PM10 

concentrations over cells/days where AOD is not available. This is achieved by 

establishing a relationship between predictions of the previous step and averages of 

PM10 observations from all the monitors distant up to 50 km from each cell centroid. 

5. Downscaling: define a machine-learning model, the support-vector machine (SVM), to 

establish a relationship between residuals of the calibration model and predictors 

calculated around each monitors (e.g. 150-m buffer) aimed at capturing local sources. 

While the output of this model cannot be applied everywhere (because such small-scale 

data are not available over all spatial locations of Italy), such data are available in many 

cohort studies, where it is desirable to predict air pollution at individual addresses. 

Further details of the individual steps are described in study I. 

Study II 

The analytical strategy of studies II and III was different from study I, because we applied a 

preliminary stage of AOD imputation, by using CAMS AOD to impute MAIAC AOD when 

this was missing. In addition, we collected data, and obtained predictions, also for PM2.5 and 

PM2.5-10, which required a preliminary step of data integration. A summary of the analytical 

steps undertaken in study II for Italy is reported in Figure 3.2. 
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Figure 3.2 Graphical representation of the 

analytical steps in study II 

 

 

 

 

 

 

 

 

Briefly, we applied a first step (stage 1) to predict PM2.5 and PM2.5-10 daily concentrations from 

co-located PM10 data. This allowed to increase the number of monitoring stations of fine and 

coarse particles to use in the following calibration step. In parallel, we applied a second step 

(stage 2) to establish a statistical relationship between co-located MAIAC and CAMS AOD, 

aimed at predicting MAIAC when this was missing, so obtaining a full AOD surface. Third, 

for each year in 2013-2015 and each one of the three pollutants PM10, PM2.5 and PM2.5-10, we 

defined a calibration model where imputed AOD, spatial and spatiotemporal covariates were 

used as predictors (stage 3). This model was applied to predict daily PM over all 1x1-km grid 

cells of Italy and all days in 2013-2015 (stage 4). Finally, we applied a downscaling model on 

the residuals of the calibration model (stage 5), as described in study I. 

Another major difference between studies II and III compared with study I was that we trained 

machine learning models, specifically random forests, in each stage. Briefly, random forests 

represent a family of methods that consist in building an ensemble (or forest) of decision trees. 

Different versions of random forests have been proposed in the literature, depending on how 

data are sampled and decision trees are grown at each iteration (Breiman 2001; Cutler and Zhao 

2001; Geurts et al. 2006). In the proper random forest design (Breiman 2001), each tree is built 

using a bootstrap sample of the data, and each node of the tree is split according to the best of 

a subset of randomly chosen predictors (Liaw and Wiener 2002). Finally, outputs from each 
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tree are averaged to obtain an ensemble prediction of the target variable. The model also 

provides an estimate of the “importance” of each predictor by quantifying how much prediction 

error increases when data for that variable are permuted while all others are left unchanged 

(Liaw and Wiener 2002). 

Study III 

Study III followed the same analytical strategy as study II. There were, however, substantial 

differences, listed below: 

o Spatial domain: we ran models for the first time in Sweden, a spatial domain of 460,296 

squared kilometers;  

o New air pollutants: we ran models also for NO2 and O3; 

o Long study period: we expanded the study period to twelve years (2005-2016). In 

addition, the calibration model (stage 3) was run on the full period altogether, rather 

than by each year separately; 

o Additional covariates: we added atmospheric composition variables downloaded from 

Copernicus; in addition, for many spatiotemporal covariates, we used lagged terms up 

to three days, to account for a potential latency between such variables and PM/gases 

concentrations at ground level. 

Cross-validation 

Common to the three studies was the strategy for cross-validation. As the ultimate goal of the 

spatiotemporal models was to predict air pollutants in places and days with no observations, a 

careful cross-validation was essential to guarantee a proper extrapolation of the model fit to 

external receptors. This was achieved by a 10-fold cross-validation by monitors. Specifically, 

the total set of monitoring stations was randomly split into ten groups; the calibration model 

was applied, in turn, on nine groups (“training” set) and predicted to the tenth group (“testing” 

set); the procedure was reiterated ten times, so to obtain a prediction for every left-out 

observation; finally we checked the correlation between observed air pollutants’ concentrations 

and predictions in held-out monitors: we estimated the R2 (percent of variability of measured 

concentrations captured by predictions), the root mean squared prediction error (RMSPE), and 

the intercept and slope of the simple linear regression between measured and predicted 

concentrations. 

 

3.2 EPIDEMIOLOGICAL ANALYSIS 

We evaluated the short-term association between daily air pollutants’ concentrations and 

cardiovascular admissions in Italy (study IV) and cause-specific mortality in the Stockholm 

county (study V). 

3.2.1 Hospitalizations data in Italy 

The Italian Ministry of Health provided data on hospital discharge records for all the Italian 

hospitals, both public and private, for 2006-2015, for a total of 109,832,220 admissions. For 

the aims of the study IV, we selected only acute (e.g. unscheduled) hospitalizations for 
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cardiovascular diseases (International Classification of Diseases, 9th Revision – ICD-9: 390-

459) for the years 2013-2015, because the focus of the paper was on PM2.5, for which reliable 

estimates were obtained only for the last period (study II).  

In addition to total CVD admissions, we considered the following groups of diseases, selected 

from the primary diagnoses of discharge: 

• cardiac diseases     (ICD-9: 390-429) 

o hypertension    (ICD-9: 401-405)  

o ischemic heart diseases    (ICD-9: 410-414)  

▪ acute myocardial infarction   (ICD-9: 410) 

o arrhythmias    (ICD-9: 427) 

▪ atrial fibrillation    (ICD-9: 427.31) 

o heart failure    (ICD-9: 428) 

• cerebrovascular diseases    (ICD-9: 430-438) 

o hemorrhagic stroke    (ICD-9: 431) 

o ischemic stroke    (ICD-9: 433-435) 

For each group of diseases and each of the 8,084 municipalities of Italy, we built a time series 

of daily counts of acute hospital admissions. In addition, we generated time series by age (0-

64, 65-74, 75-84 and 85+ years) and sex, evaluated as potential effect modifiers in the PM-

CVD admissions relationship. 

One of the key aspects of study IV, and of the thesis, was to describe a potential heterogeneity 

in the short-term effects of PM across space. To this aim, we classified the 8,084 Italian 

municipalities into two different urbanization scores: 

o For the first one we used four spatial parameters considered valid proxies for population 

clustering at the municipality level: resident population (from Census data, year 2011), 

“light-at-night” (LAN) parameter (from the “VIIRS” satellite, year 2015), percentage 

of built areas (from Corine Land Cover database, year 2012), and density of high traffic 

roads (from TeleAtlas TomTom 2012 road network). These variables were combined 

in order to produce a quantitative score for each municipality. 

o For the second one, we used an alternative indicator of urbanization, as defined by 

EUROSTAT for each municipality of Europe. This is based on the combination of 

absolute resident population and population density (Census 2011), and classifies 

municipalities into “Cities” (densely populated areas), “Towns and suburbs” 

(intermediate density areas) and “Rural areas” (thinly populated areas). 

Comparative maps of Italy by the two scores are reported in Figure 3.3. 
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Figure 3.3 Italian municipalities (N = 8,084) by quintiles of the urbanization score (left) and by the EUROSTAT 

index of urbanization (right) 

3.2.2 Mortality data in the Stockholm county 

Statistics Sweden (Statistiska centralbyrån – SCB) provided data on all deaths occurring in the 

Stockholm county between 2005 and 2016, with information on the date of death, the primary 

cause, the location of death (whether in-hospital or out-of-hospital), age and sex of the deceased 

subject, the municipality of residence, and the small area for market statistics (SAMS) of 

mortality. For the aims of Study V, we included subjects 75+ years old, and considered all non-

accidental (International Classification of Diseases, 10th revision – ICD-10 between A00-

R99), cardiovascular (ICD-10: I00-I99) and respiratory causes (ICD-10: J00-J99). 

In order to investigate whether associations differed across space, we adopted three different 

approaches: first, we compared associations between those residing in or out the Stockholm 

municipality; second, we categorized the SAMS based on the resident population, to identify 

more and less urbanized areas; third, we reported estimates for each of the 26 municipalities of 

the Stockholm county. 

3.2.3 Statistical methods for short-term effects of air pollutants 

Study IV 

Daily estimates of PM10 and PM2.5 exposures were attributed to each of the 8,084 municipalities 

of Italy as a weighted average of PM concentrations of all the 1x1-km grid cells intersecting 

the municipality, with weights proportional to the intersection areas. 
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We applied a 2-stage hierarchical model to estimate the associations of daily PM10 and PM2.5 

concentrations with disease-specific hospital admissions across Italy: 

o First, we estimated the associations separately in each of the 110 provinces of Italy. For 

each province, we applied a pooled analysis on the time-series of municipalities 

belonging to the same province. Specifically, we stacked together the time series of all 

municipalities for that province, and ran an over-dispersed Poisson regression model, 

using the following formula (simplified version of the one in study IV): 

𝐸[ln (𝑌𝑖,𝑗
𝑑,𝑝)] = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑝𝑃𝑀𝑖−𝑙𝑎𝑔,𝑗

𝑚,𝑝 + 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠 

where the natural logarithm of 𝑌𝑖,𝑗
𝑑,𝑝(count of admissions on day i in the municipality j 

belonging to province p for disease group d) was regressed against 𝑃𝑀𝑖−𝑙𝑎𝑔,𝑗
𝑚,𝑝

 (mean 

concentrations of PM for metric m (either “10” or “2.5”) on day i-lag (with lag being 

the time latency) for municipality j belonging to province p) upon adjustment for 

temporal confounders: time trends, meteorology, days of the week, influenza 

epidemics, holidays and summer population decrease; 

o Second, we pooled province-specific estimates 𝛽𝑝 with a random-effects meta-analysis 

using the restricted maximum-likelihood estimator of the between-province variance 

(Hardy and Thompson 1996). 

In the first stage of analyses, we evaluated several aspects of the PM-CVD association: 

1. Temporal latency: we examined whether different outcomes displayed different 

temporal latencies with the exposures. This was accomplished by fitting distributed lag 

models up to 9 days before admissions, and by selecting a priori lags 0, 0-1, 2-5 and 0-

5 as referent time windows to represent immediate, delayed or prolonged effects; 

2. Exposure-response function: we modelled PM with a natural spline with 2 inner knots 

located at terciles of the province-specific distributions, in order to describe the shape 

of the association with each study outcome; 

3. Effect modification: we repeated the analyses by age group (0-64, 65-74, 75-84 and 85+ 

years) and sex, to identify potentially vulnerable subgroups, and by the two indicators 

of urbanization described above, to check whether associations existed even outside the 

major urban areas. 

Study V 

We derived daily estimates of air pollutants’ concentrations (PM10, PM2.5, NO2 and O3) for 

each SAMS as a weighted average of concentrations of the 1-km grids intersecting the SAMS. 

We applied a case-crossover design to estimate the short-term association between daily air 

pollutants and cause-specific mortality. The case-crossover design is a special case of matched 

case-control study, where each deceased subject represents a risk set, the case is chosen as the 

subject himself on the date of death, and the controls are suitably chosen as alternative days 

when the even did not happen (Maclure 1991). In this analysis, control periods were selected 
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using the “time-stratified” approach (Lumley and Levy 2000), according to which the study 

period is divided into monthly strata, and control days for each case were chosen as the same 

days of the week in the stratum. We considered the case-crossover design as the best option 

because we had estimates of exposures at very fine spatial resolution, and the alternative of 

running time-series analyses separately for each SAMS would have been much less efficient.  

We investigated: 

o the lag structure between daily air pollution and mortality, using single-lag and 

average-lag models; 

o the difference in effects between two different sets of exposures: first, the spatiotemporal 

exposures obtained under study III, where each subject was given the daily exposure 

of the SAMS of death; second, a temporal-only exposure where all subjects dying on 

the same day were given the same exposure, calculated as the average of the urban 

background monitors. The purpose of this analysis was to test whether there was any 

added value in using our spatiotemporal estimates of air pollution in the 

epidemiological analyses, compared to the standard approach of using daily averages 

from monitoring stations, which assume the same day-to-day variability of air 

pollutants across space; 

o effect modification by: season of death, distinguished into the warm period (April to 

September) and the cold period (October to March); age (75-84 and 85+ years old), sex, 

location of death (in-hospital or out-of-hospital); 

o the spatial heterogeneity in health effects, by reporting associations: 1) among those 

residing in versus those resideing out the Stockholm municipality; 2) in SAMS with a 

resident population below versus above the median value (~3,000 inhabitants per km2); 

3) for each of the 26 municipalities of the Stockholm county; 

o  the shape of the exposure-response relationship between air pollution and non-

accidental mortality by fitting natural splines of lag 0-5 air pollutants with two inner 

knots located at the terciles of the exposure variables. This was repeated for the two 

types of exposures (spatiotemporal and monitor-based) and for the warm period only 

(as it was the one displaying the highest effects in the main analysis). 
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 RESULTS AND COMMENTS 

4.1 PARTICULATE MATTER EXPOSURE IN ITALY 

Table 4.1 reports a summary of PM10 and PM2.5 data available in Italy during 2006-2015 

(studies I and II). The coarse fraction has been calculated as the difference between PM10 and 

PM2.5 from co-located monitors. In grey are reported the years for which estimates of air 

pollutants were not performed in studies I and II because of the limited number of monitors. 

Table 4.1 PM data in Italy, 2006-2015 

Year 
PM10   PM2.5   PM2.5-10 

n. sites mean SD   n. sites mean SD   n. sites mean SD 

2006 308 35.1 24.4  29 27.3 20.4  26 14.7 12.8 

2007 405 33.3 22.1   46 23.9 17.9   46 12.5 10.1 

2008 460 30.5 20.8  68 20.4 15.7  68 11.6 9.7 

2009 504 29.9 19.1   93 20.2 15.4   92 10.9 9.4 

2010 545 27.8 18.1  123 19.2 14.4  122 9.4 7.9 

2011 533 30.0 20.7   136 21.5 17.0   136 9.6 7.8 

2012 504 27.8 18.5  132 19.6 15.7  132 9.9 7.7 

2013 506 25.5 18.1   198 17.4 14.7   198 8.2 7.1 

2014 519 24.1 16.9  221 15.7 12.0  221 8.7 8.2 

2015 524 26.7 18.2   229 18.3 14.7   229 8.6 6.8 

Figure 4.1 compares the spatial distribution of predicted PM2.5 concentrations (annual 

averages, year 2015) using two different methods: an inverse-distance weighted (IDW) average 

on the left, which utilizes only information from monitoring stations, and the random forest 

(RF) prediction on the right, which combines multiple sources of data (study II). 

 

Figure 4.1 Estimates of annual mean PM2.5 concentrations (in g/m3) from two spatiotemporal models: Inverse-

Distance Weighting (IDW, left) and Random Forest (RF, right) – Italy, year 2015  
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Day-to-day variability in air pollutants’ concentrations is displayed in Figure 4.2, for PM10 in 

2012 (study I, left) and PM2.5 in 2015 (study II, right). The plots display the daily time series 

of the measured concentrations at the monitoring stations (blue line), the predictions at the same 

sites (red line) and the predictions at the national level, obtained as averages of the 307,635 

1x1-km grid cells of Italy (green line). Both methods, the mixed model (MM) applied in study 

I and the random forest (RF) applied in study II, were able to approximate very well the 

temporal trends of the monitoring stations. In addition, our models allowed to describe the daily 

mean concentrations and variability of PM in places not covered by the routine monitoring 

networks, usually more remote and isolated, therefore characterized by lower concentrations, 

as evident from the green lines. This was extremely relevant from an epidemiological 

perspective, because enabled us to investigate health effects in understudied populations of 

Italy, providing new evidence on the shape of the exposure-response functions at low PM levels 

(further described later in study IV). 

             

Figure 4.2 Daily mean PM10 and PM2.5 concentrations (in g/m3): measurements at the monitoring stations (blue 

lines), predictions at the same sites (red lines), and predictions at the national level (green lines) – Italy, year 2012 

(predictions obtained with mixed model – MM, left) and year 2015 (predictions obtained with random forest – RF, 

right) 

Finally, Table 4.2 shows the statistics of model fit (R2, RMSPE, intercept and slope) for PM10 

(years 2006-2012, mixed model, study I) and both PM10 and PM2.5 (years 2013-2015, random 

forest, study II) obtained comparing measurements with predictions in left-out monitors. We 

also report statistics separately for the spatial and temporal components of the model: 

o for the spatial component, we averaged daily observed and predicted PM 

concentrations within each cell, then we regressed annual mean observed VS predicted 

PM values; 

o for the temporal component, for both the observed and the predicted series of PM 

concentrations, we subtracted the annual averages from the daily values, then we 

regressed daily observed VS predicted PM deviations. 
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Table 4.2 Model fit statistics in study I (mixed-effects model, top) and study II (random forest, bottom) 

  
Spatiotemporal   Spatial   Temporal 

R2 RMSPE Int. slope   R2 RMSPE   R2 RMSPE 

STUDY I  ̶  PM10, years 2006-2012 

PM10 overall 0.64 10.2 1.20 0.95   0.56 4.8   0.67 9.0 

     By season           

Winter 0.69 13.8 0.15 0.99   - -   0.69 12.4 

Spring 0.62 9.4 1.40 0.94  - -  0.64 8.2 

Summer 0.52 8.3 2.80 0.89   - -   0.60 7.3 

Autumn 0.60 10.0 1.49 0.94  - -  0.62 8.7 

     By monitor type                     

Traffic 0.62 10.6 1.52 0.99  0.45 5.7  0.65 9.2 

Industrial 0.53 10.1 3.13 0.89   0.50 4.9   0.55 9.0 

Background 0.70 9.7 0.03 0.95   0.64 4.5   0.72 8.7 

STUDY II  ̶  PM10 and PM2.5, years 2013-2015 

PM10 overall 0.74 9.1 -0.01 1.01   0.71 3.3   0.74 8.5 

     By season           

Winter 0.73 11.3 -0.52 1.03   - -   0.73 10.6 

Spring 0.74 8.6 0.39 0.99  - -  0.74 8.1 

Summer 0.69 7.4 -0.16 1.01   - -   0.69 7.1 

Autumn 0.75 8.6 0.16 1.00  - -  0.75 8.0 

     By monitor type                     

Traffic 0.76 9.4 0.03 1.04  0.69 3.6  0.77 8.7 

Industrial 0.73 8.3 0.03 1.03   0.77 2.9   0.73 7.9 

Background 0.73 9.0 -0.13 0.99   0.70 3.0   0.73 8.5 

PM2.5 overall 0.79 6.1 -0.59 1.02   0.79 2.6   0.79 5.6 

     By season           

Winter 0.76 9.3 -0.65 1.03   - -   0.74 8.3 

Spring 0.79 4.6 -0.36 1.00  - -  0.80 4.3 

Summer 0.59 3.5 -0.74 1.03   - -   0.71 3.5 

Autumn 0.79 5.6 -0.47 1.01  - -  0.78 5.1 

     By monitor type                     

Traffic 0.80 6.4 -0.44 1.06  0.76 2.6  0.81 5.9 

Industrial 0.79 5.5 -0.76 1.07   0.81 2.4   0.77 5.0 

Background 0.79 6.0 -0.67 0.99  0.81 2.4  0.79 5.6 

In general, both the mixed-effects and the random forest models were able to capture most of 

the observed variability in left-out monitors, explaining 64%, 74% and 79% of PM variability 

for PM10 (2006-2012), PM10 (2013-2105) and PM2.5 (2013-2015), respectively. Both models 

explained a larger fraction of temporal than spatial PM variability, and displayed a better fit in 

winter and autumn months. While the mixed model fitted data from background monitors much 

better than traffic and industrial ones, no substantial differences in fit were found for the 

random forest. Finally, all models showed little bias in their predictions in left-out monitors, as 

represented by intercepts close to zero, and slopes close to one. 
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4.2 AIR POLLUTION EXPOSURE IN SWEDEN AND STOCKHOLM 

The number of monitoring stations available in Sweden during 2005-2016 was limited, with 

annual monitors remaining stable for PM10 and NO2, and slightly increasing for PM2.5 and O3 

(study III). Descriptive statistics for the four pollutants and PM2.5-10, calculated subtracting 

PM2.5 from PM10 at co-located monitors, are reported in Table 4.3, and highlight very low 

concentrations of PM and NO2, with the former decreasing over time and the latter remaining 

stable. Finally, ozone levels were stable around a mean of 55 g/m3. 

Table 4.3 Air pollution data in Sweden, 2005-2016 

Year 
PM10   PM2.5   PM2.5-10 

n. sites mean SD   n. sites mean SD   n. sites mean SD 

2005 61 19.1 13.3   7 12.0 6.9   7 7.8 7.5 

2006 72 20.1 13.1  17 11.8 7.3  17 8.5 8.1 

2007 64 19.0 13.1   18 9.2 5.8   18 9.8 8.5 

2008 58 18.2 12.1  17 8.8 4.4  17 9.5 8.8 

2009 54 17.1 12.0   25 8.1 5.0   25 9.4 8.6 

2010 61 16.2 11.4  24 7.4 5.1  24 8.5 8.2 

2011 59 18.2 12.4   25 8.6 6.8   25 9.6 8.3 

2012 60 15.6 11.1  24 7.2 4.8  24 8.5 8.4 

2013 66 16.5 12.0   21 6.2 3.5   21 10.5 9.9 

2014 63 16.4 11.3  28 8.1 6.0  28 8.3 6.8 

2015 55 14.6 10.3   27 6.6 4.7   27 7.9 6.5 

2016 62 14.0 10.3  29 5.9 3.6  29 8.1 7.7 
            

Year 
NO2   O3     

n. sites mean SD   n. sites mean SD     
2005 60 19.9 16.3   23 56.6 18.8 

    

2006 67 21.4 16.9  29 58.6 20.4 
    

2007 55 19.9 16.2   29 55.1 16.8 
    

2008 60 20.1 15.4  24 54.8 19.3 
    

2009 58 20.2 15.4   26 54.0 17.8 
    

2010 58 23.1 18.1  26 54.9 18.0 
    

2011 58 21.5 16.7   27 56.5 19.3 
    

2012 60 21.2 15.9  22 52.2 18.3 
    

2013 58 22.1 16.5   30 55.7 18.4 
    

2014 50 20.3 15.5  30 53.8 18.0 
    

2015 45 20.0 15.5   30 54.8 16.0     
2016 53 20.7 15.7  30 52.3 17.2     

Table 4.4 reports the Spearman correlation coefficients between the five air pollutants and the 

main predictors used in the calibration RF model in study III. In general, we found weak 

correlations between predictors and air pollutants’ concentrations, with CAMS atmospheric 

composition variables, PBL height, cloud coverage, barometric pressure and NDVI being the 

most correlated spatiotemporal parameters, and resident population, ISA, LAN, elevation, road 

density, % evergreen and % urban areas being the most correlated spatial ones. 
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Table 4.4 Spearman’s correlations between air pollutants and predictors 

Predictor PM10 PM2.5 PM2.5-10 NO2 O3 

Spatiotemporal      

        atmospheric composition var. 0.35 0.44 0.21 0.12 0.35 

        PBL (at midnight) -0.14 -0.14 -0.10 -0.21 0.09 

        PBL (at midday) 0.06 -0.08 0.14 -0.13 0.35 

        cloud coverage -0.17 -0.04 -0.20 -0.06 -0.21 

        barometric pressure 0.18 0.18 0.14 0.10 -0.02 

        NDVI -0.13 -0.11 -0.12 -0.31 0.07 

Spatial           

        resident population 0.17 -0.01 0.24 0.34 -0.15 

        ISA 0.17 0.16 0.14 0.27 -0.16 

        LAN 0.08 -0.02 0.13 0.27 -0.11 

        elevation -0.18 -0.16 -0.15 -0.23 0.14 

        all roads length 0.17 0.10 0.18 0.44 -0.16 

        % evergreen -0.17 -0.12 -0.16 -0.29 0.15 

        % urban area 0.12 0.07 0.13 0.32 -0.18 

Predicted mean concentrations of NO2 (left) and O3 (right) are reported in Figure 4.3, for 

Sweden and Stockholm. The maps display the mean predictions of the RF model (study III) 

for the year 2016. 

 

Figure 4.3 Estimates of annual mean NO2 (left) and O3 (right) concentrations (in g/m3) for Sweden and 

Stockholm, obtained with the random forest model (study III) – year 2016 
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4.3 SHORT-TERM EFFECTS OF PM ON HOSPITALIZATIONS AT THE 
NATIONAL LEVEL 

Study population 

We selected 2,154,810 acute admissions for cardiovascular diseases in Italy during 2013-2015, 

of which the most frequent diseases were cerebrovascular diseases (25.2%), ischemic heart 

diseases (23.7%) and heart failure (21.9%). While most patients resided in major urban centers 

(54.6%), there was still a large fraction of individuals living in areas never investigated in 

previous studies on air pollution, such as rural and remote towns (13.3%), sub-urban settings 

(12.2%) and small cities (20.0%). 

Main effects of air pollutants by cause and lag 

Figure 4.4 reports the results of the associations between daily mean PM10 and PM2.5 

concentrations, at different lags, and daily admissions for a selection of CVD outcomes: results 

are expressed as relative CVD increases, and 95% Confidence Intervals (95% CI), per 10 g/m3 

increments in PM. We found significant effects of both PM10 and PM2.5 on total cardiovascular 

diseases, cardiac diseases, ischemic heart diseases, myocardial infarction, heart failure, atrial 

fibrillation and ischemic stroke. However, the time lag of the effect of PM was different, as 

both PM metrics displayed a long latency of effect on cardiac diseases and heart failure (up to 

five days after exposure), while the effects on the other CVD endpoints were immediate, 

statistically significant mostly within one-two days after exposure. No evidence of an 

association was detected with total arrhythmias or total cerebrovascular diseases (outcomes not 

reported in fig. 4.4 but presented in study III). 

 

Figure 4.4 Associations between daily mean PM10 and PM2.5 concentrations, at different lags, and daily admissions 

for selected CVD outcomes: results are expressed as relative CVD increases (% increments of risk - %IR), and 

95% Confidence Intervals (95% CI), per 10 g/m3 increments in PM. 
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Exposure-response functions 

The “meta-curves” representing pooled exposure-response functions between the two PM 

exposures (at lag 0) and selected CVD outcomes are displayed in Figure 4.5. We found 

evidence of non-linear effects in most cases, with steeper slopes of the PM-outcome 

associations in the lower ranges of exposures (down to 15 g/m3 for PM10 and 10 g/m3 for 

PM2.5), far below the WHO air quality guidelines for daily mean PM10 (50 g/m3) and PM2.5 

(25 g/m3). 

 

Figure 4.5 Exposure-response functions. % increases of admissions per increasing levels of PM (lag 0), by cause: 

PM10 on the left, PM2.5 on the right 
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Spatial heterogeneity of the PM-CVD admissions associations 

Finally, Figure 4.6 reports results on the differential associations between daily PM 

concentrations and selected CVD outcome by urbanization level of the municipality of 

residence, using both the urbanization score and the EUROSTAT indicator described in the 

Methods. In general, associations were homogeneous across groups of municipalities 

characterized by different degrees of urbanization, with risks of PM-related cardiovascular 

admissions, especially for atrial fibrillation, ischemic heart diseases and myocardial infarction, 

high and statistically significant also among populations residing in the rural areas of the 

country. 

          

Figure 4.6 Associations between daily PM concentrations and CVD selected outcomes, by levels of the 

urbanization score (dots) and the EUROSTAT indicator (triangles) of the municipality of residence: % increases 

of admissions per 10 g/m3 increments in PM (lag 0), by cause 

 

4.4 SHORT-TERM EFFECTS OF PM ON MORTALITY AT THE COUNTY LEVEL 

Study population and air pollution exposure 

We analyzed data on 125,468 subjects aged 75+ years old who died in the Stockholm county 

from non-accidental causes during 2005-2016. Of them, 43% died from cardiovascular causes 

and 8% from respiratory causes, 62% died out-of-hospital, and less than half resided in the 

Stockholm municipality at the time of death. 

Average concentrations of PM10, PM2.5 and NO2 were higher in the central area of the county, 

where Stockholm city is located, with decreasing patterns south and especially north of the 

county. Ozone, as expected, displayed an opposite trend, with higher concentrations on the 

islands and on the rural and remote areas in the north and south of the county (see study III for 
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a detailed presentation of the exposure maps). In terms of temporal distribution, the daily time 

series showed a higher degree of daily variability in air pollutants (all except ozone) captured 

by our spatiotemporal model described in study III, compared to daily means of urban 

background monitoring stations. This is reported in Figure 4.7 for PM2.5 and NO2, for the year 

2016. 

 

Figure 4.7 Time-series of daily PM2.5 and NO2 concentrations, year 2016, from different metrics: spatiotemporal 

at Small-Area for Market Statistics (SAMS) level (orange) and average of urban background monitors (blue) 

Main effects of air pollutants by cause, lag and season 

We did not find evidence of associations between short-term exposures to PM and NO2 with 

non-accidental mortality nor with cause-specific mortality in the full year analysis. In contrast, 

ozone was significantly associated with non-accidental mortality, which increased by 1.50% 

(95% confidence interval – 95% CI: 0.29%, 2.71%) per 10 g/m3 increments in lag 0-5 O3. 

The corresponding estimate for the exposure based on the average of urban background 

monitors was 1.19% (95% CI: 0.29%, 2.10%). 

When we restricted the analysis to the warmer months (April to September), we found 

consistent associations of PM and O3 with non-accidental and cardiovascular mortality, while 

the effects of NO2 on all three outcomes and of all four pollutants on respiratory mortality were 

positive but non-significant. In particular, non-accidental mortality on warm months increased 

by 5.00% (0.79%, 9.38%), 2.92% (0.67%, 5.22%) and 2.14% (0.25%, 4.06%) per 10 g/m3 

increments in PM2.5, PM10 and O3, respectively. Interestingly, respiratory mortality during cold 

months increased by 6.96% (1.13%, 13.12%) per 10 g/m3 increases in lag 0-5 O3. 

Exposure-response functions 

The exposure-response functions (ERF) reported in Figure 4.8 show increasing effects of 

PM2.5, PM10 and O3 on non-accidental mortality during the warm months, with no clear 

evidence of departures from linearity. When comparing the curves obtained using the 

spatiotemporal exposures to those derived by monitor averages, we didn’t find meaningful 
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differences in the shapes nor in the exposure ranges. In contrast, large differences in the two 

exposures were found for NO2, for which daily average concentrations from urban background 

monitors never exceeded 35 g/m3 whereas estimates from our spatiotemporal model reached 

daily values > 70 g/m3. However, ERFs were flat and non-significant in both cases. 

 

Figure 4.8 Exposure-response functions. % increases of risk of non-accidental mortality in the warm period (April-

September) per increasing levels of air pollutants (lag 0-5), by type of exposure. Plots centered in the mean 

Spatial heterogeneity of the air pollution-mortality associations 

Finally, the estimates of the association between air pollutants and non-accidental mortality 

(warm period) for the 26 municipalities of the Stockholm county are displayed in Figure 4.9. 

The estimates were obtained by adding to the base model interaction terms between the 

indicator variables for municipality and the exposure term. In general, we found a high degree 

of variability in the point estimates of the relative risks, with null associations in the northern 

and southern areas of the county, and positive associations, with RRs of mortality per 10 g/m3 

increment of exposure even above 1.20, in some of the central and more densely populated 

municipalities. However, most of the associations were not statistically significant, and the 

likelihood-ratio test comparing the models with and without interaction terms was largely non-

significant, thus rejecting the study hypothesis of spatial heterogeneity in the health effects of 

air pollution in the Stockholm county. Similar results were found when we applied alternative 

approaches for evaluating spatial heterogeneity (the Cochrane Q test of heterogeneity on 
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municipality-specific estimates obtained from stratified analyses, or test for the presence of 

residual variance from mixed-effects models). 

 

 

Figure 4.9 Association between air pollutants (lag 0-5) and non-accidental mortality in the warm period (April-

September), by municipality. Results are expressed as % increases of risks per 10 g/m3 increments in air 

pollutants 
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 DISCUSSION 

The collection of studies in this thesis presents new methods for air pollution exposure 

assessment in Italy and Sweden, and examples of the application of such exposures to evaluate 

short-term effects on mortality and morbidity outcomes. The individual studies discuss the 

strengths and limitations of each study, and put the epidemiological findings in the perspective 

of the existing literature. Here the same studies will be discussed with the broader perspective 

to highlight the main challenges behind air pollution exposure modelling, and the complexity 

of interpreting the resulting epidemiological findings on short-term health effects. 

 

5.1 EXPOSURE ASSESSMENT 

The accuracy of the spatiotemporal exposure models developed in studies I-III (and in most 

exercises of exposure assessment described in the Introduction) depends on at least two key 

aspects: the availability of good data and the validity of the assumptions underlying the models. 

5.1.1 Quality of input data 

Air pollution measurements 

The Directive of the European Commission 2008/50/CE establishes rules for the numbers of 

monitoring sites, their positioning and the reference methods to be applied for the 

measurements of the different air pollutants. The Directive states that sampling points are 

chosen to represent average population exposure both in urban areas and in suburban and rural 

settings. On this regard, the monitors available in Italy and Sweden should be, in principle, 

consistent with the main objectives of this thesis, i.e. the epidemiological investigation of the 

short-term effects of air pollution in the populations of Italy and Stockholm. However, when 

building spatiotemporal models aimed at predicting concentrations in large portions of the 

territory with only few monitors, the sparsity of the stations can be problematic because the 

model has less information on air pollutants’ variability and sources there, with little guarantee 

of an accurate prediction in the corresponding areas.  

The map below (Figure 5.1) represents an attempt to describe the spatial distribution of model 

uncertainty in the predictions of PM2.5 concentrations for the year 2016 in Sweden. In 

particular, for each monitor the annual RMSPE has been computed by comparing daily PM2.5 

observations with cross-validated predictions. Then, the monitor-specific RMSPE has been 

divided by the annual average PM2.5 concentration in that monitor in order to derive a relative 

measure. Finally, an inverse distance weighted prediction has been mapped for the full Swedish 

domain. The map suggests that model uncertainty was higher in the more remote areas of 

northern and western Sweden, where only sparse monitors were available. While we 

acknowledge that propagation of model uncertainty is not only driven by the distance from the 

monitors, still this can be regarded as a suggestion that air pollution estimates in large remote 

areas with few sampling points can be affected by a large degree of inaccuracy. However, from 

an epidemiological perspective, this should have a limited impact on the health effects 

estimates, because a very small fraction of the population lives there. 
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Figure 5.1 Annual mean % errors in PM2.5 estimates 

calculated for each monitor and spatialized to the whole 

domain with an IDW model – Sweden, 2016 

 

 

 

 

 

 

 

 

Predictors based on GIS techniques: spatial parameters 

The majority of predictors used in the exposure models described in studies I-III are spatial, 

i.e. they vary across locations but are assumed constant over time, and are aimed at capturing 

the main emission sources of air pollution, such as road traffic, domestic heating, other 

anthropogenic activities, and industrial emissions. This is also the case for all those applications 

aimed at estimating annual average air pollutant concentrations for long-term effects studies. 

Since data on the actual emissions are generally lacking or poorly resolved in space and time, 

we have to rely on spatial proxies and apply GIS techniques to make such variables available 

for all the grid cells of our study domains. The most common data are population density, road 

networks, land-use/land-cover terms, elevation and, if available, industrial emissions. The main 

advantage in the use of these variables is the availability from official statistics (resident 

population) or opensource database (Corine, Imperviousness surface areas), the completeness 

across the whole study area, the high spatial resolution of most of them and the ease to process 

the source files using standard GIS techniques. However, the main drawback in most cases is 

the low explanatory power in air pollution modelling, because some of them are weak proxies 

of the targeted sources (for example, industrial emissions) while others characterize areas 

where very few monitors are available (natural classes from Corine). This is apparent in studies 

II and III, where the spatial terms ranked among the lowest in terms of relative importance in 

the random forest model (study II) and displayed very low correlations with measured air 

pollutants, with only few exceptions (study III). 
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Predictors based on external models: spatiotemporal parameters 

In studies II and III we have replaced meteorological observations from sparse monitors with 

outputs from regional meteorological models. Also, we downloaded AOD estimates at 

different wavelengths to impute missing satellite retrievals (both studies) and atmospheric 

composition variables on columnar PM, NOx and O3 (study III only). These variables proved 

extremely useful in producing full meteorological fields, filling missing AOD data and training 

random forest models for air pollution predictions. This is apparent from the high ranking of 

most of these variables in their relative importance, and in the extremely good fitting statistics 

achieved when CAMS AOD was used to impute missing MAIAC AOD. There are clear 

advantages in the use of these variables that should be acknowledged, and explain why hybrid 

approaches have become standard in air pollution exposure assessment nowadays. These 

include the availability of such model outputs at global scale from opensource repositories, the 

high temporal resolution, in the order of three-hour time windows, the acceptable spatial 

resolution for large-scale modelling, the completeness of spatiotemporal fields, and the good 

correlations with measurements. At the same time, there are challenges in the download, 

processing and interpretation of such variables, which might explain why the final model fit of 

most exposure assessment studies, including those presented here, is sub-optimal: a) the spatial 

resolution is coarse when it comes to describe small-scale variability in air pollutants; b) these 

models might lack information on local sources of air pollution, therefore their correlation with 

measurements might be poor in some monitoring sites; c) the selection of which parameters to 

download requires expert knowledge in disciplines other than epidemiology and biostatistics, 

also because these models evolve rapidly over time; d) the processing of the variables, once 

downloaded, is not trivial, as it requires large computational capacity and good skills in 

statistical programming. As a result, the entire chain from data extraction to model building is 

time consuming and with no guarantee of substantial improvements compared with 

conventional GIS-based approaches. 

Satellite data: the case of AOD 

Satellite data are an extremely powerful source of information to describe air quality or land 

cover over large spatiotemporal domains. For this reason, it has become standard practice in 

modern air pollution modelling approaches to combine variables such as AOD, NDVI, LAN, 

OMI-based NOx and O3, land surface temperatures, and others with air pollutant measurements 

and GIS-based predictors. In the studies presented here the most relevant parameter has been 

AOD, therefore the discussion will focus on it. 

In principle, AOD is the perfect candidate to capture PM variability over space and time. First, 

in studies I-III it was the only predictor, out of all those listed before, with the same spatial 

(1x1-km) and temporal (daily) resolution of the target domain. Second, it is directly linked to 

suspended particles because it is an indirect measure of them, although a columnar one. Third, 

it provides information on particles distribution in areas with no measurements. Fourth, it is 

freely available worldwide. Therefore, it shares most of the benefits already mentioned for 

spatial and spatiotemporal predictors. Unfortunately, the advantages end here, and the 

contribution of AOD in our spatiotemporal models was only marginal, for two main reasons: 
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low correlation with ground-level PM and large fraction of missing data. The correlation 

between co-located MAIAC AOD retrievals and PM measurements was below 0.20 both in 

Italy and in Sweden, suggesting a large discrepancy between the columnar measure and the 

ground-level concentrations. As a consequence, the relative importance of AOD in our 

spatiotemporal models was modest, showing the inherent limits of our mixed-effects and 

random forest approaches to calibrate columnar measures of aerosol scattering to ground level 

PM concentrations. In addition, the fraction of missing MAIAC AOD was ~ 60% in studies I 

and II and 80% in study III, a well-known problem of satellite retrievals at high altitudes such 

as those where Sweden is located, unexpected instead for Italy.   

In conclusion, the huge amount of data collected in our studies I-III on air pollution monitoring, 

spatial predictors from official statistics and opensource geoportals, spatiotemporal outputs of 

regional atmospheric models, and satellite retrievals allowed us to build national models to 

predict daily mean concentrations of several air pollutants for each km2 of the territory. The 

ability of such models to predict air pollution fields in areas with no data was undermined by 

the sparseness of the monitors and the quality of some of the input data. Future research should 

focus on the integration of air quality measurements from multiple sources, the use of AOD 

data from European satellites, and the definition of spatial predictors as a combination of 

standard variables available uniformly across the whole domain (as done in our studies) with 

more refined data on air pollution sources available at the local scale (e.g. traffic flows in cities).   

5.1.2 Methodological considerations on exposure assessment 

In addition to good data, the flexibility of the model used can make the difference between 

accurate and inaccurate predictions. This section will discuss the assumptions underlying our 

spatiotemporal models, how likely it is for those assumptions to hold, and how violations in 

them might have affected the resulting predictions and the health effects estimates. It should be 

emphasized that most of the following arguments can be generalized to any other exercise of 

air pollution exposure assessment. 

The first assumption we have made is the one about the “generalizability” of the model, i.e. 

that the model we have trained on a limited set of observations can be generalized to the full 

spatiotemporal domain. In order for this to be true, the monitors should be representative of the 

entire study area, and their measurements should be able to capture the full set of air pollution 

sources. As previously discussed, we believe this was only partially true in our case studies. 

The monitors representing non-urban exposures were limited in Italy and very sparse in 

Sweden. We have tried to circumvent this problem by applying flexible multivariate models, 

such as mixed-effects models with random components by day, and machine learning methods, 

allowing for different weights in and out the main cities. We have also tried to design cross-

validation strategies flexible enough to mimic the behavior of the prediction models on external 

receptor points. Nonetheless, we couldn’t prevent model uncertainty to be larger in remote 

areas, as previously shown in fig. 5.1. However, we are confident that the impact on the short-

term health effects estimates obtained in studies IV and V was only marginal, as a small fraction 
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of the population resided in such areas, contributing with a negligible amount of daily mortality 

or hospitalizations counts. 

The second assumption we have made is on predictors being “representative” of the main 

emission sources as well as the main processes of air pollution formation and transport in a 

given location on a specific day. This is a key aspect because, if true, the weights estimated by 

our models for each covariate would account for most sources of variability in air pollutants’ 

measurements, and would produce reliable predictions on external points. As previously noted, 

we couldn’t collect data on real emission sources, but had to rely on proxies. Some of them 

(e.g. resident population, road network) have been extensively used in the literature because 

are highly correlated with air pollutants’ measurements; others (land-cover variables, 

vegetation indexes, altitude) have less explanatory power because their main contribution is 

the characterization of areas with only few monitoring stations; finally, some parameters (such 

as ISA and LAN) have only marginally been used in previous applications, but were relevant 

in our applications, especially for predicting NO2 and PM10 concentrations in Sweden (study 

III). As for the spatiotemporal covariates, we have included terms for the horizontal 

transportation patterns of air masses (wind components), the vertical distribution (height of the 

PBL), and the general meteorological conditions favoring or inhibiting chemical reactions 

among air pollutants (temperature, humidity, barometric pressure, etc.). These terms, despite 

their coarse spatial resolution, were extremely relevant in our spatiotemporal models because 

they captured a large fraction of the temporal air pollutants’ variability, as demonstrated by 

their high ranks in terms of relative importance and the high temporal R2 in left-out monitors. 

The third assumption we have made is about model flexibility, i.e. ability of the proposed 

models to capture the complex interrelationships between the covariates, so to mimic the 

corresponding interactions between sources and meteorological processes. In study I we 

attempted to reach that goal by use of mixed-effects models. Here we incorporated random 

intercepts by day and random slopes of AOD-PM by day with the aim of capturing daily 

changes in the AOD-PM relationship plus daily residual variation in air pollutants unaccounted 

by the spatial and spatiotemporal covariates represented in the fixed effects. Unfortunately, this 

helped to improve model fitting of the temporal air pollution component, but was of little use 

on the spatial one. The random forest methodology chosen for studies II and III was better fit 

in capturing complex multivariate relationships between the covariates and the measured air 

pollutants’ concentrations, without imposing specific functional forms in such relationships. In 

addition, the double strategy of random selection inherent the standard RF model at each 

iteration (two thirds of the observations and a subset of randomly chosen predictors) 

presumably allowed to estimate, for each covariate, different weights in cases when the same 

variable presented a different distribution across locations (e.g. between urban and non-urban 

areas). The random forest methodology has been recently compared to other machine-learning 

methodologies (Shtein et al. 2020), with very good results, although other researchers preferred 

alternative methods, such as extreme gradient boosting (Chen et al. 2019) and deep learning 

neural networks (Di et al. 2016).  
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In conclusion our methodological approaches, mixed-effects models in study I and random 

forests in studies II and III, allowed us to predict most of the air pollution variability in left-out 

monitors, both in space and in time. However, our results were not always optimal, as a 

combination of sparse monitored data, lack of predictors on key emission sources, and inherent 

ability of the models to capture temporal components of air pollution variability better than 

spatial ones. Future methodological research should focus on the application of “ensemble” 

techniques where multiple models, each with its own merits and limitations, are fit to the same 

data and their predictions are combined, in order to achieve better predictive power compared 

to the individual approaches. 

 

5.2 EPIDEMIOLOGICAL ANALYSES 

The predictions of daily air pollutants at high spatiotemporal resolution obtained under studies 

I-III have been used to estimate short-term effects on cardiovascular hospitalizations in Italy 

(study IV) and cause-specific mortality in the Stockholm county (study V). The next section 

will briefly summarize the main findings of the two studies, with a focus on the methodological 

choices and the main limitations of the adopted approaches. Then, a broader perspective will 

be outlined on the opportunity offered by novel spatiotemporal exposure modelling for 

evaluating short-term, and to a lesser extent long-term, health effects. 

5.2.1 Short-term effects on daily mortality and morbidity 

From concentrations to exposures 

In both studies IV and V there has been a preliminary step of air pollution averaging to obtain 

estimates of daily exposures at the spatial units available for the epidemiological studies: 

municipality for Italy and SAMS for the Stockholm county. In the first case, we simply 

averaged the 1x1-km grid cells intersecting the municipalities, weighting each cell 

proportionally to the intersection area. In the second case, we attempted to estimate population-

weighted exposure in each SAMS by further weighting each intersecting cell on the basis of 

the % urban cover in the cell, used as a proxy for population clustering. In other words, we 

gave more weight to the cells with more population, and less weight to those with few people 

or located in remote natural areas. This resulted in an increase in day-to-day variability in 

exposures, which was substantial for local-scale air pollutants such as NO2 and PM2.5 (fig. 4.7), 

and only marginal for more homogeneous ones such as PM10, PM2.5-10 and O3 (details in study 

III). Whether this resulted in “better” health effects estimates remains unclear, and will be 

further discussed in the next section. To address this aspect, in study V we compared short-

term association estimates obtained with our spatiotemporal exposures with those obtained 

using daily averages of urban background stations: we found slightly higher associations in the 

first case, exposure response functions very similar in the two cases, but standard errors smaller 

in the second case, suggesting that our spatiotemporal exposure assessment didn’t increase 

statistical power but possibly reduced bias in the health effects estimation. 
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Spatially heterogeneous health effects 

Both studies IV and V were aimed to investigate whether short-term associations between air 

pollutants and adverse health outcomes differed across space. In study IV we classified the 

8,084 municipalities of Italy based on two different urbanization scores, and found comparable 

associations in major urban centers, smaller cities and rural areas. In study V we tried to 

compare effects between high-density and low-density SAMS, and provided association 

estimates for each of the 26 municipalities of the Stockholm county. We found a large 

variability in the point estimates of association, but the statistical power was very low, 

preventing us to detect statistically significant differences. In summary, we rejected the 

hypothesis of spatial heterogeneity in the short-term effects between air pollutants and daily 

mortality/morbidity in both studies. This is, in our view, an important result, because suggests 

the existence of harmful effects of air pollution even among populations living in rural and sub-

urban areas, where concentrations are smaller and source profiles of air pollution differ 

substantially from those typical of the main conurbations. This is reflected by the exposure-

response functions, which display non negligible effects at very low levels. 

Study IV: time-series design 

In study IV we have adopted a time-series design. First, we built daily time-series of CVD 

admission counts, PM concentrations and temporal confounders for each of the 8,084 Italian 

municipalities. Second, we stacked together data from all municipalities belonging to the same 

province. Third, we ran multivariate conditional Poisson regression models in each of the 110 

provinces. Fourth, we meta-analyzed province-specific relative risks to obtain national 

estimates of associations. The main critical point in this strategy is probably the choice to 

analyze province-specific pooled data rather than the municipality-specific time-series. Doing 

so we have assumed that air pollution effect is the same across all the municipalities of the 

same province, and can be estimated with a single relative risk. Furthermore, the model 

assumes that confounding from time trends and meteorological factor is also common to all 

municipalities. This choice was operated as a compromise between the desire to estimate 

unbiased effects, and the complexity of analyzing thousands of time-series, the greatest 

majority of them non-informative because contributing with very few cases. Focusing on the 

first aspect, we acknowledge that we might have introduced some bias, possibly away from the 

null hypothesis of no effect, if the assumption of homogenous confounding was not true. Also, 

we are aware that an average estimate for the province might be little informative if the PM-

CVD associations differed across municipalities of the same province. The analysis by 

urbanization level, however, helped in addressing both these aspects: for each province, only 

the municipalities with the same degree of urbanization were included in the same model, 

reducing the potential for residual confounding or heterogeneous spatial effects within strata.  

Study V: case-crossover design 

In study V we have adopted a different approach, the case-crossover design, because the spatial 

units were too small, and contributed individually with too few cases, to be analyzed with 

conventional time-series models. Based on the case-crossover paradigm, each deceased subject 
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was attributed the air pollution exposure estimated for his/her SAMS on the day of death, and 

controls were chosen as the same days of the week (within the same month and year), for the 

same SAMS. Since controls were very close in time, and referred to the same small area, the 

potential for residual confounding was very limited. However, this came with the cost that 

contrasts in exposures were performed within the same spatial unit as well, potentially reducing 

the statistical power to detect significant small associations. This might be responsible for the 

larger confidence intervals compared to those we have estimated in the alternative approach of 

using averages from urban background monitors as daily exposures common to all individuals. 

The limited statistical power had also negative consequences in the investigation of the spatial 

heterogeneity in the health effects: we couldn’t reject the null hypothesis of spatially 

homogeneous health effects because the study didn’t have the required power to do otherwise. 

In conclusion, we recognize the weaknesses of our study, which was inconclusive on one of 

the main hypotheses (presence of spatial heterogeneity in air pollution short-term effects) 

because of the small sample size and the reduced exposure contrasts within SAMS. However, 

the study was still able to document adverse effects of air pollutants in the whole population, 

especially during warm months. Future research should try to circumvent these problems by 

enlarging the sample size and replicating the same approach at the national level in Sweden, so 

to make good use of the full spatiotemporal exposure surfaces estimated in study III. 

5.2.2 Opportunities of spatiotemporal air pollution exposure estimates in 
epidemiological research 

Studies IV and V represent two examples of possible applications of spatiotemporal air 

pollution modelling in epidemiology, namely the investigation of short-term effects on 

mortality and morbidity outcomes across large geographical domains. We have previously 

highlighted the main limitations of the individual studies, and offered insights on the potential 

directions of future follow-up studies. Here, the purpose is to widen the spectrum of the desired 

epidemiological applications, focusing on the opportunities unraveled by exposure estimates 

available at fine spatiotemporal resolution. To do so, we will start from the standard paradigm 

of separating short-term and long-term health effects, to conclude with a possible unifying 

framework. 

Future directions in short-term health effects studies 

Needless to say, the main purpose of having spatiotemporal exposure models, rather than just 

spatial ones, is to investigate short-term effects. Remaining on the macroscales of studies IV 

and V, future research should move from the estimation of area-specific short-term effects to 

the investigation of whether and to what extent area-level characteristics (prevalence of chronic 

conditions, smoking habits, lifestyle, socio-economic status, proximity to healthcare facilities, 

etc.) are responsible for the spatial heterogeneity in the health effects. This would provide novel 

evidence on the interaction between individual and environmental risk factors, and inform 

policy makers on the areas of the territory, and the subgroups of the population, needing prior 

interventions. Moving to small-scale approaches, one opportunity offered by the availability of 

air pollutants’ estimates at high spatiotemporal resolution is to explore spatial differences in 
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the short-term health effects inside the urban areas, in order to identify districts or clusters of 

population especially vulnerable to the adverse effects of air pollutants. For example, it might 

be possible to investigate the potential interaction between daily air pollution exposure and 

residency in areas of the city characterized by the presence of other environmental stressors, 

such as high levels of road traffic noise, urban heat islands and distance from green spaces. 

Furthermore, if health data are available at the individual level for multiple points in time, as 

in panel studies with repeated measurements, concurrent spatiotemporal exposures would be 

crucial to disentangle within versus between-subject associations, shedding new light on the 

interplay between long-term and short-term effects in the same population. 

Future directions in long-term health effects studies 

It is more difficult to imagine applications of our spatiotemporal exposure estimates to 

investigate the long-term effects of air pollution, which wouldn’t be feasible with alternative 

approaches, such as conventional LUR and dispersion models. One major advantage of 

spatiotemporal models is the availability of predictions for long periods of time, whereas LURs 

usually predict annual mean concentrations as a static map, while the outputs from dispersion 

models can be expensive to obtain for multiple years. An interesting study design, originating 

in econometrics and recently borrowed by environmental epidemiologists, is the difference-in-

differences (D-D) approach (Card and Krueger 1994; Renzi et al. 2019; Wang et al. 2016). The 

most interesting feature of this design is the attempt to remove almost all potential candidates 

for confounding in the design stage, rather than by modelling. This is achieved by contrasting 

differences in exposures across time to differences in rates of mortality/diseases in the same 

populations, so that all those factors remaining stable in a population, or slowly varying over 

time, are automatically controlled for. Another advantage of the method is the simplicity of 

application, because it only requires annual mortality/morbidity rates for each study area, often 

available from official statistics, and simple multivariate Poisson models. The main limitations 

are the ecological approach and the limited statistical power, because the exposure contrast of 

interest is year-to-year variability in air pollution estimates, usually not very large. 

A unifying framework for the joint evaluation of short- and long-term effects 

After several decades of epidemiological investigations on the short-term and long-term health 

effects, it is today well recognized that air pollution is consistent with both, as it acts as a trigger 

of acute responses among susceptible individuals (“spilling of the glass”) as well as a long-

term risk factor contributing to chronic health deterioration (“filling of the glass”). While 

conventional study designs are forced to consider the two aspects as an unresolvable 

dichotomy, biologically speaking it makes much more sense to imagine them as extremes of a 

continuum, with future research needed to explore what lies in between. One of the causes of 

that dichotomy has been, historically, the lack of exposure data at the right spatial and temporal 

resolution. With the new advances in air pollution modelling, such gap has been finally filled, 

and new possibilities for epidemiological study designs open. The most promising one is, in 

my view, the use of prospective cohort data and time-varying survival models for the 

investigation of air pollution health effects at different averaging times, spanning from few 

days to multiple years.  
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 CONCLUSIONS 

The objective of this thesis, and of the five constituent papers, was to provide novel 

spatiotemporal exposure estimates of several air pollutants for two large geographical domains, 

and to investigate their short-term effects on mortality and morbidity outcomes. The main 

challenges in the exposure modelling and in the interpretation of epidemiological findings have 

been presented, and insights on possible future directions of research have been proposed. 

The specific objectives of this work have been carefully addressed, and allowed to draw the 

following conclusions: 

− Novel spatiotemporal exposure estimates have been produced on PM10, PM2.5 (Italy and 

Sweden), NO2 and O3 concentrations (Sweden only) at high spatial (1x1-km) and 

temporal (daily) resolution for long study periods (multiple years) and large geographical 

domains (two countries); 

− Adverse short-term effects of particulate matter on daily cardiovascular admissions have 

been documented, with associations significant on specific outcomes such as heart failure 

and atrial fibrillation. Effects were highest at the lowest PM concentrations, also in semi-

urban and rural municipalities; 

− The association between daily PM and ozone with non-accidental mortality was slightly 

higher in more densely inhabited areas, but the study was underpowered to detect a 

significant spatial heterogeneity in the health effects.  
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