Coupling of groundwater, river level and rainfall in an upland floodplain
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Introduction Results Conceptualisation of hillslope-floodplain water flow
Upland floodplains provide an important function in regulating river flows and controlling the coupling of _ _ under different antecedent conditions
hillslope stormflow with rivers. Recent exceptionally wet winters in the United Kingdom have emphasised the 3D modelling Hydrochemistry i

problem of flooding and the need for research into the connectivity of water flows in upland floodplains and
adjacent hillslopes. This study investigated surface water-groundwater interactions in an upland catchment in
the Scottish Borders.

A 3D model of superficial geology was developed (Figure 2), which
Illustrates how permeable slope/solifluction deposits extend from the
hillslope into the edge of the floodplain, interfingering and connecting
with the highly permeable floodplain aquifer and allowing significant
subsurface water flow from hillslope to floodplain.

Base metal ratios suggest that older, low oxygen groundwater (which
has experienced more water-aquifer interaction) s more common
closer to the river, while groundwater at the edge of the floodplain
tends to be younger and higher in oxygen (Figure 2).
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Flooding during local rainfall event
during saturated soil conditions:

(M) Dominant groundwater flow
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e A superficial aquifer comprising highly permeable (transmissivity 200—1000 m?/day) alluvial
and glaciofluvial sandy gravels extends across the floodplain, between 8 and 15 m thick,
and is coupled to the hillslope by permeable slope/solifluction deposits.
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There are two general patterns of groundwater behaviour in the floodplain: (1) closer to the
river groundwater tends to be confined and groundwater levels closely follow river stage,
driven by pressure changes; and (2) near the edge of the floodplain groundwater tends to
be unconfined, less coupled to river stage and to respond more strongly to rainfall.
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Methodology

The site area was characterised
using surface geophysics 500
(electromagnetic induction, 2D 0 | | - | B e
electrical resistivity tomography '
and ground penetrating radar),
3D geological mapping,
hydrogeological testing

and geochemical sampling.
Hydrological monitoring of
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The floodplain aquifer acts as a significant water store: under non-flood conditions, the
river loses water to the aquifer which flows as groundwater and is discharged back to the
river further downstream; and water flowing from the hillslope is buffered by the aquifer
and does not directly flow to the river.
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e Under flood conditions, the storage capacity of the floodplain aquifer can be exceeded and
it no longer forms such a strong buffer between hillslope runoff and the river. Groundwater
flooding can occur, with the areas close to the hillslope at the edge of the floodplain being
most at risk. The potential for groundwater flooding in the floodplain remains high for
longer periods than for river flooding.

Figure 3 Cumulative rainfall, showing time periods investigated in
depth (B, C, E) and times when river flooding occurred (F1, FZ, F3) and
groundwater became artesian but no river flooding occurred (GW1, GWZ)

Figure 4 Hydraulic parameters monitored in time periods B, C and E:
groundwater levels in selected piezometers (see Figure 2 for piezometer
locations); soil moisture content in upper & lower soil pits at 3 depths;
and river level near weather station (see Figure 2 for location)
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