

NATURAL ENVIRONMENT RESEARCH COUNCIL

enquiries@ceh.ac.uk WWW.Ceh.ac.uk

VOC chemical climate and O₃ variation: Impact of emissions on regional O₃ increment

Christopher S. Malley^{1,2}, Christine F. Braban¹, J. Neil Cape¹, Peter Dumitrean³, and Mathew R. Heal² ¹NERC Centre for Ecology & Hydrology, UK; ²School of Chemistry, University of Edinburgh, UK; ³Ricardo-AEA, UK;

Overview

- O₃ formation is a function of [NO_x] & [VOCs]¹
 VOCs each have distinct O₃ production potentials
- VOCs each have distinct O₃ production potentia (POCP)
- Speciated European VOCs emissions in public databases (SNAP sectors and NFR code aggregations)
- 27 VOCs are measured at 2 rural UK EMEP supersites
 38% by mass of 2011 UK VOC emissions emitted are
- UK emits majority of UK VOC emissions exposure.
 - E.g. Harwell 2011 average = 63% (July 2011 = 96%)
- Ethene and m+p-xylene biggest contributors to regional O₃ increment
- Smaller contributions from other VOCs: reduction in wide range of VOCs required
- Largest contribution to VOC emissions from *solvent and product use* sector
- Substantial advantages to gridded VOC emissions reporting in more disaggregated source sectors, i.e. NFR codes more useful than SNAP sectors

VOC chemical climate analysis

Impact Regional O₃ increment

Difference between hemispheric background and regional background O₃

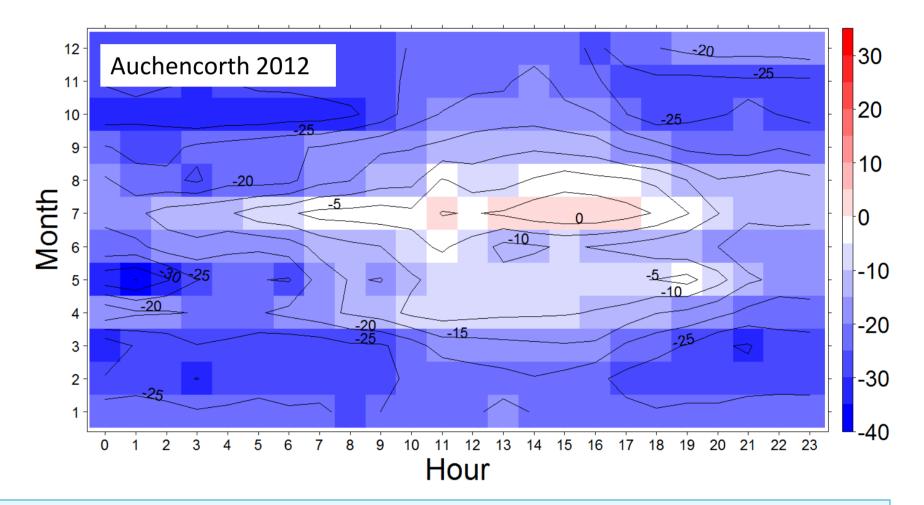
Hemispheric = [O₃] during westerly conditions at Mace Head Regional = y-intercept of OX (O₃ + NO₂) vs NO_x plot⁴

State

VOC diurnal photochemical depletion

POCP weighted [VOC]	POCP weighted [VOC]
POCP weighted [ethane] _{1am-5am}	POCP weighted [ethane] _{1pm-5pm}

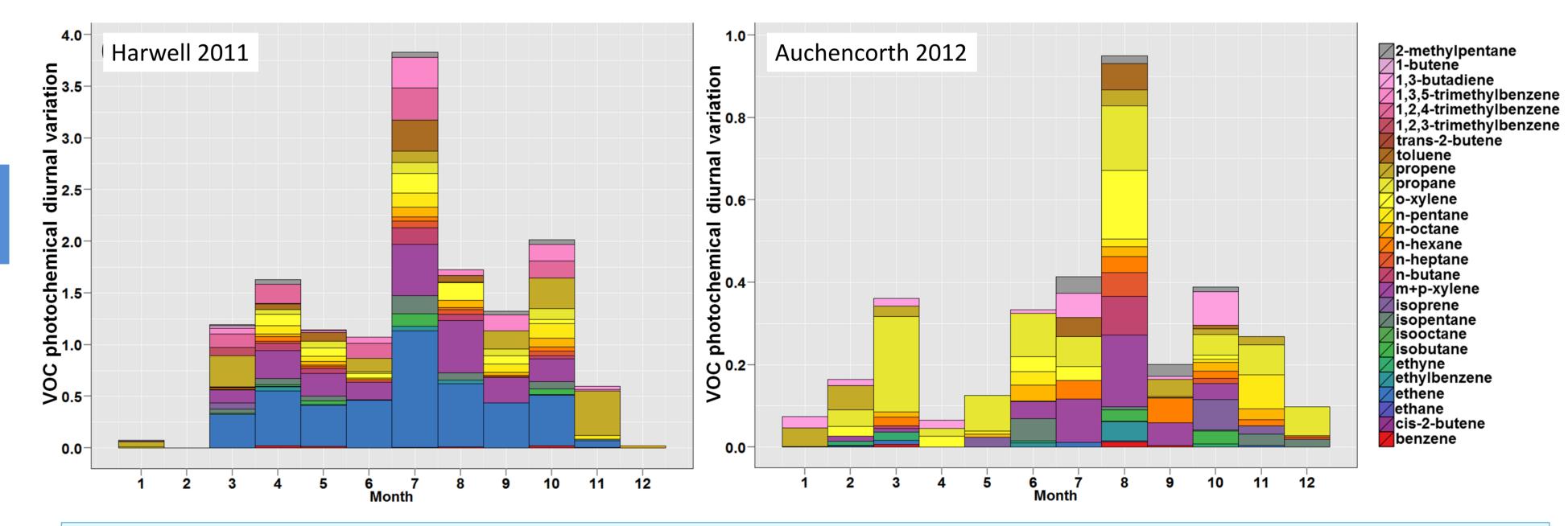
Drivers


VOC trajectory emissions exposure

Monthly averaged estimate of the VOC hourly emissions along the 96 hour back trajectory pathway prior to arrival at the supersite.⁵

Impact: Regional O₃ Increment

Monthly-diurnal variation in regional O₃ increment



Harwell 2011: Two regional O₃ increment max: April (+11 μ g m⁻³) & July annual max (+32 μ g m⁻³) Auchencorth 2012: Annual max in July 2012 (+4 μ g m⁻³) lower regional O₃ increment

State: VOC photochemical reactivity

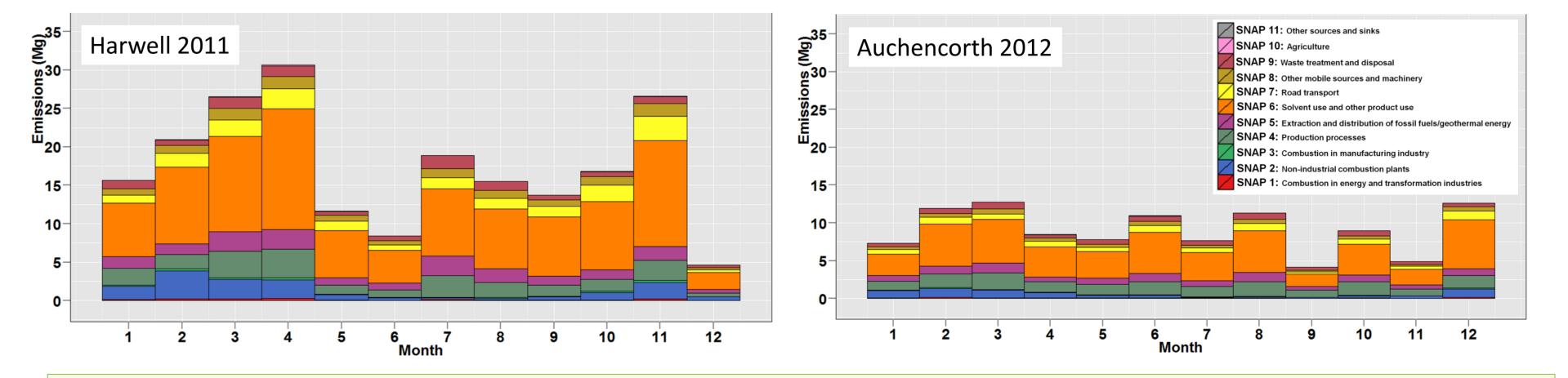
Monthly variation in VOC diurnal photochemical depletion

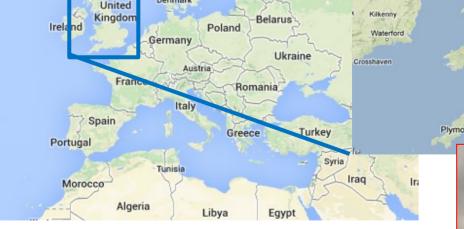
Study area and data

- Hourly measurements in 2011 and 2012 analysed
 NO_x
- 0₃ • 27 VOCs

2-methylpentane 1.3-butadiene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1.2.3-trimethylbenzene trans-2-butene toluene propene propane o-xylene n-pentane n-octane n-hexane n-heptane n-butane m+p-xylene isoprene lisopentane isooctane lisobutane ethyne ethylbenzene ethene ethane cis-2-butene benzene

Iceland


Norwegian Se



Harwell 2011:Ethene and m+p-xylene largest contributors in maxima months April and JulyAuchencorth 2012:Substantially lower VOC diurnal photochemical depletion

Drivers: Total trajectory path emissions

Total monthly averaged 4-day back trajectory VOC emissions cumulative exposure (Mg of VOC), disaggregated into 11 SNAP source sectors

Auchencorth

arwell

United

Harwell: April 2011: VOC emissions exposure annual max
 June-July 2011: 123% increase in emissions exposure.
 July 2011: Higher temperature and solar intensity produce annual max
 VOC photochemical depletion and regional O₃ increment

The University of Edinburgh School of Chemistry, the NERC Centre for Ecology & Hydrology (CEH) and the UK Department for Environment, Food and Rural Affairs (Defra) are acknowledged for funding. Defra contractors Ricardo-AEA, Bureau Veritas and NERC Centre for Ecology & Hydrology are acknowledged for operating the UK EMEP Supersites. References ¹ AQEG, 2009. Ozone in the United Kingdom: Air Quality Expert Group, Defra Publications, London.² Derwent, R.G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., 1998. Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 32, 2429-2441.³ Malley, C.S., Braban, C.F., Heal, M.R., 2014. New Directions: Chemical climatology and assessment of atmospheric composition impacts. Atmos. Environ. 87, 261-264.⁴ Clapp, L. J., Jenkin, M. E., 2001. Analysis of the relationship between ambient levels Of O-3, NO2 and NO as a function of NO chi in the UK. Atmos. Environ. 35, 6391-6405.⁵ EEA, 2013. EMEP/EEA air pollutant emission inventory guidebook 2013. EEA technical report No 12/2013. European Environment Agency.

THE UNIVERSITY of EDINBURGH

