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Summary 1 

Insect pollinators provide an important ecosystem service to many crop species and underpin the 2 

reproductive assurance of many wild plant species. Multiple, anthropogenic pressures threaten 3 

insect pollinators. Land-use change and intensification alters the habitats and landscapes that 4 

provide food and nesting resources for pollinators. These impacts vary according to species traits, 5 

producing winners and losers, while the intrinsic robustness of plant-pollinator networks may 6 

provide stability in pollination function. However, this functional stability might be eroded by 7 

multiple, interacting stressors. Anthropogenic changes in pollinator-mediated connectivity will alter 8 

plant mating systems (e.g. inbreeding level), with implications for plant fitness and phenotypes 9 

governing trophic interactions. The degree to which plant populations can persist despite, or adapt 10 

to, pollination deficits remains unclear.  11 

 12 

 13 

  14 
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Introduction  15 

To advance understanding of global change impacts on the natural world requires an increased 16 

focus on the changes that occur to the web of biotic interactions that underpin the functions of 17 

populations, communities and ecosystems [1, 2]. Many flowering plant species have a facultative or 18 

obligate dependence on insect pollination for reproductive success and ultimately population 19 

persistence [3]. Furthermore, insect pollination provides an ecosystem service by increasing or 20 

stabilizing yields and quality of many fruit, vegetable, oil, seed and nut crops [4, 5], which 21 

contribute essential variety and nutrients to human diets [6]. Insect pollinators and the pollination 22 

services they deliver face multiple, potentially interacting threats from climate change, pests and 23 

pathogens, alien invasive species, and land-use change and intensification [7-9]. Moreover, there is 24 

accumulating evidence that pollinator declines, range contractions and community homogenisation 25 

have indeed occurred [10-15]. Land-use change and intensification alter the landscape extent and 26 

quality of semi-natural habitats that provide the key forage and nesting resources supporting insect 27 

pollinators and the pollination service they provide [16-20]. This opinion paper outlines the impact 28 

of anthropogenic landscape alteration and habitat modification on pollinators and plant mating 29 

systems and the implications for plant population persistence and community dynamics.  30 

Landscape alteration 31 

Pollinators rely on semi-natural habitat for a diversity of food sources and breeding sites [21, 22]. 32 

Land-use change and agricultural intensification has reduced the amount of such semi-natural 33 

habitat and simplified landscape structure [23], and is one of many factors [7] linked to historic and 34 

continuing losses of wild pollinator biodiversity [10-14, 24]. Forest fragmentation can lead to 35 

declines in flower visitation by native pollinator species [25, 26] and the evenness of European wild 36 

bee and butterfly communities was decreased by loss of habitat area [27]. A recent analysis revealed 37 

that fragmentation of forested landscapes over the long-term resulted in degraded plant-pollinator 38 

networks and substantial levels of pollinator extinction [24]. Extensive habitat loss and 39 
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fragmentation can isolate populations and reduce their persistence by erecting barriers to gene flow, 40 

reducing gene diversity and leading to low effective population sizes [28, 29]. Agri-environment 41 

interventions targeted at (re)creating pollinator habitats tend to have the greatest positive impact on 42 

bee diversity and flower visitation in fields situated in spatially homogenous landscapes dominated 43 

by agricultural monocultures and lacking good quality semi-natural habitat [30, 31]. The proportion 44 

of semi-natural habitat in the landscape is therefore a strong predictor of pollinator diversity and 45 

abundance [20, 25], stable population dynamics [32] and delivery of pollination services to plants 46 

[17, 24].  47 

Differences in eco-evolutionary traits (e.g. mobility, feeding adaptations etc) govern the response of 48 

pollinator species to habitat loss or landscape simplification. Overall, wild bee and hoverfly species 49 

that are more specialised, nest above ground or have limited dispersal abilities are most vulnerable 50 

to habitat loss and degradation [10, 24, 33-35]. For example, Western European bumblebee species 51 

in decline tend to be those with late season phenology and possessing specialised long-tongued 52 

mouthparts adapted to forage on plants typical of unimproved flower-rich grasslands (e.g. Fabaceae) 53 

or legume crops, both habitats that declined in extent in this region during the late twentieth century 54 

[36, 37]. Nesting habit is a strong predictor of bee species sensitivity to the loss of semi-natural 55 

habitats because of the concomitant loss of particular nesting resources (e.g. stems of perennial 56 

grasses, herbs and shrubs or dead wood cavities) [33]. Sociality is another trait affecting 57 

vulnerability to landscape alteration. Social bees are central location foragers tied to the colony 58 

location, consequently they are more sensitive to the distance to forage resource patches in the 59 

surrounding landscape [20, 38] than non-social insects with free-living progeny, such as Diptera [38, 60 

39]. Even within social bee taxa, species-specific differences in mobility and dispersal range will 61 

govern responses to habitat loss and/or fragmentation. For instance, relatively common bumblebee 62 

species (e.g. B. pascuorum, B. lapidarius) in Britain may be somewhat buffered against landscape 63 

alteration due to their ability to forage and disperse over greater distances [40] than declining 64 

congeners [28, 29]. Such dispersal by highly mobile, generalist species between habitat fragments 65 
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may ameliorate the effects of landscape fragmentation on pollinator community evenness [27]. 66 

Landscape alterations therefore are expected to filter species according to eco-evolutionary traits 67 

with knock-on effects for ecological function. Creating and maintaining locally diverse, fine-grained 68 

and well-connected habitat structure across the landscape will aid the stability of wild pollinator 69 

populations and diversity. 70 

Habitat modification  71 

Aside from landscape alteration, anthropogenic perturbation (e.g. pollution, land-use change) and 72 

modification (e.g. land management) of habitat structure can alter pollinator communities and 73 

pollination processes. Conversion of semi-natural habitat to an agricultural or silvicultural land-use 74 

is a prime driver of change to plant-pollinator biodiversity and interactions. Incorporation of semi-75 

natural habitat into livestock farming systems is one example common worldwide. Livestock 76 

grazing through consumption of plant biomass, trampling and excreta can modify plant phenological 77 

development, reproductive strategies and community structure [39, 41, 42]. Such plant community 78 

changes can subsequently affect pollinator abundance or diversity [42] and plant-pollinator 79 

interactions [39, 43, 44]. Cattle introduced to Patagonian forests altered the structure of plant-80 

pollinator networks by reducing the frequency of dominant interactions, mainly composed of 81 

abundant generalist plant or pollinator species that interacted with many rarer species in the network 82 

[43]. Whereas, moderate cattle grazing of birch (Betula spp.) habitat in Scotland increased the 83 

connectance, via elevated floral species richness, but decreased the nestedness of pollinator 84 

visitation networks [39]. Intensive cattle grazing of steppe vegetation, in contrast, eroded plant 85 

diversity concentrating pollinator flower visitation onto the remaining few grazing-tolerant ruderal 86 

plants [44]. In sum, habitat engineering by grazing livestock has the potential to alter pollinator 87 

community structure [39, 43, 44], but the precise outcome likely depends on the habitat type, the 88 

land management intensity and the pool of taxa and traits in the community [33, 34].  89 

Multiple, interacting drivers 90 
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Insect pollinators face multiple, potentially interacting threats [7-9], yet our understanding of how 91 

other global changes combine with landscape and habitat alteration to impact on pollinators is 92 

relatively poor. Decreased genetic diversity of bumblebee populations isolated by habitat 93 

fragmentation may increase their vulnerability to parasites that are implicated as a driver of bee 94 

declines in America [15, 45]. Pollinator species living at the edge of their climatic limits have more 95 

variable population sizes [46] and thus may be more vulnerable to the individual and combined 96 

effects of habitat loss/fragmentation and climate change [12, 14]. Climate changes are shifting the 97 

thermal limits of pollinator (e.g. butterflies) species distributions, but colonisation rates may be 98 

restricted by limited availability of semi-natural habitat in intensively farmed landscapes [12]. 99 

Moreover, climate change may disrupt phenological synchrony between plants and pollinators 100 

leading to gaps or curtailment in floral resource availability [47, 48] which, exacerbated by 101 

deteriorating floral resources in intensively managed landscapes [36, 37], may lead to nutritional 102 

deficits for pollinators. Thus there is the potential risk that pollinator populations and species may be 103 

extirpated by the additive or synergistic effects of multiple anthropogenic threats. 104 

Stability and collapse of pollinator communities 105 

Filtering and loss of species due to anthropogenic modification of landscapes and habitats may 106 

change community structure to the point where pollination function is lost [16, 24]. Simulation 107 

modelling of plant-pollinator networks has revealed that if species losses continue to the point that 108 

the most generalised species - i.e. those most connected to other species via direct or indirect species 109 

interactions in the network - are eliminated, then a sudden cascade of secondary extinctions could 110 

arise [49, 50]. However, the most highly linked and common pollinators may be the least sensitive 111 

to extinction [35, 51] and networks of plant-pollinator interactions appear relatively robust to 112 

species loss because of the stability derived from network topology (e.g. nestedness), the presence 113 

of very abundant and connected species, species redundancy and behavioural flexibility [50-53]. For 114 

example, adaptive foraging by generalist species may confer network stability, while ‘rewiring’ of 115 

the network by remaining species adopting extirpated species niches may compensate for species 116 
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loss [52, 53]. However, greater specialisation of plant-pollinator interactions or networks increases 117 

vulnerability to perturbation and extinction [10, 24, 33, 35]; this might have implications in 118 

temperate regions where plant-pollinator networks tend to be more specialised [54]. Finally, recent 119 

theoretical and empirical modelling work suggests that if environmental stresses reach a certain 120 

level, then individual bee colonies/populations and even inherently robust pollinator community 121 

networks could collapse [50, 55]. As pollinators face multiple anthropogenic threats [7, 8], a 122 

potential risk is that this multiplicity of stresses may increase the probability of such sudden 123 

population or community collapse, although there have been few experimental tests of this to date 124 

[38, 56].  125 

Consequences for plant diversity, fitness and multitrophic interactions   126 

Insect pollination is a vital ecosystem process supporting plant diversity, with an estimated 87% of 127 

flowering plant species globally [3] reliant on animal (mostly insect) pollination for mating and 128 

reproductive success [57]. Some studies in northern Europe have linked pollinator and plant decline, 129 

with facultative or obligate dependence on insect pollination partly explaining observed declines in 130 

wild plant species richness or occurrence [10, 36, 58]. It should be noted, however, that another 131 

analysis revealed plant species declines occurred irrespective of the level of plant dependence on 132 

pollinators [11], suggesting another common driver (e.g. nitrogen pollution).  133 

Outcrossing plant species often carry high loads of potentially deleterious recessive alleles [57]. 134 

Hence modification of plant mating systems by environmental changes (Fig.1) has the potential to 135 

elevate the risk of inbreeding depression, affecting plant fitness negatively and potentially driving 136 

population evolutionary change [57, 59, 60]. Anthropogenic modification of landscape or habitat 137 

structure will drive changes in the densities or dispersion of conspecific plants that change 138 

pollinator-mediated connectivity within a plant population (Fig.1) [61]. This can lead to altered 139 

pollen flow impacting on the ability of plant individuals to achieve outcrossed mating and avoid 140 
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biparental inbreeding (i.e. mating among close relatives) and can increase self-fertilisation rates 141 

[57].  142 

Large areas of contiguous forest are required for minimum viable population sizes of insect-143 

pollinated tree species [62] and trees isolated by fragmentation can experience altered patterns of 144 

visitation by native pollinator species [25, 63]. This can potentially lead to disrupted mating 145 

systems, altered phenotypes and reduced plant fitness (Fig.1) [59, 60], although the level of this 146 

impact is likely to be dictated by the extent of the habitat fragmentation and the pool of pollinator 147 

species and traits in the locale [63]. For example, reduced visitation by native pollinators to forest 148 

trees isolated by fragmentation was partly compensated by increased visitation of highly mobile 149 

introduced honey bees, leading to some reproductive assurance [64, 65]. Plant reproductive success 150 

has also been assured by linear features (e.g. hedgerows) facilitating bee-mediated connectivity of 151 

plants in fragmented landscapes [66].  152 

Similarly, habitat modification by land management (e.g. grazing livestock) may directly (e.g. 153 

trampling, consumption) or indirectly (e.g. altered pollinator foraging in disturbed community) 154 

affect pollen deposition and seed set by changing the densities and dispersion of conspecific plants 155 

[67]. It has also recently been shown that grazing management of woodland was associated with 156 

increases in the outcrossing rate and the number of different pollen donors in a focal understory 157 

plant species, partly reflecting the increased connectivity of insect visitation networks, driven by the 158 

greater floral resources in the grazed habitat [39].  159 

Increased self-fertilisation of facultatively outcrossing plants can lead to loss of heterozygosity and 160 

increased selection of deleterious alleles, which can reduce plant fitness [57, 59]. Consequently, 161 

environmental perturbation that lowers insect-mediated pollen flow can affect the plant phenotype, 162 

such as floral traits or volatile emissions, and hence its interspecific interactions across the wider 163 

food web [60, 68, 69] (Fig.1). Recent work using experimentally inbred plant lines has shown that 164 

inbreeding depressed gene expression in pathways (e.g. jasmonic acid, ethylene) that regulate the 165 
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induction of defensive compounds and organic volatiles [70]. This altered trophic interactions with 166 

inbred plants emitting more constitutive volatiles, which attracted greater numbers of herbivores, 167 

but fewer herbivore-induced volatiles leading to reduced natural enemy recruitment [68]. Whether 168 

the anthropogenic impacts on pollinator communities, plant mating systems and floral phenotypes 169 

[39, 59, 60, 62] lead to similar alteration of multi-trophic interactions has yet to be tested (Fig.1).  170 

Conclusions  171 

Pollination is a key ecosystem process that directly and indirectly supports wider biodiversity and 172 

ecological function. Recent research initiatives around the world 173 

(e.g.www.insectpollinatorsinitiative.net) are advancing our knowledge about the anthropogenic 174 

pressures affecting pollinators and pollination [7]. Nonetheless, further research is needed to 175 

understand better the threat to this ecosystem service. For example, we need to improve basic 176 

understanding of pollinator [meta]population and [meta]community dynamics in anthropogenic 177 

landscapes (Fig.1). We should also assess multifactorial impacts (e.g. landscape modification, alien 178 

species, disease) on pollinator networks and plant reproduction (Fig.1) and compare species 179 

persistence along gradients of habitat degradation. As plants underpin food-webs in most 180 

ecosystems, a particular challenge is to investigate the consequences of human-induced changes to 181 

pollination for the multitrophic interactions connecting plants and consumers (Fig.1), both above 182 

and below ground. Such an integrated approach will further our capacity to predict the resilience of 183 

ecosystems to global environmental changes. 184 

 185 
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