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This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model
in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secre-
tion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts
through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness.
Thus, photo-inhibition gradually increases when photoperiods exceed 12 h, and reverses under shorter
photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in
tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially
explain differences in timing and duration of breeding seasons between species, why some species
become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at
the same time at different latitudes within species, and why experimental protocols sometimes produce
results that appear counter to what happens naturally.
� 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Photoperiodism

It is nearly 9 decades since Rowan (1925) first demonstrated that
increasing daylength is the major cue used by birds to initiate gona-
dal maturation in spring. Strictly, it was not clear until later that
light that was directly responsible, rather than light influencing
the length of the bird’s daily duration of activity (Bissonnette,
1931). Subsequently, the effect of photoperiod (p) on testicular mat-
uration was quantified by transferring birds from a short photope-
riod to various longer photoperiods and assessing the initial rate of
increase in testicular mass (k) where k is log10 increase in testicular
mass per day. In general, the rate of maturation was found to be pro-
portional to photoperiod between photoperiods of 8 h of light:16 h
of darkness (8L:16D) and 18L:6D day (Farner and Wilson, 1957;
Follett and Maung, 1978). [Hereafter, photoperiod will just be
referred to as the hours of light, e.g. 8L.] A similar relationship
was found for ovarian growth in females (Farner et al., 1966).

Photoperiodic responses are dependent on an interaction
between endogenous circadian clocks (Ball and Balthazart, 2003;
Yasuo et al., 2003; Follett et al., 1992; Brandstätter, 2003;
Brandstätter et al., 2001) and encephalic photoreceptors. Unlike
mammals, birds do not use melatonin to relay photoperiodic infor-
mation; they use photoperiodic information directly through pho-
toreceptors located within the mediobasal hypothalamus (Benoit,
1964; McMillan et al., 1975; Oliver and Baylé, 1982; Saldanha
et al., 1995; Saldanha et al., 2001). A variety of opsins have been
suggested as the photopigment involved (Davies et al., 2012;
Nakane et al., 2010; Wang and Wingfield, 2011). The magnitude
of the photoperiodic response does not depend on an hour glass
model whereby the response is related to the total number of
hours of light; rather that it is dependent upon when light is per-
ceived in relation to circadian time (Follett et al., 1992; B}unning,
1960; Hamner, 1960; Hamner, 1963; Juss et al., 1995; Kumar
et al., 1996; Menaker, 1971; Kumar et al., 2010; Hamner, 1964).
The external coincidence model postulates that light has two func-
tions: one to entrain the circadian clock and the other related to
photoperiodic time measurement.
1.2. Neuroendocrinology of photostimulation

Photostimulation is essentially the control by photoperiod of
the rate of secretion of gonadotropin releasing hormone 1 (GnRH1)
from the median eminence. In the context of this paper, one partic-
ularly important fact is that the response is effectively immediate;
the response to a particular photoperiod in terms of GnRH1 secre-
tion happens on the same day as that photoperiod (Meddle and
Follett, 1997; Nicholls et al., 1983). There are several isoforms of
GnRH, but it is GnRH1 that controls the endocrine cascade leading
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to gonadal maturation (Sharp et al., 1990). GnRH1 cells are bi-lat-
erally distributed along the third ventricle, and they send long pro-
jections to the median eminence where GnRH1 is secreted
(Stevenson et al., 2012). Although thyroid hormones have for some
time been known to play a key role in the photoperiodic responses
(Dawson, 1993), the precise mechanism has only more recently
been elucidated. Long photoperiods stimulate synthesis of thyrot-
ropin-stimulating hormone beta (TSH-ß) in the pars tuberalis
(Nakao et al., 2008; Stevenson and Ball, 2012), and this changes
the ratio of the thyroid hormone enzymes deiodinase type II and
type III (DiO2 and DiO3) in favor of DiO2 leading to increased local
production of triiodothyronine (T3) Watanabe et al., 2007; Yasuo
et al., 2005; Yoshimura et al., 2003. T3 alters the structural
arrangement of the GnRH1 terminals at the median eminence;
the glial endfeet that ensheath the terminals retract and this allows
increased secretion of GnRH1 (Yamamura et al., 2004, 2006).

This neuroendocrine mechanism titrates photoperiod. Under
long photoperiods, the DiO2/DiO3 ratio increases leading to
increased secretion of GnRH1, and under shorter photoperiods this
is reversed. Presumably the relationship between photoperiod and
the secretion rate of GnRH1 reflects the k/p relationship. Since the
neuroendocrine response to an experimental acute increase in
photoperiod is immediate, GnRH1 secretion rate at any one time
is determined by the ambient photoperiod and the k/p relation-
ship; therefore the secretion rate is proportional to p.

There are some unresolved questions relating to photoperiodic
control. Firstly, to what photoperiod are birds responding; is it
photoperiod as determined by sunrise to sunset, or do birds
include civil twilight? Secondly, is the magnitude of the GnRH1
secretion rate directly related to ambient photoperiod, or does
the direction and rate of change in photoperiod have an influence?
Many experimental protocols involve an acute change in photope-
riod which birds would never naturally experience. Does a partic-
ular photoperiod cause a different stimulus as photoperiod is
decreasing as opposed to increasing? In other words, does the k/
p relationship vary with the direction of change in photoperiod?
In theory this could account for why species such as Japanese quail
(Coturnix coturnix) show gonadal regression during the autumn
under photoperiods that would have been gonado-stimulatory
during spring (Robinson and Follett, 1982). This paper will argue
against this explanation.

1.3. Photorefractoriness

If GnRH1 secretion is simply proportional to photoperiod, then
the duration of full gonadal maturity, and hence the length of the
breeding season, would always be symmetrical about the summer
solstice. For a variety of ecological reasons, this is rarely, if ever,
appropriate. Birds need to time their breeding attempts to the per-
iod when the food on which the nestlings depend is most abundant.
Different species rely on different food supplies, and these will be
available at different times and for differing durations. Conse-
quently, breeding seasons of different species vary widely in dura-
tion and timing. Secondly, young birds need time to develop
somatically and behaviorally sufficiently to survive the ensuing
winter. Birds also normally need time to molt after breeding. Breed-
ing seasons tend to be in spring or early summer, rather than later.

Many species of birds show gonadal regression well before the
return of short photoperiods during autumn and are said to
become photorefractory (Burger, 1949). If experimental birds are
moved from a short photoperiod to a long photoperiod, the initial
response is gonadal maturation, but later the gonads regress as
birds become photorefractory (Burger, 1949; Miller, 1954). In such
situations, the timing of the onset of photorefractoriness is inver-
sely proportional to the photoperiod (Burger, 1952; Dawson and
Goldsmith, 1983). Short photoperiods, normally during autumn,
are required to end the photorefractory period and restore birds’
ability to respond to an increase in photoperiod (Farner and
Mewaldt, 1955). Photorefractoriness was considered to prevent
normal photoperiodic responses, hence the term photorefractori-
ness. Clearly photorefractory birds are still monitoring photope-
riod, because short photoperiods dissipate photorefractoriness, so
the term is somewhat misleading. Furthermore, the term has a
very different meaning in mammals (see Section 4).

1.4. Neuroendocrinology of photorefractoriness

In contrast to the recent advances in understanding the neuro-
endocrine changes associated with photostimulation, compara-
tively little is known about events during the onset of
photorefractoriness. The first major advance was the surprising
finding that hypothalamic stores of the GnRH1 peptide decrease
100-fold at the onset of photorefractoriness in common starlings
(Sturnus vulgaris) Dawson et al., 1985, 2002; Foster et al., 1987;
Goldsmith et al., 1989. Juvenile starlings develop in a state equiv-
alent to photorefractoriness (Williams et al., 1987; McNaughton
et al., 1992) with low hypothalamic GnRH1. This increases during
short photoperiods (Dawson and Goldsmith, 1989) in the same
way as it does when photorefractory adults are moved to short
photoperiods (Dawson et al., 1986). Thus the recovery from photo-
refractoriness is essentially a repeated puberty. During the recov-
ery from photorefractoriness there is first a measurable increase
in GnRH1 in the preoptic area followed by an increase in the med-
ian eminence (Dawson and Goldsmith, 1997). At the same time,
there is a rapid increase in circulating gonadotropins in gonadecto-
mized birds (Dawson and Goldsmith, 1984). Marked seasonal
changes in hypothalamic GnRH1 content have been found in other
Passeriforme species e.g. house sparrows (Passer domesticus) Hahn
and Ball, 1995; Stevenson and MacDougall-Shackleton, 2005,
American tree sparrows (Spizella arborea) Reinert and Wilson,
1996, house finches (Carpodacus mexicanus) (Cho et al., 1998),
dark-eyed juncos (Junco hyemalis) Deviche et al., 2006; Meddle
et al., 2006, and rufous-winged sparrows (Aimophila carpolis)
(Small et al., 2008). These data led to the following model of sea-
sonality (Dawson et al., 2001). During increasing photoperiods of
spring, GnRH1 secretion increases, leading to gonadal maturation.
GnRH1 synthesis increases at least sufficiently to compensate for
increased secretion because hypothalamic stores increase slightly.
During exposure to long photoperiods, some unknown process
leads to the onset of photorefractoriness at which point GnRH1
synthesis ceases. The drive on GnRH1 secretion may still be high,
because photoperiod is long, but since synthesis has ceased, no
GnRH1 is secreted and the gonads regress. GnRH1 synthesis
resumes during short photoperiods of autumn. However, because
photoperiods are then short, there is little secretion and so little
gonadal maturation until increasing photoperiods during the fol-
lowing spring. Thus, photoperiod has two effects. Long photoperi-
ods initially induce increased secretion of GnRH1 and they also
later lead to an inhibition of GnRH1 synthesis. In the absence of
thyroid hormones, photorefractoriness does not develop
(Wieselthier and van Tienhoven, 1972; Woitkewitsch, 1940) and
is not maintained (Dawson et al., 1985) suggesting that the inhibi-
tion of GnRH1 synthesis is an active thyroid-dependent process.
Increased synaptic input to the GnRH1 cell bodies is seen in photo-
refractory birds (Parry and Goldsmith, 1993).

The absence of an available GnRH1 gene sequence in songbirds
prevented confirmation of this model for some time. A major
breakthrough came with the cloning of the GnRH1 gene
(Stevenson et al., 2009; Stevenson et al., 2013; Ubuka and
Bentley, 2009; Ubuka et al., 2009). This resulted in confirmation
that GnRH1 mRNA levels in the medial preoptic area decline in
parallel with the onset of testicular regression under long photope-
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riods to very low values. Conversely, GnRH1 mRNA levels increase
as photorefractoriness is terminated during short photoperiods
(Stevenson et al., 2012). Thus, photorefractoriness is indeed associ-
ated with marked changes in GnRH1 gene expression. This degree
of GnRH1 gene plasticity is not seen in mammals and may have
evolved in birds because of their restricted breeding seasons
(Stevenson et al., 2012).

1.5. Relative photorefractoriness

This description of photorefractoriness is typical of birds whose
breeding season ends comparatively early, often while photoperiod
is still increasing before the summer solstice. Such species show
spontaneous gonadal regression under chronic long experimental
photoperiods and do not show renewed gonadal maturation fol-
lowing subsequent transfer to an even longer photoperiod. These
species are said to become absolutely photorefractory. Some spe-
cies have longer breeding seasons and, under experimental condi-
tions, do not show spontaneous gonadal regression during chronic
long photoperiods. However, they do show regression when photo-
period decreases, even though the photoperiod that induces
regression can be longer than that which stimulated gonadal mat-
uration earlier in spring (Robinson and Follett, 1982; Follett and
Pearce-Kelly, 1990). Renewed gonadal maturation can be stimu-
lated at any time by transfer to a long photoperiod. Such species
are said to be relatively photorefractory. The classic experimental
species showing this is the Japanese quail. A major difference
between absolute and relative photorefractoriness is that gonadal
regression induced by the latter is not associated with a decrease
in hypothalamic GnRH1 peptide (Foster et al., 1988). Changes in
reproductive function in quail are primarily controlled at the level
of GnRH1 secretion (Stevenson et al., 2012). However, like absolute
photorefractoriness, relative photorefractoriness is thyroid-depen-
dent (Follett and Nicholls, 1984; Follett and Potts, 1990). Other
species of birds can show elements of both absolute and relative
photorefractoriness (Stevenson et al., 2012; Hahn et al., 2004;
MacDougall-Shackleton et al., 2001; MacDougall-Shackleton
et al., 2006; Marsh et al., 2002; Dawson, 1998). For example, house
sparrows kept on constant long photoperiods show spontaneous
gonadal regression, but regression can be advanced by a decrease
in photoperiod. Absolute and relative photorefractoriness permit
different species to end breeding at different times of the year.

1.6. The timing of breeding seasons at different latitudes

Within species, breeding seasons tend to be longer at lower lat-
itudes. Breeding starts earlier at lower latitudes and this can be
explained because gonadal maturation starts (and is often nearly
complete) before the spring equinox when photoperiod will be
longer at lower latitudes (Dawson, 2013). However, within species
(both those that show absolute and relative photorefractoriness)
gonadal regression occurs at the same time at different latitudes
even though birds at higher latitudes will experience longer pho-
toperiods. Similarly, starlings in captivity on photoperiods that
simulate annual cycles at 52�N and 9�N also show earlier testicular
maturation at 9�N, but the timing of regression is the same for both
latitudes even though the 52�N birds experience much longer pho-
toperiods (Dawson, 2007). Yet in birds on constant experimental
photoperiods, those on longer photoperiods become photorefrac-
tory sooner. The reason for this apparent dichotomy between
experimental and real situations is not known.

1.7. Unresolved problems

It will be clear from the introduction above that there are sev-
eral unresolved questions:
1. What photoperiod do birds use – sunrise to sunset or including
civil twilight?

2. Are responses related to prevailing absolute photoperiod or is
the rate of change in photoperiod and the direction of change
important?

3. Why do breeding seasons end at the same time at different lat-
itudes when birds will have experienced different changes in
photoperiod? In experimental birds, the onset of photorefracto-
riness is inversely proportional to photoperiod.

4. Why do some species need to perceive a decrease in photope-
riod to induce gonadal regression (relative photorefractoriness)
and can always respond to an increase in photoperiod while
others show spontaneous regression under long photoperiods
and then show no response to an increase in photoperiod (abso-
lute photorefractoriness).

5. Why does hypothalamic GnRH1 peptide change profoundly
during absolute photorefractoriness but not in relative
photorefractoriness?

1.8. Aims

There has been the view that birds are either photosensitive,
when they are responsive to changes in photoperiod, or photore-
fractory, when they are insensitive to an increase in photoperiod
and that these two states are mutually exclusive. The aim of this
paper is to propose a model in which two photo-neuroendocrine
processes act in tandem at all times of the year to regulate GnRH1
secretion. The first, photo-induction, is an effect whereby GnRH1
secretion is directly related to the prevailing photoperiod. The sec-
ond, photo-inhibition, is a longer term process acting through
changes in GnRH1 synthesis. Can this model answer any of the
unresolved problems? The model will be developed using two spe-
cies at each end of the seasonality spectrum: starlings which have
a short breeding season early in the year and become absolutely
photorefractory, and quail, which have a long breeding season last-
ing until late summer and which show relative photorefractori-
ness. A wealth of experimental data exists for these species. In
the majority of this paper, data and modeling refer to males
because more data is available for males. Also, males can achieve
near full gonadal maturation through photoperiodic effects alone
whereas females need supplementary stimuli for full ovarian mat-
uration leading to ovulation (Ball and Ketterson, 2008). However,
the underlying neuroendocrine photoperiodic mechanisms are
probably similar between the sexes. For example, seasonal changes
in circulating concentrations of gonadadtropins in gonadectomized
birds of both sexes are similar suggesting that photoperiodically-
induced neuroendocrine changes upstream of the pituitary are
the same (Dawson and Goldsmith, 1984). Both male and female
starlings show the same dramatic changes in GnRH1 gene expres-
sion (Ubuka et al., 2009).
2. Developing the model

2.1. What photoperiod do birds use?

Sunrise and sunset conventionally refer to the times when the
upper edge of the disk of the sun is on the horizon. Before sunrise
and again after sunset there is twilight, during which there is nat-
ural light provided by the upper atmosphere, which does receive
direct sunlight and reflects part of it toward the Earth’s surface.
Civil twilight is defined to begin in the morning, and to end in
the evening when the center of the sun is geometrically 6� below
the horizon. For example, at 56�N (the latitude of Edinburgh), pho-
toperiod including civil twilight is 1.2 h longer than sunrise to sun-
set at the equinoxes, and 2.1 h longer at the summer solstice. Birds
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measure photoperiod, but which photoperiod do they use, sunrise
to sunset or do they include civil twilight? In some photoperiodic
studies on birds, it has been assumed to be civil twilight, since this
is the duration of ‘‘usable’’ light. I examined this by comparing tes-
ticular cycles in starlings under a simulated natural cycle in photo-
period that was either calculated as sunrise to sunset or included
twilight, and compared these to another group exposed to natural
daylight (Fig. 1). The changes in testis size in the sunrise to sunset
group were more closely aligned to natural daylight birds than
those under civil twilight. As I shall show later, during the whole
year the effects of long photoperiods need to be balanced by the
effects of short photoperiods for cycles to last 12 months. Symme-
try is required and is provided by sunrise to sunset (mean photo-
period of 12.0 h during the year), rather than civil twilight. If
starlings, and some other species, are kept under constant pho-
toperiods of 12L (sunrise to sunset at the equator) they undergo
circannual cycles of testis size and molt (Dawson, 1997;
Gwinner, 1996; Gwinner, 2003; Rutledge, 1974). If they are kept
under a constant photoperiod which includes civil twilight at the
equator (about 12 h and 50 min), they perceive this as constant
long photoperiods and do not show repeated cycles (Dawson,
2007; Gwinner and Wozniak, 1982). How birds measure sunrise
to sunset is unclear. However, it is known that a higher light
threshold is required for photostimulation than to entrain circa-
dian rhythms (Menaker and Keatts, 1968), and also the spectral
quality of light changes at sunrise, so different photoreceptors
may play a role. In starlings held on an 18L photoperiod, but at dif-
ferent low light intensities, there was a graded response in both the
rate of testicular maturation and the time to the onset of regression
(Bentley et al., 1998).
2.2. Photo-induction

In an effort to understand the physiology underlying photoperi-
odic control, many studies have used the paradigm of transferring
birds from a short to different constant longer photoperiods. The
initial rate of gonadal maturation is a function of that longer
Fig. 1. Do birds use sunrise–sunset or include twilight as the photoperiodic signal?
Juvenile male starlings were caught from the wild in August and kept in an indoor
aviary with a translucent roof and so exposed to natural daylight. In mid December
two groups of birds were moved into controlled-environment chambers
(3.5 m � 2.5 m � 2.2 m) provided with artificial light (about 1000 lux) in which
photoperiod simulated either natural changes from sunrise to sunset at 56�N (blue
line) or included civil twilight at 56�N (red line). Data were obtained from US Navy
Observatory Astronomical Applications Department: http://aa.usno.navy.mil/
index.php. In each case the period of increasing or decreasing light intensity at
the start or end of each day lasted just 1 min. Photoperiod was changed each day in
a pre-programmed sequence. These two groups were compared to another group
which remained in the indoor aviary exposed to natural daylight (green line). The
figure shows changes in testis sizes in the three groups (mean ± SEM, n = 8 for each
group). Clearly changes in the sunrise to sunset group were more closely aligned to
natural daylight birds than those under civil twilight. The latter group showed
earlier and more rapid testicular maturation and an earlier onset of regression.
photoperiod. Specifically, the logarithmic rate of testicular growth
(k) has a nearly linear relationship with photoperiod (p) Farner and
Wilson, 1957. This k/p relationship has been calculated for a num-
ber of species (Follett and Maung, 1978; Farner and Lewis, 1971)
and has a linear relationship over a wide range of photoperiods
(typically 8L to 16L). Although this clearly demonstrates that the
rate of maturation is greater on longer photoperiods, it must be
borne in mind when estimating growth rates at different times of
year and at different latitudes that this is an entirely unnatural sce-
nario. Firstly, free-living birds will rarely experience an acute
change in photoperiod (rapidly migrating birds may be an excep-
tion). Secondly, by the time birds naturally experience fairly long
photoperiods, they already will have undergone a degree of gona-
dal maturation and gonadal steroid feedback may tend to inhibit
gonadotropin secretion. The k/p relationship therefore may exag-
gerate growth rate at longer photoperiods.

In order to model the effect of photoperiod on photo-induction
during natural annual cycles, it is necessary to evaluate the rate of
testicular growth (k) at different photoperiods (p) during natural
incremental changes in photoperiod rather than following an acute
change to that photoperiod from a short photoperiod. This was
done by keeping male starlings under simulated natural sunrise
to sunset photoperiods from the winter solstice as described above
(Fig. 2). The relationship between k and p was a linear regression
(k = (p � 0.0118) � 0.09).

In an experimental situation, following an acute increase in
photoperiod from a short photoperiod, the initial rate of testicular
maturation in starlings is proportional to the new longer photope-
riod (Fig. 3). The initial rate of testicular growth in these birds was
close to that predicted using k derived from birds under naturally
increasing photoperiods. This close agreement suggests that pho-
toperiodic drive at any time is determined by absolute photoperiod
at that time and is not affected by the rate of change in photope-
riod or photoperiodic history. In starlings transferred from 8L to
13L, the longer photoperiod is perceived as long and eventually
induces photorefractoriness. In photorefractory birds transferred
from 18L to 13L, the same magnitude of change but in the other
direction, 13L is still perceived as long and birds remain photore-
fractory (Dawson, 1987). This is important – it means that photo-
periodic drive is simply dependent on the prevailing photoperiod
and irrespective of the rate or direction of change in photoperiod.
This means that the relationship between k and p remains the
same at different latitudes, where the rate of change in photope-
riod differs, and at different times of year, when the direction of
change in photoperiod differs. In Japanese quail, which become rel-
atively photorefractory, transfer from a short photoperiod to a
moderately long photoperiod induces gonadal maturation,
whereas a decrease in photoperiod from a long photoperiod to
the same moderately long photoperiod induces regression. This
may not be due to photoperiodic history affecting the relationship
between k and p, but rather to the development of photo-
inhibition.

2.3. Photo-inhibition

What are the properties of photorefractoriness, or the photo-
inhibitory process, that may be useful in developing a hypothesis
to explain differences in seasonal cycles between species and
within species at different latitudes? Firstly, in general the process
does not start until photoperiod exceeds 12L. Birds do not become
photorefractory under short photoperiods, and they do not termi-
nate photorefractoriness under long photoperiods. In fact this
statement may not be strictly true in all cases and there may be
some flexibility. In starlings, and several other species, it has been
shown that birds held on constant 12L photoperiods can show
repeated cycles of gonadal maturation and regression with a peri-
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odicity that, while it can vary widely between individuals, is often
about 12 months – circannual cycles (Dawson, 1997; Gwinner,
1996, 2003; Rutledge, 1974). The periods of maturation and regres-
sion can be similar to those under natural seasonal cycles. Presum-
ably 12L is perceived sequentially as a long photoperiod to induce
maturation and then photorefractoriness, and then a short photo-
period to terminate photorefractoriness. Starlings held chronically
on 11.5L also show repeated cycles, but these comprise long peri-
ods of maturity interspersed with short periods of regression
(Dawson, 2007). Starlings kept under chronic 11L:13D never
become photorefractory, but they may show some progression
towards photorefractoriness; after chronic 11L they become pho-
torefractory more rapidly following transfer to a long photoperiod
than birds held for only a short time on 11L (unpublished data).
Under 12.5L or 13L, starlings remain photorefractory indefinitely
(Dawson, 2007; Gwinner and Wozniak, 1982). However, for the
purposes of this modeling exercise, I will initially assume that
the photo-inhibition process starts only when photoperiod exceeds
12L.

Secondly, the process of photo-inhibition is progressive.
Although photo-induction starts immediately a bird perceives an
increase in photoperiod, the effects of photo-inhibition do not
become apparent until some weeks later. In starlings transferred
from 8L to 18L, gonadal regression starts 2–3 weeks later. This is
the point at which the photo-inhibitory process exceeds photo-
induction (Fig. 3). However, the process of photo-inhibition, which
leads to regression, starts before then. In starlings held chronically
on 11L, not long enough to induce regression, and transferred to
18L for varying periods before return to 11L, 7 long days is suffi-
cient to induce subsequent regression (Dawson et al., 1985). How-
ever, shorter periods of three long days, or even just one long day,
pre-dispose birds to become photorefractory sooner on subsequent
transfer to long photoperiods. A photo-regime comprising one long
photoperiod every 10 days can hold starlings in a permanent semi-
photorefractory state (Dawson, 2001). Each long photoperiod
causes a degree of photo-inhibition which is reversed during the
following 9 short photoperiods. This progressive feature is also true
of the reverse procedure – the termination of photorefractoriness.
If photorefractory starlings are transferred to short photoperiods, it
takes 10 weeks before photosensitivity is fully restored. But there
is a partial return to photosensitivity after just 4 weeks and trans-
fer back to long photoperiods between 4 and 10 weeks induces
sub-maximal photo-induction and a more rapid return to photore-
fractoriness (Boulakoud and Goldsmith, 1995; Dawson, 2004).
Similarly, the return to photosensitivity from relative photorefrac-
toriness in quail is gradual (Follett and Pearce-Kelly, 1991). After
transfer from long photoperiods to 8L to induce regression, there
was no response to 13L after one week of short days, a minor
response after two weeks, a strong response after three weeks
and a full response after five weeks.

Thirdly, the longer the photoperiod (in excess of 12L) the sooner
birds become photorefractory. In starlings following transfer to
18L, regression starts after 2–3 weeks, but after about 5 weeks
under 13L (Fig. 3). In starlings held chronically on 11L and trans-
ferred to 18L for varying periods before return to 11L, 7 long days
is sufficient to induce subsequent regression (Dawson et al., 1985),
but if transferred to 13L rather than 18L, then 46 days is required
(Falk and Gwinner, 1988). Again, the reverse is true for the termi-
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nation of photorefractoriness – the shorter the photoperiod below
12L the sooner birds return to photosensitivity (Boulakoud and
Goldsmith, 1994; Dawson, 1991). In relatively photorefractory
quail transferred to short photoperiods, there is no responses to
13L or 14L after one week, but there is a moderate response to
16L (Follett and Pearce-Kelly, 1991). So in quail the depth of photo-
refractoriness is dependent upon the previous duration of expo-
sure to long photoperiods and to length of that long photoperiod.

Finally, photo-inhibition progresses independently of photo-
induction (photo-induction starts under photoperiods too short
to induce any progress towards photo-inhibition).

In conclusion, photo-inhibition is progressive. It starts when
photoperiod exceeds 12L and progresses more rapidly under
longer photoperiods. This may suggest that birds are summing
the number and length of long photoperiods, accumulating the
total number of light hours in excess of 12 h, and progressively
building up the photo-inhibitory process until it equals the
photo-inductive drive, at which point gonadal regression starts
and birds become photorefractory. However, it is difficult to con-
ceive a neuroendocrine process that could do this. However, the
same effect could be achieved if there was a process which each
day progressed towards photo-inhibition during daylight hours
and was reversed during darkness. Thus, net progress towards
inhibition only progresses when photoperiod exceeds 12L, but pro-
gresses more rapidly as photoperiod increases further beyond 12L.
The reverse would be true under photoperiods shorter than 12L.

2.4. Modeling seasonal changes in photo-induction and photo-
inhibition

So the hypothesis I am suggesting is this: photo-induction and
photo-inhibition are two independent processes and the rate of
gonadal maturation or regression at any one time is the net differ-
ence between these two processes at that time. Photo-induction is
proportional to prevailing photoperiod, as has been shown in many
studies (the k/p relationship). Photo-inhibition progresses during
daylight and is reversed in darkness. So the rate of progression of
photo-inhibition is related to the length photoperiod in excess of
12L. The degree of photo-inhibition is a function of photoperiod
and time. This hypothesis is developed in Figs. 4 and 5.

2.5. Photo-induction and photo-inhibition under constant
experimental photoperiods

Figs. 4 and 5 show how this hypothesis can potentially explain a
mechanism by which different species end their breeding seasons
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Fig. 4. Photo-induction and photo-inhibition during the year. The solid red line shows p
equinox to 18.5 h at the summer solstice. The broken red line shows the cumulative hou
photoperiod is just over 12 h, increases at a maximal rate at the summer solstice and
hypothesis is that photo-induction is related to photoperiod and photo-inhibition to the
Thus testicular regression starts at the time that the two lines cross, after which photo-inh
broken vertical line. This is typical of many temperate zone species with moderately lon
under simulated natural photoperiods, and testicular regression occurs then). The solid a
in this case at 20�N. The two lines cross at the same time as those for 60�N, suggesting
appears to happen in free-living birds (Dawson, 2013).
at different times of the year. It can also explain why, within spe-
cies, breeding seasons end at the same time at different latitudes,
despite the differences in photoperiod that they would experience.
However, there is an apparent anomaly. If birds experiencing dif-
ferent photoperiods at different latitudes show gonadal regression
at the same time, why do experimental birds transferred from
short photoperiods to different long photoperiods show earlier
regression under longer photoperiods. For example, starlings trans-
ferred to 18L show regression after 2–3 weeks, whereas birds
moved to 13L show regression after 6 weeks (Fig. 3).

Photo-induction is proportional to prevailing photoperiod. It is
equivalent to testicular growth rate but only under photoperiods
less than 12L. Under longer photoperiods testicular growth rate
is also affected by the development of photo-inhibition. Using
the equation that the rate of testicular growth k = (p � 0.0118) –
0.09 where p is photoperiod, which was derived from birds under
a simulated natural increase in photoperiod (Fig. 2), then in birds
transferred from 8L to 13L, k increases from 0.006 to 0.065 and
in birds moved to 18L it increases to 0.124, approximately double
that under 13L (Fig. 5). Under 13L the cumulative hours in excess
of 12 h increases at 1 h per day, whereas under 18L it increases
at 6 h per day. In this situation, birds under 13L should show gona-
dal regression after three times the length of time shown by birds
under 18L. This exaggerates the differences between what actually
happens between the two groups (Fig. 3). However, as explained in
Section 2.3, the photo-induction process does not suddenly start at
exactly 12 h – there is a degree of plasticity. Birds under 11L never
become photorefractory but do show some progression towards it.
Birds under 11.5L do eventually become photorefractory, but then
show abnormal repeated testicular cycles. Birds under 12L can
show cycles similar to seasonal cycle. If the figure for cumulative
hours in excess of 11.5 h is used rather than 12 h, then this predicts
that birds under 13L will show testicular regression in somewhat
over twice the time taken by birds under 18L, (Fig. 6) which is sim-
ilar to what actually happens. At 52�, photoperiod increases from
11.5L to 12L in just 7 days, so the consequence of photo-induction
gradually starting at 11.5L, rather than at 12L, on seasonal gonadal
cycles would be much less significant than on constant experimen-
tal photoperiods. Although using hours in excess of 11.5L appears
to fit the data from Dawson and Goldsmith (1983), it is interesting
to note that in starlings held chronically on 11L and transferred to
18L for varying periods before return to 11L, 7 long days is suffi-
cient to induce subsequent regression (Dawson et al., 1985), which
equals 7 � 6 = 42 excess hours, but if transferred to 13L rather than
18L, then 46 days is required (Falk and Gwinner, 1988), which
equals 46 � 1 = 46 excess hours – quite good agreement.
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Fig. 5. Species differences in photo-inhibition. Obviously, different species have breeding seasons of different durations, and show gonadal regression at different times of the
year. Figures A and B both show exactly the same data as in Fig. 4. The only difference is the scale of the right vertical axis, showing cumulative hours. In A, the scale has been
extended. This represents the situation in birds with a high propensity to become photorefractory, species that become absolutely photorefractory and have a breeding season
very asymmetrical with respect to photoperiod. In this example, gonadal regression would occur in May, before the summer solstice, as it does in starlings (Dawson, 2013). In
contrast in B, the right axis has been shortened, representing species with a low propensity to become photorefractory, species that show relative photorefractoriness and
have a breeding season only slightly asymmetrical with respect to photoperiod. In this example, gonadal regression would occur in August, well after the summer solstice but
before the equinox. This is the situation in Japanese quail (Robinson and Follett, 1982). In both cases, the time of regression is the same at different latitudes. The only inter-
species difference needed for gonadal regression to happen at different times of the year is a difference in the sensitivity to cumulative hours – a difference in the degree of
photo-inhibition induced by the same amount of accumulated hours.
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Fig. 6. Photo-induction and photo-inhibition during constant photoperiods. The
solid lines represent the increase in photo-induction (k), calculated as
k = (p � 0.0118) � 0.09 where p is photoperiod, in birds transferred from 8L to
13L (blue line) or 8L to 18L (red line). The increase in cumulative hours in excess of
11.5 h is shown by the respective broken lines. The lines cross after 35 days under
13L and after 16 days under 18L (shown by the vertical dotted lines).
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Fig. 7. The modeled changes in testis size predicted by Fig. 6 in starlings transferred
on day 0 from a photoperiod of 8L to 18L (red line), 13L (blue line), 11L (green line)
or kept on 8L (purple line). The model is based on the difference between photo-
induction (equivalent to k), which remains constant because photoperiod remains
constant and photo-induction (related to the cumulative hours in excess of 11.5 h).
Daily increments in testis size are calculated from a known initial value. It is
assumed that under the two shorter photoperiods, testicular growth eventually
ceases at a size where the effects of photo-induction are balanced by gonadal
steroid feedback. The vertical dotted lines show where photo-induction equals
photo-inhibition for the two longer photoperiods and where regression begins.
These are the same as in Fig. 6. Beyond these points net drive is negative. This model
gives good agreement with what actually happens (Fig. 3). The model predicts that
under 18L regression starts before maximal testis size is attained. It also predicts
that changes in the two longer photoperiods are symmetrical about the point that
regression starts. This is because photo-induction remains constant and photo-
inhibition increases at a constant rate. This would not happen under natural
seasonal cycles because in that case photoperiod would continuously change.
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If the solid lines in Fig. 6 represent photo-induction, which in this
case is constant because photoperiod is constant, and the broken
lines the build-up of photo-inhibition, then resultant drive leading
to an increase in testicular size at any time, the drive on GnRH1
secretion, is equal to the distance between the two lines (from the
broken line up to the solid line). So we should be able to predict
not just the time of regression but also the pattern of gonadal matu-
ration leading up to, and possibly even beyond, the start of regres-
sion. The initial testicular growth rates are simply equivalent to k.
For birds remaining on 8L and those transferred to 11L, there is no
accumulation of photo-induction, so testis size follows these initial
trajectories. But for 13L and 18L we can calculate resultant drive as
photo-inhibition accumulates. In Fig. 6, the right vertical scale has
been adjusted so that the lines representing photo-induction and
photo-inhibition cross at the appropriate times. Since photo-induc-
tion and photo-inhibition are equal at those times, equivalence
between k and cumulative hours can be calculated. The resultant
drive on testicular growth before the lines cross is then quantifiable.
In theory, the (negative) difference between the two lines after they
cross may also predict the rate of testicular regression. The results of
this modeling are shown in Fig. 7.

In the example above, the excess of photo-induction over
photo-inhibition equals the rate of increase in testis size, until
the two are equal, after which regression ensues. In this model,
the rate of regression, when photo-inhibition is greater that
photo-induction, is also assumed to be the difference between
the two. This gives a good agreement with actual data. But does
this have any meaning? The rate of GnRH1 secretion cannot be less
than zero. However, when gonadal regression is caused by photo-
refractoriness, it is associated with other physiological changes.
Molt of the feathers occurs then, and the rate of molt is faster
under more rapidly decreasing photoperiods (Dawson, 1994). Tes-
ticular regression is rapid, and involves apoptosis (Young et al.,
2001). Testicular regression can be induced in the absence of
photorefractoriness, for example by reducing photoperiod from
11L to 8L (Goldsmith and Nicholls, 1984), but in this situation
regression is slow and there is no molt.

2.6. Dissipation of photo-inhibition

Thus far, the model can explain why within species breeding
ends at the same time at different latitudes, and how species differ
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Fig. 9. Annual cycles in photo-induction and photo-inhibition in quail during two
years (730 days). The red line shows changes in photo-induction (k), calculated as
k = (p � 0.0118) � 0.09, where p is photoperiod. The photoperiod used is that at
52�N because data on the annual cycle in testis size exist for quail at that latitude
(Robinson and Follett, 1982). This is the equation derived for starlings, but it works
well for quail. k is, of course, maximal at the summer solstice and minimal at the
winter solstice. The blue line shows photo-inhibition, equivalent to cumulative
hours in excess of 12L at 52�N. This is essentially the two broken lines in Figs. 5 and
8 re-calculated for 52�N and joined together. Photo-inhibition is lowest at the
spring equinox and maximal at the autumn equinox. The vertical dotted lines show
the time of the equinoxes. Net positive drive on GnRH1 secretion at any time is the
difference between the two lines (when photo-induction is greater than photo-
inhibition). When photo-inhibition exceeds photo-induction, drive on GnRH1
secretion is negative. It is unclear what this means, but the negative value is used
to model the rate of testicular regression in Fig. 10.
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in the timing of the end of breeding. To extend this further, and be
able to model complete annual cycles in testis size, it is necessary
to investigate processes during the winter months when photope-
riod is less than 12 h. During this period, the inhibitory process
which appears to be related to cumulative hours in excess of
12 h must be reversed. What do we know about this process –
the termination of photorefractoriness? It is essentially the direct
opposite of the development of photorefractoriness. It does not
start to terminate until photoperiod is less than 12L, termination
is gradual, and the shorter the photoperiod the faster it terminates
(see Section 2.3). If development of photo-inhibition is related to
cumulative hours in excess of 12 h, then the reverse must be true
for dissipation of photo-inhibition. This means that the termina-
tion of photorefractoriness may be represented by inverse image
of Fig. 5 and this is shown in Fig. 8.

In the same way that regression starts where the two lines cross
in Fig. 5 (cumulative hours starts to exceed photoperiod), so mat-
uration should start where the two lines cross in Fig. 8. This does
not mean that birds are fully photosensitive at that point, rather
that photo-induction is greater than photo-inhibition so net drive
on GnRH1 secretion becomes positive. Intriguingly, this predicts
that maturation should start in the autumn in starlings, but not
until spring for quail, which is true in both cases (Robinson and
Follett, 1982; Dawson, 2003).
2.7. Modeling annual cycles

Although I used cumulative hours in excess of 11.5 to calculate
the accumulation of photorefractoriness in the fixed photoperiod
case above, I revert to 12 h for modeling annual cycles. Although
photo-inhibition may start gradually at about 11.5, presumably
the dissipation of photo-inhibition would likewise start slowly
when photoperiod decreases to 12.5L. It has to be symmetrical,
otherwise birds would accumulate more photo-inhibition during
the summer months that they would dissipate during the winter
months.

The seasonal cycle in photo-induction and photo-inhibition in
quail is shown in Fig. 9. This explains why testicular maturation
starts in spring and regression starts in autumn. It also explains
why in relatively photorefractory species such as quail, transfer-
ring birds at any point during testicular regression to a long photo-
period will induce renewed testicular growth; photo-inhibition
never increases sufficiently to exceed photo-induction on a long
photoperiod. Furthermore, it explains why the longer quail are
kept on a long photoperiod, the less of a decrease in photoperiod
is needed to cause regression, and conversely, why the longer birds
are on short photoperiods, the smaller the increase in photoperiod
is required to induce testicular maturation (Follett and Pearce-
Kelly, 1990).
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Fig. 8. The dissipation of photo-inhibition in starling (A) and quail (B). This is essentially t
change in photoperiod, decreasing from 12L at the autumn equinox to a nadir at the wint
accrued during the summer months. Again the lines cross at the same point at different
this is in November and for quail in February.
Using the data in Fig. 9 it is possible to calculate the net drive on
GnRH1 secretion each day and hence the daily change in testicular
size (Fig. 10). This results in close agreement with the annual cycle
in testis size in quail. Testicular maturation starts in spring and is
rapid. Regression occurs in the autumn. The result is a compara-
tively long period of testicular maturity which is only slightly
asymmetrical with respect to photoperiod.

Exactly the same procedure can be used for starlings. Fig. 11
shows the annual cycle in photo-induction and photo-inhibition.
Photo-induction is identical to that in quail, but starlings are much
more sensitive to photoperiod causing photo-inhibition, repre-
sented by the stretched right vertical axis. This predicts that
regression occurs in late spring and that maturation starts in
autumn. It also explains why, in absolutely photorefractory spe-
cies, testicular regression is spontaneous under long photoperiods
and why transferring photorefractory birds to very long photoperi-
ods does not induce renewed testicular growth – photo-inhibition
far exceeds photo-induction even on 24 h of light.

Again, this data can be used to model daily changes in testis size
to construct an annual cycle (Fig. 12). The predicted annual cycle
closely reflects reality, and is very different to the situation in quail.
Testicular maturation starts in autumn, but the rate of maturation
slows as photoperiod decreases, and then increases again after the
winter solstice. Regression occurs during late spring. The period of
full testicular maturation, and hence the breeding season, is short.
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0 365 730

2

3

8

10

12

14

16

Lo
g 1

0 
te

st
is

 v
ol

 (m
m

3 )

P
hotoperiod (h)

Fig. 10. Annual cycles in testicular size in quail. The blue line shows changes in
testis size predicted by data in Fig. 9. The size of the testes at the start of maturation
is known (Robinson and Follett, 1982). Daily increments in testis size are calculated
from the daily difference between photo-induction and photo-inhibition in Fig. 9
until the testes attain maximum size. Similarly, regression is modeled using the
excess of photo-inhibition over photo-induction for each day until minimum size is
reached. Real data for changes in testis size are shown by the dots and black broken
line (from Robinson and Follett, 1982). Photoperiod is shown by the broken red line.
Quail show only weak photo-inhibition and so testicular cycles are only slightly
asymmetrical with respect to photoperiod.
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Fig. 11. Annual cycles in photo-induction and photo-inhibition in starlings during
two years (730 days). The red line shows changes in photo-induction (k), calculated
as k = (p � 0.0118) � 0.09, where p is photoperiod. The photoperiod used is that at
52�N because data on the annual cycle in testis size exist for starlings at that
latitude (Dawson, 2003). The blue line shows photo-inhibition, equivalent to
cumulative hours in excess of 12L at 52�N. This is essentially the two broken lines in
Figs. 5 and 8 re-calculated for 52�N and joined together. Photo-inhibition is lowest
at the spring equinox but increases much more rapidly than in quail. Net positive
drive on GnRH1 secretion at any time is the difference between the two lines (when
photo-induction is greater than photo-inhibition). When photo-inhibition exceeds
photo-induction, drive on GnRH1 secretion is negative.
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Fig. 12. Annual cycles in testicular size in starlings. The blue line shows changes in
testis size predicted by data in Fig. 11. The size of the testes at the start of
maturation is known. Daily increments in testis size are calculated from the daily
difference between photo-induction and photo-inhibition in Fig. 11 until the testes
attain maximum size. Similarly, regression is modeled using the excess of photo-
inhibition over photo-induction for each day until minimum size is reached. Real
data for changes in testis size are shown by the dots and black broken line (from
Dawson, 2003). Photoperiod is shown by the broken red line. Starlings show strong
photo-inhibition and so testicular cycles are very asymmetrical with respect to
photoperiod. Maturation begins during the autumn, before the winter solstice.
Photoperiod and hence photo-induction decrease after that time, so the initial rate
of increase in testis size slows, and then increases as photoperiod increases after the
winter solstice. Rapid regression occurs before the summer solstice.
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3. Conclusions and discussion

This paper proposes a model in which two photo-neuroendo-
crine processes act together at all times of the year to regulate
GnRH1 secretion. The first, photo-induction, affects GnRH1 secre-
tion through a direct effect of the prevailing photoperiod. The sec-
ond, photo-inhibition, is a longer term process acting through
changes in GnRH1 synthesis. It progresses each day during daylight
hours, but is reversed during darkness. GnRH1 secretion on any
particular day is the net result of these two processes. The model
can predict annual cycles in testicular maturity in two species of
birds at the extremes of seasonality – the only difference that
needs to be invoked between species is their sensitivity to photo-
inhibition. This model can potentially explain differences in the
timing and duration of breeding seasons between species, why
some species become absolutely photorefractory and others only
relatively photorefractory, why breeding seasons end at the same
time at different latitudes within species, and why experimental
protocols sometimes produce results that appear counter to what
happens naturally. Nevertheless, this is just a hypothesis; it does
not explain the dynamics of GnRH1, but it is testable and, hope-
fully, will be useful in stimulating new directions for research.

It is interesting that the only species difference required in the
model is sensitivity to the photo-inhibitory process. It is this aspect
of GnRH1 dynamics that appears to be most plastic; in addition to
photoperiod, it can be affected by social cues, temperature and
nutrition (Dawson, 1986; Dawson, 2008; Hahn and MacDougall-
Shackleton, 2008; Dawson and Sharp, 2010; Stevenson et al.,
2008; Visser et al., 2011).

It has been argued that photoperiodic history is important, in
other words, that the effect of a particular photoperiod is not just
dependent on that photoperiod, but also on the preceding pho-
toperiods. At any latitude, there are two days during the year with
the same photoperiod. I have argued that photo-induction is
directly proportional to photoperiod (Section 2.2) and therefore
not dependent on photoperiodic history. But photo-inhibition grad-
ually increases under long photoperiods and decreases during
short photoperiods. Although photo-induction is the same on dif-
ferent days with the same photoperiod, the net result of photo-
induction and photo-inhibition on GnRH1 secretion is not. For
example, in Fig. 9, photo-induction is the same at the spring equi-
nox as it is at the autumn equinox, but cumulative hours, i.e.
photo-inhibition, is very different, minimal at the spring equinox
and maximal at the autumn equinox. Thus the net effect on GnRH1
secretion leads to testicular growth in spring but regression in
autumn (Fig. 10). In that sense, photoperiodic history is important;
there are no two days during the year when birds are in the same
neuroendocrine state.

One prediction of the model is that relatively photorefractory
species such as quail always retain the ability to respond to an
increase in photoperiod – during the annual cycle photo-inhibition
never exceeds the photo-induction resulting from a long photope-
riod. Nor do they show spontaneous testicular regression under
long photoperiods. However, if they are kept on a constant long
photoperiod for a very long time, the model predicts that eventu-
ally photo-inhibition should exceed photo-induction. Quail kept
on 13L for a long time do show testicular regression (Robinson,
J.E. unpublished data) and in domestic poultry kept on long pho-
toperiods to maintain egg production, production does eventually
decline.

One major difference between absolute and relative photore-
fractoriness is that in the former hypothalamic stores of the GnRH1
peptide disappear, whereas in the latter they remain largely
unchanged. In starlings under a short photoperiod, GnRH1 levels
are moderately high. Following transfer to a long photoperiod they
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increase for a short period even though secretion must have
increased. Presumably there is an internal feedback mechanism
such that synthesis increases to compensate for increased secre-
tion. As photo-inhibition later increases dramatically (Fig. 11)
and synthesis declines as a result, hypothalamic peptide stores
become depleted. In quail, the decline in synthesis as a result of
photo-inhibition is less dramatic and it occurs at the same time
as a decrease in photoperiod and hence secretion (Fig. 9). Thus
hypothalamic GnRH1 peptide may not be depleted.

The model invokes a high degree of symmetry in that the times
when photo-induction and photo-inhibition are equal, the times
when maturation starts and regression starts, are 6 months apart.
In quail this is clearly apparent; rapid testicular maturation in
spring is 6 months ahead of regression. In starlings this is true,
but less clear. Maturation does indeed start in the autumn,
6 months ahead of regression, but because photoperiod is short
then, the rate of maturation is slow until increasing photoperiods
of spring. So in the majority of species, most gonadal maturation
occurs in spring. The length of the breeding season is determined
more by the timing of regression than the timing of maturation.
In general, birds with predictable breeding seasons tend to start
breeding in spring, some end later in spring and others continue
for various periods until late summer or autumn. Opportunistic
species retain greater plasticity (MacDougall-Shackleton et al.,
2006; Hahn, 1998; Hahn et al., 2008).

Some species of birds, when kept on a constant equatorial pho-
toperiod of 12L, undergo free-running cycles of testicular matura-
tion and regression – circannual rhythms – with periodicities
typically of 9–15 months. However, not all species do (Donham
et al., 1983). The model can accommodate circannual rhythms if
there is a degree of flexibility in the way that 12L is perceived
(see Section 2.3). If a bird perceives 12L as a long photoperiod, this
will cause photo-induction and maturation but also the build-up of
photo-inhibition and then regression. If it then perceives 12L as a
short photoperiod, this will result in the dissipation of photo-inhi-
bition. The difference in perception could be the result of the differ-
ent physiological states – e.g. birds undergoing maturation will
have circulating testosterone, those undergoing regression will
not. Castrated starlings do not show repeated cycles (Dawson
and McNaughton, 1993; Dittami and Gwinner, 1987) and there is
evidence (in mice) that testosterone can influence the circadian
clock and SCN responsiveness to light (Daan et al., 1975; Butler
et al., 2012). This process could result in a self-sustaining circannu-
al clock, but only under a narrow range of constant photoperiods
about 12L. If the photo-inhibitory process builds up during day-
light hours and dissipates during darkness, then it would remain
roughly neutral under 12L. However, the same would be true
under non-24 h schedules where daylight equals darkness. Star-
lings held on 11L:11D photoperiods also show cycles of maturation
and regression (Gwinner, 1981). Free-running circannual rhythms
can occur naturally in tropical seabirds for which photoperiod and
food resources remain fairly constant throughout the year
(Reynolds et al., 2014).

This paper has focused on temperate zone species. What about
tropical and sub-tropical species? Low latitude species will experi-
ence low amplitude annual cycles in photoperiod. Within the tro-
pics, photoperiod does not exceed 13.5L or decrease below 10.5L.
Starlings show a degree of plasticity in their interpretation of pho-
toperiods between 11L and 13L as long or short (see Section 2.3).
For tropical and sub-tropical species, photoperiod remains within
these limits for most of the year. Thus a circannual cycle in how
photoperiod is perceived, or a circannual clock, may become rela-
tively more important than direct effects of photoperiod, in com-
parison to temperate and high latitude species (Budki et al., 2012).

The modeling in this paper also assumes that birds are resident
at the same latitude throughout the year. This means that there is
symmetry during the year; neuroendocrine changes during the
summer months are reversed at the same rate during the winter
months. Migrants present a challenge. Many species that breed
in temperate and high latitudes over-winter in tropical or subtrop-
ical latitudes. In this case, over-wintering photoperiods would gen-
erally range between 11L and 13L depending on whether they
were in the northern or southern tropics. These photoperiods are
presumably sufficiently short to allow dissipation of photo-inhibi-
tion. Garden warblers (Sylvia borin) held on a 12.8L photoperiod,
simulating that experienced during the ‘‘winter’’, do show a grad-
ual recovery of photosensitivity which is complete by the following
spring (Gwinner et al., 1988). Bobolinks (Dolichonyx oryzivorus),
which are trans-equatorial migrants, recovered photosensitivity
after 8 weeks of 12L photoperiods, whereas juncos (Junco hyemalis)
and white-throated sparrows (Zonotrichia albicollis), which are not
trans-equatorial migrants, did not (Engels, 1961). The situation in
very long distance migrants, where wintering is as far south as
breeding is north, is completely unknown.
4. Perspectives – comparison with mammals

Nicholls et al. (1988) argued that absolute and relative photore-
fractoriness in birds could be explained by a common but unde-
fined mechanism causing photorefractoriness. They went on to
argue that this could also potentially encompass different breeding
strategies in mammals. In this review, I have argued that the net
result of two processes, one related directly to prevailing photope-
riod and the other which develops during daylight hours but is
reversed during darkness, can explain the range of seasonalities
seen in birds, from marked absolute photorefractoriness to weak
relative photorefractoriness. This too could potentially offer an
explanation for the spectrum of seasonalities in mammals. Mam-
mals are often classified into long day or short day breeders. Spe-
cies with short gestations, such as voles, are long day breeders;
fertility starts during increasing photoperiods of spring. Species
such as sheep, with longer gestations, are short day breeders; fer-
tility starts during decreasing photoperiods in autumn. In both
cases this results in young born in spring or summer. Unfortu-
nately, terminology between mammals and birds adds confusion.
Photorefractoriness to avian biologists means the process which
develops during long photoperiods, refractoriness to the stimula-
tory effects of long photoperiods, which eventually leads to gona-
dal regression. To mammalian biologists, photorefractoriness
means the development during short photoperiods of refractori-
ness to the inhibitory effects of short photoperiods. The underlying
physiology may be analogous, but the terminology is the direct
opposite.

In quail, gonadal maturation starts during increasing photoperi-
ods in spring and regression occurs during decreasing photoperi-
ods in autumn (Fig. 10). This is similar to breeding seasonality in
small mammals (Paul et al., 2008) such as Siberian hamsters (Phod-
opus sungorus). Maturation starts in quail at the termination of
refractoriness to long photoperiods, and in hamsters at the start
of refractoriness to short photoperiods! The reverse is true for
gonadal regression. So the terminology is opposite, but the actual
physiological processes may be analogous. In starlings, gonadal
maturation starts during decreasing photoperiods in autumn, and
regression occurs during increasing photoperiods in spring. The
same is true for sheep. The difference between sheep and starlings
is that full gonadal maturity occurs early within this period in
sheep. In castrated starlings, LH increases rapidly to maximum val-
ues during autumn (Dawson and Goldsmith, 1984). The absence of
rapid gonadal maturation at this time in intact birds is presumably
because gonadal steroid feedback is sufficient to largely inhibit the
weak photoperiodic drive on GnRH secretion. However, some
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birds, e.g. emus, do breed under short days (Blache et al., 2001;
Malecki et al., 1998).

Another point that this paper emphasises is the importance of
the continually changing annual cycle in photoperiod, as opposed
to photoperiod per se. Experiments using constant photoperiods
yield results at odds with reality. Paul et al. (2008) argued that
there are two different annual time keeping mechanisms in small
mammals: photoperiodic interval timers and circannual clocks. In
the former, in species such as Siberian hamsters, the switch
between reproductively active and inactive states occurs at fixed
times after the change in photoperiod that initially induced that
state. In contrast, species such as golden-mantled ground squirrels
(Spermophilus lateralis) appear to use a circannual clock. The
switches between reproductively active and inactive states occur
spontaneously and repeatedly under constant photoperiods. How-
ever, these two mechanisms are manifest in experimental condi-
tions in which animals are kept either under constant
photoperiods or switched between two different constant pho-
toperiods. Recent studies (Butler et al., 2007, 2010) emphasise
the importance of naturally changing photoperiods; under such
conditions the differences between these two mechanisms
disappear.
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