Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus

著者	Koiwai Keiichiro, Kondo Hidehiro, Hirono Ikuo
journal or	Fisheries Science
publication title	
volume	85
number	3
page range	521-532
year	2019-05-15
権利	(c) 2019 Japanese Society of Fisheries Science and Springer Japan. This is the author's version of the work. It is posted here for your personal use. To cite/redistribute/reproduce this work, the Publisher's version in https://doi.org/10.1007/s12562-019-01311-5 should be used, and obtain permission from Publishers, if required.
科学研究費研究課題	病原微生物の侵入・攻撃に対するクルマエビ類の免 疫応答に関する研究 Immune response of kuruma shrimp against microbial infections
研究課題番号	15H02462
URL	http://id.nii.ac.jp/1342/00001928/

doi: https://doi.org/10.1007/s12562-019-01311-5

- 1 Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp
- 2 Marsupenaeus japonicus
- 3 Keiichiro Koiwai¹, Hidehiro Kondo¹, Ikuo Hirono¹
- 4 ¹Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan

5 Correspondence

- 6 Ikuo Hirono, Laboratory of Genome Science, Tokyo University of Marine Science and Technology,
- 7 Konan, Minato, Tokyo 108-8477, Japan
- 8 Email: hirono@kaiyodai.ac.jp; Tel: 81-3-5463-0683; Fax: 81-3-5463-0683

10 Abstract

11	Crustacean hemocytes, which have usually been classified morphologically based on dyeing
12	methods such as Giemsa or May-Giemsa staining, have recently been categorized with monoclonal
13	antibodies or marker genes. However, these techniques have not become widely used, resulting in the use
14	of different classification methods for hemocytes among laboratories. Therefore, in this research, we
15	aimed to develop a classification method that can be widely used. The method uses lectins and a
16	magnetic-activated cell sorting (MACS) system to isolate sub-populations. Two lectins, wheat germ
17	agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin: LEL), characteristically bound to
18	the hemocytes, which allowed them to be classified into three sub-populations. Furthermore, by using
19	LEL and the MACS system, different sub-populations of hemocyte could be isolated. These sub-
20	populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of
21	the gene transcripts were consistent with the results of a functional analysis reported previously. The
22	lectin-based hemocyte isolation method developed in this study has good reproducibility.
23	Keywords
24	lectin staining; transcriptomics; hemocytes; magnetic-activated cell sorting system (MACS); shrimp;
25	invertebrate

27 Introduction

28	Hemocytes of shrimp act as immune organs (Jiravanichpaisal et al. 2006; Tassanakajon et al.
29	2013; Söderhäll 2016). The classification of hemocytes is indispensable to analyze the biological defense
30	mechanism in detail. So far, dyeing methods such as Giemsa or May-Giemsa staining, and antibody-
31	based classification methods have been developed based on the leukocyte classification methods of
32	mammals. The Giemsa or May-Giemsa staining method is excellent for staining the cytoplasmic granules
33	of hemocytes, which contain anti-microbial peptides (Bachère et al. 2004; Rosa and Barracco 2010).
34	Hemocytes can be roughly divided into three types morphologically, hyaline hemocytes (HCs), semi-
35	granular hemocytes (SGCs) and granular hemocytes (GCs) by Giemsa or May-Giemsa staining
36	(Söderhäll and Smith 1983; Johansson et al. 2000). However, the results of Giemsa and May-Giemsa
37	staining are not always the same, and can be affected by pH, dyeing time, humidity and worker's degree
38	of training. Therefore, these methods are not well-suited for quantitative experiments.
39	Ten kinds of monoclonal antibodies were produced using whole hemocytes of kuruma shrimp
40	Marsupenaeus japonicus as antigens (Rodriguez et al. 1995). Similarly, eight kinds of monoclonal
41	antibodies were produced using hemocytes or hemocyte lysate as antigens against hemocytes of black
42	tiger shrimp Penaeus monodon (Sung et al. 1999; van de Braak et al. 2000; Sung and Sun 2002;

43	Winotaphan et al. 2005). As a result of immunological staining using these monoclonal antibodies, even
44	the same morphologically classified cells such as HCs, SGCs and GCs showed differences in reactivity to
45	their cell surface antigens, and due to the reactivity difference of the monoclonal antibodies, hemocytes
46	have been defined in more detail. More recently, monoclonal antibodies reactive to whiteleg shrimp
47	Litopenaeus vannamei hemocytes were developed (Lin et al. 2007; Zhan et al. 2008). Using these
48	antibodies, the isolating two sub-populations of L. vannamei hemocytes: agranulocytes and granulocytes
49	were succeeded (Xing et al. 2017). However, these monoclonal antibodies are not widely used for
50	classifying shrimp hemocytes because it is difficult to prepare identical monoclonal antibody-producing
51	clones in different laboratories and because few suppliers are interested in developing products for
52	crustaceans due to the small number of researchers. Therefore, it is also important to classify specific
53	hemocytes without relying on antibodies.
54	In other organisms especially in human, cells are classified based on sugar chains present on
55	the cell surface. Lectins are proteins that bind to sugar chains, and are used for staining and classification
56	of various cells, such as cancer cells, based on their sugar chains such as glycans (Kobata 1992;
57	Christiansen et al. 2014; Gabius et al. 2015). Until now, hemocytes of bees Apis mellifera, fly Drosophila
58	melanogaster, mosquito Anopheles gambiae, Pacific oyster Crassostrea gigas and Europe mussel Mytilus

59	edulis have been classified by lectins (Pipe 1990; Tirouvanziam et al. 2004; Rodrigues et al. 2010;
60	Marringa et al. 2014; Jiang et al. 2016). In addition, cytoplasmic granules of hemocytes of ridgeback
61	prawn Sicyonia ingentis and American lobster Homarus americanus have been reported to be stained by
62	wheat germ agglutinin (WGA) (Martin et al. 2003). Furthermore, WGA, tomato lectin (Lycopersicon
63	esculentum lectin: LEL) and peanut agglutinin (PNA) were found to bind to some of the GCs, SGCs and
64	HCs of L. vannamei (Estrada et al. 2016). However, few studies have stained shrimp hemocytes with
65	lectins, and molecular biological analyses of lectin-positive hemocytes have not been conducted.
66	In this study, we isolated two hemocyte sub-populations using LEL and a magnetic-activated
67	cell sorting (MACS) system, and then predicted their functions by measuring the accumulation of mRNA
68	transcripts by RNA sequencing (RNA-seq) and quantitative RT-PCT (qRT-PCR) analyses.
69	

70 Materials and Methods

71 Shrimp samples

72	Apparently healthy kuruma shrimp <i>M. japonicus</i> weighing 20–25 g were obtained from farms
73	in Okinawa and Miyazaki prefecture, Japan. Shrimps were kept in tanks provided with a water
74	recirculating system maintained at 25 °C and 30-35 ppt. Shrimps were acclimatized for at least 3 days
75	before the experiment.
76	Lectin staining of hemocytes by LEL and WGA
77	Hemolymph was collected from each shrimp using a 23-gauge needle and syringe containing
78	equal amount of anti-coagulant (0.45 mM NaCl, 0.1 M glucose, 30 mM trisodium citrate, 26 mM citric
79	acid, 10 mM EDTA, pH 5.6) (Söderhäll and Smith 1983), and then centrifuged to obtain hemocytes. The
80	hemocytes were fixed with 4% paraformaldehyde (PFA) in PBS (137 mM NaCl, 10 mM Na ₂ HPO ₄ , 2.7
81	mM KCl, 1.8 mM KH ₂ PO ₄ , pH 7.3) for 15 min at room temperature. One of two lectins, DyLight 488-
82	conjugated LEL or FITC-conjugated WGA (both Vector Laboratories, Inc., USA), was added at a ratio of
83	$2~\mu g$ to 10^6 fixed cells and reacted for 15 minutes at 4 $^0 C$ in reaction buffer (0.5% BSA, 2 mM EDTA in
84	PBS). After washing twice, hemocytes were analyzed by flow cytometry and observed under a
85	fluorescence microscope. For the observation of flow cytometry, the fluorescent intensities of at least

86	5,000 DyLight 488- or FITC-stained hemocytes were analyzed by FACSCalibur (Becton-Dickinson,
87	USA) using an FL-1 filter with Cell Quest Pro software ver. 5.2.1 (Becton-Dickinson). Simultaneously
88	relative cell size and relative cell complexity were determined by FACSCalibur and Cell Quest Pro
89	software ver. 5.2.1 using a forward-scatter (FSC) filter and a side-scatter (SSC) filter, respectively. For the
90	observation of fluorescence microscope, nucleolus of lectin-stained hemocytes were stained by 10 μ g/mL
91	of Hoechst 33258 (Invitrogen, USA) for 15minnutes in PBS. The stained hemocytes were examined by
92	bright- and fluorescent-field using upright microscope ELIPSE Ci (Nikon Co., Japan), and the images
93	were analyzed by NIS-Elements (Nikon Co.) and ImageJ ver. 2.0.0. (Schneider et al. 2012). The assay
94	was performed three times from three individual shrimps.
95	Double lectin staining
96	PFA-fixed hemocytes were prepared as described above. Both biotin-conjugated LEL (Vector
97	Laboratories, Inc.) and FITC-conjugated WGA were added at a ratio of 2 μ g each to 10 ⁶ fixed cells and
98	reacted for 15 minutes at 4°C in reaction buffer. After the hemocytes were washed twice, DyLight 550-
99	conjugated natural streptavidin protein (Abcam plc., U.K.) was added at a ratio of 0.4 μ g to 10 ⁶ fixed cells
100	and reacted for 15 minutes at 4ºC in reaction buffer. After washing twice, the stained hemocytes were
101	examined by bright- and fluorescent-field as described above. The assay was performed three times from

102 three individual shrimps.

103 Isolation of LEL^{Dim} and LEL^{Strong} hemocytes by MACS system

104	PFA-fixed hemocytes were prepared as described above. From the flow cytometry results,
105	LEL- or WGA-stained hemocytes were classified into two sub-populations; stained weakly as
106	WGA ^{Dim} /LEL ^{Dim} and stained strongly as WGA ^{Strong} /LEL ^{Strong} . For isolation of LEL ^{Dim} hemocytes, PFA-
107	fixed hemocytes were stained with biotin-conjugated LEL (Vector Laboratories, Inc.) at a ratio 1 μ g to 10 ⁶
108	fixed cells for 15 minutes at 4°C in reaction buffer. After washing once, hemocytes were reacted with 10
109	μ l of streptavidin microbeads (Miltenyi Biotec, Germany) in 90 μ l of reaction buffer for 15 min at 4 ^o C.
110	After washing once, hemocytes were separated by MACS using MS column (Miltenyi Biotec) and
111	MiniMACS separator (Miltenyi Biotec) following the manufacturer's protocol. The negative fraction was
112	collected as LEL ^{Dim} hemocytes. For isolation of LEL ^{Strong} hemocytes, PFA-fixed hemocytes were stained
113	with biotin-conjugated LEL at a ratio 0.1 μ g to 10 ⁶ fixed cells for 15 minutes at 4 ^o C in reaction buffer.
114	After washing once, hemocytes were reacted with 1 μ l of streptavidin microbeads in 99 μ l of reaction
115	buffer for 15 min at 4°C. After washing once, hemocytes were separated by MACS. The positive fraction
116	was collected as LEL ^{Strong} hemocytes. Total, LEL ^{Dim} and LEL ^{Strong} hemocytes were analyzed by flow
117	cytometry. Five thousand (5,000) events of each sample were collected and then FSC and SSC analyses

118	were conducted by FACSCalibur with Cell Quest Pro software ver. 5.2.1 as described above. Two gates,
119	R1 and R2, were established based on the FSC and SSC, and the percentage of dot plots in each gate were
120	analyzed by Cell Quest Pro software. The assay was performed six times from six individual shrimps.
121	Since the hemocytes stained with WGA could not be separated by MACS system, this isolation
122	experiment could not be carried out on WGA-stained hemocytes.
123	May-Giemsa staining of total, LEL ^{Dim} and LEL ^{Strong} hemocytes
124	Total, LEL ^{Dim} and LEL ^{Strong} hemocytes were collected as described above. Each hemocyte
125	suspension was spread on a glass slide in a cell collection bucket SC-2 (TOMY, Japan) at 100 g for 1 min.
126	Glass slides were dried, stained for 3 min with 20% May-Grunwald stain solution (Wako, Japan) in 0.67
127	mM phosphate buffer (pH 6.6), washed with phosphate buffer, stained for 15 min with 4% Giemsa stain
128	solution (Wako) in 0.67 mM phosphate buffer (pH 6.6), washed with tap water, dried, mounted with
129	Malinol (Muto Pure Chemicals, Japan) and visualized with NIS-Elements software.
130	cDNA Library construction and RNA sequencing by Illumina Miseq
131	Total, LEL ^{Dim} and LEL ^{Strong} hemocytes were collected from six shrimps as described above.
132	The PFA-fixed hemocytes were digested with proteinase K (Masuda et al. 1999). Total RNA was then
133	extracted with a NucleoSpin RNA XS kit (Takara Bio Inc., Japan) following the manufacturer's protocol.

134	The total RNAs of each type of hemocyte were pooled. The concentration and purity of total RNA were
135	measured using a Qubit RNA HS Assay Kit and NanoDrop Lite (both Thermo Fisher Scientific Inc.,
136	USA). cDNA libraries were prepared with total RNA using a TruSeq stranded mRNA sample preparation
137	kit (Illumina Inc., USA) following the manufacturer's protocol. The libraries were amplified with 20
138	cycles of PCR and contained indexes within the adapters. The yields in the amplified libraries were
139	measured with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific Inc.) and D1000 ScreenTape
140	System (Agilent Technologies, USA). The yields of LEL ^{Dim} , LEL ^{Strong} and total hemocytes were 1.9,
141	0.184 and 14.5 ng/ μ l, respectively, with average lengths of 293, 286 and 297 bp, respectively, indicating
142	concentrations 10.3, 1.05 and 77.5 nM, respectively. Six (6) pmol of each library was sequenced using
143	MiSeq (Illumina Inc.) and MiSeq reagent kit version 2 (Illumina Inc.) with 75 nt paired end reads.
144	De novo assembly and identification of differentially expressed transcripts
145	The reads were assembled by Trinity v2.5.1 (Grabherr et al. 2011) using default parameters
146	(minimum assembled transcripts length 200) to obtain trinity-assembled transcripts. The sequenced
147	libraries were mapped back to the reference trinity-assembled transcripts using RSEM (Li and Dewey
148	2011) to quantify the read counts. Read counts were normalized by trimmed mean of M-values (TMM) to
149	account for differences in library size (Robinson and Oshlack 2010) and then normalized by transcripts

150	per million (TPM) to account for differences in transcript length. The differentially expressed transcripts
151	between total, LEL ^{Dim} and LEL ^{Strong} hemocytes libraries were identified using EdgeR (Robinson and
152	Oshlack 2010) including a p-value cutoff for false discovery rate of 0.001 and a minimum 16-fold change
153	in expression. Blastx program (Altschul et al. 1997) was then used for homologous gene searching with
154	an e-value cut-off of 0.05 in Penaeidae's 5,942 proteins in NCBI database (http://www.ncbi. nlm.nih.gov
155	"Accessed 18 Oct 2018").
156	Quantification of transcripts of immure-related genes by qRT-PCR
157	Total, LEL ^{Dim} and LEL ^{Strong} hemocytes were extracted from three shrimps, then total RNAs
158	were extracted as described above. cDNAs were synthesized from RNA of each sample using a High
159	capacity cDNA reverse transcription kit (Thermo Fisher Scientific Inc.). After synthesis, cDNA samples
160	were diluted five times with distilled water and 2 μ l of samples were used for qRT-PCR. The set of
161	primers were designed based on registered sequences or trinity-transcripts (Table 1). Elongation factor 1α
162	(EF-1a: as an internal control) for qRT-PCR (Table 1). qRT-PCR was conducted using THUNDERBIRD
163	SYBR qPCR Mix (TOYOBO Co. Ltd., Japan) and condition was 95°C for 1 min, 40 cycles of 95°C for
164	15 secs and 60°C for 1 min followed by dissociation analysis step. mRNA accumulation of each gene was
165	calculated as ΔCT by comparing with CT value of EF-1 α (as a reference gene). The statistical

166 significance between total, LEL^{Dim} and LEL^{Strong} hemocytes respectively was analyzed using t-test.

167	Lectin staining on hemocytes phagocyted micro beads
168	Shrimps were injected with 200 μl of 10% suspension of fluorescent beads (Fluoresbrite YO
169	Cartoxylate Microspheres 1.0 µm: Polysciences, Inc., USA) in artificial seawater. Three (3) hours post
170	injection, PFA-fixed hemocytes were prepared and stained by DyLight 488- conjugated LEL or FITC-
171	conjugated WGA, respectively as described above. The stained hemocytes were examined by bright- and
172	fluorescent-field as described above. The assay was performed three times from three individual shrimps.
173	

174 **Results**

175	Lectin staining of total hemocytes
176	Both WGA and LEL showed reactivity to all hemocytes, however there were a difference in
177	reactivity, and they could be classified into two subpopulations, WGA^{Dim}/WGA^{Strong} and
178	LEL ^{Dim} /LEL ^{Strong} , respectively (Fig. 1). WGA reacted strongly with cells with relatively large and
179	complex intracellular structure (Fig. 1d), whereas LEL reacted strongly with cells with relatively small
180	and simple intracellular structure (Fig. 1h). WGA and LEL strongly reacted with the intracellular structure
181	and the cell surface of hemocytes, respectively (Fig. 2). Dim-positive and strong- positive of each lectin
182	hemocytes were also observed under fluorescent-field (Fig. 2).
183	Double lectin staining
184	Double lectin staining of total hemocytes by LEL and WGA was able to divide hemocytes
185	into three sub-populations: LEL- positive, WGA-positive and LEL/WGA-positive hemocytes (Fig. 3).
186	The ratio of LEL/WGA-positive hemocytes was 19% (n=3), and the fluorescent intensity of LEL/WGA-
187	positive hemocytes was weaker than the other sub-populations. As with single staining, LEL well stained
188	the cell surface and WGA well stained the intracellular structure of hemocytes.
189	Isolation of LEL ^{Dim} and LEL ^{Strong} hemocytes by MACS system

190	Using the MACS system and biotin-conjugated LEL, LEL ^{Dim} and LEL ^{Strong} hemocytes were
191	isolated, respectively. May-Giemsa staining showed that LEL ^{Dim} hemocytes (Fig. 4c) were relatively
192	larger than LEL ^{Strong} hemocytes (Fig. 4d), and unlike the latter, contained intracellular granules and a
193	large cytoplasm compared to the nucleus. The granules of LEL ^{Dim} hemocytes showed round shape, 0.4-
194	0.6 μ m in diameter and stained eosinophilic as purplish red (Fig. 4c). On both LEL ^{Dim} and LEL ^{Strong}
195	hemocytes, cytoplasm were stained pale purple and had condensed chromatin (Fig. 4c, d). Regions 1 and
196	2 before separation of hemocytes were 45.8 \pm 12.4% and 51.9 \pm 12.0%, respectively, whereas after
197	separation of LEL ^{Dim} hemocytes, they were $11.0 \pm 3.2\%$ and $83.8 \pm 6.0\%$, and after separation of
198	LEL ^{Strong} hemocytes, they were $86.7 \pm 7.2\%$ and $10.9 \pm 6.6\%$ (n=6). Fig. 5 showed an example dot plot
199	analyses of total, LEL ^{Dim} and LEL ^{Strong} hemocytes from a shrimp.
200	Differentially expressed transcripts by RNA sequencing
201	All the sequences from total, LEL ^{Dim} and LEL ^{Strong} hemocytes with raw data archived at the
202	DDBJ Sequence Read Archive under Accession DRA007926. The assembled transcripts contained 11,870
203	trinity-genes. The median trinity-gene length was 339 bp and the N50 (weighted median) was 539 bp. We
204	identified 2,630 differentially expressed transcripts based on a p-value cut-off for FDR of 0.001 and a
205	minimum 16-fold change in expression. In blastx searches, 163 trinity-genes matched Penaeidae proteins

- with e-values less than 0.05 (Online Resource), 31 of which were immune-related (Fig. 6). The immune-
- 207 related trinity-genes fell into four clusters that were highly expressed in (1) only LEL^{Strong} hemocytes, (2)
- both total and LEL^{Dim} hemocytes, (3) only total hemocytes and (4) only LEL^{Dim} hemocytes (Fig. 6).
- 209 Differentially expressed transcripts by qRT-PCR
- 210 In the qRT-PCR results, the Δ CT values of transcripts of two major anti-microbial peptides
- 211 (AMPs) (crustin and penaeidin- II) and c-type lysozyme were significantly lower in LEL^{Strong} hemocytes
- 212 than in total and LEL^{Dim} hemocytes, while the ΔCT values of transcripts of hemocyte transglutaminase
- 213 and prophenoloxidase (proPO) activation enzyme were significantly lower in LEL^{Dim} hemocytes than in
- 214 total and LEL^{Strong} hemocytes (Fig. 7). The trend was also seen in that the Δ CT values of transcripts of
- 215 Toll and integrin were lower in LEL^{Strong} hemocytes than in total and LEL^{Dim} hemocytes.
- 216 Lectin staining of hemocytes phagocyted micro beads
- 217 The fraction of hemocytes phagocyted micro beads was 5.6% (n=3). Both LEL-positive and -
- 218 negative hemocytes phagocyted micro beads (Fig. 8b, d), whereas only WGA-positive hemocytes
- 219 phagocyted micro beads (Fig. 8f, h). In addition, the fluorescent intensity of WGA-positive beads
- 220 phagocyted hemocytes tended to be weaker than other WGA-positive hemocytes.

222 Discussion

223	The stainability of hemocytes by two lectins, WGA and LEL, were different. This suggests
224	that sugar chains on hemocytes are different depending on the type of hemocytes. Like the reports on the
225	other crustacean (Martin et al. 2003; Estrada et al. 2016), WGA strongly stained the granules of
226	hemocytes of kuruma shrimp <i>M. japonicus</i> . The flow cytometry data also showed a strong WGA signal in
227	hemocytes with high SSC values, suggesting that WGA stains granules of hemocytes. The investigation
228	of the existence of granules on hemocytes is important for characterization of hemocytes. However, it was
229	unclear which hemocytes contained granules on dyeing methods such as Giemsa or May-Giemsa staining.
230	Combination of WGA staining, microscopic observation and FCM analysis, it became easier to prove the
231	existence of granules on hemocytes. In contrast to WGA, LEL appeared to bind to the cell surface and not
232	cytoplasmic granules. Since LEL stained the cell surface, MACS system could be used.
233	May-Giemsa staining showed that LEL ^{Dim} hemocytes contained a lot of cytoplasmic granules,
234	while LEL ^{Strong} hemocytes contained little or no granules. The flow cytometry data also showed that
235	LEL ^{Strong} hemocytes was smaller and had lower SSC value than LEL ^{Dim} hemocytes. These results indicate
236	that hemocytes could be divided into two sub-populations by LEL: LEL ^{Strong} hemocytes that were
237	agranulocytic and LEL ^{Dim} hemocytes that were granulocytic. Kuruma shrimp hemocytes were classified

238	into 3 types (Kondo et al. 1992; Kondo et al. 1998) or 8 types (Kondo et al. 2014) by electron microscopy
239	observation or May-Grunwald staining. Since we used different sampling methods or anticoagulant
240	solution in this study, we could not observe the reported detailed granule structure, cytoplasmic structure
241	and dyeability. In addition, morphological changing especially degranulation were easily occurred even
242	when collected using anticoagulant (Kondo et al. 2012). The development of the optimal sampling
243	method and comparison with the existing report are future tasks.
244	The two populations, LEL ^{Dim} and LEL ^{Strong} , were associated with specific transcripts.
245	Transcripts of hemocyte transglutaminase, which is related to clotting of hemolymph (Maningas et al.
246	2013), were highly accumulated in LEL ^{Strong} hemocytes in both the RNA-seq and qRT-PCR analyses.
247	Abundant transglutaminase transcripts were also reported on HCs (also called agranular hemocytes) in L.
248	vannamei (Yang et al. 2015). The transglutamase results also strongly suggest that LELStrong (i.e.,
249	agranular) hemocytes contribute to blood coagulation in kuruma shrimp. On the other hand, total and
250	LEL ^{Dim} hemocytes highly accumulated transcripts of crustin, crustin-like, penaeidin-II and c-type
251	lysozyme, as shown by the RNA-seq and qRT-PCR analyses. AMPs and c-type lysozyme are also present
252	in cytoplasmic granules of hemocytes (Bachère et al. 2004; Rosa and Barracco 2010). Our RNA-seq
253	analysis also showed that LEL ^{Dim} hemocytes had abundant transcripts of proPO activation enzymes and

254	serine proteases, which are also proPO-related enzymes (Hernández-López et al. 1996; Cerenius and
255	Söderhäll 2004). In many crustaceans, the proPO system is carried by granular hemocytes (Sung et al.
256	1998; Yang et al. 2015; Söderhäll 2016). Based on these previous reports and the present results, LEL ^{Dim}
257	hemocytes (i.e. granulocytes) are responsible for the production of AMPs and c-type lysozyme, and
258	contribute to the proPO system, as reported previously.
259	The hemocytes which have the phagocytic activity vary greatly from species to species in
260	crustacean. In kuruma shrimp, strong phagocytic activity was observed in SGCs and GCs (Kondo et al.
261	1992). LEL ^{Dim} hemocytes accumulate transcripts involved in foreign object recognition, such as integrin,
262	lectins, Toll and scavenger receptor (Arts et al. 2007; Yang et al. 2007; Han-Ching Wang et al. 2010;
263	Zhang et al. 2012; Lin et al. 2013; Wang and Wang 2013; Wang et al. 2014; Bi et al. 2015). Furthermore,
264	there was a correlation between WGA-positive hemocytes and phagocytosis, not LEL-positive hemocytes
265	(Fig. 8f, h), in this study. Together, these results indicate that kuruma shrimp granular hemocytes are the
266	main players in phagocytosis. Interestingly, LEL-positive not WGA-positive cells were reported to be
267	phagocytotic in Pacific oyster C. gigas (Jiang et al. 2016), which suggests that the composition and
268	function of cell surface glycans can differ in the same invertebrates.
269	Some hemocytes stained with both WGA and LEL. Lin and Söderhäll (2011) argue that GCs

270	and SGCs differentiate from HCs. In this study, both LEL- and WGA-positive hemocytes were present,
271	but we were unable to analyze their functions. For example, both LEL- and WGA-positive hemocytes
272	may be in transition from HCs to GCs or SGCs. By using a combination of LEL and WGA, it is now
273	possible to more accurately classify the types, functions and life cycles of hemocytes.
274	Since our lectin-based hemocyte isolation method requires cell fixation, functional analysis
275	was impossible. Therefore, further studies are needed to identify buffers that can make it possible to stain
276	living hemocytes with lectins to conduct functional analysis or extract high quality RNAs. It is also
277	necessary to identify the antigens of LEL and WGA to clarify how hemocytes are classified. Despite these
278	problems, lectin-based hemocyte isolation uses easily available lectins and a relatively inexpensive
279	MACS system, which should make it useful in many laboratories.

281 Acknowledgements

282	This work was supported by JSPS Grant-in-Aid for JSPS Research Fellow Grant Number
283	16J08185 (to K. Koiwai) and Grant-in-Aid for Scientific Research (A) Grant Number 15H02462 (to I.
284	Hirono). All the sequences from total, LEL ^{Dim} and LEL ^{Strong} hemocytes with raw data archived at the
285	DDBJ Sequence Read Archive under Accession DRA007926.
286	Conflict of Interest
287	The authors declare that they have no conflicts of interest with the contents of this article.
288	

289 References

290	Altschul SF, Mac	lden TL, Schäffer	AA, Zhang J,	Zhang Z, Miller	r W, Lipman DJ	(1997) Gapped blast a	and
	,	,	, , ,		· · ·		

- psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402
- 292 Arts JA, Cornelissen FH, Cijsouw T, Hermsen T, Savelkoul HF, Stet RJ (2007) Molecular cloning and
- expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23:
- 294 504–513
- 295 Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-
- 296 microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas.
- 297 Immunological Reviews 198: 149–168
- Bi WJ, Li DX, Xu YH, Xu S, Li J, Zhao XF, Wang JX (2015) Scavenger receptor B protects shrimp from
- bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides. Dev Comp
- 300 Immunol 51: 10–21
- 301 van de Braak CB, Taverne N, Botterblom MH, van der Knaap WP, Rombout JH (2000) Characterisation
- 302 of different morphological features of black tiger shrimp (Penaeus monodon) haemocytes using
- 303 monoclonal antibodies. Fish Shellfish Immunol 10: 515–530
- 304 Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunological

305 Reviews 198: 116–126

30	6	Christiansen MN	, Chik J, I	Lee L, Anu	ıgraham M.	Abrahams JL	, Packer NH ((2014)) Cell surface	protein
			/ /				/	`	/	

- 307 glycosylation in cancer. Proteomics 14: 525–546
- 308 Estrada N, Velázquez E, Rodríguez-Jaramillo C, Ascencio F (2016) Carbohydrate moieties and
- 309 cytoenzymatic characterization of hemocytes in whiteleg shrimp Litopenaeus vannamei. Int J Cell Biol
- 310 2016: 9032181
- 311 Gabius HJ, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for
- 312 translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40: 360–
- 313 376
- 314 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury
- R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C,
- 316 Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data
- 317 without a reference genome. Nat Biotechnol 29: 644
- 318 Han-Ching Wang K, Tseng CW, Lin HY, Chen IT, Chen YH, Chen YM, Chen TY, Yang HL (2010) RNAi
- 319 knock- down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and
- 320 reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34: 49–58

- 321 Hernández-López J, Gollas-Galván T, Vargas-Albores F (1996) Activation of the prophenoloxidase
- 322 system of the brown shrimp (Penaeus californiensis Holmes). Comp Biochem Physiol C Pharmacol
- 323 Toxicol Endocrinol 113: 61–66
- Jiang S, Jia Z, Zhang T, Wang L, Qiu L, Sun J, Song L (2016) Functional characterisation of phagocytes
- 325 in the Pacific oyster Crassostrea gigas. PeerJ 4: e2590
- 326 Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis,
- 327 coagulation, melanization and opsonization. Immunobiology 211: 213–236
- 328 Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean haemocytes and
- haematopoiesis. Aquaculture 191: 45–52
- 330 Kobata A (1992) Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209: 483–
- 331 501
- 332 Kondo M, Matsuyama H, Yano T (1992) The opsonic effect of lectin on phagocytosis by hemocytes of
- kuruma prawn, Penaeus japonicus. Fish Pathol 27: 217–222
- 334 Kondo M, Itami T, Takahashi Y, Fujii R, Tomonaga S (1998) Ultrastructural and cytochemical
- 335 characteristics of phagocytes in kuruma prawn. Fish Pathol 33: 421–427
- 336 Kondo M, Tomonaga S, Takahashi Y (2012) Granulocytes with cytoplasmic deposits of kuruma prawn.

- 337 Aquaculture Sci 60: 151–152
- 338 Kondo M, Yasumoto S, Takahashi Y (2014) Morphological diversity of hemocytes on Crustacea. J
- 339 National Fisheries Univ 63: 33–48
- 340 Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a
- 341 referencegenome. BMC Bioinformatics 12: 323
- Lin X, Soderhall I (2011) Crustacean hematopoiesis and the astakine cytokines. Blood 117: 6417–6424
- 343 Lin Y, Zhan W, Li Q, Zhang Z, Wei X, Sheng X (2007) Ontogenesis of haemocytes in shrimp
- 344 (Fenneropenaeus chinensis) studied with probes of monoclonal antibody. Dev Comp Immunol 31:
- 345 1073–1081
- 346 Lin YC, Chen JC, Chen YY, Liu CH, Cheng W, Hsu CH, Tsui WC (2013) Characterization of white
- 347 shrimp Litopenaeus vannamei integrin β and its role in immunomodulation by dsRNA-mediated gene
- 348 silencing. Dev Comp Immunol 40: 167–179
- 349 Maningas MBB, Kondo H, Hirono I (2013) Molecular mechanisms of the shrimp clotting system. Fish
- 350 Shellfish Immunol 34: 968–972
- 351 Marringa WJ, Krueger MJ, Burritt NL, Burritt JB (2014) Honey bee hemocyte profiling by flow
- 352 cytometry. PloS One 9: e108486

- 353 Martin GG, Castro C, Moy N, Rubin N (2003) N-acetyl-D-glucosamine in crustacean hemocytes;
- possible functions and usefulness in hemocyte classification. Invertebrate Biol 122: 265–270
- 355 Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K (1999) Analysis of chemical modification of
- 356 RNA from formalin-fixed samples and optimization of molecular biology applications for such
- 357 samples. Nucleic Acids Res 27: 4436–4443
- 358 Pipe R (1990) Differential binding of lectins to haemocytes of the mussel Mytilus edulis. Cell Tissue Res
- 261: 261-268
- 360 Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of
- 361 RNA-seq data. Genome Biol 11: R25
- 362 Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates
- 363 innate immune memory in Anopheles gambiae mosquitoes. Science 329: 1353–1355
- 364 Rodriguez J, Boulo V, Mialhe E, Bachere E (1995) Characterisation of shrimp haemocytes and plasma
- 365 components by monoclonal antibodies. J Cell Sci 108: 1043–1050
- 366 Rosa RD, Barracco MA (2010) Antimicrobial peptides in crustaceans. Invertebrate Surviv J 7: 262–284
- 367 Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat
- 368 Methods 9: 671

- 369 Söderhäll I (2016) Crustacean hematopoiesis. Dev Comp Immunol 58: 129–141
- 370 Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas and other
- 371 marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7: 229–239
- 372 Sung H, Wu P, Song Y (1999) Characterisation of monoclonal antibodies to haemocyte subpopulations of
- 373 tiger shrimp (Penaeus monodon): immunochemical differentiation of three major haemocyte types.
- 374 Fish Shellfish Immunol 9: 167–179
- 375 Sung HH, Chang HJ, Her CH, Chang JC, Song YL (1998) Phenoloxidase activity of hemocytes derived
- from Penaeus monodon and Macrobrachium rosenbergii. J Invertebr Pathol 71: 26–33
- 377 Sung HH, Sun R (2002) Use of monoclonal antibodies to classify hemocyte subpopulations of tiger
- 378 shrimp (Penaeus monodon). J Crustacean Biol 22: 337–344
- 379 Tassanakajon A, Somboonwiwat K, Supungul P, Tang S (2013) Discovery of immune molecules and their
- 380 crucial functions in shrimp immunity. Fish Shellfish Immunol 34: 954–967
- 381 Tirouvanziam R, Davidson CJ, Lipsick JS, Herzenberg LA (2004) Fluorescence-activated cell sorting
- 382 (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes.
- 383 Proc Natl Acad Sci U S A 101: 2912–2917
- 384 Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp

- 385 against pathogen infections. Fish Shellfish Immunol 34: 981–989
- 386 Wang XW, Zhao XF, Wang JX (2014) C-type lectin binds to β-integrin to promote hemocytic
- 387 phagocytosis in an invertebrate. J Biol Chem 289: 2405–2414
- 388 Winotaphan P, Sithigorngul P, Muenpol O, Longyant S, Rukpratanporn S, Chaivisuthangkura P,
- 389 Sithigorngul W, Petsom A, Menasveta P (2005) Monoclonal antibodies specific to haemocytes of black
- 390 tiger prawn Penaeus monodon. Fish Shellfish Immunol 18: 189–198
- 391 Xing J, Chang Y, Tang X, Sheng X, Zhan W (2017) Separation of haemocyte subpopulations in shrimp
- 392 Fenneropenaeus chinensis by immunomagnetic bead using monoclonal antibody against granulocytes.
- 393 Fish Shellfish Immunol 60: 114–118
- 394 Yang CC, Lu CL, Chen S, Liao WL, Chen SN (2015) Immune gene expression for diverse haemocytes
- derived from pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 44: 265–271
- 396 Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP, Chan SM, Yu XQ, He JG (2007) A Toll
- 397 receptor in shrimp. Mol Immunol 44: 1999–2008
- 398 Zhan W, Wei X, Xing J, Zhang Z (2008) Characterization of monoclonal antibodies to haemocyte types of
- the shrimp, Fenneropenaeus chinensis. Crustaceana 81: 931–942
- 400 Zhang Y, Wang L, Wang L, Wu N, Zhou Z, Song L (2012) An integrin from shrimp Litopenaeus

401 vannamei mediated microbial agglutination and cell proliferation. PLoS ONE 7: e40615

Primer name	Sequence (5'-3')	Accession number
EF-1α F	ATT GCC ACA CCG CTC ACA	AB458256.1
EF-1α R	TCG ATC TTG GTC AGC AGT TCA	AB458256.1
Crustin F	AAC TAC TGC TGC GAA AGG TCT CA	AB121740-4.1
Crustin R	GGC AGT CCA GTG GCT TGG TA	AB121740-4.1
Penaeidin-II F	TTA GCC TTA CTC TGT CAA GTG TAC GCC	KU057370.1
Penaeidin-II R	AAC CTG AAG TTC CGT AGG AGC CA	KU057370.1
C-type lysozyme F	ATT ACG GCC GCT CTG AGG TGC	AB080238.1
C-type lysozyme R	CCA GCA ATC GGC CAT GTA GC	AB080238.1
Anti-lipopolysaccharide factor F	AGC CTC CTT TTC CTT TCC CCT	KX424931.1
Anti-lipopolysaccharide factor R	CAC AAT CCT GTC AGT TTT TCC GC	KX424931.1
C-type lectin F	ACG CTG GTG TGA TGC CCG	KJ175168.1
C-type lectin R	ACC GAG TCT GAG CCG CCT AA	KJ175168.1
Hemocyte transglutaminase F	GAG TCA GAA GTC GCC GAG TGT	DQ436474.1
Hemocyte transglutaminase R	TGG CTC AGC AGG TCG TTT AA	DQ436474.1
Transglutaminase F	TGA CTG CGA AGA ACA TGA GC	AB162767.1
Transglutaminase R	GTT CTT GGT TTC CCC GAC TC	AB162767.1
Prophenoloxidase activation enzyme F	ACC CGA CGA TGC CAG AAC	This study
Prophenoloxidase activation enzyme R	TGG GAA GAT TTG GGA TAA GAA GAC	This study
Prophenoloxidase activation factor F	TCA AGG AGG TGG CTC TCC CT	This study
Prophenoloxidase activation factor R	GAT ACC CGA ACC CGG TCT CC	This study
Prophenoloxidase F	CCG AGT TTT GTG GAG GTG TT	AB073223.1
Prophenoloxidase R	GAG AAC TCC AGT CCG TGC TC	AB073223.1
Toll F	ACT GGA ACG TGT TGG GAA GA	AB333779.1
Toll R	TGC AAG TCC AGA ACC TCC AA	AB333779.1
Integrin a F	GAC GAG CCA AGC CAT CTG A	LC114983.1
Integrin a R	TCC GTC GAG CAG TCT TCA TG	LC114983.1

403 Table 1. Primer sequences used in this study

- 406 Fig. 1. Flowcytometry analysis of WGA- or LEL-stained hemocytes from a shrimp. The intensity of FL-1
- 407 signal of WGA-stained hemocytes (a) and LEL-stained hemocytes (e). Dotted line indicates negative
- 408 control of FL-1 value. Dot-plot analysis of total hemocytes (b and f), WGA^{Dim} hemocytes (c), WGA^{Strong}
- 409 hemocytes (d) LEL^{Dim} hemocytes (g) and LEL^{Strong} hemocytes (h). X- and Y-axes indicate FSC and SSC,
- 410 respectively.
- 411 Fig. 2. Lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL (a-d) and WGA (e-h).
- 412 Bright-field (a, e). Nucleolus stained as blue by Hoechst 33258 (b, f). Each fluorescent lectin stained as
- 413 green, LEL (c) and WGA (g). Merged figure (d, h). Bars indicate 10 µm scale.
- 414 Fig. 3. Double lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL and WGA.
- 415 Bright-field (a). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red and WGA
- 416 as green (b). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red (c).
- 417 Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by WGA as green (d). Bars indicate 10
- 418 μm scale.
- 419 Fig. 4. Bright field microscopic observation and May-Giemsa staining of hemocytes from a shrimp. Total
- 420 hemocyte observed under bright-field (a). Total hemocytes stained by May-Giemsa staining (b). Bright
- 421 field observation and May-Giemsa staining of LEL^{Dim} hemocytes (c) and LEL^{Strong} hemocytes (d). Bars

- 422 indicate 10 μm scale.
- 423 Fig. 5. Dot plot analyses of total, LEL^{Dim} and LEL^{Strong} hemocytes from a shrimp. Total hemocytes (a),
- 424 LEL^{Dim} hemocytes (b) and LEL^{Strong} hemocytes (c). Each region was established based on characteristic
- 425 cell plots. X- and Y-axes indicate FSC and SSC, respectively.
- 426 Fig. 6. Hierarchical clustering analysis of immune-related trinity-transcripts extracted as differentially
- 427 expressed in total, LEL^{Dim} and LEL^{Strong} hemocytes. Each column is the TMM-TPM value. Relatively
- 428 highly expressed trinity-genes are shown in red, relatively weakly expressed trinity-genes are shown in
- 429 green.
- 430 Fig. 7. qRT-PCR analyses of 12 transcripts. Δ Ct values analyzed by qRT-PCR. Higher Δ CT value
- 431 indicates higher accumulation of transcript of mRNA. Each bar indicates the average value. Double
- 432 asterisk (**) and an asterisk (*) on the bars indicates the ΔCt values were significantly different between
- 433 each sub-population. ** = P < 0.01; *=P < 0.05.
- 434 Fig. 8. LEL and WGA staining on hemocytes phagocyted microbeads. Microscopic observation under
- 435 bright-field (a, c, e, g) and under fluorescent-field (b, d, f, h). Nucleolus stained by Hoechst 33258 as
- 436 blue, hemocytes stained by LEL (b, d) or WGA (f, h) as green and phagocytized beads as red. Bars
- 437 indicate 10 μm scale.

		E	LEL			0.0	16.0	256.0
	otal	LDim	• strong	Trinity gene	Top hit of homology genes, gene name [species]	Identity	E-Value	-
				DN7517_c0_g1	ABD92928.1 hemocyte transglutaminase [Penaeus japonicus]	96.1	4.56E-96	רא גרע
				DN9914_c0_g1	ABD92928.1 hemocyte transglutaminase [Penaeus japonicus]	99.5	1.36E-15	ĪŢĘ
				DN7229_c0_g1	ACP40176.1 crustin Pm5 [Penaeus monodon]	54.5	0.026	5
				DN7564_c0_g1	ANE31673.1 C-type lectin [Penaeus merguiensis]	78.8	7.53E-76	5
				DN6926_c0_g1	ACU31809.1 alpha2 macroglobulin isoform 3, partial [Penaeus chinensis]	82.8	(5
				DN6941_c0_g1	AVG44186.1 crustin-like protein [Penaeus japonicus]	100.0	1.12E-44	1
				DN7161_c0_g1	ACR15870.1 serine protease [Penaeus chinensis]	45.8	1.89E-62	2
				DN7553_c0_g1	BBC20717.1 integrin alpha ps [Penaeus japonicus]	99.7	(
				DN6868_c0_g1	ADR74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]	70.7	(
	ſ			DN7484_c0_g2	BAD34945.1 serine proteinase homologue, partial [Penaeus japonicus]	97.3	(
				DN7455_c0_g1	ACP19558.1 prophenoloxidase-activating enzyme [Penaeus monodon]	32.2	6.32E-26	5
				DN7083_c0_g1	ADK66821.1 prophenoloxidase activating factor serine proteinase [Penaeus indicus]	56.5	3.2E-1*	1
				DN7378_c8_g1	AHH32891.1 integrin beta 6, partial [Penaeus chinensis]	76.2	1.28E-102	2
				DN7484_c0_g1	BAD34945.1 serine proteinase homologue, partial [Penaeus japonicus]	76.0	3.72E-180	5
				DN7367_c0_g1	ABO33174.1 serine protease-like protein 3 [Penaeus monodon]	90.6	6.69E-166	5
				DN7387_c0_g1	ADR74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]	43.8	1.44E-98	3
				DN7339_c0_g1	AFW98991.1 prophenoloxidase activating enzyme [Penaeus vannamei]	39.6	1.29E-40	5
				DN6751_c1_g1	AFW98986.1 prophenoloxidase activating factor [Penaeus chinensis]	50.7	2.16E-98	3
				DN7367_c1_g1	ABO33174.1 serine protease-like protein 3 [Penaeus monodon]	89.5	1.52E-18	
				DN31_c0_g1	AFJ59949.1 M-type lectin [Penaeus japonicus]	52.5	3.72E-13	a F et
Н				DN7393_c11_g2	AHH32888.1 integrin alpha 5 [Penaeus chinensis]	68.0	3.59E-73	- ω
				DN1960_c0_g1	AEB96259.1 C-type lectin [Penaeus merguiensis]	39.3	0.022	2
				DN1775_c0_g1	AFW98985.1 prophenoloxidase activating enzyme [Penaeus chinensis]	40.4	4.19E-24	4
				DN6261_c1_g1	AJE29369.1 vascular endothelial growth factor receptor precursor [Penaeus vannamei]	67.7	1.24E-22	2
				DN7101_c0_g1	ADR74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]	29.2	3.5E-24	4
	_			DN7393_c11_g4	AHH32888.1 integrin alpha 5 [Penaeus chinensis]	84.1	5.2E-30	3
				DN5426_c0_g1	AJE29369.1 vascular endothelial growth factor receptor precursor [Penaeus vannamei]	60.3	9.05E-25	
				DN5852_c0_g1	ABW88999.1 double WAP domain-containing protein [Penaeus japonicus]	55.2	0.0000513	<u> </u>
				DN6116_c0_g1	AOF79112.1 toll-3 [Penaeus japonicus]	46.4	0.006	3
				DN7362_c0_g2	ABW88999.1 double WAP domain-containing protein [Penaeus japonicus]	38.6	0.018	3
				DN10066_c0_g1	AKO62849.1 scavenger receptor B1 [Penaeus japonicus]	39.5	0.047	7

Trimmed mean of M values normalized transcripts per million transcripts

