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Abstract 10 

Crustacean hemocytes, which have usually been classified morphologically based on dyeing 11 

methods such as Giemsa or May-Giemsa staining, have recently been categorized with monoclonal 12 

antibodies or marker genes. However, these techniques have not become widely used, resulting in the use 13 

of different classification methods for hemocytes among laboratories. Therefore, in this research, we 14 

aimed to develop a classification method that can be widely used. The method uses lectins and a 15 

magnetic-activated cell sorting (MACS) system to isolate sub-populations. Two lectins, wheat germ 16 

agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin: LEL), characteristically bound to 17 

the hemocytes, which allowed them to be classified into three sub-populations. Furthermore, by using 18 

LEL and the MACS system, different sub-populations of hemocyte could be isolated. These sub-19 

populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of 20 

the gene transcripts were consistent with the results of a functional analysis reported previously. The 21 

lectin-based hemocyte isolation method developed in this study has good reproducibility.  22 
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Introduction 27 

Hemocytes of shrimp act as immune organs (Jiravanichpaisal et al. 2006; Tassanakajon et al. 28 

2013; Söderhäll 2016). The classification of hemocytes is indispensable to analyze the biological defense 29 

mechanism in detail. So far, dyeing methods such as Giemsa or May-Giemsa staining, and antibody-30 

based classification methods have been developed based on the leukocyte classification methods of 31 

mammals. The Giemsa or May-Giemsa staining method is excellent for staining the cytoplasmic granules 32 

of hemocytes, which contain anti-microbial peptides (Bachère et al. 2004; Rosa and Barracco 2010). 33 

Hemocytes can be roughly divided into three types morphologically, hyaline hemocytes (HCs), semi-34 

granular hemocytes (SGCs) and granular hemocytes (GCs) by Giemsa or May-Giemsa staining 35 

(Söderhäll and Smith 1983; Johansson et al. 2000). However, the results of Giemsa and May-Giemsa 36 

staining are not always the same, and can be affected by pH, dyeing time, humidity and worker’s degree 37 

of training. Therefore, these methods are not well-suited for quantitative experiments. 38 

Ten kinds of monoclonal antibodies were produced using whole hemocytes of kuruma shrimp 39 

Marsupenaeus japonicus as antigens (Rodriguez et al. 1995). Similarly, eight kinds of monoclonal 40 

antibodies were produced using hemocytes or hemocyte lysate as antigens against hemocytes of black 41 

tiger shrimp Penaeus monodon (Sung et al. 1999; van de Braak et al. 2000; Sung and Sun 2002; 42 
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Winotaphan et al. 2005). As a result of immunological staining using these monoclonal antibodies, even 43 

the same morphologically classified cells such as HCs, SGCs and GCs showed differences in reactivity to 44 

their cell surface antigens, and due to the reactivity difference of the monoclonal antibodies, hemocytes 45 

have been defined in more detail. More recently, monoclonal antibodies reactive to whiteleg shrimp 46 

Litopenaeus vannamei hemocytes were developed (Lin et al. 2007; Zhan et al. 2008). Using these 47 

antibodies, the isolating two sub-populations of L. vannamei hemocytes: agranulocytes and granulocytes 48 

were succeeded (Xing et al. 2017). However, these monoclonal antibodies are not widely used for 49 

classifying shrimp hemocytes because it is difficult to prepare identical monoclonal antibody-producing 50 

clones in different laboratories and because few suppliers are interested in developing products for 51 

crustaceans due to the small number of researchers. Therefore, it is also important to classify specific 52 

hemocytes without relying on antibodies. 53 

In other organisms especially in human, cells are classified based on sugar chains present on 54 

the cell surface. Lectins are proteins that bind to sugar chains, and are used for staining and classification 55 

of various cells, such as cancer cells, based on their sugar chains such as glycans (Kobata 1992; 56 

Christiansen et al. 2014; Gabius et al. 2015). Until now, hemocytes of bees Apis mellifera, fly Drosophila 57 

melanogaster, mosquito Anopheles gambiae, Pacific oyster Crassostrea gigas and Europe mussel Mytilus 58 
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edulis have been classified by lectins (Pipe 1990; Tirouvanziam et al. 2004; Rodrigues et al. 2010; 59 

Marringa et al. 2014; Jiang et al. 2016). In addition, cytoplasmic granules of hemocytes of ridgeback 60 

prawn Sicyonia ingentis and American lobster Homarus americanus have been reported to be stained by 61 

wheat germ agglutinin (WGA) (Martin et al. 2003). Furthermore, WGA, tomato lectin (Lycopersicon 62 

esculentum lectin: LEL) and peanut agglutinin (PNA) were found to bind to some of the GCs, SGCs and 63 

HCs of L. vannamei (Estrada et al. 2016). However, few studies have stained shrimp hemocytes with 64 

lectins, and molecular biological analyses of lectin-positive hemocytes have not been conducted. 65 

In this study, we isolated two hemocyte sub-populations using LEL and a magnetic-activated 66 

cell sorting (MACS) system, and then predicted their functions by measuring the accumulation of mRNA 67 

transcripts by RNA sequencing (RNA-seq) and quantitative RT-PCT (qRT-PCR) analyses.  68 

  69 
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Materials and Methods 70 

Shrimp samples 71 

Apparently healthy kuruma shrimp M. japonicus weighing 20–25 g were obtained from farms 72 

in Okinawa and Miyazaki prefecture, Japan. Shrimps were kept in tanks provided with a water 73 

recirculating system maintained at 25 0C and 30-35 ppt. Shrimps were acclimatized for at least 3 days 74 

before the experiment. 75 

Lectin staining of hemocytes by LEL and WGA 76 

Hemolymph was collected from each shrimp using a 23-gauge needle and syringe containing 77 

equal amount of anti-coagulant (0.45 mM NaCl, 0.1 M glucose, 30 mM trisodium citrate, 26 mM citric 78 

acid, 10 mM EDTA, pH 5.6) (Söderhäll and Smith 1983), and then centrifuged to obtain hemocytes. The 79 

hemocytes were fixed with 4% paraformaldehyde (PFA) in PBS (137 mM NaCl, 10 mM Na2HPO4, 2.7 80 

mM KCl, 1.8 mM KH2PO4, pH 7.3) for 15 min at room temperature. One of two lectins, DyLight 488-81 

conjugated LEL or FITC-conjugated WGA (both Vector Laboratories, Inc., USA), was added at a ratio of 82 

2 μg to 106 fixed cells and reacted for 15 minutes at 4 0C in reaction buffer (0.5% BSA, 2 mM EDTA in 83 

PBS). After washing twice, hemocytes were analyzed by flow cytometry and observed under a 84 

fluorescence microscope. For the observation of flow cytometry, the fluorescent intensities of at least 85 
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5,000 DyLight 488- or FITC-stained hemocytes were analyzed by FACSCalibur (Becton-Dickinson, 86 

USA) using an FL-1 filter with Cell Quest Pro software ver. 5.2.1 (Becton-Dickinson). Simultaneously 87 

relative cell size and relative cell complexity were determined by FACSCalibur and Cell Quest Pro 88 

software ver. 5.2.1 using a forward-scatter (FSC) filter and a side-scatter (SSC) filter, respectively. For the 89 

observation of fluorescence microscope, nucleolus of lectin-stained hemocytes were stained by 10 μg/mL 90 

of Hoechst 33258 (Invitrogen, USA) for 15minnutes in PBS. The stained hemocytes were examined by 91 

bright- and fluorescent-field using upright microscope ELIPSE Ci (Nikon Co., Japan), and the images 92 

were analyzed by NIS-Elements (Nikon Co.) and ImageJ ver. 2.0.0. (Schneider et al. 2012). The assay 93 

was performed three times from three individual shrimps. 94 

Double lectin staining 95 

PFA-fixed hemocytes were prepared as described above. Both biotin-conjugated LEL (Vector 96 

Laboratories, Inc.) and FITC-conjugated WGA were added at a ratio of 2 μg each to 106 fixed cells and 97 

reacted for 15 minutes at 40C in reaction buffer. After the hemocytes were washed twice, DyLight 550-98 

conjugated natural streptavidin protein (Abcam plc., U.K.) was added at a ratio of 0.4 μg to 106 fixed cells 99 

and reacted for 15 minutes at 40C in reaction buffer. After washing twice, the stained hemocytes were 100 

examined by bright- and fluorescent-field as described above. The assay was performed three times from 101 
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three individual shrimps. 102 

Isolation of LELDim and LELStrong hemocytes by MACS system 103 

PFA-fixed hemocytes were prepared as described above. From the flow cytometry results, 104 

LEL- or WGA-stained hemocytes were classified into two sub-populations; stained weakly as 105 

WGADim/LELDim and stained strongly as WGAStrong/LELStrong. For isolation of LELDim hemocytes, PFA-106 

fixed hemocytes were stained with biotin-conjugated LEL (Vector Laboratories, Inc.) at a ratio 1 μg to 106 107 

fixed cells for 15 minutes at 40C in reaction buffer. After washing once, hemocytes were reacted with 10 108 

μl of streptavidin microbeads (Miltenyi Biotec, Germany) in 90 μl of reaction buffer for 15 min at 40C. 109 

After washing once, hemocytes were separated by MACS using MS column (Miltenyi Biotec) and 110 

MiniMACS separator (Miltenyi Biotec) following the manufacturer’s protocol. The negative fraction was 111 

collected as LELDim hemocytes. For isolation of LELStrong hemocytes, PFA-fixed hemocytes were stained 112 

with biotin-conjugated LEL at a ratio 0.1 μg to 106 fixed cells for 15 minutes at 40C in reaction buffer. 113 

After washing once, hemocytes were reacted with 1 μl of streptavidin microbeads in 99 μl of reaction 114 

buffer for 15 min at 40C. After washing once, hemocytes were separated by MACS. The positive fraction 115 

was collected as LELStrong hemocytes. Total, LELDim and LELStrong hemocytes were analyzed by flow 116 

cytometry. Five thousand (5,000) events of each sample were collected and then FSC and SSC analyses 117 
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were conducted by FACSCalibur with Cell Quest Pro software ver. 5.2.1 as described above. Two gates, 118 

R1 and R2, were established based on the FSC and SSC, and the percentage of dot plots in each gate were 119 

analyzed by Cell Quest Pro software. The assay was performed six times from six individual shrimps. 120 

Since the hemocytes stained with WGA could not be separated by MACS system, this isolation 121 

experiment could not be carried out on WGA-stained hemocytes.  122 

May-Giemsa staining of total, LELDim and LELStrong hemocytes 123 

Total, LELDim and LELStrong hemocytes were collected as described above. Each hemocyte 124 

suspension was spread on a glass slide in a cell collection bucket SC-2 (TOMY, Japan) at 100 g for 1 min. 125 

Glass slides were dried, stained for 3 min with 20% May-Grunwald stain solution (Wako, Japan) in 0.67 126 

mM phosphate buffer (pH 6.6), washed with phosphate buffer, stained for 15 min with 4% Giemsa stain 127 

solution (Wako) in 0.67 mM phosphate buffer (pH 6.6), washed with tap water, dried, mounted with 128 

Malinol (Muto Pure Chemicals, Japan) and visualized with NIS-Elements software. 129 

cDNA Library construction and RNA sequencing by Illumina Miseq 130 

Total, LELDim and LELStrong hemocytes were collected from six shrimps as described above. 131 

The PFA-fixed hemocytes were digested with proteinase K (Masuda et al. 1999). Total RNA was then 132 

extracted with a NucleoSpin RNA XS kit (Takara Bio Inc., Japan) following the manufacturer’s protocol. 133 
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The total RNAs of each type of hemocyte were pooled. The concentration and purity of total RNA were 134 

measured using a Qubit RNA HS Assay Kit and NanoDrop Lite (both Thermo Fisher Scientific Inc., 135 

USA). cDNA libraries were prepared with total RNA using a TruSeq stranded mRNA sample preparation 136 

kit (Illumina Inc., USA) following the manufacturer’s protocol. The libraries were amplified with 20 137 

cycles of PCR and contained indexes within the adapters. The yields in the amplified libraries were 138 

measured with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific Inc.) and D1000 ScreenTape 139 

System (Agilent Technologies, USA). The yields of LELDim, LELStrong and total hemocytes were 1.9, 140 

0.184 and 14.5 ng/μl, respectively, with average lengths of 293, 286 and 297 bp, respectively, indicating 141 

concentrations 10.3, 1.05 and 77.5 nM, respectively. Six (6) pmol of each library was sequenced using 142 

MiSeq (Illumina Inc.) and MiSeq reagent kit version 2 (Illumina Inc.) with 75 nt paired end reads. 143 

De novo assembly and identification of differentially expressed transcripts 144 

The reads were assembled by Trinity v2.5.1 (Grabherr et al. 2011) using default parameters 145 

(minimum assembled transcripts length 200) to obtain trinity-assembled transcripts. The sequenced 146 

libraries were mapped back to the reference trinity-assembled transcripts using RSEM (Li and Dewey 147 

2011) to quantify the read counts. Read counts were normalized by trimmed mean of M-values (TMM) to 148 

account for differences in library size (Robinson and Oshlack 2010) and then normalized by transcripts 149 
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per million (TPM) to account for differences in transcript length. The differentially expressed transcripts 150 

between total, LELDim and LELStrong hemocytes libraries were identified using EdgeR (Robinson and 151 

Oshlack 2010) including a p-value cutoff for false discovery rate of 0.001 and a minimum 16-fold change 152 

in expression. Blastx program (Altschul et al. 1997) was then used for homologous gene searching with 153 

an e-value cut-off of 0.05 in Penaeidae’s 5,942 proteins in NCBI database (http://www.ncbi. nlm.nih.gov 154 

“Accessed 18 Oct 2018”). 155 

Quantification of transcripts of immure-related genes by qRT-PCR 156 

Total, LELDim and LELStrong hemocytes were extracted from three shrimps, then total RNAs 157 

were extracted as described above. cDNAs were synthesized from RNA of each sample using a High 158 

capacity cDNA reverse transcription kit (Thermo Fisher Scientific Inc.). After synthesis, cDNA samples 159 

were diluted five times with distilled water and 2 μl of samples were used for qRT-PCR. The set of 160 

primers were designed based on registered sequences or trinity-transcripts (Table 1). Elongation factor 1α 161 

(EF-1α: as an internal control) for qRT-PCR (Table 1). qRT-PCR was conducted using THUNDERBIRD 162 

SYBR qPCR Mix (TOYOBO Co. Ltd., Japan) and condition was 950C for 1 min, 40 cycles of 950C for 163 

15 secs and 600C for 1 min followed by dissociation analysis step. mRNA accumulation of each gene was 164 

calculated as ∆CT by comparing with CT value of EF-1α (as a reference gene). The statistical 165 
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significance between total, LELDim and LELStrong hemocytes respectively was analyzed using t-test. 166 

Lectin staining on hemocytes phagocyted micro beads 167 

Shrimps were injected with 200 μl of 10% suspension of fluorescent beads (Fluoresbrite YO 168 

Cartoxylate Microspheres 1.0 μm: Polysciences, Inc., USA) in artificial seawater. Three (3) hours post 169 

injection, PFA-fixed hemocytes were prepared and stained by DyLight 488- conjugated LEL or FITC-170 

conjugated WGA, respectively as described above. The stained hemocytes were examined by bright- and 171 

fluorescent-field as described above. The assay was performed three times from three individual shrimps.  172 

  173 
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Results 174 

Lectin staining of total hemocytes 175 

Both WGA and LEL showed reactivity to all hemocytes, however there were a difference in 176 

reactivity, and they could be classified into two subpopulations, WGADim/WGAStrong and 177 

LELDim/LELStrong, respectively (Fig. 1). WGA reacted strongly with cells with relatively large and 178 

complex intracellular structure (Fig. 1d), whereas LEL reacted strongly with cells with relatively small 179 

and simple intracellular structure (Fig. 1h). WGA and LEL strongly reacted with the intracellular structure 180 

and the cell surface of hemocytes, respectively (Fig. 2). Dim-positive and strong- positive of each lectin 181 

hemocytes were also observed under fluorescent-field (Fig. 2). 182 

Double lectin staining 183 

Double lectin staining of total hemocytes by LEL and WGA was able to divide hemocytes 184 

into three sub-populations: LEL- positive, WGA-positive and LEL/WGA-positive hemocytes (Fig. 3). 185 

The ratio of LEL/WGA-positive hemocytes was 19% (n=3), and the fluorescent intensity of LEL/WGA-186 

positive hemocytes was weaker than the other sub-populations. As with single staining, LEL well stained 187 

the cell surface and WGA well stained the intracellular structure of hemocytes. 188 

Isolation of LELDim and LELStrong hemocytes by MACS system 189 
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Using the MACS system and biotin-conjugated LEL, LELDim and LELStrong hemocytes were 190 

isolated, respectively. May-Giemsa staining showed that LELDim hemocytes (Fig. 4c) were relatively 191 

larger than LELStrong hemocytes (Fig. 4d), and unlike the latter, contained intracellular granules and a 192 

large cytoplasm compared to the nucleus. The granules of LELDim hemocytes showed round shape, 0.4-193 

0.6 µm in diameter and stained eosinophilic as purplish red (Fig. 4c). On both LELDim and LELStrong 194 

hemocytes, cytoplasm were stained pale purple and had condensed chromatin (Fig. 4c, d). Regions 1 and 195 

2 before separation of hemocytes were 45.8 ± 12.4% and 51.9 ± 12.0%, respectively, whereas after 196 

separation of LELDim hemocytes, they were 11.0 ± 3.2% and 83.8 ± 6.0%, and after separation of 197 

LELStrong hemocytes, they were 86.7 ± 7.2% and 10.9 ± 6.6% (n=6). Fig. 5 showed an example dot plot 198 

analyses of total, LELDim and LELStrong hemocytes from a shrimp.  199 

Differentially expressed transcripts by RNA sequencing 200 

All the sequences from total, LELDim and LELStrong hemocytes with raw data archived at the 201 

DDBJ Sequence Read Archive under Accession DRA007926. The assembled transcripts contained 11,870 202 

trinity-genes. The median trinity-gene length was 339 bp and the N50 (weighted median) was 539 bp. We 203 

identified 2,630 differentially expressed transcripts based on a p-value cut-off for FDR of 0.001 and a 204 

minimum 16-fold change in expression. In blastx searches, 163 trinity-genes matched Penaeidae proteins 205 
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with e-values less than 0.05 (Online Resource), 31 of which were immune-related (Fig. 6). The immune-206 

related trinity-genes fell into four clusters that were highly expressed in (1) only LELStrong hemocytes, (2) 207 

both total and LELDim hemocytes, (3) only total hemocytes and (4) only LELDim hemocytes (Fig. 6). 208 

Differentially expressed transcripts by qRT-PCR 209 

In the qRT-PCR results, the ∆CT values of transcripts of two major anti-microbial peptides 210 

(AMPs) (crustin and penaeidin- II) and c-type lysozyme were significantly lower in LELStrong hemocytes 211 

than in total and LELDim hemocytes, while the ∆CT values of transcripts of hemocyte transglutaminase 212 

and prophenoloxidase (proPO) activation enzyme were significantly lower in LELDim hemocytes than in 213 

total and LELStrong hemocytes (Fig. 7). The trend was also seen in that the ∆CT values of transcripts of 214 

Toll and integrin were lower in LELStrong hemocytes than in total and LELDim hemocytes. 215 

Lectin staining of hemocytes phagocyted micro beads 216 

The fraction of hemocytes phagocyted micro beads was 5.6% (n=3). Both LEL-positive and -217 

negative hemocytes phagocyted micro beads (Fig. 8b, d), whereas only WGA-positive hemocytes 218 

phagocyted micro beads (Fig. 8f, h). In addition, the fluorescent intensity of WGA-positive beads 219 

phagocyted hemocytes tended to be weaker than other WGA-positive hemocytes. 220 

  221 



 16 

Discussion 222 

The stainability of hemocytes by two lectins, WGA and LEL, were different. This suggests 223 

that sugar chains on hemocytes are different depending on the type of hemocytes. Like the reports on the 224 

other crustacean (Martin et al. 2003; Estrada et al. 2016), WGA strongly stained the granules of 225 

hemocytes of kuruma shrimp M. japonicus. The flow cytometry data also showed a strong WGA signal in 226 

hemocytes with high SSC values, suggesting that WGA stains granules of hemocytes. The investigation 227 

of the existence of granules on hemocytes is important for characterization of hemocytes. However, it was 228 

unclear which hemocytes contained granules on dyeing methods such as Giemsa or May-Giemsa staining. 229 

Combination of WGA staining, microscopic observation and FCM analysis, it became easier to prove the 230 

existence of granules on hemocytes. In contrast to WGA, LEL appeared to bind to the cell surface and not 231 

cytoplasmic granules. Since LEL stained the cell surface, MACS system could be used. 232 

May-Giemsa staining showed that LELDim hemocytes contained a lot of cytoplasmic granules, 233 

while LELStrong hemocytes contained little or no granules. The flow cytometry data also showed that 234 

LELStrong hemocytes was smaller and had lower SSC value than LELDim hemocytes. These results indicate 235 

that hemocytes could be divided into two sub-populations by LEL: LELStrong hemocytes that were 236 

agranulocytic and LELDim hemocytes that were granulocytic. Kuruma shrimp hemocytes were classified 237 
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into 3 types (Kondo et al. 1992; Kondo et al. 1998) or 8 types (Kondo et al. 2014) by electron microscopy 238 

observation or May-Grunwald staining. Since we used different sampling methods or anticoagulant 239 

solution in this study, we could not observe the reported detailed granule structure, cytoplasmic structure 240 

and dyeability. In addition, morphological changing especially degranulation were easily occurred even 241 

when collected using anticoagulant (Kondo et al. 2012). The development of the optimal sampling 242 

method and comparison with the existing report are future tasks.  243 

The two populations, LELDim and LELStrong, were associated with specific transcripts. 244 

Transcripts of hemocyte transglutaminase, which is related to clotting of hemolymph (Maningas et al. 245 

2013), were highly accumulated in LELStrong hemocytes in both the RNA-seq and qRT-PCR analyses. 246 

Abundant transglutaminase transcripts were also reported on HCs (also called agranular hemocytes) in L. 247 

vannamei (Yang et al. 2015). The transglutamase results also strongly suggest that LELStrong (i.e., 248 

agranular) hemocytes contribute to blood coagulation in kuruma shrimp. On the other hand, total and 249 

LELDim hemocytes highly accumulated transcripts of crustin, crustin-like, penaeidin-II and c-type 250 

lysozyme, as shown by the RNA-seq and qRT-PCR analyses. AMPs and c-type lysozyme are also present 251 

in cytoplasmic granules of hemocytes (Bachère et al. 2004; Rosa and Barracco 2010). Our RNA-seq 252 

analysis also showed that LELDim hemocytes had abundant transcripts of proPO activation enzymes and 253 
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serine proteases, which are also proPO-related enzymes (Hernández-López et al. 1996; Cerenius and 254 

Söderhäll 2004). In many crustaceans, the proPO system is carried by granular hemocytes (Sung et al. 255 

1998; Yang et al. 2015; Söderhäll 2016). Based on these previous reports and the present results, LELDim 256 

hemocytes (i.e. granulocytes) are responsible for the production of AMPs and c-type lysozyme, and 257 

contribute to the proPO system, as reported previously. 258 

The hemocytes which have the phagocytic activity vary greatly from species to species in 259 

crustacean. In kuruma shrimp, strong phagocytic activity was observed in SGCs and GCs (Kondo et al. 260 

1992). LELDim hemocytes accumulate transcripts involved in foreign object recognition, such as integrin, 261 

lectins, Toll and scavenger receptor (Arts et al. 2007; Yang et al. 2007; Han-Ching Wang et al. 2010; 262 

Zhang et al. 2012; Lin et al. 2013; Wang and Wang 2013; Wang et al. 2014; Bi et al. 2015). Furthermore, 263 

there was a correlation between WGA-positive hemocytes and phagocytosis, not LEL-positive hemocytes 264 

(Fig. 8f, h), in this study. Together, these results indicate that kuruma shrimp granular hemocytes are the 265 

main players in phagocytosis. Interestingly, LEL-positive not WGA-positive cells were reported to be 266 

phagocytotic in Pacific oyster C. gigas (Jiang et al. 2016), which suggests that the composition and 267 

function of cell surface glycans can differ in the same invertebrates. 268 

Some hemocytes stained with both WGA and LEL. Lin and Söderhäll (2011) argue that GCs 269 
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and SGCs differentiate from HCs. In this study, both LEL- and WGA-positive hemocytes were present, 270 

but we were unable to analyze their functions. For example, both LEL- and WGA-positive hemocytes 271 

may be in transition from HCs to GCs or SGCs. By using a combination of LEL and WGA, it is now 272 

possible to more accurately classify the types, functions and life cycles of hemocytes. 273 

Since our lectin-based hemocyte isolation method requires cell fixation, functional analysis 274 

was impossible. Therefore, further studies are needed to identify buffers that can make it possible to stain 275 

living hemocytes with lectins to conduct functional analysis or extract high quality RNAs. It is also 276 

necessary to identify the antigens of LEL and WGA to clarify how hemocytes are classified. Despite these 277 

problems, lectin-based hemocyte isolation uses easily available lectins and a relatively inexpensive 278 

MACS system, which should make it useful in many laboratories.  279 

  280 
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Table 1. Primer sequences used in this study 403 

Primer name Sequence (5’-3’) Accession number 

EF-1α F ATT GCC ACA CCG CTC ACA  AB458256.1 

EF-1α R TCG ATC TTG GTC AGC AGT TCA  AB458256.1 

Crustin F AAC TAC TGC TGC GAA AGG TCT CA  AB121740-4.1 

Crustin R GGC AGT CCA GTG GCT TGG TA  AB121740-4.1 

Penaeidin-II F TTA GCC TTA CTC TGT CAA GTG TAC GCC  KU057370.1 

Penaeidin-II R AAC CTG AAG TTC CGT AGG AGC CA  KU057370.1 

C-type lysozyme F ATT ACG GCC GCT CTG AGG TGC  AB080238.1 

C-type lysozyme R CCA GCA ATC GGC CAT GTA GC  AB080238.1 

Anti-lipopolysaccharide factor F AGC CTC CTT TTC CTT TCC CCT  KX424931.1 

Anti-lipopolysaccharide factor R CAC AAT CCT GTC AGT TTT TCC GC  KX424931.1 

C-type lectin F ACG CTG GTG TGA TGC CCG  KJ175168.1 

C-type lectin R ACC GAG TCT GAG CCG CCT AA  KJ175168.1 

Hemocyte transglutaminase F GAG TCA GAA GTC GCC GAG TGT  DQ436474.1 

Hemocyte transglutaminase R TGG CTC AGC AGG TCG TTT AA  DQ436474.1 

Transglutaminase F TGA CTG CGA AGA ACA TGA GC  AB162767.1 

Transglutaminase R GTT CTT GGT TTC CCC GAC TC  AB162767.1 

Prophenoloxidase activation enzyme F ACC CGA CGA TGC CAG AAC  This study 

Prophenoloxidase activation enzyme R TGG GAA GAT TTG GGA TAA GAA GAC  This study 

Prophenoloxidase activation factor F TCA AGG AGG TGG CTC TCC CT  This study 

Prophenoloxidase activation factor R GAT ACC CGA ACC CGG TCT CC  This study 

Prophenoloxidase F CCG AGT TTT GTG GAG GTG TT  AB073223.1 

Prophenoloxidase R GAG AAC TCC AGT CCG TGC TC  AB073223.1 

Toll F ACT GGA ACG TGT TGG GAA GA  AB333779.1 

Toll R TGC AAG TCC AGA ACC TCC AA  AB333779.1 

Integrin α F GAC GAG CCA AGC CAT CTG A  LC114983.1 

Integrin α R TCC GTC GAG CAG TCT TCA TG  LC114983.1 

 404 

  405 



 30 

Fig. 1. Flowcytometry analysis of WGA- or LEL-stained hemocytes from a shrimp. The intensity of FL-1 406 

signal of WGA-stained hemocytes (a) and LEL-stained hemocytes (e). Dotted line indicates negative 407 

control of FL-1 value. Dot-plot analysis of total hemocytes (b and f), WGADim hemocytes (c), WGAStrong 408 

hemocytes (d) LELDim hemocytes (g) and LELStrong hemocytes (h). X- and Y-axes indicate FSC and SSC, 409 

respectively. 410 

Fig. 2. Lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL (a-d) and WGA (e-h). 411 

Bright-field (a, e). Nucleolus stained as blue by Hoechst 33258 (b, f). Each fluorescent lectin stained as 412 

green, LEL (c) and WGA (g). Merged figure (d, h). Bars indicate 10 μm scale. 413 

Fig. 3. Double lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL and WGA. 414 

Bright-field (a). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red and WGA 415 

as green (b). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red (c). 416 

Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by WGA as green (d). Bars indicate 10 417 

μm scale. 418 

Fig. 4. Bright field microscopic observation and May-Giemsa staining of hemocytes from a shrimp. Total 419 

hemocyte observed under bright-field (a). Total hemocytes stained by May-Giemsa staining (b). Bright 420 

field observation and May-Giemsa staining of LELDim hemocytes (c) and LELStrong hemocytes (d). Bars 421 
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indicate 10 μm scale. 422 

Fig. 5. Dot plot analyses of total, LELDim and LELStrong hemocytes from a shrimp. Total hemocytes (a), 423 

LELDim hemocytes (b) and LELStrong hemocytes (c). Each region was established based on characteristic 424 

cell plots. X- and Y-axes indicate FSC and SSC, respectively. 425 

Fig. 6. Hierarchical clustering analysis of immune-related trinity-transcripts extracted as differentially 426 

expressed in total, LELDim and LELStrong hemocytes. Each column is the TMM-TPM value. Relatively 427 

highly expressed trinity-genes are shown in red, relatively weakly expressed trinity-genes are shown in 428 

green. 429 

Fig. 7. qRT-PCR analyses of 12 transcripts. ∆Ct values analyzed by qRT-PCR. Higher ∆CT value 430 

indicates higher accumulation of transcript of mRNA. Each bar indicates the average value. Double 431 

asterisk (**) and an asterisk (*) on the bars indicates the ∆Ct values were significantly different between 432 

each sub-population. ** = P < 0.01; *=P < 0.05. 433 

Fig. 8. LEL and WGA staining on hemocytes phagocyted microbeads. Microscopic observation under 434 

bright-field (a, c, e, g) and under fluorescent-field (b, d, f, h). Nucleolus stained by Hoechst 33258 as 435 

blue, hemocytes stained by LEL (b, d) or WGA (f, h) as green and phagocytized beads as red. Bars 436 

indicate 10 μm scale. 437 


















