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ABSTRACT
Wind effects can be critical for the design of lifelines such as long-span bridges. The existence of

a significant number of aerodynamic force models, used to assess the performance of bridges, poses an
important question regarding their comparison and validation. This study utilizes a unified set of metrics for a
quantitative comparison of time-histories in bridge aerodynamics with a host of characteristics. Accordingly,
nine comparison metrics are included to quantify the discrepancies in local and global signal features such as
phase, time-varying frequency and magnitude content, probability density, nonstationarity and nonlinearity.
Among these, seven metrics available in the literature are introduced after recasting them for time-histories
associated with bridge aerodynamics. Two additional metrics are established to overcome the shortcomings
of the existing metrics. The performance of the comparison metrics is first assessed using generic signals
with prescribed signal features. Subsequently, the metrics are applied to a practical example from bridge
aerodynamics to quantify the discrepancies in the aerodynamic forces and response based on numerical and
semi-analytical aerodynamic models. In this context, it is demonstrated how a discussion based on the set
of comparison metrics presented here can aid a model evaluation by offering deeper insight. The outcome
of the study is intended to provide a framework for quantitative comparison and validation of aerodynamic
models based on the underlying physics of fluid-structure interaction. Immediate further applications are
expected for the comparison of time-histories that are simulated by data-driven approaches.
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INTRODUCTION
With increasing spans of cable-supported bridges, wind-induced vibrations become the most prominent

action on such structures. A significant number of aerodynamic models have been developed to describe
the wind loads acting on a bridge deck for buffeting and flutter analyses. Traditionally, these models are
semi-analytical (cf. e.g. Scanlan (1978), Chen and Kareem (2002), Chen and Kareem (2003), Chen and
Kareem (2006), Chen and Kareem (2001), Diana et al. (2010), Wu and Kareem (2013c)). In the last two
decades, models based on Computational Fluid Dynamics (CFD) also have received a considerable attention
(cf. e.g. Ge and Xiang (2008), Morgenthal and McRobie (2002), Morgenthal et al. (2014, Kavrakov and
Morgenthal (2018a)).

Having an abundant number of aerodynamic force models available, a logical question surfaces regarding
their quality and ability to replicate aerodynamic phenomena. In the case of the semi-analytical models,
this is directly related to their model assumptions, such as linearity or their disregard of fluid memory. On
the other hand, the choice of discretization scheme and turbulence models plays a vital role in the quality
of CFD simulations. Hence, several assessment studies have emerged that compare aerodynamic models or
validating them with experimental data (cf. e.g. Petrini et al. (2007), Wu and Kareem (2013b), Kavrakov
and Morgenthal (2017), Kavrakov and Morgenthal (2018b), Øiseth et al. (2011), Diana et al. (2013)).
Moreover, the task group “Super-long span bridge aerodynamics" of the International Association of Bridge
and Structural Engineering (IABSE) is currently establishing a benchmark example for computer code
verification and model validation for buffeting and flutter analyses of bridges (Diana et al. 2019a; Diana et al.
2019b). Within this group, results from different computer codes of various research groups and companies
are compared within the activities of this IABSE working group.

Most of the aforementioned studies use the aerodynamic force or aeroelastic displacement as a basis
for comparison. For time-domain analyses, this effectively constitutes a comparison of two time-histories.
Thus, a comparison is typically conducted based on the root mean square (RMS) or the peak, and by
looking at time-histories or power spectral densities. However, these quantities are insufficient to compare
the discrepancies of the embedded nonlinear features in the output of advanced aerodynamic models (cf.
e.g. Carassale et al. (2014),Wu andKareem (2011),Wu andKareem (2013c), Diana et al. (2010)). Therefore,
each comparative study is carried out case-by-case and a unified framework for comparison of time-histories
in bridge aerodynamics is not available.

The literature on methods for comparing time-histories is vast. Without being exhaustive, former studies
can be found in field of mechanical systems (Jiang and Mahadevan 2010), cavitation in fluid-structure
interaction (Sprague and Geers 2004), seismology (Kristeková et al. 2009), geophysics (Willmott et al.
1985), economics (Bliemel 1973), shock of floating platforms (Teferra et al. 2014), crash simulations in
vehicle designs (Sarin et al. 2010), etc. For data-driven simulations of downburst winds, Wang et al.
(2013) have utilized a number of schemes for validation, including metrics like Rényi entropy and fractal
dimension. The commonality of all methods is that the similarity of the time-history is measured by an
absolute or relative metric. These metrics are used to quantify the discrepancies in certain signal features,
such as magnitude, phase, frequency content, probability distribution function (PDF), etc. A feature is a
distinctive or characteristic measurement, transform, structural component extracted from a segment of a
pattern (Cvetkovic et al. 2008). Hora and Campos (2015) give a relatively comprehensive review of available
metrics. Generally, the selection of metrics for comparison is based on the field of application as different
embedded signal features are of interest.

In light of the previous overview, this study utilizes a set of comparison metrics for multi-criteria model
assessment in bridge aerodynamics and aeroelasticity. The metrics are tailored to quantify global and local
discrepancies of two time-histories, which are of interest for aeroelastic/aerodynamic analyses. A total of
nine metrics are constructed on a uniform basis. Seven of these metrics are adapted from former studies and
recast to meet the needs of the current application, including peak, RMS, phase, magnitude, PDF, wavelet
and frequency-normalized wavelet metrics. Moreover, two additional metrics are introduced to quantify the
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discrepancies in possible nonstationary and quadratic nonlinearity of the signals. These two metrics build
upon on existing methods for testing stationarity with wavelet surrogates and nonlinearity with the wavelet
bispectrum, respectively.

By constructing this set of comparison metrics, this study aims to address the question: How to mean-
ingfully compare two force/response time-histories in bridge aerodynamics? In this regard, the entire set of
comparison metrics is intended to represent a unified and standard way to quantitatively compare not only
the typical signal features such as peak and RMS but also the nonlinear and nonstationary signal features.
All metrics are discussed from the perspective of their relation to the underlying physical processes that take
place in the wind-bridge interaction.

The study is organized as follows: Initially, peculiar signal features in bridge aerodynamics are discussed.
Then, the comparison metrics are introduced. This is followed by examination of their performance via
controlled numerical experiments using generic signals. Finally, the metrics are applied to an example from
bridge aerodynamics in terms of dynamic response and force time-histories. In closing, a brief summary
and conclusions are given.

EMBEDDED SIGNAL FEATURES IN BRIDGE AERODYNAMICS
Looking at the wind-bridge interaction as an input/output system, it is characterized by properties such

as memory, nonlinearity and stochastic features. These properties are manifested in peculiar signal features
embedded in the output.

The system memory (fluid memory) affects the output aerodynamic forces by introducing a time lag
and amplitude scaling of the fluctuating pressure coefficients due to input motion or gusts. As a result, the
aerodynamic forces experience a hysteretic behavior with frequency-dependent shape for linear models (cf.
Fig. 1). According to the flat plate unsteady theory (cf. e.g. Fung (1993)), this is a consequence of the
uneven distribution of the bound circulation. For nonlinear aerodynamic systems, the fluid memory effect
can also be time-dependent, i.e., fading fluid memory (cf. e.g. Carassale et al. (2014), Wu and Kareem
(2011)). Intuitively, fading memory means that current output depends more on the recent input than
remote past (Shamma and Zhao 1993). This effectively challenges the infinite wake assumption in linear
aerodynamics and influences the force phase and amplitude.

Apart from the fading fluid memory, nonlinear effects can be manifested through amplitude-dependence,
nonGaussianity, and nonstationarity of the aerodynamic forces/response. As a result of the nonlinear input-
output relationship for large angles of attack, the aerodynamic forcesmay experience sub- and superharmonics
for a single-frequency input (cf. Fig. 1) (Li and Kareem 1990; Huang et al. 2014; Diana et al. 2010). Further,
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Fig. 1. Linear and nonlinear aerodynamic forces acting on a bridge deck due to a sinusoidal input motion.
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the input-output amplitude ratio at the forcing frequency may vary depending on the input amplitude. This
is manifested through the amplitude dependence of the aerodynamic coefficients.

In regions with massive flow separation, the PDF of the local pressure can differ significantly from a
Gaussian despite a Gaussian free-stream turbulence (Kareem and Wu 2013). This yields force peaks that
cannot be directly related to the RMS and large higher-order moments of the output PDF (e.g. skewness and
kurtosis). Such nonGaussian features can be observed in the local pressure variation on rooftop cladding
(Gurley and Kareem 1997) or the tail of the PDF of the buffeting forces acting on a bridge deck (cf. Fig. 2).

Despite having a stationary input, a stable nonlinear aerodynamic system can result in a nonstationary
output in terms of amplitude and frequency. In bluff-body aerodynamics, this is related to the nonlinearity of
the aerodynamic forces due to strong stationary wind gusts and large oscillations (Kavrakov and Morgenthal
2018b). Large angles of attack often lead to a formulation of a leading-edge vortex that entrains vorticity
as it is convected along the deck (cf. Fig. 3), which effectively induces high-pressure peaks. Moreover,
nonstationary amplitude modulations in the response are also present during flutter, or even in terms of
frequency modulation in the post-flutter limit cycle oscillations (cf. e.g. Abbas et al. (2017), Kavrakov and
Morgenthal (2018b)).

Additional broadband high-frequency content in the forces can appear as a consequence of vortex
shedding and/or interior noise. The latter entails chaotic (stochastic) phenomena such as wake instability,
laminar-turbulence transition, local separation, and reattachment (Wu and Kareem 2015; Kavrakov and
Morgenthal 2018b). These local turbulence effects can also lead to a nonstationary hysteresis behavior for a
sinusoidal input motion (cf. Fig. 1) (Zhang et al. 2017).
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Fig. 2. Histogram (approximate PDF) of the normalized (standard score) buffeting lift coefficient C∗
Lb,n

for a linear semi-analytical model (LU) and a CFD (nonlinear) model. The input is a Gaussian free-stream
turbulence and the deck is static. For comparison, a Gaussian distribution with zero mean and unit variance
N(0,1) is included. (Data from Kavrakov and Morgenthal 2018b)

Fig. 3. Instantaneous particle map for deck oscillations at high angle of attack, resulting in leading edge
vortex separation. (Data from Kavrakov and Morgenthal 2018b).
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COMPARISON METRICS
The general idea of a comparison metric between two time-histories is to quantify the discrepancies of

a particular feature between two signals. Considering two time-histories, x(t) and y(t) with duration T , a
comparison metric is denoted as Mx,y = M(x, y), where x(t) is the reference signal. Since various features
of the signals (e.g. phase, magnitude) can attain magnitudes of a different order, it is beneficial to construct
the comparison metrics so that their values are in the interval between 0 and 1. In such way, a comparison
metric amounting to Mx,y = 1 indicates that there are no discrepancies in a particular feature of the time-
history, while Mx,y = 0 indicates that the difference is infinite. To facilitate this, the comparison metrics are
constructed in a unified manner using an exponential function with a negative exponent as follows:

Mx,y = M(x, y) = e−λA(x,y), (1)

where A(x, y) is a relative exponent and λ is a sensitivity parameter. The relative exponent A(x, y) is defined in
such manner to account for the discrepancies of a particular feature of the time-histories, while the sensitivity
parameter λ ≥ 0 is introduced to adjust the sensitivity of different metrics. A total of nine metrics are
considered for this study with a focus on the underlying physics of wind-bridge interaction. The following
metrics are included: (i) phase Mφ, (ii) peak Mp, (iii) RMS Mrms, (iv) magnitude Mm, (v) PDF Mpdf, (vi)
wavelet Mw , (vii) frequency-normalized wavelet Mwf , (viii) stationarity Ms, and (ix) wavelet bispectrum
Mb metrics. In what follows, all of the metrics are be defined by their relative exponent.

Phase, peak, and root mean square metrics
First, metrics based on global and averaged signal features are investigated, including the phase, peak

and RMS metrics. The phase metric can be considered as an indicator of the extent of the ability of an
aerodynamic model to capture the fluid memory effects. Herein, the phase metric introduced by Sarin et al.
(2010) is used since its definition using an exponential function is compliant with the unified manner of
construction of the comparison metrics in Eq. (1). The relative exponent for this metric yields the following:

Aφ =
tlag

Tc
, (2)

where mean time delay tlag is obtained as follows:

tlag = arg max [x(t)? y(t)] , (3)

where the star "?" denotes cross-correlation. The normalization time Tc is a time that is considered to be a
significant delay between the signals; hence, it is case-dependent, as discussed later. This metric accounts
for the mean phase discrepancy between two signals. For frequency-modulated signals, the phase metric
might not carry an effective meaning.

The peak values of the aeroelastic response are the design criteria for bridges. Thus, they are of major
importance for aerodynamic time-histories, particularly in cases with high aerodynamic nonlinearities that
influence the peak factor.

The relative exponent for the peak metric is defined as follows:

AP =
|max |x(t)| −max |y(t)| |

max |x(t)|
. (4)

The utility of the RMS for time-histories is due to its physical interpretation as it is closely related to the
signal energy. The RMS has shown to be a useful signal feature for linear aerodynamic models, particularly
when comparing between the frequency- and time-domain for a Gaussian free-stream turbulence Øiseth et al.
(2011).
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The relative exponent for the RMSmetric is obtained as the relative difference of the RMS of the signals,
which yields the following:

Arms =

������
√

1
T

∫ T

0
[x(t)]2 dt −

√
1
T

∫ T

0
[y(t)]2 dt

������√
1
T

∫ T

0
[x(t)]2 dt

. (5)

Magnitude metric
The peak and RMS metrics are based on a global and averaged amplitude discrepancies, respectively.

To further study the differences of the magnitude in a time-localized manner, a relative magnitude metric
is needed. A straightforward manner to determine the local amplitude discrepancies would be to compute
the RMS deviation of the signals. However, a simple subtraction of two signals might result in large values
if the signals are phase-shifted or in the presence of interior noise due to local effects and vortex shedding,
which would unrealistically exaggerate the situation.

Sarin et al. (2010) propose to preprocess the original time-histories utilizing the dynamic time warping
(DTW) algorithm to alleviate some of the local phase-shifts and very high frequencies. Utilizing the DTW,
the peaks of the signals are aligned in a nonlinear fashion by stretching, but not scaling. Taking this into
account, the relative exponent for the magnitude metric yields the following:

Am =

√√√
1

Nw

Nw∑
j=1

(
xw, j − yw, j

)2

√√√
1

Nw

Nw∑
j=1

(
xw, j

)2

, (6)

where xw, j and yw, j for j = {1, . . . ,Nw} are the warped versions of the original discretized time-histories
xm and ym for m = {1, . . . ,N}, respectively, and Nw is the number of warped steps, which is not necessarily
the same with the number of time-steps N of the original discretized signals.

To illustrate the effect of DTW, consider two biharmonic signals with distinct phase-shift for each
harmonic and additional Gaussian noise (cf. Fig. 4, left). The DTW algorithm (cf. e.g. Müller (2007))
consists of initially computing an accumulated cost matrix Cmn = min(Cm−1,n−1,Cm,n−1,Cm−1,n)+ d(xm, yn)
for m,n = {1, . . . ,N}, based on a local distance measure d(xm, yn) such as, e.g., Euclidean distance. A
sequence of pairs of indices wj = [m,n] is sought which minimizes a cumulative cost Cp =

∑Nw

1 C[wj].
The sequence wj is the optimal warping path, which is subjected to the following constraints: (i) wj is
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Fig. 4. Original (left) and warped (right) time-histories.
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Fig. 5. Accumulated cost matrix C of the DTW algorithm. The white line represents the optimal warping
path.

monotonically increasing, (ii) wj progresses one step at a time, (iii) the boundary values are w1 = [1,1] and
wNw = [N,N]. The lower the cumulative cost, the more the signals are similar to each other, and visa-versa.
For the particular example, the accumulated cost matrix and the optimal warping path (the white line) are
shown in Fig. 5. Based on the ordered pair of indices in wj , the values of the discrete signals xm and ym
are correspondingly ordered, resulting in the warped signals in Fig. 4 (right). The warped signals can be
directly compared with respect to the isolated magnitude discrepancies. The cumulative cost is an indicator
of the amount of shifting of the signals to obtain their warped counterparts. However, this is not taken into
account within the magnitude metric as it is assumed that Cp corresponds to the phase and local frequency
shifts, which are not of interest for this metric.

Probability density function metric
The variation between the input and output PDF is a property of nonlinear models; hence, it represents an

important signal feature to quantify the nonGaussian properties in bridge aerodynamics and aeroelasticity.
In statistics, two PDFs are compared by utilizing statistical divergence. There are a number of statistical

divergences which quantify the discrepancy between the PDFs, such as the Kullback-Leiber divergence,
Jensen–Shannon divergence, Hellinger distance, etc. (cf. e.g. (Pardo 2006)). Herein, the Bhattacharyya
distance DB is utilized to formulate the PDF metric as it is commonly used to measure the overlapping
degree of PDF (cf e.g. (Nielsen and Boltz 2011)), and it can be easily related to the formulation in Eq. (1).
Assuming the signals x and y are random variables, the relative exponent of the PDF metric is given as
follows:

Apdf = DB(x, y) = − ln
∫ ∞

−∞

√
p̂xn (z)p̂yn (z)dz. (7)

where p̂xn and p̂yn are estimates of the PDFs of the standardized signals (standard score) xn and yn,
respectively. For λPDF = 1, the PDF metric yields the following:
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Mpdf =

∫ ∞

−∞

√
p̂xn (z)p̂yn (z)dz = BC(xn, yn), (8)

where BC(xn, yn) is the Bhattacharyya coefficient which can take values in the range 0 ≤ BC ≤ 1, which
corresponds with the constructed comparison metrics. Formulated as such, the PDF metric can be also
related to Hellinger’s distance or Rényi divergence (cf. e.g. Nielsen and Boltz (2011)).

In Eqs. (7) and (8), the standard scores of the signals are used to asses the discrepancies in the third
and higher-order standardized moments of the PDF. This is to avoid redundancy in the metrics to some
extent, as the first- and second-order moments are included in the RMS metric. The estimated PDFs, p̂xn

and p̂yn , are obtained by nonparametric kernel density estimation, utilizing the Gaussian kernel and the
Improved Sheather-Jones algorithm for bandwidth selection (cf. Botev et al. (2010), including a matlab
code). Alternatively, the estimated PDFs can be modeled by parametric approaches utilizing, for e.g.,
Hermite polynomials (Gurley and Kareem 1997).
Wavelet and frequency-normalized wavelet metrics

The wavelet metric aims to quantify the discrepancies of the energy in the time-frequency plane of
a signal. This is of significant importance in bridge aerodynamics as it reveals particular features of the
aerodynamic forces and response, such as stationary and nonstationary frequency content, aerodynamic
coupling, modal contribution, and local "bursts" of signal energy, etc. The interpretation in the time-
frequency plane has been extensively utilized in wind engineering (cf. e.g. (Kareem and Kijewski 2002;
Gurley et al. 2003)). Formulated as a metric, the wavelet transform has been used on several occasions in
mechanics (cf. e.g. (Jiang and Mahadevan 2010; Teferra et al. 2014; Kristeková et al. 2009)).

To obtain the time-frequency representation, the wavelet transform of a signal x(t) is given as follows
(Grossmann and Morlet 1984):

Wx(a, t) =
1
√

a

∫ ∞

−∞

x(τ)ψ∗
( t − τ

a

)
dτ, (9)

where Wx are complex wavelet coefficients, a is the scale parameter, ψ = ψ(t) is the mother wavelet, and
the asterisk "*" denotes the complex conjugate. Herein, the Morlet wavelet, normalized with respect to the
wavelet energy, is utilized and is given as follows (cf. e.g. Jamšek et al. (2007)):

ψ(t) = π−1/4e−i2π f0te−t
2/2, (10)

where i =
√
−1 is the imaginary unit, while f0 is the central frequency of the wavelet which is crucial

for defining the time and frequency resolution and should be adjusted accordingly (Kijewski and Kareem
2003). For the Morlet wavelet, the Fourier frequency f is related to the scale parameter as f = f0/a. The
squared magnitude of the wavelet coefficients (i.e. scalogram) reveals the frequencies where the energy is
concentrated in a time-localized manner. As the interpretation in this study is based on the time-frequency
instead of the time-scale representation, the wavelet coefficients are based on the frequency in the following.

The relative exponent of the wavelet metric is obtained as a normalized RMS deviation of the magnitude
of the wavelet coefficients, and it yields the following:

Awf =

√∫ T

0

∫ ∞

0

[
|Wx( f , t)| − |Wy( f , t)|

]2 d f dt√∫ T

0

∫ ∞

0
[|Wx( f , t)|]2 d f dt

. (11)

By obtaining thewaveletmetric in such away, the discrepancies between the two signals in the time-frequency
plane are quantified. From a practical aspect, the wavelet parameters such as the mother wavelet, central
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wavelet frequency, and the frequency range should remain the same for both signals. Moreover, for the
wavelet-based metrics, the integration of the time-frequency plane should encompass an area that neglects
the wavelet end effects, commonly referred to as the cone of influence (Kijewski and Kareem 2003).

The wavelet metric incorporates the total discrepancy in the time-frequency plane. To further study
whether this discrepancy is due to the amplitude or frequency difference, the frequency-normalized wavelet
metric is introduced by normalizing the instantaneous wavelet amplitude with respect to the frequency
marginal. The relative exponent for this metric is given as follows:

Awf =
1
T

∫ T

0

√∫ ∞

0

[
|Wx( f , t)|

Wx f ,max(t)
−
|Wy( f , t)|

Wy f ,max(t)

]2
d f√∫ ∞

0

[
|Wx( f , t)|

Wx f ,max(t)

]2
d f

dt, (12)

where the normalization factor, for e.g., for signal x(t) is given by the following:

Wx f ,max(t) = max
f
|Wx(t, f )| . (13)

Practically, this metric quantifies the distortion in the shape of the local spectrum, which is of particular
interest for aerodynamic models resulting in multi-frequency output for single-frequency input. A metric
normalized with respect to the magnitude marginal can be constructed in a similar fashion; however, this
metric is not considered herein, since it is deemed to be a redundant addition to the magnitude metric.

Stationarity metric
A stationaritymetric is introduced herein to detect, isolate and quantify the difference in the nonstationary

portion in the time-frequency plane of the signals. This metric aims to capture the nonstationarity amplitude
and frequency modulations in the aerodynamic forces for large angles of attack. The relative exponent is
formulated as:

As



→∞ if Θ(x) , Θ(y),
= 0 if Θ(x) = Θ(y) = 0,

=

√∫ T

0

∫ ∞

0

[
|WF

x ( f , t)| − |W
F
y ( f , t)|

]2 d f dt√∫ T

0

∫ ∞

0

[
|WF

x ( f , t)|
]2 d f dt

if Θ(x) = Θ(y) = 1.
(14)

where Θ is a binary indicator of signal nonstationarity, while WF ( f , t) represents the filtered nonstationary
part of the wavelet coefficients, if the signal is determined to be nonstationary. To determine whether the
signal is nonstationary and if so, to filter the nonstationary part of the wavelet coefficients, a local and a
global method (cf. Borgant et al. (2010), McCullough and Kareem (2013), respectively) based on surrogates
and hypothesis testing are utilized. In the following, these methods are briefly revisited and combined to
facilitate the two-step procedure in Eq. (14).

A surrogate of a signal is obtained bymanipulating the original time-histories to satisfy the null hypothesis
while retaining most of the properties such as the power spectrum or PDF. Since the null hypothesis in this
case is that the signal is stationary, the Fourier surrogates have shown to be adequate (Richard et al. 2010;
McCullough and Kareem 2013). A Fourier surrogate of a signal x(t) is obtained by randomizing the phase
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of its Fourier transform X( f ) while retaining the modulus at each frequency and then applying the inverse
Fourier transform. This yields the following:

xsur(t) =
∫ ∞

−∞

ei2π f t |X( f )| eiφRd f , (15)

where φR is a random phase, uniformly distributed over the interval [−π, π).
The first step is to determine whether the signal is stationary by comparing it to surrogate signals utilizing

discriminating statistics. The deterministic statistics are based on the statistical distance between the local
and global spectrum. If the discriminating statistic of the original signal σx falls out of the one-sided
confidence interval of the probability density of the discriminating statistic of the surrogates σsur, the null
hypothesis is rejected for the original signal. This is formulated as follows:

Θ(x) =

{
0 if p(σsur ≤ σx) ≤ γ; “stationary",
1 if p(σsur ≤ σx) > γ; “nonstationary".

(16)

where γ corresponds to the confidence level. The discriminatory statistic σsur is, in fact, a random variable
for which an estimated parametric PDF is obtained, such as the Gaussian or Gamma density, for a number
of surrogates. For a single time-history, the discriminatory statistic is obtained based on the divergence D(t)
between the local and global spectrum as follows:

σ = Var [D(t)] . (17)

A combination of theKullback-Leiber divergence and log-spectral deviation is utilized herein for the distance,
since it has shown to be adequate for both cases of amplitude and frequency modulation (Borgant et al. 2010).
This distance is given as follows:

DLSD+KL,x(t) =

{∫ ∞

0

[
Sx,n(t, f ) − Sx,n( f )

]
log

Sx,n(t, f )

Sx,n( f )
d f

}
×

{
1 +

∫ ∞

0

�����log
Sx( f , t)

Sx( f )

����� d f

}
, (18)

where the Sx( f , t) and S̄x( f ) are the scalogram and global spectrum, which are obtained as follows:

Sx( f , t) = |Wx( f , t)|2 , (19)

Sx( f ) =
1
T

∫ T

0
Sx( f , t)dt, (20)

and Sx,n(t, f ) and Sx,n( f ) are the corresponding normalized versions of the scalogram and global spectrum,
respectively.

In the second step, if a signal is determined to be nonstationary (cf. Eq. 16), the nonstationary part
of the wavelet coefficients WF

x ( f , t) are filtered using a threshold scalogram based on stationary surrogates
(McCullough and Kareem 2013). This yields the following:

WF
x ( f , t) =


0 if Sx( f , t) ≤ max

t
Str,x( f , t),

Wx( f , t) if Sx( f , t) > max
t

Str,x( f , t),
(21)

where Str ,x( f , t) is a threshold scalogram. Herein, the maximum threshold scalogram is considered with
respect to the time marginal instead of a localized value as in McCullough and Kareem (2013), since the
threshold peak can occur at any time, under the stationarity assumption. The threshold, assuming normality,
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is defined at each point on the time-frequency plane by using the mean Ssur,Mx( f , t) and standard deviation
Ssur,SDx( f , t) of the surrogate scalograms as follows:

Str,x( f , t) = Ssur,Mx( f , t) + gSsur,SDx( f , t), (22)

where g is a factor depending on the probability of exceeding the threshold.
It should be noted that it can be determined whether the signal is stationary only by using the local

method in Eq. (21); hence, the global method in the first step (cf. Eq. (16)) can be considered redundant.
However, herein the two-step procedure is utilized as the computation of the standard deviation of the
surrogate scalograms in Eq. (22) requires either retaining all surrogate scalograms in computer memory
or their re-computation once Ssur,M ( f , t) is determined. Hence, utilizing the two-step procedure can help
reducing computational memory when obtaining Ms for stationary signals. Moreover, to filter the complete
stationary part of the signal for finely discretized time marginal, a large number of surrogate is required.
Otherwise, local spurious peaks may be still present in the filtered scalogram, which would result in a
sensitive stationary metric. Detecting stationarity with a global binary test, followed by a local quantification
of the nonstationary parts has shown to alleviate this problem for a reasonable number of surrogates.

Bispectrum metric
The sub- and superharmonics are distinctive nonlinear features in signals and they appear as a result

of the nonlinear interaction between harmonics. Higher-order spectra have been proven to be a useful tool
for detection and modeling of such nonlinearities in mechanical and phyisical systems (cf. e.g. (Fackrell
et al. 1995; Nikitas and Petropulu 1993; Kim and Powers 1979; van Milligen et al. 1995)). Wu and Kareem
(2013a) utilized the Fourier bispectrum to study the quadratic nonlinear interaction between two frequencies
(i.e. quadratic phase coupling) for experimental signals of aerodynamic forces acting on a bridge deck at
high angles of attacks.

Herein, the bispectrummetric is formulated based on the wavelet bispectrum including a quadratic phase
coupling detector. The main advantage of utilizing the wavelet instead of the Fourier bispectrum is that it
can detect intermittent nonlinearities and the statistical error is reduced (Jamšek et al. 2007). Moreover, the
quadratic phase coupling detector offers detection of quadratic nonlinearities, which is particularly useful
for synthetic signals (Fackrell and McLaughlin 1995). With this, the bispectrum metric aims to first identify
and then quantify the discrepancies in the quadratic aerodynamic nonlinearity.

The wavelet bispectrum Bwx( f1, f2) of a signal x(t) is obtained from the wavelet coefficients (cf. Eq. (9))
as follows (van Milligen et al. 1995):

Bwx( f1, f2) =
∫
TB

Wx( f1, τ)Wx( f2, τ)W∗x( f3, τ)dτ, (23)

where f3 = f1 + f2 and TB is the integration interval of interest. Since the wavelet bispectrum is a complex
quantity, it can be expressed in terms of amplitude GBx( f1, f2) and phase φBx( f1, f2) as follows:

Bwx( f1, f2) = GBx( f1, f2)eiφBx ( f1, f2). (24)

The instantaneous biphase can be obtained from Eqs. (23) and (24) as follows:

φBx( f1, f2, t) = φ( f1, t) + φ( f2, t) − φ( f3, t). (25)

Equation (23) can indicate whether there is nonlinear interactions (i.e. quadratic phase coupling) between
the f1 and f2 harmonics, yielding nontrivial values of the bispectrum magnitude at the f2 − f1 and f2 + f1
frequency couples. In addition to nontrivial magnitude at these frequency pairs, the condition φBx = 0 for the
biphase in Eq. (25) is necessary to be satisfied for quadratic phase coupling to occur (Fackrell andMcLaughlin
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1995). lf this condition is not satisfied, the normalized bispectrum, i.e. bicoherence (Fourier- or wavelet),
can yield in nontrivial value despite the absence of nonlinearities in the signal. This is particularly true
for synthetically generated signals with a constant phase, such as broadband forces/response, for which the
bispectrum can have multiple peaks corresponding to the discrete frequencies or natural signal frequencies.
Therefore, further adjustment of the bispectrum is required to detect the quadratic nonlinearity.

In this study, a modified quadratic-phase coupling detector is utilized, based on the phase-randomized
bispectrum introduced by Kim et al. (2007) for the Fourier, and by Li et al. (2009) and Scully et al. (2017)
for the wavelet bispectrum. The phase-randomized bispectrum BR

wx( f1, f2) is obtained as follows

BR
wx( f1, f2) =

∫
TB

GBx( f1, f2, τ)eiRB ( f1, f2,τ)φBx ( f1, f2,τ)dτ, (26)

where RB( f1, f2, τ) is a uniformly distributed random phase in the interval [−rB,rB), where rB is a random-
ization factor. From Eq. (26), it can be deduced that if φBx( f1, f2, t) = 0, the exponential term amounts to
1, while, if φBx( f1, f2, t) , 0, the random value RB( f1, f2, t) can considerably reduce the bispectrum. This
reduction depends on the randomization factor rB. In previous studies (cf. e.g. Scully et al. (2017)) this
factor is taken as rB = π; however, this does not offer insight of how the phase-randomized bispectrum
behaves. Considering a constant bispectrum amplitude GBx( f1, f2) and constant biphase φBx( f2, f2), which
is not necessarily zero, the influence of the rB factor on the resultant phase-randomized bispectrum amplitude
GR

Bx is shown in Fig. 6. It can be seen that the larger rB is, the faster GR
Bx attenuates towards zero for biphase

angles deviating from zero. Moreover, there is a "ripple" effect after GR
Bx reaches zero. Theoretically, there

should be no deviation for φBx from zero in case of quadratic phase coupling; however, noise can affect the
bispectrum (Elgar and Sebert 1989) and thus, the angle φBx can take small values. Although it would be
the most appropriate to select the rB factor based on the level of noise, in this study this factor is selected as
rB = 10π. This corresponds to an angle of φBx = 2π/rB = 0.2 rad, for which it is assumed that quadratic
phase coupling is present, i.e. when GR

Bx first intercepts the abscissa (cf. Fig. 6).
The phase-randomized bispectrum is still affected by noise and, additionally, due to the ripple effect

of the biphase randomization. In addition to a zero biphase, i.e. φBx = 0, the amplitude of GR
Bx should

be also significant to indicate that the quadratic phase coupling between two harmonics is not due to
noise (Fackrell and McLaughlin 1995). In order to obtain statistically significant estimation of the BR

wx ,
a surrogate method can be employed. The generation of surrogates can be conducted in similar fashion
as for the stationarity metric, by manipulating the original signal properties. For the wavelet bispectrum,
Fourier surrogates cannot be utilized as stationarity is not assumed; thus, more advanced surrogates should be
utilized such as the wavelet iterative amplitude adjusted Fourier transform surrogates (cf. e.g. Lancester et al.
(2018), McCullough (2016)). However, these surrogates are computationally very demanding; therefore,

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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Fig. 6. Effect of the randomization factor rB on the ratio between the phase-randomized bispectrum
magnitude GR

Bx and bispectrum magnitude GBx for a constant biphase φBx .
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the surrogate bispectrum map is obtained simply by eliminating the biphase information in the original
bispectrum directly. This can be done by simply setting a uniformly distributed random biphase φBR( f1, f2)
in the interval [−π : −rsur,rsur : π), for 0 < rsur < π, in Eq. (26) as follows:

BR
wsur( f1, f2) =

∫
TB

GBx( f1, f2, τ)eiRk ( f1, f2,τ)φBR ( f1, f2)dτ. (27)

The null hypothesis for the surrogate bispectrum amplitude map is that the signal does not exhibit
quadratic phase coupling. Hence, the biphase φBR( f1, f2) should not amount to zero. This is controlled
by the random factor rsur. In Li et al. (2009), the random biphase φBR is obtained by adding to the initial
biphase φBx a time-varying random phase within the [π, π) interval. In this study, φBR is taken to be constant
in time as it is a more critical case for which the bispectrum can result in false detection of nonlinearities.
This creates bispectrum surrogate map which is based to the original phase-randomized bispectrum BR

wx and
additionally ensuring that the biphase φBx does not amount to zero by using the factor rsur. Since the factor
rB assures quadratic phase coupling, the factor rsur should be a complement in a way; hence, it is obtained
as rsur = 2π/rB. In this manner, the wavelet bispectrum is filtered for a nonzero biphase and an insignificant
amplitude.

Similarly as for the stationarity metric, the threshold bispectrum amplitude map GR
Btr( f1, f2) can be

obtained as follows:
GR

Btr,x( f1, f2) = GR
Bsur,Mx( f1, f2) + gGR

Bsur,SDx( f1, f2), (28)

where GR
Bsur,Mx( f1, f2) and GR

Bsur,SDx( f1, f2) are the mean and standard deviation of the surrogate bispectrum
amplitude, respectively. These are obtained for a number of surrogates of the surrogate phase-randomized
bispectrum amplitude GR

sur( f1, f2) (based on Eq. (27)), while g is a factor depending on the probability of
exceeding the threshold.

The filtered phase-randomized bispectrum amplitude GF
Wx can be obtained from the phase-randomized

bispectrum amplitude GR
Bx( f1, f2) as follows:

GF
Bx( f1, f2) =

{
0 if GR

Bx( f1, f2) ≤ max GR
Btr,x( f1, f2),

GR
Bx( f1, f2) if GR

Bx( f1, f2) > max GR
Btr,x( f1, f2).

(29)

Although the noise level is frequency dependent (van Milligen et al. 1995), the maximum value is taken
for filtering as threshold, since spurious peaks could remain for finely discretized frequencies. This would
results in a very sensitive bispectrum metric. Moreover, the bispectrum for signals without quadratic phase
coupling should be zero anyway. Alternatively, the values at each individual frequency pair can be taken;
however, this requires larger number of surrogates, which is of high computational cost.

Finally, the relative exponent for the wavelet bispectrum metric is obtained as follows:

Ab



→∞ if Γ(x) , Γ(y),
= 0 if Γ(x) = Γ(y) = 0,

=

√∫ ∞

0

∫ ∞

0

[
GF

Bx( f1, f2) − GF
By( f1, f2)

]2
d f1d f2√∫ ∞

0

∫ ∞

0

[
GF

Bx( f1, f2)
]2 d f1d f2

if Γ(x) = Γ(y) = 1,
(30)

where Γ indicates whether there is a quadratic phase coupling in a signals and is given by the following:

Γ(x) =

{
0 if max GF

Bx( f1, f2) = 0; “linear",
1 if max GF

Bx( f1, f2) > 0; “nonlinear".
(31)
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From Eq. (30), it can be gathered that the bispectrum metric quantifies the discrepancies in the nonlinear
portion of the two time-histories, should both contain quadratic phase coupling. In practice, the integration
in Eq. (30) is only about the part of the bispectrum that is encompassed by the inner triangle (cf. e.g. Fackrell
et al. (1995)), to avoid the redundant part of the bispectrum.

PERFORMANCE EVALUATION OF THE COMPARISON METRICS
In this section, the performance of the comparisonmetrics is assessed by conducting controlled numerical

experiments using generic signals. The goal is to track the performance of the metrics using known signal
features. This ultimately reveals the sensitivity of specific metrics to specific signal feature changes. The
matlab code, including the results from this section, is freely available and is deposited in an online respiratory
(see Data Availability Statement). Four generic signals, xi(t) for i = {1, . . . ,4}, are studied with respect to a
reference one xr (t). The considered reference signal is given as follows:

xr (t) = A1 cos (ω1t) + A2 cos
(
ω2t +

π

3

)
+ ηr (t). (32)

The generic signals are labeled corresponding to the particular signal feature that is beingmodified as follows:

• Signal 1 - Phase shift

x1(t) = A1 cos (ω1t + φ1) + A2 cos
(
ω2t +

π

3
+ φ2

)
+ η1(t); (33)

• Signal 2 - Amplitude scaling

x2(t) = 2A1 cos (ω1t) + 2A2 cos
(
ω2t +

π

3

)
+ η2(t); (34)

• Signal 3 - Frequency modulation

x3(t) = A1 cos (ω1t) + A2 cos
(
ω2t + Kt2 +

π

3

)
e−λ1t + η3(t); (35)

• Signal 4 - Nonlinearity

x4(t) = A1 cos (ω1t) + A2 cos
(
ω2t +

π

3

)
+

A1 + A2
2

cos (ω1t) cos (ω2t + φ3) e−λ2t + η4(t). (36)

The following parameters are considered: A1 = 1, A2 = 1.3, ω1 = 2 × 2π, ω1 = 2.8 × 2π, φ1 = π,
φ2 = π/6, K = (ω3 − ω2)/T , ω3 = 3.6 × 2π, φ3 = π/3, T = 100s is the signal length with sampling
frequency of fs = 100 Hz, and η(t) is a white noise with zero mean for signal-to-noise ratio amounting to
10. Initially, the parameters are set λ1 = λ2 = 0; however, this is modified later when attempting to quantify
the discrepancies in the nonlinear and nonstationary parts. For computation of the comparison metrics the
following parameters are selected: normalization time Tc = 2π/ω2, wavelet central frequency f0 = 6 Hz,
confidence level for the discriminating statistic γ = 95%, and surrogate map factor g = 2. A total of 200
surrogates are deemed sufficient for the local stationarity analysis (Borgant et al. 2010), while 100 surrogates
for the surrogate bispectrum map (Scully et al. 2017). Due to the dynamic time warping, the number of
signal time-steps increased for the magnitude metric, resulting in a ratio of warped to original number of
time-steps of Nw/N = {1.23,1.55,1.41,1.45} for the generic signals xj for j = {1, . . . ,4}, respectively. As
an example, the original and warped signals for xr and x1 are shown in Fig. 4. The resulting comparison
metrics are given in Fig. 7, while in Fig. 8, the wavelet coefficients for all the signals are given for all signals
except x1, since they are similar as for xr . The following discussion is based on these two figures.
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Fig. 7. Comparison metrics for the generic signals. From left to right: Phase Shift Mxr ,x1 , Amplitude
Scaling Mxr ,x2 , Frequency Modulation Mxr ,x3 , and Nonlinearity Mxr ,x4 .
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Fig. 8. Wavelet amplitude |W( f , t)| for the generic signals. From left to right: Wxr , Wx2 , Wx3 , and Wx4 . The
dashed-dot line indicates the cone of influence.

Signal 1 - Phase shift
The first example is constructed to study the effect of phase shift since a time-lag is a common manifes-

tation of the fluid memory in unsteady aerodynamic models. As expected, the phase metric Mxr ,x1
φ results

in a lower value (cf. Fig. 7, left). Moreover, the magnitude metric obtained using the warped signals results
in a value of Mxr ,x1

m = 0.88. For comparison, this metric amounts to a value of 0.27 for unwarped signals,
which is unrealistic as the signals are only phase-shifted. Due to the added noise, the wavelet metrics amount
to Mxr ,x1

w = Mxr ,x1
wf

= 0.96, which is slightly less than 1 due to the added noise. The signals xr and x1 are
similar considering the features accounted in the remaining comparison metrics.

Signal 2 - Amplitude scaling
Analyzing the second example, the behavior of the comparison metrics due to amplitude discrepancy

is observed. The amplitude of the signal x2 is two times larger than xr . Increasing the amplitude in such
way, affects the RMS Mxr ,x2

rms , magnitude Mxr ,x2
m , peak Mxr ,x2

p , and wavelet metric Mw (cf. Fig. 7). With the
exception of the magnitude metric, the rest of the metrics amount to Mxr ,x2

rms ≈ Mxr ,x2
p ≈ Mxr ,x2

w ≈ 0.4, which
is logical as a discrepancy of 100% yields e−1 ≈ 0.37. The magnitude metric resulted in a higher value due to
the dynamic time warping. Another particularity is that the value of the frequency-normalized wavelet metric
is Mxr ,x2

wf
≈ 1. This is due to the fact that both signals have the same relative frequency content, as it can be

seen from the absolute value of thewavelet coefficients in Fig. 8. As anticipated, no discrepancies are detected
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by the phase, PDF, stationarity and bispectrum metrics, i.e. Mxr ,x2
φ = Mxr ,x2

pdf = Mxr ,x2
s = Mxr ,x2

b
= 1.

Signal 3 - Frequency modulation
The third example is devised to investigate the effect of frequency modulation. Practically, the signal

x3 contains a linear chirp, which can also be observed in the wavelet coefficients (cf. Fig. 8). Since the
stationarity null hypothesis (cf. Eq. (16)) is accepted for xr and rejected for x3, the stationaritymetric amounts
to Mxr ,x3

s = 0 (cf. Fig 7, center-right). Themagnitude Mxr ,x3
m and wavelet-basedmetrics, Mxr ,x3

w and Mxr ,x3
wf

,
result in substantially lower values than 1, while the peak and RMS metrics are Mxr ,x3

p = Mxr ,x3
rms ≈ 1. This

further reinforces the claim why multi-criteria assessment is required beyond discussions based on averaged
or global features of the signals. Unlike the previous example, Mxr ,x3

wf
has similar value as Mxr ,x3

w , which
brings the conclusion that the discrepancies in Mxr ,x3

w are due to relative frequency modulation, rather than
amplitude modulation. Although the mean phase metric is Mxr ,x3

φ < 1, quantifying the mean phase between
a stationary and frequency modulated nonstationary signal is obsolete, as noted in the preceding section.
The frequency modulation did not result in appritiable deviation of the PDF; hence, Mxr ,x3

pdf ≈ 1.
To further investigate the stationarity metric for two nonstationary signals, the frequency-modulated

harmonic in Eq. (35) is additionally damped by a factor λ1 = 0.025 and the resulting signal is denoted as x ′3.
Figure 9 depicts the filtered nonstationary part of the absolute wavelet coefficients of the signals xr , x3, x ′3,
and the difference | |WF

x3 | − |W
F
x′3
| |. It can be observed that there are some spurious peaks for the reference

signal, despite the fact that the univariate test (cf. Eq. (16)) correctly accepted the null hypothesis. This is
the reason why the two-level stationarity testing procedure is devised for the stationarity metric. For x3 and
x ′3, the stationarity null hypothesis was rejected and the linear and damped linear chirp can be seen in the
filtered wavelet coefficients (cf. Fig. 8). The discrepancy in the nonstationary part for x3 and x

′

3 is quantified
based on Eq. (30). Hence, the stationarity metric amounts to M

x4,x
′
3

s = 0.48 for these two signals.

Signal 4 - Nonlinearity
In the last example, the difference of the nonlinearity in terms of quadratic phase coupling is explored

for signals xr and x4. The wavelet bispectrum metric amounts to Mxr ,x4
b

= 0 (cf. Fig. 7, right) since the
reference signal is linear and x4 is nonlinear due to multiplication of the harmonics at ω1 and ω2. The
filtered wavelet bispectrum of xr is trivial (cf. Fig. 10, left), while the filtered bispectrum of x4 is not (cf.
Fig. 10, center-right). Hence, it is clear that the corresponding frequency couples at ( f1, f2) = (2,2.8−2) and
( f1, f2) = (2.8,2) are due to nonlinear interaction of ω1 and ω2 for the signal x4. Moreover, the magnitude of
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Fig. 9. Filtered nonstationary wavelet amplitude |WF ( f , t)|. for the generic signals. From left to right: WF
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the wavelet coefficients indicates two additional frequencies at 0.8 Hz and 4.8 Hz. Thus, most of the metrics
involving signal amplitude comparison indicated discrepancies.

The filtering of the nonlinear part of the signal is demonstrated in Fig. 10, where the unfiltered (cf.
Fig. 10, center-left) and filtered (cf. Fig. 10, center-right) wavelet bispectrum are depicted. It is clear that the
additional noise of the bispectrum is removed by utilizing the presented surrogate method (cf. Eq. (29)). To
quantify a discrepancy in the nonlinear portions of two signals, a signal x ′4 is constructed based on Eq. (36)
and by introducing a damping coefficient of λ2 = 0.025. The wavelet bispectrum amplitude of x ′4 is shown
in Fig. 10 (right), and additionally, a "slice" of the wavelet bispectrum amplitude at f2 = 0.8 Hz is given in
Fig. 11. Both of these figures indicate a difference in the wavelet bispectrum magnitude. Using Eq. (23)
for the partial area of the inner triangle (separated by the white dashed-dot line in Fig. 10), the wavelet
bispectrum metric amounts to M

x4,x
′
4

b
= 0.46. The filtering threshold can be also observed in Fig. 11.

Further, by modifying x4 in Eq. (36) for φ3 = 0, the filtered bispectrum amplitude resulted in zero values as
the condition of φB = 0 is not satisfied. Hence, no quadratic phase coupling is detected. In this case, the
filtered wavelet bispectrum is not shown for the sake of brevity as it is similar to for x1 (cf. Fig. 10, left).

Furthermore, the PDF metric amounts to Mxr ,x4
pdf = 0.86 for the last example, indicating a discrepancy

in the PDFs. Figure 12 depicts the estimated PDFs of the normalized versions of the signals xr and x4. It is
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Fig. 12. Estimated PDF p̂ of the normalized (standard score) signals xr ,n and x4,n.

apparent that the PDF of the signal x4 is asymmetric, which is due to the quadratic part of Eq. (36). It can
be argued that for such a large discrepancy in the estimated PDFs, the PDF metric should result in smaller
values. This can accounted for be either by selecting another statistical divergence than the Bhattacharyya
distance or by adjusting the sensitivity parameter λpdf > 1 (cf. Eq. (1)). For e.g., Mxr ,x4

pdf = 0.74 for λpdf = 2.

APPLICATION TO BRIDGE AERODYNAMICS
Having studied their behavior on generic signals in the preceding section, the comparison metrics are

evaluated for an example from bridge aeroelasticity. The time-histories for the particular example utilized
here are obtained from an extensive study by Kavrakov and Morgenthal (2018b) that deals with bridge
aerodynamics. The aforementioned study entails a comparison of six semi-analytical aerodynamic models
and a CFD model, based on the Vortex Particle Method, for aeroelastic analyses of a two-dimensional bridge
deck at Reynold’s number of 1.03×105. The Vortex Particle Method is a numerical method that uses discrete
vortex particles to discretize the vorticity transport formulation of the Navier-Stokes equations for the fluid
(cf. e.g. Cottet and Koumoutsakos (2000), Morgenthal and Walther (2007), Eldrege (2007), Akbari and
Price (2003)) and has been utilized in bridge aerodynamics on numerous occasions (cf. e.g. Larsen and
Walther (1997), Ge and Xiang (2008), Morgenthal et al. (2014)). The bridge deck of the Great Belt Bridge
is selected, which is a streamlined box girder with a width of B = 31 m (cf. Fig. 13). Only a selected set
of results is given herein, while detailed information on the model implementation, numerical discretization
and results can be found in Kavrakov and Morgenthal (2018b). The comparison metrics are computed for
the time-histories of two cases: (i) the aeroelastic response from buffeting analysis, and (ii) the self-excited
forces under sinusoidal forced excitation. Unless specified differently, the parameters for the comparison
metrics are the same as the ones described in the previous section.

Fig. 13. Sample particle map of the bridge deck with turbulent free-stream (based on data from Kavrakov
and Morgenthal 2018b).
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Buffeting analysis
The buffeting analysis is conducted for turbulent free-stream with mean wind speeds in the range of

U = 20− 60 m/s and isotropic turbulence intensity of 6%. For simplicity, the structural system is considered
to have only a vertical and a torsional degree of freedom. Thus, the quantities of interest for the aeroelastic
response are the time-histories of the vertical h and rotational α displacements. The mass and moment
of inertia of the moving deck components are set as 22.74 t/m and 2.47 × 103 tm2/m, respectively, which
correspond to the first vertical and torsional frequencies amounting to fh = 0.100 Hz and fα = 0.278 Hz,
respectively. The structural damping ratio is set as 0.5%. Before subjecting the structure to the turbulent
flow, a CFD simulation without a section is conducted in order to track the free-stream fluctuations at the
location of the stiffness center of the section. The tracked fluctuations serve as an input for the semi-
analytical models, ensuring one-to-one comparison, i.e. all models are considered to have the same input
free-stream turbulence. For the purpose of this study, only the Linear Unsteady (LU) (cf. e.g. Scanlan
et al. (1974), Scanlan (2001), Caracoglia and Jones (2003)) and Quasi-steady (QS) (cf. e.g. Kovacs et al.
(1992)) semi-analytical aerodynamic models are considered in addition to the CFD model. The LU model
is linear and accounts for the fluid memory, while the QS model is nonlinear and disregards the fluid
memory. Typically, the LU model is the standard semi-analytical model for aeroelastic analyses as the fluid
memory effect is dominant and thus, the QS model is unsuitable; however, for complex deck shapes at
high reduced velocity, aerodynamic nonlinearity can be prominent. Further information and interpretation
of these assumptions is given in Kavrakov and Morgenthal (2018b), Wu and Kareem (2013b). The CFD
model is taken as a reference as its mathematical formalism closer to fluid-structure interaction than both
semi-analytical models (Kavrakov et al. 2019). However, it may be replaced by an alternative model should
that be available.

For illustration, Fig. 14 presents a sample of the displacement time-histories at U = 60 m/s (cf. Fig. 14,
top) and the RMS of the displacements for the selected models (cf. Fig. 14, bottom). Based on the RMS, the
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Fig. 15. Comparison metrics for the aeroelastic displacements from buffeting analysis for the LU (black,
circle) and QS (blue, cross) models with respect to the CFDmodel. From left to right: vertical displacements
h (U = 30 m/s), rotation α (U = 30 m/s), vertical displacements h (U = 60 m/s), rotation α (U = 60 m/s).

LU model performs better than the QS model for the vertical displacements, except at U = 60 m/s. For the
torsional displacements, the LU model has smaller discrepancies with respect to the reference CFD model
than the QS model, especially at high wind speeds.

To further study the effect of linear fluid memory and quasi-steady nonlinearity, the comparison metrics
are computed for two representative wind speeds of U = 30 m/s and U = 60 m/s (cf. Fig 15). The
time-histories considered are with a duration of T = 600s, re-sampled at sampling frequency fs = 30 Hz.
Corresponding to the metric parameters for the generic signals, the following are modified: normalization
time Tc = 1/(4 fh + 4 fα), and wavelet central frequency f0 = 2 Hz.

Generally, the quasi-steady assumption is more rigorous than the linearity, as the comparison metrics for
the LU models attain higher values than for the QS model. Looking at the phase metric Mφ, the quasi-steady
assumption influences the phase significantly, although a phase-difference is apparent for the high wind
speed for the LU model. In case of the rotation at U = 30 m/s, it can be observed that while RMS metrics
MαCFD,αLU

rms ≈ MαCFD,αQS
rms ≈ 1, the magnitude metrics MαCFD,αLU

m and MαCFD,αQS
m are lower than 1 (cf. Fig 15,

center-left). This indicates that the localized time behavior of the signals is not as similar as for the global and
averaged quantities. Moreover, by studying the comparisonmetrics for the vertical displacements h atU = 60
m/s (cf. Fig 15, center-right), it can realized why considering the RMS as an only basis for comparison is
insufficient. Particularly, the QS model performs slightly better for the RMS metric MhCFD,hLU

rms < MhCFD,hQS
rms ,

while the situation is reverse for the magnitude metric, i.e. MhCFD,hLU
m > MhCFD,hQS

m . This indicates that only
the global quantities of the CFD model are in better correspondence with the QS model and not the local
ones. Since the input may be considered as identical, to draw a general conclusion that the quasi-steady
nonlinearity is more critical than the linear fluid memory at high wind speeds, all metrics should support
such statement. In this case, it may only indicated that the influence of the nonlinearity becomes apparent in
the RMS at high wind speeds.

The PDF metrics resulted in values Mpdf ≈ 1, mainly because there is general agreement between the
higher-order moments of the normalized PDFs, with discrepancies at the tail. These extreme values are
covered in the peak metric. In case the tail of the PDF is of interest, another statistical divergence measure
should be utilized instead of the Bhattacharyya distance.

Except for the rotation at U = 60 m/s, the wavelet metric for the LU model is similar to the frequency-
normalized wavelet metric, i.e. MCFD,LU

w ≈ MCFD,LU
wf

. Hence, the discrepancy in the wavelet metric is due
to the magnitude difference, while the relative frequency content is the same. This can be observed in the
wavelet magnitude for the vertical displacements at U = 60 m/s (cf. Fig. 16, top). Moreover, a spectral
contribution at a frequency corresponding to fα = 0.287 Hz can also be observed for the wavelet magnitude
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Fig. 16. Wavelet amplitude |W( f , t)| of the vertical displacements h (top) and rotation α (bottom) for the
CFD (left), LU (center) and QS (right) models from buffeting analysis at U = 60 m/s. The dashed-dot line
indicates the cone of influence.
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of the vertical displacements h (cf. Fig. 16, top), indicating that the aerodynamic coupling is significant for all
models. Overall, the wavelet-based metrics indicated that the LU model performs better than the QS model.
Further, not having a similar value for the wavelet-based metrics for the QS model MhCFD,hQS

w 0 MhCFD,hQS
wf

at
U = 30m/s indicates that the fluid memory influences the relative frequency content (cf. Fig 15, left).
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Predominantly, the comparison metrics for both models indicated largest discrepancies for the rotation
α at U = 60 m/s (cf. Fig 15, right). Hence, both models are unable to completely replicate the aerodynamic
moment at high wind speeds, as noted in Kavrakov and Morgenthal (2018b). Having Mw ≤ 0.8 and
Mw 0 Mwf for both models indicates that there is a difference in both magnitude and relative frequency
content. From the wavelet magnitude (cf. Fig. 16, bottom), high amplitudes can be observed for the rotation
α for the CFD model in the approximate time interval 100s / t / 200s, which are not well captured by
the semi-analytical models. This is also depicted in the sample time-history of the rotation (cf. Fig. 14,
top-right). Moreover, this particular portion of the time-history is detected to be nonstationary for the CFD
model, as shown in Fig. 17. For a stationary input, which is the case for the wind fluctuations in this
study, only a nonlinear model may result in a nonstationary output in the stable range (i.e. not in the flutter
region). Hence, the unsteady nonlinearity in the self-excited forces seems like a plausible reason for the
amplitude modulations in this interval (Kavrakov and Morgenthal 2018b). Since the response for the both
semi-analytical models is detected to be stationary, the stationarity metric yields MαCFD,αLU

s = MαCFD,αQS
s = 0.

The bispectrum showed no appreciable peaks for all models; thus, the bispectrum metric amounts to
Mb = 1. Although quadratic phase coupling may be occurring, this effect can be further reduced by the
mechanical admittance when looking at the dynamic response. Hence, it is easier to be captured for the
self-excited aerodynamic forces due to sinusoidal forced excitation, as shown in the following section. It
should also be noted that quadratic phase coupling is just one particular type of nonlinearity. Other types of
nonlinearities such as higher-order amplitude dependence of the main harmonic (Zhang et al. 2017) in terms
of, for e.g., cubic phase coupling cannot be identified by the bispectrum.

Self-excited forces
The effect of aerodynamic nonlinearity can be prominent in the self-excited forces at large angles of

attack. In the following, the self-excited forces due to a sinusoidal forced excitation are compared for the
CFD and LU models utilizing the proposed comparison metrics. The quantity of interest, in this case, is the
time-history of the self-excited fluctuating moment coefficient due to rotation C∗Mα. Figure 18 (left) depicts
a portion of the time-history of C∗Mα, due to rotation about a static angle of attack amounting to αs = 4
deg for both CFD and LU models. The deck is forced to rotate in a sinusoidal manner with an amplitude
of α0 = 3 deg and a frequency of fα = 0.041 Hz, which corresponds to a reduced velocity amounting to
Vr = U/( fαB) = 16. As observed from the time-histories, the linear fit for a single harmonic frequency by

t [s]

C
∗ M

α
[-
]

1000 1050 1100 1150 1200
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
CFD
LU

t [s]

f
[H

z]

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

t [s]

f
[H

z]

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

|WCFD(f, t)|/max |WCFD(f, t)| [-]

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18. Sample time-history of the fluctuating moment coefficient C∗Mα (left) for sinusoidal excitation.
Amplitude |WC∗Mα

| (center) and filtered amplitude |WF
C∗Mα
| (right) of the wavelet coefficients for the CFD

model. The dashed-dot line indicates the cone of influence.

22



0.0

0.2

0.4

0.6

0.8

1.0

Fig. 19. Comparisonmetrics for the fluctuatingmoment coefficient MC∗Mα,CFD,C
∗
Mα,LU for sinusoidal excitation.

C ∗

M α,n [-]

p̂
C

∗ M
α
,n
[-
]

 

 

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
CFD
LU

Fig. 20. Estimated PDF of the normalized (standard score) fluctuating moment coefficient p̂C∗Mα,n
for

sinusoidal excitation.

the LU model is insufficient to completely describe the complex behavior for the CFD model at this angle of
attack (Kavrakov and Morgenthal 2018b).

To quantify the discrepancies between the two time-histories, the comparison metrics are given in Fig. 19
taking the CFD model as a reference again. For the computation of the comparison metrics, the signals
considered are with a duration of T = 2500s and a sampling frequency amounting to fs = 20 Hz. Modified
metric parameters with respect to the ones for the generic signals are the wavelet central frequency, taken as
f0 = 2 Hz, and the normalization time amounting to Tc = 1/(2 fα) for the phase metric. Both the wavelet
and normalized-wavelet metrics resulted in a similar value of M

C∗
Mα,CFD,C

∗
Mα,LU

w ≈ M
C∗

Mα,CFD,C
∗
Mα,LU

wf
≈

0.45 meaning that there is significant discrepancy in the time-frequency plane mainly due to frequency
modulations. This is mostly a consequence of the additional superharmonic contribution in C∗Mα for the
CFD model at f = 2 fα = 0.082 Hz, which can be observed in the wavelet coefficients (cf. Fig. 18, center).
Moreover, there is awidespread frequency content in the range between 0.2Hz and 0.4Hz, which corresponds
to the frequency range of vortex-shedding. Since the LU model is linear, it models only a single harmonic
component; hence, it does not account for the frequency content other than the forcing frequency. In terms
of signal energy and magnitude, the LU model underestimates the response and the metrics corresponding
to these quantities amount to M

C∗
Mα,CFD,C

∗
Mα,LU

rms ≈ 0.6 and M
C∗

Mα,CFD,C
∗
Mα,LU

m ≈ 0.5, respectively.
Figure 20 depicts the estimated PDFs of the CFD and LU model. The estimated PDF of the CFD model

is somewhat Gaussian due to the vortex shedding and interior noise, despite single-frequency input. Since
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the LU model is a pure sinusoid, the PDF attains vertical asymptote corresponding to the amplitude of the
sinusoid. The PDF metric results to M

C∗Mα,CFD,C
∗
Mα,LU

pdf = 0.86.

The stationarity metric amounts to M
C∗

Mα,CFD,C
∗
Mα,LU

s = 1 as the self-excited force for both models
is identified as stationary according to the global criterion (cf. Eq. (16)). The local criterion identified
nonstationary part in the wavelet coefficients of the self-excited force for the CFD model. This filtered
nonstationary part is given in Fig. 18 (right). Most of the nonstationary contribution is concentrated as
sharp peaks at the high frequencies, yielding the premise that this part is due to vortex shedding and local
turbulence effects. However, it is argued that this contribution is due to spurious peaks that may appear for
the local method for identifying stationarity, as discussed previously for the generic signals. Therefore, both
signals are considered to be stationary as identified by the two-level procedure.

As the bispectrummetric resulted in a value M
C∗

Mα,CFD,C
∗
Mα,LU

b
= 0, it can be concluded that the additional

frequency component at f = 2 fα = 0.082 Hz for the CFD model is due to quadratic phase coupling, i.e.
quadratic nonlinearity. This can be also observed from the filtered bispectrum of C∗Mα for the CFD model,
which is depicted in Fig. 21. A distinctively high value is present at the frequency pair ( f1, f2) = ( fα, fα).
Further, contribution of the superharmonic component at 2 fα is stationary and has relatively highermagnitude
than the vortex shedding and local nonstationary effects (cf. Fig. 18, center).

SUMMARY AND CONCLUSIONS
In summary, this paper used a set of comparison metrics to quantify the discrepancies of particular

features between two time-histories in the field of bridge aerodynamics. Nine metrics were considered
including seven adapted from previous studies based on the phase, peak, RMS, magnitude, PDF, wavelet,
frequency-normalized wavelet and recast for the present application. Two additional metrics were introduced
in this study, based on the stationarity and nonlinearity using bispectrum. All of the metrics were constructed
in a unifiedmanner, yielding amulti-criteria assessment framework, tailored for comparative studies in bridge
aerodynamics.

Initially, the performance of the comparison metrics was examined using controlled numerical experi-
ments by employing generic signals. By modifying particular signal features, the efficacy of the comparison
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metrics was examined. This demonstrated that various global and local signal features should be considered
when comparing two time-histories.

Finally, the comparison metrics were applied to a practical example from bridge aerodynamics in terms
of the buffeting response and self-excited forces. For the first case, the influence of the quasi-steady and
linear unsteady assumptions in buffeting analysis was examined. It was demonstrated that comparing two
time-histories based only on the RMS, as per common practice, might yield incomplete conclusions for
nonlinear models. The introduced stationarity metric identified the portion of the response with the largest
discrepancies as nonstationary for the CFDmodel, inferring that the response in this region is nonlinear. Such
a feature cannot be clearly identified by the rest of the metrics, making this metric important for comparison
of nonlinear models. Thus, a multi-criteria assessment of the time-dependent response is pertinent to study
meticulously the influence of aerodynamic assumptions. This was further echoed in the comparison of the
self-excited forces due to forced rotation. In this case, the proposed bispectrum metric was able to identify
the inability of the LU model to replicate the aerodynamic nonlinearity in terms of quadratic phase coupling.
This revealed that the discrepancies in the other metrics are not simply due to vortex-shedding or numerical
noise, but rather due to the nature of a particular nonlinear feature.

In conclusion, the utilization of a set of comparison metrics offers a deeper insight into the comparison
between aerodynamic models for aeroelastic analyses of bridges. By employing the comparison metrics,
discrepancies in particular signal features for two models can be quantified separately. The outcome of this
study is meant to offer an alternative perspective to model comparison and validation, in order to facilitate
a well-informed model evaluation in the field of bridge aerodynamics and other areas involving dynamic
systems with potential nonstationarity, nonlinearity andmemory effects. Presently, all metrics are considered
individually as some of them may be redundant. Future studies may involve combining the metrics in a
unified metric by utilizing weighting factors.
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