
37

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Compresión BZIP2 optimizada usando colas libres de
bloqueo

Enhanced Parallel bzip2 Compression with Lock-Free Queue

José Sánchez-Salazar
jose.sanchez.salazar@una.cr

Escuela de Informática, Universidad Nacional
Heredia, Costa Rica

Edward Aymerich-Sánchez
edward.aymerich@gmail.com

Escuela de Ciencias de la Computación e Informática,
Universidad de Costa Rica

San José, Costa Rica

Recibido-Received: 25/abr/2016 / Corregido-Corrected: 7/ago /2016.
Aceptado-Accepted: 11/ago/2016 / Publicado-Published: 31/jul /2017.

Resumen
Debido a que la tendencia actual es tener más y más procesadores (cores) disponibles en cada
computadora, la escalabilidad de las estructuras de datos usadas en programación paralela debe
ser considerada cuidadosamente, para así garantizar que ellas saquen ventaja de los procesadores
disponibles. Debido al aumento en la contención, usualmente las estructuras de datos basadas en
bloqueos no mejoran su rendimiento proporcionalmente al incrementar el número de procesadores.
El uso de estructuras de datos libres de bloqueos bien diseñadas, tales como las colas first in-first out,
puede mejorar el rendimiento de un programa paralelo, cuando hay varios procesadores disponibles.
En este trabajo se diseña e implementa una versión paralela de bzip2, un programa para compresión
y descompresión de datos muy popular, usando colas libres de bloqueos en lugar de las basadas
en bloqueos, y aplicando una estrategia de dos buffers de salida. Se compara el rendimiento de
la implementación libre de bloqueos contra implementaciones basadas en bloqueos. Se midió el
tiempo de compresión usando diferente número de procesadores y diferentes tamaños de bloques.
Coincidiendo con la hipótesis de trabajo, los resultados muestran que la implementación paralela
libre de bloqueos supera las otras implementaciones.

Palabras claves: Programación informática; Procesamiento de datos; Lenguaje de programación.

Abstract
Since the general trend nowadays is to have more and more processors (cores) available in each
computer, the scalability of the data structures used in parallel programs must be carefully considered
in order to guarantee that they take full advantage of the available processors. Because of increased
containment, lock-based data structures usually do not perform proportionally as the number of
processors increases. The use of well-designed lock-free data structures, like first in-first out, (fifo)
queues, can boost the performance of a parallel program when many processors are available. In this
work, a parallel version of bzip2, a popular compression and decompression program, is designed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Uniciencia

https://core.ac.uk/display/334500765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3
mailto:jose.sanchez.salazar@una.cr
mailto:edward.aymerich@gmail.com

38

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

and implemented by using lock-free queues instead of the lock-based ones, and applying a two-
buffer-output strategy. The performance of lock-free implementation is measured against lock-
based implementations. Compression time was measured with different number of processors and
different block sizes. Consistent with our hypothesis, the results show that our parallel lock-free
implementation outperforms the other implementations.

Keywords: Computer programming; Data processing; Programming languages

As is well known, the popularization of parallel computers, like multi-core systems, has
posed the challenge to parallelize programs, or data structures supporting them to take advantage
of that processing power. It is also known that lock-based data structures could severally limit
the amount of parallelism in a program. Lock-free programming techniques (Zhang & Dechev,
2016; Marcais & Kingsford, 2011) are known to deliver increased parallelism and scalability in
scenarios of high contention and sharing of data among multiple threads. It is also agreed that
this is a challenging area with a lot of active research going on.

Data compression applications are processor-intensive; therefore, they are interesting
examples where the benefit from parallelization could be significant. Data compressors and
decompressors are important not only by themselves, but also when used as part of bigger
processes to do compression or decompression on-the-fly. The program bzip2 (Seward, 2010)
is a very popular tool used for data compression and decompression on multiple platforms like
Unix, Linux and Windows.

The bzip2 program is based on the Burrows-Wheeler Transform (Burrows & Wheeler,
1994) algorithm for data compression. The BWT algorithm works over blocks of text instead
of working over an entire file. It does not process the input file sequentially in a character by
character basis, but instead, processes each block of text as a single unit. BWT applies a reversible
transformation to a block of text to form a new block that contains the same characters, but it is
easier to process by simple compression algorithms, like Huffman (Huffman, 1952). Basically,
this transformation generates all the rotations of the characters in the original sequence (block)
S, and then sort all that generated sequences. An important observation here is that the sequence
T (for Tails), formed by taking the last character of each sequence in the sorted collection, clearly
forms a permutation of the original sequence. By keeping that T sequence and the position
I of the original sequence in the sorted collection, one can eventually reproduce the original
sequence. The indicated transformation is illustrated in Figure 1.

h e s h e
e h e s h
h e h e s
s h e h e
e s h e h

1 e h e s h

2 e s h e h

3 h e h e s

1=4 h e s h e

5 s h e h e

Original text
“heshe”

rotations sorted T

Figure 1. BWT Compressing Transformation Example. Source: this study.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

39

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

The described sorting and tailing operations tend to put together (or close to each other) the
occurrences of each character in the generated sequence T (like the two h and the two e in the shown
example). Thus, T will be easy to compress with a simple locally-adaptive compression algorithm,
like Huffman (Huffman, 1952) or arithmetic (Neal, Witten & Cleary, 1987) compression.

The serial implementation of bzip2 works by splitting the original file into blocks; then, it
compresses each block independently and sequentially, and writes the compressed blocks in the
destination file. The program bzip2 is based on the libbzip2 library that provides API functions
for the required tasks. In particular, there is a function that allows compressing an in-memory
data block. It runs the compression code within the calling thread and leaves the compressed
block in memory.

The bzip2 serial implementation of course does not take advantage of parallel hardware
like multi-core and many-core computers. It just runs a thread that continuously reads a block,
compresses it, and writes the compressed block. Since the compression part is the most time
consuming stage of the process, there is a clear opportunity to improve the performance by
parallelizing this stage.

There already exist some parallel implementations of bzip2 (Isakov, 2005; Jannesari,
Pankratius & Tichy, 1990; Gilchrist, 2004). Basically, they fall in two categories. Some of them do
lock-based fine-grained parallelism of certain operations involved into the BWT algorithm, like
rotating or sorting. The data dependencies and the contention due to locks prevent them from
scaling well when using hardware with many cores. The other category includes approaches that
do coarse-grained parallelization, for example, parallelizing the compression of entire blocks.
They use some sort of lock-based queues as buffers between the reading, compressing, and
writing stages. They suffer from the contention problem inherent to lock-based designs, and
consequently do not scale well when the number of processors grows.

In this work, we address the problem of building an efficient parallel implementation of the
bzip2 data compressor using a lock-free implementation of the queue data structure. The idea
is to have a reader thread, many compressor threads running in parallel, and a writer thread.
The reader thread reads blocks from the input file and store them into an input buffer. The
compressors use the API provided in-memory-compressing function to compress the blocks
and then put them in an output buffer. The writer thread takes compressed blocks and writes
them to the output file, in the correct sequential order. Both, the input and output buffers, are
implemented as lock-free queues, to improve the parallel processing, avoiding the contention
problem of lock-based data structures. We tag the read blocks with their sequential numbers.
Then, it compresses these blocks in parallel, in an out-of-order fashion, and finally reorders them
before writing to the output file. This is similar to how pipelined out-of-order execution occurs
in modern hardware architectures. We also use a two-buffer-output strategy for reordering the
blocks before writing them to the output file so that the compression stage proceeds completely
in parallel. Our approach is based on the observation that the reading and writing stages are
inherently serial and the compression part is the most time-consuming stage. As the number
of compressor threads increases, the throughput of the compression phase grows and so the
stress is shifted to the queues (buffers) causing contention on them. The use of a lock-free
queue implementation is worthwhile here as it can alleviate the contention and improve the
performance stage. The complete approach is detailed in the “Parallelizing bzip2” section.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

40

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

The rest of this paper is organized as follows: the next section presents the related work,
the “Parallelizing bzip2” section describes our approach, the “Experimental design” section
describes the setup of our experiments, the obtained results and how our approach compares to
previous approaches is presented in the “Experimental results” section, finally some conclusions
and future work are presented.

Related work
Most algorithms for data compression are designed for sequential processing. Both dictionary

based approaches, like Zip family (Ziv & Lempel, 1978; Welch, 1984) and statistical approaches,
like arithmetic (Neal, Witten & Cleary, 1987) and Huffman (Huffman, 1952) encodings, are
essentially sequential. Even the current implementation of the popular bzip2 algorithm runs
sequentially.

Isakov (Isakov, 2005) implemented a parallel version of bzip2 for symmetric multiprocessors
called BZIP2SMP. Basically, this implementation does a fine-grained parallelization of some of the
processes involved in the bzip2 algorithm, like RLE (run-length-encoding), sorting and bit-storing.
This approach is said to have good speedup, but that has not been systematically documented.
Besides, it does not take advantage of any lock-free data structure as we do in our work.

An experiment was conducted and documented by Jannesari et al. (Jannesari, Pankratius
& Tichy, 1990) as part of a software engineering class. Student teams were assigned the task to
parallelize bzip2 in a team competition. Most of the teams tried out some forms of fine-grained
parallelization however; many parts of the sequential code were not amenable for parallelization
due to data dependencies, and tricky optimizations for faster sequential execution.

Gilchrist (Gilchrist, 2004) proposed and implemented a parallel version of bzip2 named
PBZIP. Basically, this implementation parallelizes the compression stage of the process
compressing many blocks in parallel. He uses a blocking fifo queue as a buffer between the
reading thread and the compressing threads, and between them two and the writing thread.
This implementation, and others similar, work fine but use lock-based queues suffering from the
contention problem inherent to them.

There are several proposals for implementing lock-free queues (Zhang & Dechev, 2016;
Feldman & Dechev, 2015; Ladan & Shavit, 2004; Michael & Scott, 1996). In particular, the
proposal of Michael & Scott was adopted in the lock-free queue implementation included in the
BOOST library (Boost C++ Library, 2013).

In our work, we follow an approach similar to Gilchrist’s, but we use Michael’s lock-free
queue implementation from BOOST library, instead of mutual-exclusion queues, as explained
in following sections.

Parallelizing bzip2
The starting point is the serial implementation of bzip2. Then we use the Gilchrist’s

implementation pbzip2 as a reference point for our parallel implementations. Both, the serial
bzip2 and the Gilchrist’s implementations were explained before. For our implementations we
adopted coarse-grained parallelization where multiple compressor threads compress in parallel
independent blocks. We tried out various original approaches looking for better results: lock-
based one-buffer-output, lock-based two-buffer-output, and lock-free implementation.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

41

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Lock-based one-buffer-output
Although blocks of data can be processed in parallel, they must be written in the same order

they were read, to reconstruct the original data correctly. To guarantee this, we add a sequential
number to each block at the moment of reading and we used a modified output queue that only
enqueues a block if its sequential number is one more than the last block accepted. Using this
mechanism, the writer thread only receives ordered blocks when it dequeues and its work is
really simplified: just pick up a block and write it to file.

The downside to this approach is that it forces the compressor threads to wait for the moment
when they can enqueue a block. For example, if the compressor that handles blocks 7 finishes,
it must wait until block 6 is enqueued before enqueuing block 7 because the special queue does
not allow block 7 to get in.

To measure the impact of using this special queue, we compare its performance against
an implementation which does not consider the output ordering of the blocks; let’s call it non-
ordered implementation. The non-ordered implementation will produce corrupt compressed
files and therefore, it does not have practical applications, but it works as a baseline to compare
the performance of the ordered implementation.

We compare the performance of these two approaches and find that the ordered
implementation is 1.3X slower than the non-ordered implementation. The cost of having
compressors waiting in line to enqueue their blocks is clearly significant.

Lock-based two-buffer-output
Another approach to get correctly ordered blocks in the compressed file is to allow the

compressors to enqueue their blocks in the output queue in any order, and let the writer thread
worry about the ordering of the blocks. We call this approach two-buffer-output, because the
writer uses a secondary buffer to store some blocks.

When the writer is ready to write a block to the file, it searches for the next sequential block
inside its secondary buffer. If the block is found then, it is taken out of the secondary buffer and
written to the file. If the block is not found in the secondary buffer, the writer takes a block from
the output queue. If this block is the next sequential block then, it is written to the file. If not, the
block is stored in the secondary buffer and another block is taken from the output buffer. This
process is repeated until the next sequential block is found and written to the file.

Figure 2 exemplifies the two-output-buffer approaches: (a) the writer (W) needs to write
block 7 to file. (b) Since the block is not in the secondary buffer, it takes blocks from the output
queue and puts them in the secondary buffer. (c) Block 7 is found in output queue, and is written
to file. (d) Now the writer must write block 8, which is already in the secondary buffer.

The two-output-buffer approach has several advantages. First, the secondary buffer is
only used by the writer thread so it does not need to be protected from other threads (no
locking or multi-threading worries). Second, this mechanism keeps the output queue as
empty as possible so compressor threads do not get stalled because of a full queue. Finally, the
compressor threads can enqueue in any order, so they do not have to wait. These advantages
are reflected in the performance: the two-output-buffer implementation performs just as good
as the non-ordered implementation

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

42

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Lock-free implementation
For our parallel bzip2 implementation we replace the lock-based queue with a lock-free

queue and use it for both, the reading buffer (between reader and compressors) and the writing
buffer (between the compressors and the writer). We keep our two-output-buffer strategy, but
now combined with a lock-free queue.

There are several designs of lock-free queues. In this work we used the lock-free queue
implementation included in the BOOST library (Boost C++ Library, 2013) which is based on
the design of Michael et al. (Michael & Scott, 1996). This queue is implemented as a singly-
linked list with Head and Tail pointers where Head always points to a dummy node at the
beginning of the list, and Tail points to either the last or second to last node in the list. The
algorithm uses compare-and-swap with modification counters to avoid the ABA problem. We
selected this queue because it is based in a well-documented design and has a well-engineered
implementation (BOOST library).

As Figure 3 shows, the main program uses the following components: two lock-free queues
(read_queue and write_queue), one reader, and one writer threads (fr, fw), and n compressor
threads (c).

The algorithm proceeds as follows: at the starting phase, it creates the components and starts
the threads (reader, compressors and writer). During the working phase all the threads work in
parallel, mediated by the queues. The finishing phase begins when the reader finishes. At this
point, all the compressors are notified to stop as soon as the reading queue is empty. When all
they finish, the writer thread is similarly notified to stop when the writing queue is empty. The
algorithm finishes when the writer thread stops.

Figure 2. Two Buffers Approach. Source: this study.

. . .
7
8

. . .
10
09

. . . 4 5 6 . . . 4 5 6

. . . 5 6 7 . . . 6 7 8

W W

W W

. . .
10
09

. . .
9
7

8

8

secondary
buffer

ou
tp

ut
qu

eu
e

ou
tp

ut
qu

eu
e

ou
tp

ut
qu

eu
e

ou
tp

ut
qu

eu
e

secondary
buffer

secondary
buffer

file

file file

file

(a)

(c) (d)

(b)

secondary
buffer

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

43

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Experimental design
We used a 64-core shared memory computer (Opteron 6272 x4) to compare the performance

of the various versions of the parallel bzip algorithm. We designed experiments to compare
the performance of the following implementations: the Gilchrist’s (Gilchrist, 2004) lock-based
implementation, our lock-based two-buffer-output and our lock-free implementation. Our
lock-based one-buffer-output was not considered for the final experiment as it was significantly
outperformed by our two-buffer-output implementation.

All the programs were compiled with gcc 4.6.3 compiler. For the experiments we compressed a
3.1GB data file using a block size of 900KB. Reducing the block size (from 900KB to 100KB in this
case) marginally improves the performance of all the parallel approaches, but it negatively affects
the compression ratio. Since the block size reduction has a similar effect on the different approaches
and negatively affects the compression ratio, it was discarded as a parameter for comparison.

Each one of the compared implementations was run with the following number of
processors: 1,2,4,8,16,24,32,40,48,56, and 64. All the experiments were measured as wall clock
times in milliseconds. Then the time data for each implementation were used to obtain the
speedup for each number of processors (compared to the corresponding one-processor (serial)
configuration). These speedup data is presented in the graphs.

Experimental results
The following subsections summarize the results of the experiments in both, settings using

the lock-based and the lock-free implementations.

Figure 3. Compressing algorithm. this study

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

44

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Lock-based implementations
Our two-buffer-output lock-based implementation gets similar result to Gilchrist’s. This

was foreseeable as both implementations are very similar using lock-based queues. The clock-
time decreases as the number of processor grows, as shown in Graph 1.

Graph 2
Lock Based SpeedUp

Graph 1
Lock Based Clock Time

Gilchrist

Lock based

900000

800000
700000

600000

500000
400000
300000

200000
100000

of threads

Ex
ec

ut
io

n
tim

e
(m

s)
Sp

ee
d

up

1 2 4 8 16 24 32 40 48 56 64
0

Source: this study.

The speedup that ideally should be equal to the number of processor is shown in Graph 2.

of threads

1 8 16 24 32 40 48 56 64

70

60

50

40

30

20

10

0

Gilchrist

Lock based

IDEAL

Source: this study.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

45

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Both, our two-buffer-output implementation and Gilchrist’s implementation, show a good
speedup which is 99% of the ideal speedup using 8 processors and around 88% at 16 cores. After
that their performance starts to decay.

Lock-free implementation
The lock-free implementation uses lock-free queues. Beyond that, it is similar to the lock-

based implementations. All phases (reading, compressing, and writing) of the program run in
parallel so both, I/O and compressing times are considered. Different block sizes were tried out
(like 100k and 900k). This strategy scales very well up to around 16 processors. It performed at
99% of optimal speedup for 8 processors and at 90.44% of optimal speedup for 16 processors, as
shown in Table 1.

After 16 processors the speedup starts to decay, achieving only 56.46% of optimal speedup
when using 64 processors.

Source: this study.

Table 1
Percent of ideal speedup achieved by different queue implementations

of threads Gilchrist Lock based Lock free

01 100.00% 100.00% 100.00%

02 101.52% 099.62% 099.81%

04 101.11% 099.59% 099.69%

08 100.76% 099.03% 099.08%

16 088.20% 086.98% 090.44%

24 077.61% 079.16% 0079.17%

32 072.20% 076.87% 077.21%

40 067.24% 068.67% 069.83%

48 060.17% 064.63% 064.43%

56 057.23% 060.33% 060.47%

64 053.44% 056.26% 056.46%

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

46

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

The clock-time as a function of the number of processors is shown in Graph 3.

Graph 3
Lock Free Clock Time

The speedup obtained by this lock-free implementation is shown in Graph 4.

Source: this study.

Graph 4
Lock Free SpeedUp

 Source: this study.

900000

800000

700000

600000

500000

400000

300000

200000

100000

Ex
ec

ut
io

n
tim

e
(m

s)

0

of threads

1 2 4 8 16 24 32 40 48 56 64

Gilchrist

Lock based

Lock-free based

Sp
ee

d
up

70

60

50

40

30

20

10

0

of threads

1 8 16 24 32 40 48 56 64

Gilchrist

Lock based

Lock-free based

IDEAL

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

47

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

The decaying behavior, as the number of processors grows bigger, lead us to think about
possible causes for this situation:

• The I/O could limit the speedup when we have enough compressing power (more than 16
processors)

• The queue implementation could suffer contention as the number of processor grows
significantly, preventing the program to achieve better speedup.

• Cache and memory bus bandwidth could become a bottle-neck when the number of processors grows.

We prepared and ran other experiments trying to isolate and measure the effect of the above
indicated factors to look for possible specific solutions.

I/O ‘free’ compression
The program was modified for doing all the reading phase before starting the compression

phase and the writing phase was eliminated (no data is written to disk). Of course, this is a fake
implementation, but it let us ponder the effect of I/O in the performance of the program.

We ran various tests with this implementation and basically obtained the same results. That
showed us that the I/O was not the limiting factor.

Simulated queue implementation
To assess the effect of the possible contention on the queue implementation we created a

simulated queue. We implemented it as an array big enough to store all the blocks of the entire
input file. We read all the input blocks into it before compressing and use an atomic counter to
keep track of the queue head.

This is a very simple queue implementation that avoids the more intricate lock-free logic of
a thread-safe implementation. We ran various tests with this implementation and observed the
same decaying behavior as the number of processors grows therefore; we discarded the queue
contention for poor performance.

Memory system bottleneck
The BWT transformation that is at the core of the bzip algorithm needs to generate all the

possible rotations of the input block. Then, it sorts them and takes the last character of the sorted
rotations to form the transformed block before compressing it. This requires a support structure
in memory, at least as big as the original block. Thus, the compression of a block requires the
processor to read from memory the original block then, read and write to the support structure,
and finally store the compressed block in memory. As the number of processors increases, the
traffic on the memory system (caches, bus and memory) increases significantly, this could cause
contention on it, preventing the program from getting better performance.

Conclusions and future work
Taking full advantage of parallel processing power of modern computers requires to pay

careful attention to the locking mechanism used by programming data structures. Lock-free data
structures are known to deliver increased parallelism and scalability in scenarios of high contention
and sharing of data among multiple threads. We have implemented a parallel version of the bzip2
data compression algorithm, using lock-free queues and applying a two-buffer-output strategy.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3

48

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia
Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND

Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

The parallel version of the bzip2 algorithm uses two queues of data blocks, we used lock-free
queues to improve its performance. The algorithm consists of three tasks that run in parallel
and use queues as buffers for intermediate data. The reading task reads blocks from an input
file into a queue, multiple compressing tasks compress the blocks in parallel and put them into
another queue, and finally, the writing task takes blocks from the queue and writes them into
the output, compressed, file. We compared the performance of our lock-free queue based
implementation against other lock-based implementations. The results show that our lock-free
parallel implementation outperforms the other implementations, mainly in heavily-threaded
scenarios.

Using a small-to-medium number of threads (in the range of 1 to 16), the speedup is very
good (>90% of ideal speedup). With a higher number of processors, the performance starts to
decay. After discarding other possible causes, our intuition is that the inherent intense memory
usage of the bzip algorithm could cause contention on the memory system (caches, bus and
memory), thus preventing better performance.

There are various extensions of this study there are suggested as future work. A more in-
depth study of the memory behavior of the program would be required to assess the possible
negative effect of the memory system on the performance of the program, when used with a
large number of processors. Once the memory bottleneck situation has been addressed, another
interesting suggested future work is to extend the experiments by compressing different types
of data files, and to apply some non-parametric statistical hypothesis test (Wilcoxon, 1945) to
validate the results. Another vein of future work would be to try to improve the fine-grained
parallelization of the intra-block compressing algorithm. This, added to the use of lock-free
queues could improve even more the overall performance of the compressing system.

References
Boost C++ Library (n.d.). (2013). Retrieved from https://svn.boost.org/trac/boost/
Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm. (SRC Research

Report 124). California: Digital systems research center. http://www.hpl.hp.com/techreports.
Feldman, S. & Dechev, D. (2015). A wait-free multi-producer multi-consumer ring buffer. ACM SIGAPP

Applied Computing Review, 15(3), 59-71. http://dx.doi.org/10.1145/2835260.2835264
Gilchrist, J. (2004). Parallel data compression with bzip2. Proceedings of the 16th IASTED International

Conference on Parallel and Distributed Computing and Systems(PDCS). http://gilchrist.ca/jeff/
comp5704/Final_Paper.pdf

Huffman, D.A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the
I.R.E. http://dx.doi.org/10.1109/jrproc.1952.273898

Isakov, K. (2005). Bzip2smp. Retrieved from http://bzip2smp.sourceforge.net
Jannesari, A., Pankratius, V. & Tichy, W. (1990). Parallelizing bzip2-a case study in multicore software

engineering. IEEE Software, 26(6). Recovered from https://www.semanticscholar.org
Ladan-mozes, E. and Shavit, N. (2004). An optimistic approach to lock-free fifo queues. Proceedings

of the 18th International Symposium on Distributed Computing, Springer, Berlin, Germany. http://
dx.doi.org/10.1007/978-3-540-30186-8_9

Marcais, G. & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences
of k-mers. Bioinformatics, 27, 764–770. http://dx.doi.org/10.1093/bioinformatics/btr011

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3
https://svn.boost.org/trac/boost/
http://www.hpl.hp.com/techreports
http://dx.doi.org/10.1145/2835260.2835264
http://gilchrist.ca/jeff/comp5704/Final_Paper.pdf
http://gilchrist.ca/jeff/comp5704/Final_Paper.pdf
http://dx.doi.org/10.1109/jrproc.1952.273898
http://bzip2smp.sourceforge.net
https://www.semanticscholar.org
http://dx.doi.org/10.1007/978-3-540-30186-8_9
http://dx.doi.org/10.1007/978-3-540-30186-8_9
http://dx.doi.org/10.1093/bioinformatics/btr011

49

UNICIENCIA Vol. 31, No. 2, pp. 37-49. Julio-diciembre, 2017.
URL: www.revistas.una.ac.cr/uniciencia

Email: revistauniciencia@una.cr

ISSN Electrónico: 2215-3470
DOI: http://dx.doi.org/10.15359/ru.31-2.3

José Sánchez-Salazar y Edward Aymerich-Sánchez
Artículo protegido por licencia Creative Commons: BY-NC-ND / Protected by Creative Commons: BY-NC-ND
Uniciencia es una revista de acceso abierto/ Uniciencia is an Open Access Journal.

Michael, M., & Scott, M. (1996). Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. Proceedings of the fifteenth annual ACM symposium on Principles of distributed
computing. http://dx.doi.org/10.1145/248052.248106

Neal, R., Witten, I. & Cleary, J. (1987). Arithmetic coding for data compression. Communications of the
ACM, 30(6), 520-540. http://dx.doi.org/10.1145/214762.214771

Seward, J. (2010). bzip2. Retrieved from http://www.bzip.org/
Valois, D. (1994). Implementing lock-free queues. Proceeding of the Seventh International Conference On

Parallel and Distributed Computing Systems, 1994.
Welch, T. (1984). A technique for high-performance data compression. IEEE Computer, 17(6). http://

dx.doi.org/10.1109/MC.1984.1659158
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin. 1 (6). http://dx.doi.

org/10.2307/3001968
Zhang, D. & Dechev, D. (2016). A Lock-Free Priority Queue Design Based on Multi-Dimensional Linked

Lists. IEEE Trans. Parallel Distrib. Syst. 27(3) 613-626. http://dx.doi.org/10.1109/tpds.2015.2419651
Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24(5). 530-536. http://dx.doi.org/10.1109/tit.1978.1055934

Compresión BZIP2 optimizada usando colas libres de bloqueo (José Sánchez-Salazar y otros) por Revista Uniciencia se
encuentra bajo una Licencia CreativeCommons Atribución-NoComercial-SinDerivadas 3.0 Unported.

www.revistas.una.ac.cr/uniciencia
mailto:revistauniciencia@una.cr
http://dx.doi.org/10.15359/ru.31-2.3
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/214762.214771
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1109/tpds.2015.2419651
http://dx.doi.org/10.1109/tit.1978.1055934
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es
http://www.revistas.una.ac.cr/index.php/uniciencia
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es

