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Abstract 13 

The Minna area of western Nigeria lies within a Pan-African orogenic belt that 14 

extends along the margin of the West African Craton, from Algeria southwards 15 

through Nigeria, Benin and Ghana, and into the Borborema Province of Brazil. This 16 

belt is characterised by voluminous post-collisional granitoid plutons that are well 17 

exposed around the city of Minna. In this paper we present new information about 18 

their age and petrogenesis.  19 

The Pan-African plutons around Minna can be divided into two main groups: a group 20 

of largely peraluminous biotite-muscovite granites that show varying levels of 21 

deformation in late Pan-African shear zones; and a younger group of relatively 22 

undeformed, predominantly metaluminous hornblende granitoids. Pegmatites, 23 

including both barren and rare-metal types, occur at the margins of some of the 24 

plutons.   25 

New U-Pb zircon dating presented here, in combination with published data, indicates 26 

an early phase of magmatism at c. 790-760 Ma in the Minna area. This magmatism 27 

could be related either to continental rifting, or to subduction around the margins of 28 

an existing continent.  The peraluminous biotite-muscovite granites were intruded at 29 
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c. 650-600 Ma during regional shearing in the orogenic belt, and are likely to have 30 

formed largely by crustal melting. Subsequent emplacement of metaluminous 31 

granitoids at c. 590 Ma indicates the onset of post-orogenic extension in this area, 32 

with a contribution from mantle-derived magmas. The rare-metal pegmatites represent 33 

the youngest intrusions in this area and thus are likely to have formed in a separate 34 

magmatic episode, post-dating granite intrusion.  35 
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1. Introduction 38 

A network of Pan-African orogenic belts, formed during the Neoproterozoic to 39 

Cambrian amalgamation of Gondwana, extends across the African continent and into 40 

the Brasiliano orogen of South America (Black and Liégeois, 1993; Castaing et al., 41 

1994; de Wit et al., 2008; Jacobs and Thomas, 2004; Stern, 1994). These belts are 42 

typically composed of Archaean and Proterozoic rocks that were reworked by 43 

Neoproterozoic to Cambrian orogenesis, together with a variable proportion of 44 

juvenile material. Many of the belts are characterised by extensive post-collisional 45 

granitoid plutons (Black and Liégeois, 1993; Küster and Harms, 1998). These plutons 46 

are typically potassic and their parental magmas are likely to be derived from mixed 47 

mantle and crustal sources (Black and Liégeois, 1993; Bonin, 2004; Küster and 48 

Harms, 1998; Liégeois et al., 1998). They thus represent major additions to the upper 49 

crust during amalgamation of Gondwana.   50 

Alkaline igneous plutons, including those in post-collisional settings, are increasingly 51 

of interest as potential sources of ‘critical metals’ used in a range of advanced 52 

technologies. These critical metals include the Rare Earth Elements (REE), niobium 53 

and tantalum, which are commonly enriched in alkaline magmas. The increase in 54 

demand for these metals makes a reappraisal of the controls on magmatism and the 55 

potential for mineralisation worthwhile.  56 

In West Africa, the Pan-African Dahomeyide orogenic belt separates the Archaean to 57 

Mesoproterozoic West African and Congo cratons, and is exposed in an area known 58 

as the Benin-Nigeria Shield (Ajibade and Wright, 1989). Northwards, this belt 59 

continues into the Hoggar Massif of Algeria; southwards, prior to Atlantic opening, it 60 



was connected to the Borborema Province of north-east Brazil (Arthaud et al., 2008; 61 

Caby, 1989; Castaing et al., 1994; Dada, 2008; de Wit et al., 2008; Neves, 2003).  62 

 In Nigeria, the Dahomeyide orogenic belt has been divided into eastern and western 63 

terranes separated by a major north-south lineament that has been recognised from 64 

remote sensing, but not studied in detail (Ajibade et al., 1987; Ananaba and Ajakaiye, 65 

1987; Ferré et al., 1996; Fitches et al., 1985; Woakes et al., 1987) (Figure 1). The 66 

basement of the western terrane is dominated by Archaean migmatitic gneisses, with 67 

Proterozoic schist belts composed of low-metamorphic grade, highly deformed, 68 

metasedimentary and metavolcanic rocks (Ajibade et al., 1987; Arthaud et al., 2008; 69 

Bruguier et al., 1994; Dada, 2008; Fitches et al., 1985). The eastern terrane is 70 

characterised by high-grade (high-temperature amphibolite to granulite-facies), 71 

migmatitic metamorphic rocks that have Palaeoproterozoic protoliths but were 72 

migmatised during the Neoproterozoic (Ajibade et al., 1987; Ferré et al., 1996; Ferré 73 

et al., 2002). Proterozoic schist belts are not recognised in the eastern terrane. Both 74 

terranes are cut by a number of NNE–SSW-trending ductile shear zones that are tens 75 

to hundreds of kilometres in length, and can be correlated with similar shear zones in 76 

the Borborema Province in Brazil (Caby, 1989; Ferré et al., 2002).   77 

Neoproterozoic magmatism at c. 780–770 Ma has been recorded in volcano-78 

sedimentary sequences of the Borborema Province. This has been interpreted as 79 

related either to active subduction around continental margins, or to rifting (Arthaud 80 

et al., 2008; Fetter et al., 2003). Magmatism of this age has been recorded by 81 

relatively imprecise Rb-Sr dating in western Nigeria (Fitches et al., 1985).  82 

The Nigerian basement is intruded by many Pan-African syn- to post-collisional 83 

plutons, which are more voluminous in the eastern terrane than the west, and which 84 

are known as the Older Granites. In eastern Nigeria, two suites of Older Granite 85 

plutonism have been recognised; an earlier (c. 640–600 Ma) suite of peraluminous 86 

biotite-muscovite granites, and a later (c. 600–580 Ma) suite of trans-alkaline 87 

hornblende-biotite granitoids (Ferré et al., 1998; Ferré et al., 2002). Emplacement of 88 

the later group was typically controlled by regional NE–SW shear zones (Ferré et al., 89 

1995). The Older Granites of the western terrane were considered to be I-type 90 

granitoids by Fitches et al. (1985) but have not previously been subdivided into suites. 91 

Hornblende-biotite granites from the western terrane have been dated at c. 630-580 92 

Ma, similar to those in eastern Nigeria (Key et al., 2012; Tubosun et al., 1984). 93 



Within the eastern terrane, a suite of Mesozoic alkaline plutons emplaced in an intra-94 

plate setting are known as the Younger Granites (Bowden, 1970). Mesozoic plutons 95 

have not been recognised in the western terrane. 96 

Similar groups of Neoproterozoic granites have been recognised in the Borborema 97 

Province, where granitoid intrusions, including some S-type granites, were emplaced 98 

prior to or during the early stages of collision at c. 630–610 Ma. This was followed by 99 

emplacement of late-tectonic plutons, typically intruded into major shear zones, at 100 

590–570 Ma (Arthaud et al., 2008; Bueno et al., 2009; Fetter et al., 2003; Neves et al., 101 

2008). Contemporaneous granitoid plutons are also found in the Pan-African belts to 102 

the west and north of Nigeria. Westwards, in Ghana, Togo, and Benin, the overall 103 

period of granitoid magmatism lasted from c. 660–550 Ma (Kalsbeek et al., 2012) and 104 

alkaline plutons were emplaced at c. 590 Ma (Nude et al., 2009). To the north, in the 105 

Hoggar Massif of Algeria, alkaline post-collisional magmatism continued until c. 530 106 

Ma (Caby, 2003) 107 

The post-collisional granites in Nigeria are associated with rare metal (tin-tantalum) 108 

granitic pegmatites, some of which have been artisanally mined (Adetunji and Ocan, 109 

2010; Garba, 2003; Kinnaird, 1984; Kuster, 1990; Matheis and Caen-Vachette, 1983; 110 

Melcher et al., 2013; Okunlola, 2005; Woakes et al., 1987). The rare metal pegmatites 111 

occur in a distinct belt that extends SW–NE from Ife to Jos, and appears to cut across 112 

the boundary between the eastern and western Nigerian terranes, although the 113 

individual pegmatite intrusions are oriented north-south (Kinnaird, 1984; Matheis and 114 

Caen-Vachette, 1983; Woakes et al., 1987). Individual pegmatites vary in length from 115 

10 m to over 2 km, and can be up to 200 m wide (Adetunji and Ocan, 2010). 116 

Pegmatites of this type are typically associated with peraluminous or S-type granites 117 

(Cerny et al., 2012) and in western Nigeria the pegmatites are most commonly found 118 

close to the margins of peraluminous granite plutons. However, dating indicates that 119 

the pegmatites were emplaced at 560–450 Ma (Matheis and Caen-Vachette, 1983; 120 

Melcher et al., 2013), rather younger than the few previous dates for western Nigeria 121 

granites (Tubosun et al., 1984). The origin of these pegmatites is thus uncertain, 122 

although the peraluminous plutons with which they are associated have not previously 123 

been targeted for dating. Similar pegmatites occur in the Borborema Province, where 124 

they are extensively mined for tantalum (Beurlen et al., 2008). As well as the tantalum 125 



potential, gold deposits are known in the Nigerian schist belts, but their formation 126 

may pre-date the Pan-African orogeny (Dada, 2008). 127 

Recent British Geological Survey (BGS) – Nigerian Geological Survey Agency 128 

(NGSA) geochemical mapping in the western Nigeria terrane (Key et al., 2012; 129 

Lapworth et al., 2012) has highlighted areas of enrichment in some critical metals, 130 

such as the Rare Earth Elements (REE), niobium and tantalum, around the Older 131 

Granite intrusions. This paper presents a more detailed study of these granitoids to 132 

investigate their age relationships, petrogenesis and potential for critical metal 133 

enrichment.  134 

 135 

2. Geology of the study area 136 

The area chosen for this study extends north-west from Abuja, the federal capital of 137 

Nigeria, and is centred on the city of Minna (Figure 2). This area lies within the 138 

western Nigeria terrane, and is a lush and well-vegetated part of Nigeria, made up of 139 

low rolling hills with rockier whalebacks forming on the Older Granites (Figure 3a). 140 

The basement comprises Archaean migmatitic gneisses with areas of Proterozoic 141 

schist and metavolcanic rocks (Ferré et al., 1996). The migmatitic gneisses in the 142 

study area are highly deformed, with the melanosome dominated by biotite and more 143 

than one phase of pegmatitic, quartzofeldspathic leucosome. The metavolcanic and 144 

metasedimentary rocks have been metamorphosed at greenschist to amphibolite 145 

facies.  146 

The basement rocks are transected by a number of broadly north-south to NNE-SSW 147 

shear zones, the widest of which is defined by the outcrops of mylonites along the 148 

Zungeru River to the north-west of Minna (Figure 2). The rocks within this several-149 

km wide Zungeru shear zone are intensely deformed, with a strong, steeply dipping, 150 

mylonitic foliation and a near-horizontal lineation (Fitches et al., 1985). They have a 151 

range of protoliths, including amphibolite and quartzofeldspathic rocks; the Older 152 

Granites are also intensely deformed in this shear zone (Figure 3b). A second major 153 

shear zone can be traced over a distance of around 100 km from the town of Kaduna 154 

SSW through Sarkin Pawa. It is marked by a zone at least several hundred metres 155 

wide in which the Older Granites and the country rocks are intensely foliated.  156 



The Older Granites form between 30 and 40% of the outcrop area in the western 157 

Nigeria terrane (Fitches et al., 1985), and crop out extensively in the Minna area. 158 

They range from batholiths up to tens of km across to much smaller bodies (Figure 2). 159 

Previous work has indicated that syn-tectonic plutons are typically elongate parallel to 160 

the main regional NNE trend, whereas late-tectonic bodies tend to be rounded in 161 

shape (Ferré et al., 1998). There has been little or no previous detailed study of the 162 

plutons around Minna.  163 

The Older Granites in the Minna area show a wide range of compositions, from 164 

diorite through monzonite and granodiorite to voluminous granite and rare syenite. 165 

They are typically coarse-grained, and many examples contain large (1 cm or more) 166 

white or pink tabular feldspars. Xenoliths of country rock are common at pluton 167 

margins. Later, cross-cutting sheets of aplitic and pegmatitic granite are also common. 168 

Three granite samples from the plutons north of Minna have previously been dated 169 

(by LA-ICPMS for U-Pb on zircons) at c. 606–616 Ma. All three samples were taken 170 

close to the major Zungeru and Sarkin Pawa shear zones (Key et al., 2012). A U-Pb 171 

age of 635 Ma has also been reported for a syn-tectonic granitoid from Sarkin Pawa 172 

(Dada, 2008).  173 

Some of the plutons are elongate in a NNE-SSW trend, parallel to the major shear 174 

zones, and appear to have been emplaced during movement on those shear zones. 175 

These plutons show a gradation in deformation state. Some have a magmatic fabric 176 

defined by elongate tabular feldspars, but have not been-affected by solid state 177 

deformation. This magmatic fabric can grade into a moderate deformation fabric in 178 

which biotite plates and ribbons of quartz are aligned and xenoliths, where seen, are 179 

foliation-parallel. The most deformed granitoids have a pervasive fabric in which a 180 

gneissose banding has begun to develop, feldspars have been deformed and elongated, 181 

and all minerals define the tectonic foliation. Excellent examples of all these fabrics 182 

can be seen in the Tegina Pluton north-west of Minna, which lies within the Zungeru 183 

shear zone (Figure 2, 3b). This pluton consists of foliated biotite granite and 184 

granodiorite with some late pegmatite sheets.  185 

Other plutons are not elongated parallel to the regional trend and their margins cross-186 

cut the main fabric in their country rocks, although an intense deformation fabric is 187 

still developed where the granites are cut by localised shear zones. A particular 188 

example of this is the major Minna Batholith centred on the city of Minna. It 189 



comprises coarse-grained biotite-muscovite granite that is largely structureless or has 190 

a weak magmatic foliation, although numerous discrete, metre- to decametre-scale 191 

shear zones (typically with a NNE-SSW foliation) are present. Enclaves of biotite-rich 192 

country rock are common at the margins of the Minna Batholith.  193 

Numerous smaller plutons of biotite-muscovite granite and granodiorite are found in 194 

the area around Sarkin Pawa north-east of Minna. These are commonly quite 195 

complex, with outcrops showing several magmatic phases from diorite through 196 

granodiorite to granite. In some areas these different phases have sharp but lobate 197 

contacts indicating magma mingling, whereas in others they have gradational contacts 198 

suggesting localised magma mixing. Late veins and sheets of pegmatite, aplite and 199 

leucogranite are abundant (Figure 3c). The granites and granodiorites are locally 200 

strongly foliated, particularly in the main Sarkin Pawa shear zone.  201 

The Abuja Batholith forms a large mass that is not elongated parallel to regional shear 202 

zones. This batholith largely comprises pink, coarse-grained, alkali feldspar-rich 203 

hornblende-biotite granite with many enclaves and larger bodies of more mafic 204 

monzonitic to dioritic composition (Figure 3d). At some localities, the enclaves are 205 

rounded and have clear reaction rims with the granite but no evidence of chilling, 206 

indicating largely coeval magmatism. Biotite-muscovite leucogranites occur at the 207 

margins of the batholith; these have not been studied in detail, but may represent 208 

partially melted country rock as suggested for similar plutons in eastern Nigeria (Ferré 209 

et al., 1998).  210 

Mineralised pegmatites are associated with the Older Granite plutons in Nigeria, and 211 

existing Rb-Sr dates suggest that the pegmatites in central Nigeria were emplaced at c. 212 

555 Ma (Matheis and Caen-Vachette, 1983). These pegmatites form sheets, typically 213 

up to 1-2 m wide, cutting both basement rocks and the Pan-African granitoid plutons. 214 

In some areas, much larger pegmatitic bodies up to 200 m wide have been recognised 215 

(Adetunji and Ocan, 2003). The pegmatite suite can be divided into ‘barren’ and ‘rare 216 

metal’ suites (Garba, 2003). The rare metal pegmatites comprise quartz, K-feldspar, 217 

plagioclase, muscovite, biotite, and tourmaline with varying amounts of beryl, 218 

lepidolite, spodumene, garnet, apatite and accessory minerals including columbite – 219 

tantalite, tapiolite, wodginite, microlite, ilmenite and cassiterite (Melcher et al., 2013; 220 

Wright, 1970). Crystals can vary up to 5 cm in size. The accessory minerals are 221 

worked for tantalum by artisanal miners. The barren pegmatites comprise quartz, K-222 



feldspar, plagioclase, muscovite and biotite, but lack the accessory minerals that 223 

concentrate rare metals. Both barren and rare metal pegmatites are found in the Minna 224 

area, typically close to the biotite-muscovite granite plutons.  225 

 226 

3. Petrography of the granitoids 227 

The Older Granites in the study area share a number of petrological features; they are 228 

typically coarse-grained, and primary magmatic crystal shapes are rare; textures range 229 

from granoblastic and equigranular, to strongly foliated with aligned mafic minerals 230 

and quartz ribbons. However, each of the named batholiths in the study area (Figure 231 

2) is characterised by slightly different mineralogy and petrology.  232 

The Minna Batholith is largely composed of coarse-grained leucogranites, generally 233 

with c. 10% mafic minerals. Large (up to 1 cm), subhedral plates of heavily sericitised 234 

microcline and plagioclase, zoned in some samples, are set in a matrix of 235 

recrystallized pools of quartz with smaller feldspar crystals. The main mafic minerals 236 

are biotite and muscovite, with primary epidote or zoisite and garnet in a few samples. 237 

Cross-cutting aplites and pegmatites have similar mineralogy but vary in grain size. 238 

Where these granitoids are sheared, a foliation is defined by aligned flakes of biotite 239 

and muscovite, and ribbons of recrystallized quartz (Figure 4a). Larger epidote 240 

crystals are undeformed, and wrapped by the foliation.  241 

The Tegina Pluton shows significant variation in deformation state. It is formed of 242 

coarse-grained biotite granite, granodiorite and diorite, with 10–30% mafic minerals. 243 

Large subhedral feldspar (microcline and/or plagioclase) plates have very ragged, 244 

recrystallized rims, and quartz is also recrystallized to granoblastic textures, forming 245 

distinct elongate ribbons in more sheared samples. Biotite is the main mafic mineral, 246 

with hornblende and garnet also being present in the more mafic granodiorite (Figure 247 

4b). Biotite flakes are aligned and define the foliation in sheared samples. One sample 248 

contains euhedral, zoned allanite crystals up to 2 mm across associated with clusters 249 

of biotite.  250 

Plutons around Sarkin Pawa are largely made up of leucogranite with numerous shear 251 

zones. Large plates of microcline (2–10 mm across) are common in a matrix of 252 

recrystallized quartz with alkali feldspar and plagioclase. Mafic minerals are generally 253 

less than 15% of the rock; biotite is the main mafic mineral and muscovite is also 254 



present in most samples. Hornblende, garnet, titanite, and zircon all occur in some 255 

samples. Samples from shear zones have a foliation defined by elongate micas and 256 

pools of recrystallized quartz, typically wrapping around rounded plates of 257 

microcline. Late leucogranite and pegmatitic granite sheets are common in this area. 258 

A leucogranite sheet cross-cutting foliated granitoids close to Sarkin Pawa village 259 

contains hornblende and euhedral, zoned allanites up to 0.5 mm across (Figure 4c). 260 

Rare-metal pegmatites occur close to the pluton margins around Sarkin Pawa, cutting 261 

both the granites and the country rocks; some have granite-like mineralogy and 262 

contain large tourmaline crystals, whereas other examples are composed almost 263 

entirely of quartz and lithium mica. Tantalite is a notable accessory mineral in these 264 

pegmatites. 265 

The Abuja Batholith is dominated by biotite-amphibole granitoids; hornblende is the 266 

predominant amphibole, but more sodic compositions are also present. Feldspars in 267 

these rocks, most typically microcline, can form large crystals (up to 2 cm) and these 268 

commonly have very irregular, recrystallized rims. More mafic monzonitic to 269 

monzodioritic compositions, with up to 40% mafic minerals, were found particularly 270 

at a locality in the north of the batholith. Some samples from this locality include 271 

remnant orthopyroxene, which shows two stages of hydration and alteration, firstly to 272 

cummingtonite and then to hornblende (Figure 4d). The orthopyroxene-bearing 273 

compositions correspond to the hypersthene-quartz monzodiorites (also described as 274 

charnockites) of eastern Nigeria (Ferré et al., 1998). Accessory minerals found 275 

throughout the Abuja Batholith include titanite, apatite, zircon and opaque oxides.  276 

 277 

4. Analytical methods 278 

4.1 Whole-rock geochemistry 279 

The samples comprised 2–3 kg of carefully selected representative rock chips. 280 

Preparation and analysis of the samples was carried out by Acme Analytical 281 

Laboratories Ltd, Vancouver. 1 kg of material was crushed before a 250 g split was 282 

taken for analysis. Samples were analysed for 11 major oxides by ICP-ES and 34 283 

trace elements by ICP-MS, following a lithium borate fusion and dilute acid digestion 284 

of a 0.2 g sample to give total abundances. Due to the interest in metallogenesis, the 285 

samples were also analysed for 14 metallic elements by ICP-MS following a hot aqua 286 



regia digestion of 0.5 g samples. Duplicate analyses were within ± 2% of each other 287 

for major elements and key trace elements. Data for blanks were below detection 288 

limits; data for international standard SO-18 were consistent with accepted values. 289 

Data are presented in Table 1; data for elements that were consistently below 290 

detection limit have not been included, and these include many of the metallic 291 

elements analysed following the aqua regia digestion.  292 

 293 

4.2 U-Pb Geochronology 294 

Zircon crystals from four samples were dated by Laser Ablation Inductively Coupled 295 

Plasma Mass Spectrometry (LA-ICP-MS) using a New Wave Research 193ss Nd-296 

YAG laser ablation system coupled to a Nu Instruments Attom single collector ICP-297 

MS. The full analytical method is described in Thomas et al. (2013). Zircons were 298 

analysed in an epoxy mount after heavy mineral separation, and were imaged with 299 

cathodoluminescence to characterise growth zones. Laser ablation parameters include 300 

a 25 µm spot size, 2.5 j/cm2 fluence, 30 second ablation time, 15 second washout 301 

time, and 60 second background measurement prior to each ~20 analyses. A standard 302 

sample bracketing routing was used to normalise Pb/U and Pb/Pb ratios using the 303 

zircon reference material 91500. Secondary zircon reference materials (GJ-1 and 304 

Plesovice) were analysed during the session to check accuracy and precision, both of 305 

which are <3% 2σ. The full analytical results are provided in the online 306 

supplementary files. All final crystallisation ages are 206Pb/238U ages, and include two 307 

uncertainties written as ± x/y, whereby x is the 2σ uncertainty after propagation of 308 

measurement and session-based uncertainties, and y is the 2σ total uncertainty after 309 

propagation of systematic uncertainties. The latter should always be referred to for 310 

age comparison and compilation.  311 

 312 

5. Geochemistry of the granitoids 313 

Forty-five whole-rock samples from the Minna, Abuja, Tegina and Sarkin Pawa 314 

intrusions were analysed for major, trace and rare earth elements (Table 1). The 315 

majority of samples are granite sensu stricto with SiO2 >70 wt% (Figure 5a) with 316 

rarer monzonite, granodiorite and syenite. Three samples from within the Abuja 317 

Batholith have SiO2 <60 wt% and plot in the monzonite field on a total alkali-silica 318 



diagram. In general the Abuja Batholith samples appear to follow a more alkaline 319 

evolution trend than samples from the other intrusions, with higher total alkalis (Na2O 320 

+ K2O) at lower SiO2 contents. Samples from the Abuja Batholith also fall within the 321 

high-K field on a K2O vs SiO2 plot (Figure 5b); samples from the Minna Batholith 322 

largely fall in the medium-K field, and samples from other plutons spread across the 323 

boundary between high and medium-K fields. MgO is generally low (< 2wt% in 324 

almost all samples) but total FeO + Fe2O3 is more variable. Samples from the Abuja 325 

Batholith, and some from the Sarkin Pawa plutons, are typically metaluminous; 326 

samples from the Minna Batholith, the Tegina Pluton, and most of the Sarkin Pawa 327 

plutons, are typically peraluminous (Figure 6).  Figure 6 shows that the samples from 328 

the Abuja Batholith overlap with the fields for the later trans-alkaline granitoid suite 329 

in eastern Nigeria (Ferré et al., 1998). However, the samples from the other western 330 

Nigeria plutons extend to significantly more peraluminous compositions. 331 

Geochemical data for the peraluminous plutons of eastern Nigeria are not available 332 

for comparison.   333 

 334 

The different intrusive complexes are clearly distinguished on well-established granite 335 

discrimination diagrams (Figure 7). On the Y vs Nb plot (Pearce et al., 1984), all 336 

samples from the Minna Batholith and Tegina plutons, as well as most Sarkin Pawa 337 

samples, plot within the field of volcanic arc and syn-collisional granites. Samples 338 

from the Abuja Batholith and some Sarkin Pawa plutons extend into the Within-Plate 339 

Granite field. Similarly, on the Ga/Al vs Zr discrimation plot (Whalen et al., 1987), 340 

the Minna and Tegina samples fall largely within the I- , S- and M-type field, whereas 341 

most of the Abuja Batholith samples lie within the A-type field. Samples from Sarkin 342 

Pawa extend across both fields. The samples from the Abuja Batholith typically 343 

overlap with the trans-alkaline granites and quartz-monzonites of eastern Nigeria 344 

(Ferré et al., 1998). Post-collisional granitoids are generally known to extend across 345 

more than one field in these diagrams (Pearce, 1996), reflecting the involvement of 346 

several different sources in their formation, including mixing of mantle and crustal 347 

sources.  348 

 349 

On the plot of SiO2 vs Fe* (Frost et al., 2001), samples from the Abuja Batholith fall 350 

entirely within the A-type or ferroan granite field, and samples from the other plutons 351 

fall entirely within the post-collisional granite field, although there is considerable 352 



overlap (Figure 8). Samples from the Minna Batholith and Sarkin Pawa plutons 353 

extend across the boundary between the ferroan and magnesian fields, indicating 354 

contributions from more than one source component.  355 

Post-collisional granitoids throughout the Pan-African orogenic belts are typically 356 

characterised by similar geochemical features, including relatively high contents of 357 

the large-ion lithophile elements (LILE), negative Nb-Ta, Sr and Ti anomalies, and 358 

relative enrichment in the light REE (LREE) (Goodenough et al., 2010; Küster and 359 

Harms, 1998). Spider diagrams for representative granite samples from the western 360 

Nigeria plutons show many of these features (Figure 9). All the granites have minor 361 

relative enrichment in the LILE such as Rb, Ba and K; relative depletions in Ta, Nb 362 

and Ti; and enrichment of the LREE over the heavy REE (HREE). The most 363 

fractionated granitoids are typically more strongly enriched in the LREE over HREE 364 

and have negative Sr and Eu anomalies; a notable example of this is sample 365 

NG/11/12, a late leucogranite sheet from the Sarkin Pawa area.  366 

 367 

Granite, granodiorite and monzonite samples from the Abuja Batholith typically show 368 

the least fractionated patterns and have higher contents of Nb, Ta, Zr, Hf and the 369 

HREE relative to samples from the other areas. However, it is notable that the more 370 

silica-rich granitic rocks from the Abuja Batholith actually have lower contents of 371 

many incompatible elements (including Nb, Ta, Zr, Hf , and the MREE and HREE) 372 

than the more mafic monzonitic rocks (Figure 9b). This suggests that the granitic and 373 

monzonitic compositions cannot be related by simple fractional crystallisation, which 374 

would enhance incompatible element contents in the most evolved magmas, and that 375 

they are likely to represent mixing of two magmatic components. The results of a 376 

simple mixing calculation, using the spreadsheet of Ersoy and Helvaci (2009), are 377 

presented in Figure 10a. The most mafic (monzonitic) component of the Abuja 378 

Batholith is represented by sample NG/11/45, and local crustal material is represented 379 

by sample NG/11/16, a bulk sample of western Nigeria Archaean migmatitic gneiss. It 380 

is evident that mixing with local crustal material has the potential to explain many of 381 

the observed geochemical patterns in the Abuja Batholith. However, it is important to 382 

note that NG/11/16 is a single sample and does not fully represent the variation of 383 

compositions in the local crust.  384 

 385 



In general, the geochemical patterns of the Abuja Batholith are similar to those of the 386 

trans-alkaline plutons from Eastern Nigeria (Ferré et al., 1998) and from other Pan-387 

African suites such as the Maevarano suite of Madagascar (Goodenough et al., 2010) 388 

(Figure 10b). However, samples of peraluminous granite from the Minna Batholith 389 

are generally characterised by lower contents of most incompatible elements than 390 

samples from the Abuja Batholith. These geochemical patterns, particularly low 391 

contents of Hf, Zr, Ta and Nb, cannot be explained by simple melting of the local 392 

Archaean gneisses. Petrography shows that the Minna Batholith samples are 393 

characterised by large plates of feldspar in a felsic matrix; such textures are unlikely 394 

to represent magmatic compositions, and thus it is difficult to derive source 395 

compositions from the whole-rock geochemistry. However, the peraluminous nature 396 

of these granitoids indicates a likely derivation from sedimentary sources, potentially 397 

those represented by the Proterozoic schist belts.  398 

 399 

Total REE contents (TREE) vary up to 915 ppm (in fractionated leucogranite sheets 400 

from Sarkin Pawa) and are dominated by the LREE, with the highest TREE contents 401 

found in allanite-bearing samples. It is notable that TREE contents show a weak 402 

negative correlation with SiO2, with some of the most evolved granitic rocks showing 403 

the lowest total REE contents.  404 

 405 

Late pegmatites are found across the Minna area and have been recognised in spatial 406 

association with the Minna, Tegina and Sarkin Pawa plutons, both cutting the granite 407 

plutons and intruded around their margins. Of these, true rare-metal pegmatites have 408 

only been found by this study in association with the Sarkin Pawa plutons. All these 409 

late pegmatites have variable trace element patterns but are typically strongly 410 

fractionated. They are enriched in Rb, K, U, Nb and Ta relative to the granitoids, but 411 

typically show notable depletions in Ba, the REE, Hf and Zr (Figure 9). All have 412 

negative Ti anomalies, but Eu and Sr are more variable. The pegmatites are also 413 

characterised by notably higher Ta/Nb and Hf/Zr ratios than the granites; this is 414 

characteristic of highly evolved magmas of this type (Linnen, 1998). The rare metal 415 

pegmatites from the Sarkin Pawa area also have elevated Be, Cs, Sn and W contents 416 

(Table 1) and in this respect they are generally typical of the LCT (Li-Cs-Ta) family 417 

of pegmatites (Cerny and Ercit, 2005; Cerny et al., 2012). Similar whole-rock 418 

geochemical patterns for rare metal pegmatites and their host granites are known from 419 



other areas of post-collisional magmatism, such as the Altai mountains of China (Zhu 420 

et al., 2006), but there are very few published whole-rock geochemical data for 421 

pegmatites from the Pan-African orogenic belts. 422 

6. Geochronology of the granitoids 423 

Four samples of the plutonic rocks were collected for U-Pb dating by LA-ICPMS 424 

(Table 2). Sample NG/11/12 was collected from an allanite-bearing leucogranite sheet 425 

cross-cutting foliated granitoids in the Sarkin Pawa area, and represents the youngest 426 

magmatism in that area. Sample NG/11/25 is a strongly foliated granodiorite from the 427 

outer part of the Minna Batholith, and NG/11/35 is a garnetiferous biotite-muscovite 428 

granite also from the Minna Batholith. Sample NG/11/49 is a biotite granite from the 429 

Abuja Batholith.  430 

6.1 Zircon Description and Interpretation 431 

NG/11/12 432 

Zircon in this sample comprises largely prismatic grains with length/width ratios of 1 433 

to 4, showing complex oscillatory zoning, typically with darker inner zones and 434 

brighter outer zones under cathodoluminescence (CL) (Figure 11a). Unconformities in 435 

the zoning are observed in some grains (less than a third of the total population). 436 

Altered zoning in the form of convolutions of the oscillatory zones is also seen in 437 

some grains. Metamorphic rims are not apparent, but some of the outer zones are thin 438 

with embayments into the inner zones. The population looks consistent and would be 439 

expected to give one, or at most two main ages. 440 

NG/11/25 441 

This sample contains prismatic zircon grains with length/width ratios of 1 to 2 and 442 

complex oscillatory zoning, typically with one or two unconformities per grain 443 

(Figure 11b). Some grains (less than a third of the population) have fuzzy or 444 

convoluted inner zones. The inner zones typically appear darker under 445 

cathodoluminescence, and the outer zones appear brighter. Embayments or 446 

metamorphic rims are not apparent. Two or more magmatic growth periods may be 447 

recorded by this zircon population.  448 

NG/11/35 449 

Zircon grains in this sample are prismatic with length/width ratios of 1 to 3 (Figure 450 

11c). They show complex oscillatory zoning, typically with darker outer zones under 451 



CL. Most grains exhibit unconformities between outer and inner zones. Many grains 452 

(c. two-thirds of the population) exhibit alteration of the inner zones, generally in the 453 

form of convolution of zoning and/or a granular texture. Many outer zones have 454 

embayment, but no thin metamorphic rims are apparent. The population is probably 455 

comprised of at least two growth phases; alteration of the inner zones may be younger 456 

than zircon crystallisation, or part of the youngest growth phase. 457 

NG/11/49 458 

This sample contains prismatic zircon grains with length/width ratios of 2 to 4 (Figure 459 

11d). Complex oscillatory zoning is ubiquitous. Darker outer zones around brighter 460 

inner zones are most common, but brighter outer zones also exist. Unconformities 461 

across zoning are present in some grains (less than a quarter of the population). Some 462 

convolution of zoning occurs on the outer zone of some grains, but this is typically 463 

associated with inclusions within the zircons. No metamorphic rims are apparent. 464 

Crystallisation probably occurred during one main magmatic episode, but discordant 465 

inner zones suggest the possibility of inherited zircon cores.  466 

6. 2 Results 467 

NG/11/12 468 

62 analyses were made from 54 grains, 8 of these were rejected due to high common 469 

Pb component (>600 cps Pb204). The data cluster around 590 Ma (Figure 12a). One 470 

concordant grain at ~1008 Ma (207Pb/206Pb age) indicates some inheritance; this 471 

analysis was from a core of a grain. The data spread towards slightly older ages along 472 

Concordia. These may represent a slightly older inherited component, or mixing with 473 

distinctly older zones (e.g. ~1000 Ma); the latter is not supported by the CL imagery. 474 

The data also spread towards discordant analyses with older 207Pb/206Pb ages, these 475 

probably result from small amounts of common lead and/or mixing with inherited 476 

components. For the age calculation, discordant (>10%) analyses were excluded, as 477 

were distinctly older concordant analyses. The youngest analysis pertains to an outer 478 

zone of a grain that has an embayment to the inner zone, this was also excluded from 479 

the age calculation. The remaining 41 analyses give a weighted mean 206Pb/238U age 480 

of 590 ± 3/13 Ma (MSWD = 1.8). 481 

NG/11/25 482 

50 analyses were made from 46 zircon grains, and these cluster around 780–760 Ma 483 

(Figure 12b). One concordant grain at 830 Ma (206Pb/238U age), indicates inheritance 484 



of a slightly older component. Three discordant (>10%) analyses are likely affected 485 

by common lead, and/or mixing with an inherited component. The rest of the 486 

population spreads along concordia slightly, and exhibits some minor reverse 487 

discordance. The CL imagery resolved discordant zoning that indicates the likelihood 488 

of crystallisation during more than one phase. The data are split into inner and outer 489 

zones, although this includes some subjectivity since some grains do not have obvious 490 

boundaries between zones. Excluding one analysis with a high degree of reverse 491 

discordance, 19 outer zone analyses give a weighted mean 206Pb/238U age of 764 ± 492 

6/18 Ma (MSWD = 1.7). The remaining 26 inner zone analyses overlap in age with a 493 

weighted mean 206Pb/238U age of 774 ± 7/19 Ma (MSWD = 3.9) but spread to much 494 

older ages. The age given by the outer zones is interpreted as representing final 495 

crystallisation of the unit. 496 

NG/11/35 497 

46 analyses were made from 38 zircon grains, and 4 of these were rejected due to high 498 

common Pb (>600 cps PB204). One inherited grain is distinctly older then the main 499 

populations at ~2100 Ma. The rest of the data spread from ~820 to 620 Ma (Figure 500 

12c), and include a range of analyses that extend to older 207Pb/206Pb ages, probably 501 

related to minor common Pb content. After exclusion of discordant (>10%) data, the 502 

analyses fall into two broad populations. The data have been divided into inner and 503 

outer zones based on the CL imagery. Nine of the ten inner zones form a population 504 

which gives a weighted mean  206Pb/238U age of 793 ± 12/21 Ma (MSWD = 2.9). 505 

Twelve of the thirteen outer zones form a population which gives a weighted mean 506 
206Pb/238U age of 653 ± 12/19 Ma (MSWD = 6.3). These two populations both have a 507 

high MSWD, which indicates that they do not represent single populations, probably 508 

because the analyses represent a small amount of mixing between different age zones. 509 

The youngest phase of crystallisation of this unit is interpreted to be ca. 653 Ma, and 510 

an earlier crystallisation is recorded at ca. 793 Ma. 511 

NG/11/49 512 

 Forty analyses were made from 30 zircon grains, and of these only one corresponds 513 

to a distinctly older inherited grain, dated at ca. 1180 Ma (207Pb/206Pb). The rest of the 514 

analyses cluster around an age of ~590 Ma (Figure 1 515 

2d). Several analyses spread to slightly older 207Pb/206Pb ages, probably related to a 516 

minor common lead content. Three analyses are slightly older than the main 517 

population in terms of 207Pb/206Pb age; one of these is slightly normally discordant 518 



and dated at 639 Ma (206Pb/238U age), and two are reversely discordant and dated at 519 

620 Ma (206Pb/238U age). These older analyses indicate the possibility of a slightly 520 

older inherited component, but do not particularly relate to separate internal zones that 521 

are apparent from the CL imagery. The remaining 30 analyses define a single 522 

population with a weighted mean 206Pb/238U age of 588 ± 3/13 Ma (MSWD = 1.07). 523 

This is interpreted as dating crystallisation of this unit.  524 

 525 

7. Discussion 526 

Field, petrological and geochemical data for Pan-African granitoids in the Minna area 527 

clearly indicate that the granitoid plutons can be divided into two broad groupings. 528 

The Minna Batholith, the Tegina Pluton and plutons around Sarkin Pawa comprise 529 

biotite-muscovite granites, locally containing garnet and epidote, which typically have 530 

peraluminous compositions. They show evidence of having been emplaced into an 531 

active tectonic regime characterised by major NNE-SSW shear zones. The second 532 

grouping comprises the metaluminous hornblende granitoids of the Abuja Batholith 533 

and late intrusive sheets in the Sarkin Pawa area. These intrusions are more alkaline, 534 

and contain a greater mafic magmatic component than the earlier biotite granites, 535 

varying from syenodiorites to leucogranites. In general they have higher contents of 536 

Nb, Zr and Hf than the biotite granites, but this study has found no evidence for 537 

significant critical metal enrichments. A third group of intrusions, the late pegmatites, 538 

is found throughout much of the area and discussed separately from the major plutons.  539 

The age data from this study, together with published ages of Key et al. (2012), 540 

indicate that the Older Granite magmatism in the Minna area spanned a considerable 541 

amount of time. The Minna Batholith clearly contains evidence for an early phase of 542 

magmatism at c. 790–760 Ma. Because one sample (NG/11/25) has a single 543 

population of zircons of this age, this is highly unlikely to represent an inheritance 544 

age, and is considered to date crystallisation of the unit. The sample was taken from 545 

an outcrop apparently within the Minna Batholith, but may represent a large screen of 546 

older crust that has been incorporated within the batholith, but not assimilated. Ages 547 

of c. 790–740 Ma have previously been obtained by relatively imprecise Rb-Sr dating 548 

of Nigerian Older Granites from the area north of Minna (Fitches et al., 1985), and 549 

magmatic ages of 800–770 Ma are found in the Borborema Province (Arthaud et al., 550 



2008). The tectonic setting of the Brazilian magmatism is debated, and may be related 551 

to continental rifting, or to subduction at an active continental margin (Arthaud et al., 552 

2008; de Araujo et al., 2012; Fetter et al., 2003). It is evident that Nigeria was affected 553 

by a contemporaneous magmatic event. However, only the single dated sample can be 554 

clearly attributed to this event in Nigeria. Identification and study of individual 555 

intrusions formed at this time would be needed in order to identify the tectonic 556 

setting.  557 

The sites of earlier Neoproterozoic magmatism were subsequently exploited by later 558 

peraluminous magmas at c. 650 Ma, as demonstrated by the two age populations in 559 

sample NG/11/35. These earlier, biotite-muscovite peraluminous granites are likely to 560 

have had a significant source component of sedimentary material. However, a lack of 561 

published isotopic data means that the source of this sedimentary material remains in 562 

doubt; one potential source lies in the schist belts of the western Nigeria terrane. The 563 

magmas are thought to have formed by crustal melting associated with high-564 

temperature metamorphism and crustal thickening following the peak of the main 565 

Pan-African collision (Ferré et al., 2002).   566 

Biotite granites continued to be emplaced in the region between c. 635 and 600 Ma 567 

(Dada, 2008; Key et al., 2012), and in many areas these were affected by intense 568 

ductile shearing, acquiring strong syn- to post-magmatic foliations.  569 

Subsequently, metaluminous hornblende granitoids were emplaced at c. 590 Ma, 570 

forming the Abuja Batholith as well as later leucogranite sheets in the Sarkin Pawa 571 

area (samples NG/11/12 and NG/11/49). Relatively mafic monzonitic to 572 

monzodioritic lithologies are present as enclaves and larger masses within the Abuja 573 

Batholith. In contrast with the earlier peraluminous granites, the metaluminous 574 

granitoids, monzonites and monzodiorites have alkaline affinities, and show many 575 

geochemical features akin to A-type granitoids. However, the presence of negative 576 

Nb-Ta anomalies is not typical of A-type granitoids, but can be attributed either to 577 

melting of a lithospheric mantle source that has been enriched by earlier subduction,  578 

or to contamination by continental crust.  579 

Recent geochemical and isotopic studies of coeval metaluminous hornblende-biotite 580 

granitoids in eastern Nigeria show that initial ƐNd ranges from -5 to -16, and initial 581 
87Sr/86Sr ranges from 0.70617 to 0.71015 (Dada et al., 1995; Ferré et al., 1998). These 582 



data have been interpreted to indicate that the source of the granitoid magmas was 583 

largely in the continental crust, with limited contribution from the mantle (Dada et al., 584 

1995). The more mafic components of the suite in eastern Nigeria are highly potassic 585 

quartz monzonites such as those in the Bauchi pluton (although the best available 586 

dates place these at c. 640 Ma (Dada and Respaut, 1989; Oyawoye, 1961)). Isotopic 587 

data for these monzonites show a trend towards more mantle-like compositions with 588 

initial ƐNd from -4 to - 8 (Dada et al., 1995).   Strongly alkaline c. 590 Ma intrusions 589 

sourced from mantle-derived magmas have also been recognised in the Dahomeyide 590 

belt in Ghana (Nude et al., 2009). Geochemical evidence in both eastern (Ferré et al., 591 

1998) and western Nigeria (this study) indicates that the metaluminous granitoids 592 

were not formed by direct fractional crystallisation of the more mafic monzonitic and 593 

monzodioritic magmatic component. Instead, the composition of the granitoids can be 594 

largely explained by mixing between melts of the local Archaean meta-igneous crust, 595 

and a more mafic mantle-derived magma. Overall, the geochemical data for the 596 

metaluminous plutons of western Nigeria fit with the hypothesis proposed for similar 597 

plutons in eastern Nigeria, namely a fractionated mantle-derived magma that has 598 

mixed with magmas derived by melting of igneous material in the continental crust 599 

(Dada et al., 1995; Ferré et al., 1998).  600 

The final magmatic event in the area was the intrusion of barren and rare-metal 601 

pegmatites, which have been dated at 560–450 Ma (Matheis and Caen-Vachette, 602 

1983; Melcher et al., 2013). Late pegmatites are spatially associated with most of the 603 

Older Granite plutons, but the dating indicates that they post-date the Older Granites, 604 

and are not directly genetically related to them, as originally suggested by Matheis 605 

(1987). This is difficult to reconcile with the geochemical evidence presented here, 606 

which shows that the pegmatites formed from very highly evolved magmas. These 607 

pegmatites have affinities with the LCT pegmatite family, which is typically 608 

considered to comprise the most highly fractionated parts of  S-type or peraluminous 609 

granitic suites formed during crustal thickening (Cerny et al., 2012). However, in 610 

western Nigeria the dating presented here indicates that the Older Granites evolved 611 

with time away from a sedimentary  source towards an increased contribution from a 612 

mantle or lower crustal source. The origin of the pegmatites thus remains uncertain.  613 

The Borborema Province in Brazil also contains rare-metal pegmatites emplaced at 614 

515–509 Ma (Baumgartner et al., 2006); as with the Nigerian pegmatites, these have 615 



been artisanally mined for Nb and Ta. The Borborema Province pegmatites are also 616 

associated with granites, and as in Nigeria, the pegmatites appear to be distinctly 617 

younger than the granites. This ‘pegmatite conundrum’ has been recognised in post-618 

collisional settings elsewhere in the world (e.g. the Altai Mountains (Zhu et al., 619 

2006)). Rare-metal pegmatites are typically considered to crystallise from highly 620 

fractionated magmas, representing the latest intrusion stage in a granitic province 621 

(Cerny et al., 2012). However, in many areas, they appear to post-date the associated 622 

granitoid plutons by a significant period of time, and potentially represent a separate 623 

intrusive event. Pegmatites such as those in western Nigeria are an important part of 624 

the global tantalum resource, yet their genesis remains poorly understood, and further 625 

work is needed to understand the source of these unusual magmas.   626 

8. Conclusions 627 

Pan-African-Brasiliano orogenic belts extending around the West African Craton 628 

contain abundant post-collisional granitoids, which are recognised throughout West 629 

Africa and Brazil. The Minna area of western Nigeria provides good exposures of all 630 

elements of this magmatic province.  631 

The earliest magmatism, at 790–760 Ma, is recorded by zircon cores and zones of 632 

intensely deformed granodiorite within the Minna Batholith. Magmatism of this age is 633 

known in the Borborema Province of Brazil, and has also been recognised by Rb-Sr 634 

dating in Nigeria. It may be related to Neoproterozoic subduction around the margins 635 

of the West African Craton, but more work is needed to fully characterise this 636 

magmatic episode.  637 

Large volumes of peraluminous biotite granite were produced during crustal 638 

thickening at 600–650 Ma in western Nigeria. Emplacement of these plutons was 639 

focused along large-scale crustal shear zones and many of the plutons are intensely 640 

foliated. These granites typically have peraluminous characteristics and were largely 641 

derived by melting of local crust.   642 

Later, post-tectonic metaluminous magmas (hornblende diorites, granodiorites and 643 

granites) were emplaced in an extensional post-collisional setting at c. 590 Ma. The 644 

association of mafic (dioritic) and felsic magmas, emplaced contemporaneously, and 645 

the more alkaline, LILE-enriched nature of those magmas, indicates both mantle-646 

derived and crustally-derived magmatic components. Thus, initial post-collisional 647 



melting in this orogenic belt was focused in the thickened upper to middle crust, with 648 

the mantle-derived component increasing over time.  649 

The last magmatic event in western Nigeria was the emplacement of LCT-type 650 

pegmatites, some of which are enriched in rare metals such as tantalum. On the basis 651 

of current evidence, these pegmatites were emplaced at c. 560–450 Ma, and 652 

significantly post-date the peraluminous granitoid plutons. These pegmatites thus 653 

cannot be highly evolved melts derived from a fertile, S-type, parental granite as is 654 

normally considered for LCT pegmatites. The origin of such rare-metal pegmatites 655 

thus presents an unsolved conundrum.  656 
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Figures 663 

Figure 1: Simplified map of the geology of Nigeria, after Ferré et al. (1996) and Key 664 
et al. (2012). Box indicates the area shown in Figure 2.  665 

Figure 2: Simplified map of the geology of the Minna area, after Key et al. (2012).  666 

Figure 3: a) Granite whaleback hill in the Tegina Pluton, illustrating the typical 667 
scenery of the field area; b) Foliated granitoid demonstrating strong solid-state 668 
deformation, Tegina Pluton; c) Coarse-grained porphyritic granitoid cut by late 669 
granite pegmatite, Sarkin Pawa area; d) Outcrop showing mingling, mixing and 670 
localised shearing of dioritic and granitic magmas in the Abuja Batholith.  671 

Figure 4: Photomicrographs of thin sections from Nigerian Older Granites, viewed in 672 
plane polarised light. a) Sheared granitoid from the Minna Batholith, with a foliation 673 
defined by aligned biotites (Bt) and recrystallised quartz (Qz) ribbons, and highly 674 
altered feldspar (Fsp); b) Granodiorite from the Tegina Pluton, containing biotite (Bt), 675 
hornblende (Hbl) and garnet (Grt); c) Late stage hornblende (Hbl)-biotite (Bt) granite 676 
sheet from the Sarkin Pawa area with large, high-relief, yellowish allanite (Aln) 677 
crystals (Aln); d) Monzonite from the Abuja Batholith containing altered 678 
orthopyroxene (Opx) typically rimmed by hornblende (Hbl).  679 

Figure 5: a) Plot of total alkalis versus silica for all analysed samples from Nigerian 680 
Older Granites, divided by pluton. Fields from Gillespie and Styles (1999). Dashed 681 
line represents boundary between alkalic rocks above and subalkalic rocks below 682 
(Miyashiro, 1974); b): Plot of K2O vs SiO2 for all samples, with fields from Le Maitre 683 
(2002).  684 

Figure 6: Shand Index plot for all analysed samples. A/NK = molar (Al2O3/(Na2O + 685 
K2O)); A/CNK = molar (Al2O3/(CaO + Na2O + K2O)). Fields for trans-alkaline 686 
plutons from Eastern Nigeria (Ferré et al., 1998) given for comparison.  687 



Figure 7: Granite discrimination diagrams for all analysed samples. a) Nb vs Y plot 688 
after Pearce et al. (1984); b) Zr vs Ga/Al plot after Whalen et al. (1987). Fields for 689 
trans-alkaline plutons from Eastern Nigeria (Ferré et al., 1998) given for comparison. 690 

Figure 8: Plot of SiO2 vs FeOtot/(FeOtot+MgO) for all analysed samples, with fields 691 
for A-type and post-collisional granitoids from Frost et al. (2001) 692 

Figure 9: Primitive mantle-normalised trace element plots for selected samples from 693 
the different plutons within the study area. Normalising factors from McDonough and 694 
Sun (1995). 695 

Figure 10a): Primitive mantle-normalised trace element plots for samples from the 696 
Abuja Batholith, with grey lines showing the calculated compositions achieved by 697 
mixing Abuja Batholith monzonite (NG/11/48) with local Archaean crust; b) 698 
Primitive mantle-normalised trace element plots for representative samples from the 699 
Minna Batholith and Abuja Batholith (this study), the Rahama Granite of Eastern 700 
Nigeria (Ferré et al., 1998), and the comparable Maevarano suite of Madagascar 701 
(Goodenough et al., 2010). Normalising factors from McDonough and Sun (1995). 702 

Figure 11: Cathodoluminescence images for representative zircon crystals from the 703 
four geochronology samples  704 

Figure 12: Zircon concordia plots for the four dated samples. a) NG/11/12; b) 705 
NG/11/25; c) NG/11/35; d) NG/11/49. Analyses in black are those used for age 706 
calculations; those in grey were rejected due to discordance or mixed age.  707 

Tables 708 

Table 1: Whole-rock geochemical data for all analysed samples 709 

Table 2 (online supplementary data): U-Pb data for the four dated samples. 710 
Discordance = (1-((206Pb/238U)/(207Pb/206Pb)))*100. Concentrations in ppm are 711 
based on normalisation to 91500, based on 14.8ppm Pb, 30ppm Th and 81.2ppm U. 712 
204Pb, 206Pb, 207Pb, 208Pb, 232Th and 235U in counts per second. 204Pb is after 713 
subtraction of 204Hg based on measurement of 202Hg. Osci = oscillatory zoning. 714 
Analyses in black are those used for age calculations.  715 

 716 
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Sample Rock type Intrusion SiO2 Al2O3 Fe2O3 MgO CaO

% % % % %

NG/11/1 Granite Sarkin Pawa area 75.89 12.55 2.21 0.07 0.83

NG/11/2 Aplite Sarkin Pawa area 73.68 15.01 1.15 0.03 0.34

NG/11/3 Granite Sarkin Pawa area 73.65 14.81 1.44 0.2 1.38

NG/11/4 Diorite Sarkin Pawa area 66.02 16.2 4.24 1.56 4.3

NG/11/5 Pegmatite Sarkin Pawa area 75.44 14.56 0.97 0.09 0.9

NG/11/6 Pegmatite Sarkin Pawa area 74 14.45 0.94 0.09 1.16

NG/11/7 Granite Sarkin Pawa area 73.91 14.35 0.95 0.11 0.99

NG/11/8 Pegmatite Sarkin Pawa area 75.73 16.08 1.25 0.05 0.01

NG/11/9 Granite Sarkin Pawa area 72.87 14.02 2.22 0.26 1.15

NG/11/10 Pegmatite Sarkin Pawa area 72.5 16.38 1.09 0.03 0.29

NG/11/11 Granite Sarkin Pawa area 72.1 14.07 2.6 0.11 1.26

NG/11/12 Granite Sarkin Pawa area 70.84 13.42 3.8 0.14 1.66

NG/11/13 Granite Sarkin Pawa area 70.02 15.13 2.29 0.68 2.22

NG/11/14 Pegmatite Sarkin Pawa area 73.94 14.74 0.76 0.04 0.44

NG/11/15 Granite Sarkin Pawa area 66.99 15.12 3.86 1.65 3.21

NG/11/16 Gneiss Country rock 71.12 14.47 3.09 0.82 2.01

NG/11/17 Granite Sarkin Pawa area 73.87 13.94 1.82 0.09 0.74

NG/11/18 Granite Sarkin Pawa area 74.74 13.28 1.47 0.33 1.35

NG/11/19 Granite Sarkin Pawa area 75.74 14.69 0.73 0.17 1.42

NG/11/20 Gneiss Country rock 53.92 19.23 7.02 3.04 4.95

NG/11/21 Granite Minna Batholith 73.48 15.12 1.2 0.25 1.63

NG/11/22 Granodiorite Minna Batholith 68.94 15.7 3.13 0.87 2.76

NG/11/23 Granite Minna Batholith 71.36 15.2 1.82 0.42 2.09

NG/11/24 Granite Minna Batholith 73.33 14.49 2.05 0.44 1.73

NG/11/25 Granodiorite Minna Batholith 61.36 16.59 5.9 2.68 4.7

NG/11/26 Granite Minna Batholith 74.93 14.09 1.01 0.25 1.41

NG/11/27 Granite Minna Batholith 64.99 16.46 4.15 1.52 2.99

NG/11/28 Amphibolite Country rock 48.4 17.76 8.37 6.06 10.71

NG/11/29 Mylonite Country rock 72.39 14.26 2.89 0.58 2.51

NG/11/30 Granite Tegina Granite 72.73 14.59 1.43 0.33 1.21

NG/11/31 Diorite Tegina Granite 64.66 14.79 7.76 1.73 4.16

NG/11/32 Pegmatite Tegina Granite 76.55 13.27 0.46 0.07 0.95

NG/11/33 Granodiorite Tegina Granite 67.78 15.13 4.49 0.76 1.93

NG/11/34 Granite Minna Batholith 73.83 14.48 1.65 0.28 1.92

NG/11/35 Granite Minna Batholith 74.78 14.1 1.22 0.28 1.65

NG/11/36 Granite Minna Batholith 74.44 13.24 2.98 0.51 1.83

NG/11/37 Amphibolite Country rock 52.21 13.36 11.97 3.89 8.75

NG/11/38 Granite Minna Batholith 73.95 14.69 1 0.15 1.38

NG/11/39 Aplite Minna Batholith 75.04 14.61 0.54 0.06 0.66

NG/11/40 Pegmatite Minna Batholith 75.84 13.96 0.65 0.07 0.36

NG/11/41 Granite Minna Batholith 72.29 13.72 2.87 0.76 2.14

NG/11/42 Granite Minna Batholith 71.41 14.79 2.57 0.57 2.58

NG/11/43 Leucogranite Abuja batholith 75.76 13.34 0.98 0.03 0.67

NG/11/44 Pegmatite Abuja batholith 80.49 10.06 0.96 0.1 0.94

NG/11/45 Diorite Abuja batholith 58.51 16.18 9.78 1.13 3.95

NG/11/46 Granodiorite Abuja batholith 70.01 15.05 2.73 0.72 2.53

NG/11/47 Diorite Abuja batholith 56.34 17.05 10.14 1.53 4.97

NG/11/48 Diorite Abuja batholith 56.03 16.72 10.42 1.28 4.76

Table 1
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Sample Spot comments rejected? 204
Pb

206
Pb

207
Pb

208
Pb

232
Th

235
U Th/U Pbppm Thppm

NG/11/12 5 bright osci outer 166 162989 9796 14209 301627 13206 0.28 41 112

NG/11/12 6 bright osci intermediate -24 85065 5085 11173 227028 6799 0.41 22 85

NG/11/12 8 bright osci inner 165 200089 12295 38663 776381 17442 0.55 51 289

NG/11/12 9 bright osci inner 386 319230 19682 73800 1417362 26876 0.65 81 528

NG/11/12 10 bright osci outer -20 111381 6741 11846 241742 9199 0.33 28 90

NG/11/12 14 bright osci outer -2 128770 7952 17791 370356 10698 0.43 33 138

NG/11/12 15 bright osci intermediate 338 291642 18034 58509 1220460 26115 0.58 74 455

NG/11/12 16 bright osci inner 90 1006347 62136 128542 2796366 88112 0.39 255 1042

NG/11/12 17 bright osci outer 67 110691 6734 11970 258384 9641 0.33 28 96

NG/11/12 18 bright osci inner 37 178711 11040 35566 773294 15615 0.61 45 288

NG/11/12 19 bright osci outer 218 79649 4894 9498 212405 6915 0.38 20 79

NG/11/12 23 bright planar zoning inner 139 156886 9672 34178 794414 14209 0.69 40 296

NG/11/12 25 bright osci outer 278 122377 7483 18482 421820 11099 0.47 31 157

NG/11/12 27 bright osci outer 46 201146 12490 20141 482547 18877 0.32 51 180

NG/11/12 29 bright angular osci inner 406 97048 6007 7010 167188 8807 0.23 25 62

NG/11/12 30 bright osci intermediate 70 220584 13368 32847 812736 19915 0.50 56 303

NG/11/12 31 bright osci outer 182 132055 8150 13501 325795 12065 0.33 33 121

NG/11/12 32 bright altered zoning inner -53 117954 7302 284 3599 10930 0.00 30 1

NG/11/12 34 bright osci outer 256 104008 6469 14407 383797 9908 0.48 26 143

NG/11/12 35 dark faint zoning 385 608530 37561 122705 3188862 58715 0.67 154 1189

NG/11/12 36 planar zoning inner 96 273323 17234 16695 380055 26310 0.18 69 142

NG/11/12 41 bright osci outer 257 78334 4815 11339 308608 7861 0.49 20 115

NG/11/12 43 bright osci inner 82 240236 14901 36581 925265 23959 0.48 61 345

NG/11/12 46 bright osci outer 47 84446 5281 10569 274508 8756 0.39 21 102

NG/11/12 47 bright osci intermediate 98 145033 8943 29344 819044 15004 0.68 37 305

NG/11/12 48 bright osci intermediate 239 115498 7108 25460 667685 11681 0.71 29 249

NG/11/12 49 bright osci inner 112 110140 6894 21561 595275 11239 0.66 28 222

NG/11/12 50 bright osci outer 280 106377 6787 12917 342315 11004 0.38 27 128

NG/11/12 51 bright osci intermediate -29 212178 13264 31027 802188 21423 0.46 54 299

NG/11/12 52 bright osci inner 22 325221 19720 70709 1555266 26744 0.72 82 580

NG/11/12 53 bright osci outer 10 136826 8348 15504 346556 11379 0.38 35 129

NG/11/12 54 bright osci outer 85 211384 12976 37203 837781 17599 0.59 54 312

NG/11/12 55 bright osci inner 84 360931 21789 76981 1686699 29683 0.70 91 629

NG/11/12 56 bright osci outer -51 145690 8901 14342 311247 12091 0.32 37 116

NG/11/12 57 bright osci intermediate 115 155024 9523 33710 739883 12828 0.71 39 276

NG/11/12 58 bright osci intermediate -176 177951 10766 39905 900580 15120 0.74 45 336

NG/11/12 72 bright osci inner 56 245661 14495 49429 993577 19994 0.58 62 365

NG/11/12 74 dark osci inner 33 545624 33352 84395 1648605 43478 0.44 137 606

NG/11/12 76 dark osci inner 193 1064569 63846 172033 3203850 83450 0.45 267 1178

NG/11/12 78 bright osci outer 149 168583 10292 22921 423868 13572 0.36 42 156

NG/11/12 79 bright osci outer -118 178138 10707 3223 58272 14936 0.05 45 21

NG/11/12 44 bright osci outer/ embayment younger grain 172 97005 5953 1713 46561 10253 0.06 25 17

NG/11/12 1 bright osci outer possible older inheritance 217 133961 8264 17786 345139 10557 0.40 34 129

NG/11/12 4 dark inner possible older inheritance 258 2048359 127538 170718 3163079 148388 0.26 519 1179

NG/11/12 21 bright osci inner possible older inheritance 77 144555 10809 44952 587601 7430 0.98 37 219

NG/11/12 22 dark osci outer possible older inheritance 244 834532 52748 18693 393468 69269 0.07 211 147

NG/11/12 75 dark osci inner possible older inheritance 277 653023 39652 46152 855818 51537 0.19 164 315

NG/11/12 80 bright osci outer possible older inheritance -72 167621 10508 10662 184021 13000 0.17 42 68

NG/11/12 2 dark inner high discordance 134 3278566 205647 267773 5298838 272200 0.24 831 1975

NG/11/12 7 bright osci inner high discordance 129 198757 13009 42099 783095 16502 0.59 50 292

NG/11/12 24 dark inner high discordance 435 1582359 100797 180579 4031378 140630 0.35 401 1503

NG/11/12 33 bright osci intermediate high discordance 348 172676 12434 40490 911183 16595 0.68 44 340

NG/11/12 42 dark osci inner high discordance 231 3412982 214529 324764 8746103 351367 0.31 865 3260

NG/11/12 71 bright osci inner high discordance 258 122257 7806 23980 430830 10038 0.50 31 158

NG/11/25 2 inner included within inner zone age calc -123 438305 29250 82831 1612383 26258 0.45 59 266

NG/11/25 5 inner included within inner zone age calc 81 456884 30234 114312 1827496 30318 0.44 61 302

NG/11/25 6 inner included within inner zone age calc 141 186406 12365 45229 738044 11868 0.43 25 122

NG/11/25 8 inner included within inner zone age calc -130 121889 7855 12535 191793 7597 0.18 16 32

NG/11/25 9 mixed included within inner zone age calc 66 229468 14862 36049 534447 14433 0.27 31 88

NG/11/25 10 inner included within inner zone age calc 20 185878 12010 36254 532509 11811 0.34 25 88

NG/11/25 12 inner included within inner zone age calc 96 177187 11623 24180 354295 11188 0.23 24 59

NG/11/25 13 inner included within inner zone age calc 22 209359 14067 36960 543712 13670 0.29 28 90

NG/11/25 15 inner included within inner zone age calc -4 314198 20919 63047 986459 19429 0.37 42 163

NG/11/25 16 inner included within inner zone age calc -18 256619 17144 39809 602898 16620 0.26 34 100

NG/11/25 17 inner included within inner zone age calc 14 158591 10522 35802 525029 10030 0.38 21 87

NG/11/25 18 inner included within inner zone age calc 94 257634 17035 48333 683556 15592 0.31 35 113

NG/11/25 19 inner included within inner zone age calc 15 255168 16639 43601 603112 16263 0.26 34 100

NG/11/25 20 inner included within inner zone age calc 115 363671 24168 93459 1335925 23498 0.42 49 221

NG/11/25 22 mixed included within inner zone age calc 139 145168 9752 20920 318924 9508 0.24 20 53

NG/11/25 23 inner included within inner zone age calc -152 268977 17763 49008 748090 17871 0.30 36 124

NG/11/25 25 inner included within inner zone age calc 198 429610 28928 105309 1657404 27028 0.43 58 274

NG/11/25 26 inner included within inner zone age calc 70 231497 15409 57808 956993 15061 0.45 31 158

NG/11/25 27 inner included within inner zone age calc -132 286047 18798 57032 928721 18983 0.36 38 153

NG/11/25 28 mixed included within inner zone age calc 54 85394 5639 12278 218023 5351 0.29 11 36
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