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Abstract

Background: In cystic fibrosis (CF) there is an urgent need for earlier diagnosis of pulmonary infections and inflammation using blood- and urine-
based biomarkers.
Methods: Using mass spectrometry, oxidation products of glutathione and uric acid were measured in matched samples of bronchoalveolar lavage
(BAL), serum and urine from 36 infants and children with CF, and related to markers of neutrophilic inflammation and infection in BAL.
Results: Oxidation products of glutathione (glutathione sulfonamide, GSA) and uric acid (allantoin), were elevated in BAL of children with
pulmonary infections with Pseudomonas aeruginosa (PsA) compared to those without (p b 0.05) and correlated with other markers of neutrophilic
inflammation. Serum GSA was significantly elevated in children with PsA infections (p b 0.01). Urinary GSA correlated with pulmonary GSA
(r = 0.42, p b 0.05) and markers of neutrophilic inflammation.
Conclusions: This proof-of-concept study demonstrates that urinary GSA but not allantoin shows promise as a non-invasive marker of neutrophilic
inflammation in early CF lung disease.
© 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Lung disease in cystic fibrosis (CF) begins in early life, is
progressive and characterized by neutrophil-dominated inflam-
mation [1–3]. Free neutrophil elastase (NE) activity, detected in
bronchoalveolar lavage (BAL) as early as 3 months of age
indicates an increased risk of persistent, progressive bronchiectasis
[1]. Despite best current therapy approximately 60–80% of
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children with CF have radiological evidence of bronchiectasis
before they reach school age [1,3]. Clearly a better approach
aimed at preventing structural lung disease in early life is
required.

Studies by the Australian Respiratory Early Surveillance
Team for Cystic Fibrosis (AREST CF) have provided
considerable insight into mechanisms underlying the onset
and progress of CF lung disease using a BAL-based program
[4]. Major risk factors for progressive lung disease include
inflammation and infection, severe CF genotype and free NE
activity in the BAL [1,5]. However, all of these can be present
in the complete absence of clinically-apparent lung disease
[1,2]. Acute pulmonary exacerbations, especially those requir-
ing hospitalization, have been associated with loss of lung
function and reduced lung function growth in children [6], but
predicting these is problematic.
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The BAL-based program used by AREST CF is too invasive
for frequent use and has limited ability to predict acute pulmonary
exacerbations. Biomarkers of inflammation, infection or structural
lung disease would aid management of young children, indicating
who needs more intensive therapy. However, despite extensive
efforts (reviewed in [7]) no blood or urine-based biomarker has yet
entered clinical practice. In addition, biomarkers validated in older
patients with established lung disease may not be valid in young
children with early disease [8,9].

Neutrophils infiltrate the epithelium to combat infections
[10] but release damaging proteases such as NE [1] and reactive
oxygen species (ROS) [11]. Hypochlorous acid is produced
through oxidation of chloride by myeloperoxidase (MPO)
released by activated neutrophils [12]. Glutathione sulfonamide
(GSA) is an oxidative metabolite of glutathione specific to
hypochlorous acid (Supplementary Fig. 1A) [13]. Unlike
oxidized glutathione (GSSG), GSA is not a substrate of
glutathione reductase and provides a stable biomarker of
neutrophil oxidant activity. Consequently, we postulated that
GSA might be a systemic biomarker of pulmonary inflamma-
tion, infection and oxidative stress in CF.

Allantoin is the major oxidation product of uric acid when
exposed to ROS including hypochlorous acid, hydroxyl
radicals, and methaemoglobin/H2O2 (Supplementary Fig. 1B)
[14,15] as well as when MPO directly oxidizes uric acid [16].
As allantoin is elevated in serum of patients with acute gout
[17], we proposed that allantoin would be elevated during acute
pulmonary inflammation in CF.

The aim of the present proof-of-concept study was to
determine whether allantoin and GSA were present in BAL
from the lungs of young children with CF, reflect current lung
disease and whether they are elevated in serum and/or urine
when children are infected.
2. Methods

Full details of the study population and methods used are
provided in the online data supplement.
2.1. Study population

Matched urine, serum and BAL samples were obtained from
a previous study investigating the potential of YKL-40 as a
serum and urinary biomarker for inflammation in CF [8].
Samples were collected from 36 infants and young children
with CF who participated in the AREST CF early surveillance
program. Details of the program, collection and measurements
for cytokine concentrations, neutrophil elastase activity, cell
counts and detection of infection and bronchiectasis have been
described previously [1–3,5,8]. During 55 unique annual visits,
a total of 55 BAL samples, 52 serum and 41 urine samples were
obtained. Nine children visited twice, three children visited
three times and one child visited five times. Measurements
from the same child showed variability in all the analytes
presented here. Variables related to each BAL sample were
considered a separate event.
2.2. Measurement of GSA in BAL, serum and urine by LC–MS

GSA content was analysed by liquid chromatography with
mass spectrometry (LC–MS) using multiple reaction monitor-
ing on an Applied Biosystems 4000 QTrap as described before
[18]. The relative standard deviations for intra-and inter-day
precision were b10% and b15%, respectively [18]. Standard
deviations were determined from a set of quality control BAL
samples covering low, medium and high points on the respective
calibration curves that were repeatedly frozen, thawed and
analysed on five different days [18]. The lower limit of
quantification for GSA (S/N N 10) in standard samples was 2 nM.

2.3. Measurement of allantoin in BAL, serum and urine by
LC–MS

Allantoin was measured as described previously [19]. The
relative standard deviations for intra-day and inter- day
precision was b7% [19]. Standard deviations were determined
from a set quality control plasma samples that were repeatedly
frozen, thawed and analysed on four different days [19].
Artefactual production of allantoin from urate during sample
preparation was also ruled out in this study [19]. The lower
limit of quantification (S/N N 10) for allantoin in standard
samples was 0.2 nM.

2.4. Measurement of 3-chlorotyrosine and methionine sulfoxide
in BAL by LC–MS

The protein oxidation products 3-chlorotyrosine and methi-
onine sulfoxide were measured as described in the online
supplement. Chlorotyrosine concentrations were reported as
chlorotyrosines per 1000 tyrosines. Methionine sulfoxide was
reported as the % of total methionine species (methionine and
methionine sulfoxide).

2.5. Measurement of MPO activity and protein by sandwich
ELISA

MPO was determined by ELISA as described previously
[20].

2.6. Measurement of urine creatinine

Urine creatinine was determined by Jaffe's reaction, where
creatinine produces an orange coloured product with picric acid in
alkaline medium [21]. The absorbance at 520 nm was measured
and urine creatinine concentrations were determined using a
standard curve.

2.7. Specific gravity analysis and normalization of urine
concentrations of GSA and allantoin

Specific gravity of urine was measured on a refractometer
(American Optical Corporation, Southbridge, MA), on which the
specific gravity could be read directly and used to normalize urine
analyte concentrations. To compare the effect of normalization by
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specific gravity between groups we used the specific gravity ratio
described in the online data supplement.

2.8. Statistical analysis

Statistical analyses were carried using GraphPad Prism 6
(GraphPad Software, La Jolla, CA, USA). Pearson r correlation
was used for regression analyses. Mann–Whitney rank-sum
test was used for comparisons between groups.

3. Results

The AREST CF surveillance program provided samples from
55 unique annual visits by 36 children. These provided a total
of 55 BAL samples, 50 serum and 41 urine samples. Variables
related to each BAL sample was considered a separate event.

3.1. Relation of oxidative biomarkers in BAL to markers of
neutrophilic inflammation and bronchiectasis

The oxidative biomarkers GSA, allantoin, methionine sulfox-
ide and 3-chlorotyrosine in BAL from children with CF were all
related to airway MPO protein (Fig. 1). They were all correlated
with each other (GSA vs. allantoin, r = 0.8, p b 0.001; GSA vs.
3-chlororyrosine, r = 0.5, p b 0.05; GSA vs. methionine sulfox-
ide, r = 0.4, p b 0.05; allantoin vs. 3-chlororyrosine, r = 0.4,
p b 0.05; allantoin vs. methionine sulfoxide, r = 0.3, p = 0.15;
3-chlororyrosine vs methionine sulfoxide, r = 0.7, p b 0.001;
data not shown). Both airway GSA and allantoin were related
to all other biomarkers of oxidative stress and levels of IL-1β and
IL-6 in BAL (Table 1). Airway allantoin was also related to
Fig. 1. Relationship between oxidative biomarkers and MPO in BAL. The relationshi
and MPO protein in BAL from children with CF. Data were analysed using a Pearson
total methionine species and 3-chlorotyrosine as 3-chlorotyrosines (Cl-Tyr) per
3-chlorotyrosine is a result of limited sample availability.
bronchiectasis and neutrophil elastase (r = 0.55, p b 0.05 and r =
0.37, p b 0.05, respectively, Table 1). MPO protein in BAL
was related to bronchiectasis and neutrophil elastase (r = 0.78,
p b 0.001 and r = 0.59, p b 0.001, respectively, data not shown).

3.2. Effect of infection on biomarkers of neutrophilic inflammation
in BAL

All measures of oxidative stress were elevated in the airways of
CF children with PsA infections compared to uninfected children
(Fig. 2). IL-8 and neutrophil elastase were also elevated with PsA
infections (Supplementary Fig. 2). Children infected with any
organisms other than PsA had higher levels of oxidative
biomarkers, IL-8 and neutrophil elastase compared to uninfected
children (Fig. 2, Supplementary Fig. 2), but this difference did not
reach statistical significance, possibly due to the smaller sample
size.

3.3. Comparisons between biomarkers in BAL, serum and urine

Levels of pulmonary, urinary or serumGSA and allantoin were
not associated with sex, age, initial presentation with meconium
ileus or regular antibiotic prophylaxis (data not shown).

GSA in serum was not correlated with MPO or GSA in BAL
(r = 0.26, p = 0.07 and r = 0.26, p = 0.07, respectively, Table 1)
or with GSA in urine (r = 0.3, p = 0.08, data not shown). Serum
GSA was significantly associated with bronchiectasis (r = 0.6,
p b 0.01, Table 1). GSA in urine was significantly correlated with
GSA, allantoin, IL-1β and IL-6 in BAL (Table 1). Serum or urine
allantoin were not related to each other nor to allantoin in BAL
(Table 1).
p between a) GSA, b) allantoin, c) methionine sulfoxide and d) 3-chlorotyrosine
product–moment correlation. Methionine sulfoxide is reported as the percent of
1000 tyrosines (Tyr). The smaller sample set for methionine sulfoxide and



Table 1
Associations between GSA and allantoin and airway markers of neutrophilic inflammation and oxidative stress and bronchiectasis.
Pearson product-moment correlation coefficient r, p-value and number of subjects (n) for each pair are shown.

GSA in BAL GSA in serum GSA in urine

r p n r p n r p n

Myeloperoxidase 0.54 b0.001 55 0.26 0.07 50 0.23 0.18 36
GSA – – – 0.26 0.07 50 0.42 b0.05 36
Allantoin 0.80 b0.001 55 0.17 0.24 50 0.50 b0.05 36
3-Chlorotyrosine 0.50 b0.001 26 0.10 0.64 26 0.16 0.57 26
Methionine sulfoxide 0.40 b0.05 25 0.37 0.08 25 −0.07 0.83 25
Bronchiectasis score 0.24 0.3 20 0.60 b0.01 20 0.26 0.29 20
Interleukin-8 0.06 0.6 54 0.06 0.07 50 0.33 0.05 36
Interleukin-1β 0.46 b0.001 55 0.22 0.13 50 0.37 b0.05 36
Interleukin-6 0.63 b0.001 55 0.26 0.07 50 0.37 b0.05 36
Neutrophil elastase 0.17 0.2 55 -0.03 0.82 50 0.20 0.24 36

Allantoin in BAL Allantoin in serum Allantoin in urine

r p n r P n r p n

Myeloperoxidase 0.50 b0.001 55 −0.29 b0.05 49 0.00 0.99 32
GSA 0.80 b0.001 55 −0.16 0.28 49 −0.12 0.51 32
Allantoin – – – −0.16 0.27 49 −0.14 0.46 32
3-Chlorotyrosine 0.40 b0.05 26 −0.19 0.37 26 −0.45 0.10 26
Methionine sulfoxide 0.30 0.15 25 −0.33 0.13 25 −0.41 0.12 25
Bronchiectasis score 0.55 b0.05 20 −0.24 0.33 20 0.05 0.86 20
Interleukin-8 0.18 0.20 54 −0.23 0.11 49 −0.07 0.70 32
Interleukin-1β 0.58 b0.001 55 −0.22 0.14 49 0.25 0.15 32
Interleukin-6 0.46 b0.001 55 −0.16 0.29 49 −0.19 0.29 32
Neutrophil elastase 0.37 b0.05 55 −0.12 0.41 49 −0.12 0.28 32
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3.4. Evaluation of GSA and allantoin in serum and urine as
biomarkers of infection and bronchiectasis

Serum GSA was significantly elevated in children with PsA
infections compared to uninfected children (Fig. 3a). With the
exception of one sample, all serum samples with non-detectable
GSA were from children without PsA infection (Fig. 3a).
Children with bronchiectasis tended to have higher serum GSA
compared to children without (p = 0.06, Fig. 3c). There was no
effect of infection or bronchiectasis on serum allantoin (Fig. 3b
and d).

In order to normalize urinary biomarker concentrations to
urine dilution, we assessed specific gravity and creatinine as
possible normalization factors. There was no difference in the
specific gravity ratios between the infected and uninfected
groups (Supplementary Fig. 3A). In contrast, urinary creatinine
was elevated in children with PsA infections (Supplementary
Fig. 3B), although this did not reach statistical significance. We
used specific gravity ratios to normalize urinary GSA and
allantoin concentrations. When compared to uninfected chil-
dren, urinary GSA was elevated in children with infections
(Fig. 4a). Children with bronchiectasis had slightly higher
urinary GSA (Fig. 4b). Infection status and bronchiectasis had
no effect on urinary allantoin (Fig. 4c and d).

4. Discussion

The data from the present study show that levels of GSA and
allantoin in the BAL correlate with neutrophil-derived oxidation
activity in the lungs of infants and young children with early CF
lung disease. Indicators of oxidative stress were greater in children
with infections, especially with PsA, indicating their potential
utility as biomarkers in CF. GSA in urine correlated with GSA
in BAL (p b 0.05), but the correlation between serum and
pulmonary GSA failed to reach statistical significance (p = 0.07).
Urinary GSA was also associated with other markers of
neutrophilic inflammation in BAL. There were no correlations
between pulmonary allantoin and levels in serum (p = 0.27) or
urine (p = 0.46). These data suggest that measuring GSA in urine
may provide a useful and non-invasive biomarker of pulmonary
neutrophilic inflammation.

With the understanding that CF lung disease begins early in
life, often unaccompanied by respiratory symptoms, a greater
emphasis has developed on being able to identify which children
are at greatest risk and require more intensive treatment [4]. The
acquisition of PsA is thought to be a critical event that is associated
with a worse prognosis [22] and cannot be predicted by lifestyle
factors [23]. Early detection is important as aggressive early
treatment early is usually successful in eradicating the organism
[24]. However, early detection is difficult as the median age of
acquisition in the AREST CF surveillance program is around
2 years of age and pulmonary infection with PsA can occur in the
absence of clinically-apparent lung disease [1,2,24]. Young
children cannot easily expectorate sputum, even in the presence
of a moist cough and cough swabs or oropharyngeal swabs do not
reliably detect lower airway infection with PsA [22,24]. Previous
attempts at validating biomarkers of PsA infection developed in
adults in young children have been disappointing [8,9]. Cyanide in



Fig. 2. Effect of infection on biomarkers of neutrophilic inflammation in BAL. Children with CF were split into those that were uninfected (− Inf), infected with
Pseudomonas aeruginosa (+PsA) and infected with any organism other than PsA (+Inf) and the concentration in BAL of a) MPO protein, b) GSA, c) allantoin,
d) methionine sulfoxide and e) 3-chlorotyrosine was determined. Methionine sulfoxide is reported as the percent of total methionine species and 3-chlorotyrosine as
3-chlorotyrosines (Cl-Tyr) per 1000 tyrosines (Tyr). The smaller sample set for methionine sulfoxide and 3-chlorotyrosine is a result of limited sample availability.
Individual values are shown by symbols and the mean is represented by the bar ± SEM. Mann–Whitney rank test: ⁎P b 0.05, ⁎⁎P b 0.01 compared with the
uninfected group.

218 N. Dickerhof et al. / Journal of Cystic Fibrosis 16 (2017) 214–221
sputum was postulated as a specific marker of infection with PsA
but cyanide levels in BAL obtained from young children with CF
were more correlated with neutrophil number and activation [9].
While not specific for infection with PsA, an increased level of
GSA in urine could indicate which children require more intensive
investigation, including BAL.

Biomarkers of neutrophil-induced oxidative stress have
previously been shown to be elevated in BAL obtained from
children with CF and to relate to clinical and radiological
indicators of lung disease [11,25–27]. However, BAL is too
invasive for frequent use. In addition, a randomized trial of
BAL-directed therapy in CF, in which 50% of participants
underwent BAL at the onset of an exacerbation requiring
hospitalization to determine appropriate antibiotic therapy
questioned the use of BAL during acute illness. At the final
assessment at the age of 5 years, there were no differences in
the presence or severity of bronchiectasis between the
BAL-directed and conventional treatment arms [28]. Thus,
additional, preferably non-invasive methods for detecting the
onset or following the progress of CF lung disease is required.
As needle-related distress is common in children with CF [29],
a urine-based biomarker would be preferable to one detected in
serum.

GSA is a specific and stable by-product of glutathione
oxidation by hypochlorous acid, the production of which is
catalysed by MPO [13]. Thus, GSA is an indicator of
neutrophil-dominated inflammation, as seen in CF and is not
specific to any particular infecting organism. GSA has
previously been reported to correlate with functional conse-
quences of neutrophil oxidant activity in the lung in children
with CF and to be increased in the presence of pulmonary
infection [25]. GSA has also shown to be increased in the lungs



Fig. 3. Effect of infection and bronchiectasis on serum GSA and allantoin in children with CF. Children with CF were split into those that were uninfected (− Inf),
infected with Pseudomonas aeruginosa (+PsA) and infected with any organism other than PsA (+Inf) and the serum concentration of (a) GSA and (b) allantoin was
determined. Children were split into those with (+) and without (−) bronchiectasis (bronc) and the serum concentration of (c) GSA and (d) allantoin was determined.
The smaller sample set for allantoin is a result of limited sample availability. Bronchiectasis data was not always available accounting for the smaller sample set in
c) and d) compared to a) and b). Individual values are shown by symbols and the mean is represented by the bar ± SEM. Mann–Whitney rank test: ⁎P b 0.05,
compared with the uninfected group.

Fig. 4. Effect of infection and bronchiectasis on urinary GSA and allantoin in children with CF. Children with CF were split into those that were uninfected (− Inf),
infected with Pseudomonas aeruginosa (+PsA) and infected with any organism other than PsA (+Inf) and a) GSA and b) allantoin was determined. Children were
split into those with (+) and without (−) bronchiectasis (bronc) and the urinary concentration of c) GSA and d) allantoin was determined. The smaller sample set for
allantoin is a result of limited sample availability. Bronchiectasis data was not always available accounting for a smaller sample set in c) and d) compared to a) and
b). Concentrations were normalized using specific gravity ratios. Individual values are shown by symbols and the mean is represented by the bar ± SEM. Mann–
Whitney rank test: ⁎P b 0.05 compared with the uninfected group.
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of βENaC mice [30], in tracheal aspirates from ventilated
preterm infants [31] and in murine blood and urine as an
indicator of oxidative stress in a lupus nephritis model [32].
GSA in BAL of young children with CF has been shown to
correlate with levels of MPO and to indicate protein damage in
the lungs, evidence by increased levels of chlorinated proteins
[25]. The significant correlation between GSA in BAL and in
urine (and the trend for a correlation in serum) provides hope
that high urinary GSA (N0.2 μM) may be useful in indicating
the presence of pulmonary infections.

Allantoin, an oxidation product of uric acid, has been
measured in plasma as a biomarker of oxidative stress in acute
gout, rheumatoid arthritis and diabetes [17,33,34], but has not
yet been studied in cystic fibrosis. Here, we report a mean
serum allantoin concentration of 3.2 ± 1.3 μM, which was
similar to that of the control group of healthy adults in the gout
study (2.6 μM) [17]. The children in the present study were
clinically stable and were not suffering from acute pulmonary
exacerbations. Indeed, they had low CRP levels indicating a
lack of systemic inflammation [8]. Allantoin in the BAL did
correlate with measures of neutrophilic inflammation and of
oxidative stress in the lungs. However, the lack of correlation
between pulmonary allantoin and levels in the serum or urine
suggest that this may not be a useful urinary marker of CF lung
disease.

Biomarker studies using spot urine are greatly influenced by
the normalization factor used to account for urine dilution [35].
We used specific gravity as the normalization factor instead of
the commonly used urinary creatinine [36,37]. Creatinine is
known to be affected by a number of factors including age, sex
and antibiotic use [38,39]. We did not observe a relationship
between creatinine and age, gender or the use of antibiotics
in this population, possibly due to the small sample size.
However, we did find that creatinine concentrations were
higher in children with infections than in those without. An
increased tubular secretion of creatinine has previously been
observed for CF individuals [40], but the effect of infection was
not studied. Elevated urine creatinine may be an indicator of
lung infection in cystic fibrosis and it may be of interest to
explore the mechanism contributing to this association further.
However, these results do indicate that urinary creatinine is not
suitable for normalizing concentrations of urinary analytes in
children with CF. We did not find differences in urine specific
gravity related to infection status and suggest that using specific
gravity for normalization is more appropriate.

We do need to acknowledge limitations with the present study.
The sample size is small and the study is not powered to investigate
associations between biomarkers of neutrophilic inflammation
and clinical disease. In addition, the study population were a
convenience sample in whom samples of BAL, serum and urine
collected at the same time were available in the AREST CF
biobank. Samples were requested from uninfected children, those
infected with PsA and those infected with organisms other than
PsA. As such these children may not be representative of the total
ARESTCF population. Thus, the results we present here should be
interpreted as proof-of-concept data. Larger prospective studies
will be required to determine the true potential of measuring
urinary GSA as biomarker of neutrophil-induced oxidative lung
damage in young children with CF.

In summary, we show that measuring urinary GSA has the
potential to indicate the presence of pulmonary infection and
neutrophil-induced oxidative stress and warrants further
investigation as a non-invasive biomarker in CF.
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