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Abstract We present a framework for rapidly determin-

ing regions of interest (ROIs) from an unknown intensity

distribution, particularly in radiation fields. The vast

majority of studies on area coverage path planning for

mobile robots do not investigate the identification of

ROIs. In a radiation field, the use of ROIs can limit the

required range of exploration and mitigate the monitor-

ing problem. However, considering that an unmanned

aerial vehicle (UAV) has limited resources as a mobile

measurement system, it is challenging to determine ROIs

in unknown radiation fields. Given a target area, we

attempt to plan a path that facilitates the localization

of ROIs with a single UAV while minimizing the explo-

ration cost. To reduce the complexity of a large-scale

environment exploration, entire areas are initially adap-

tively decomposed using two hierarchical methods based
on recursive quadratic subdivision and Voronoi-based

subdivision. Once an informative decomposed subarea

is selected by maximizing a utility function, the robot

heuristically reaches contaminated areas, and a bound-

ary estimation algorithm is adopted to estimate the

environmental boundaries. The properties of this bound-

ary estimation algorithm are theoretically analyzed in

this paper. Finally, the detailed boundaries of the ROIs

of the target area are approximated by ellipses, and a

set of procedures are iterated to sequentially cover all

areas. Simulation results demonstrate that our frame-
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work allows a single UAV to efficiently explore a given

target area and maximize the localization rate for ROIs.

Keywords Environmental Monitoring, Regions of

Interest Coverage, Energy-Efficient Path Planning,

UAV

1 Introduction

In a large radiation field, it is important to localize

radiation-contaminated areas (hereinafter region of in-

terest [ROIs]) to monitor radiation effects and localize

hotspots, sources, and so on. Recent advances have en-

abled unmanned aerial vehicles (UAVs) to access and

navigate unstructured or cluttered environments. There-

fore, a quadrotor-type UAV equipped with dedicated

sensors can be an attractive platform for environmental

monitoring tasks, including radiation field monitoring.

Although many area coverage path planning methods

for mobile robots have been proposed, it is still difficult

to efficiently monitor a large field with a single robot.

Therefore, we aim to design a path planner that can

rapidly localize ROIs to reduce the exploration path of

a robot.

Radiation field monitoring has been commonly stud-

ied in robotics [14,17,34,35,40]. The goal of radiation

field monitoring is to plan a path from which the robot

can localize all contaminated locations in a given target

area. Considering that the contaminated locations could

be spatially distributed throughout the target area, a

search is needed to localize all of them. The required

tasks associated with such a search have inspired var-

ious methods for addressing the problem of coverage.

Spatial search techniques should be adjusted according

to the number of robots used for this application. In

cases wherein multiple robots are used, the target area



2 Nantawat Pinkam1 et al.

can be partitioned into smaller subregions to reduce

the search space for each robot. The search strategy is

benefited exclusively by the number of robots and the

communication among robots. However, in the case of a

single robot, the partitioning of the target area benefits

neither the exploration cost nor the accuracy.

The majority of coverage planning work has been

proposed for known environments [31,43, 45, 46]. These

approaches are often used to minimize the uncertainty

metric of a given map. A common choice is to utilize

an exploration method, such as a frontier-based method

[6, 44] or rapidly exploring random tree method [21, 47],

in a location where the uncertainty metric, such as the

entropy or mutual information metric, is high. However,

in many situations, a radiation map for the target area
is not available a priori ; therefore, the entire target area

must be covered to localize the contaminated locations.

Hence, complete coverage algorithms are often used

[13]. Even though complete coverage algorithms ensure

complete terrain visitation, they lack the opportunity to

optimize the localization rate of contaminated locations.

A method that estimates environmental boundaries

instead of aiming for complete coverage can decrease

the search time and reduce energy consumption [26, 37].

Here the path planning problem involves estimating the

boundaries of contaminated areas and allowing the robot

to sense the ROIs. However, when the environment is
unknown, it is difficult to plan a path that identifies the

interesting and not interesting areas. In conventional

algorithms for coverage planning with obstacles, the

path is usually generated to cover the free space of the

environment in an optimal fashion. In our problem, we

want to rapidly identify the locations and geometrical
size of ROIs rather than avoiding ROIs. When the robot

finds contaminated areas in an opportunistic fashion, it

can expedite the boundary estimation process for deter-

mining ROIs and can bypass the need to exhaustively

cover entire regions.The identification of ROIs in a ra-

diation field allows us to prioritize the search area in a

way that minimizes the exploration time of the robot.

This work aims to achieve coverage with a single

robot. Hence, we investigate an additional component

to the coverage problem by incorporating a localization

rate factor for the contaminated locations. The local-

ization rate factor should be taken into account when

exploring with a single robot because the target area is

sometimes too large for the robot to cover completely

with a limited exploration budget. Considering that the

goal of the robot is to localize all contaminated locations

as quickly as possible, the algorithm must behave as if

it is performing complete coverage over long operation

periods. This problem might be thought of as a target

acquisition problem [9]. However, there is an important

caveat. Target acquisition problems assume that the

robot is equipped with a sensor that has a wide field

of view. In our problem, the robot sensor works in a

pointwise fashion. Therefore, the robot needs to travel

to a location to obtain a measurement.

In this paper, we discuss the online version of this

problem, in which the coverage path of the robot needs

to be determined on the basis of information gain metric

from past explorations. To reduce the search space, we

initially partition the target area in a random manner.

Thereafter, we update the partition size according to
the sizes of the ROIs. We propose an optimal path plan-

ner, which extends the complete coverage algorithm to

include a localization rate factor. Under the assumption

that multiple ROIs exist in a given target area, the

proposed algorithm can increase the localization rate of

contaminated locations while guaranteeing a complete

coverage path over long operation periods.

The contributions of this work are as follows:

1. We formulate a method for the localization of ROIs

that requires no a priori information.

2. Our algorithm can rapidly localize ROIs and mini-

mizing the exploration time of a robot.

3. The proposed algorithm is complete, i.e., all contam-

inated locations are identified during the operation

of the robot.

4. By focusing on the limited computational capabilities

of a UAV serving as the mobile robot, the proposed

algorithm was made to robustly determine ROIs.

To discuss the aforementioned topics, this paper is

organized as follows. In Section 2, we investigate the
work related to this area. In Section 3, we describe the

formulation of the problem. In Section 4, we present
two heuristic coverage algorithms based on adaptive

hierarchical area decomposition. In Section 5, we briefly

explain the generalization process for the ROIs. Finally,

in Sections 6 and 7, we present the simulation results

and conclude our findings.

2 Related Work

Area coverage planning has been extensively studied in

robotics to establish a path over a target area in which

the robot covers all the locations. A traditional area

coverage algorithm has been modified and applied in

several applications. The proposed algorithm can solve

a different area coverage problem through generation

of paths that make efficient use of a limited travel time

and maximizing the probability of finding the radiation-

contaminated locations serving as the ROIs. This prob-

lem is somewhat similar to complete area coverage prob-

lems. Choset [7] conducted an early survey on coverage
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algorithms and classified the solution approaches either

based on heuristic or cell decomposition.

Heuristic methods explore the target area with prede-

fined rules or a set of behaviors. The widely used heuris-

tic approaches include lawnmower pattern, raster scan-

ning, inward spiral search, wall following, etc. Heuristic

search is computationally less expensive than cell decom-

position, but cannot guarantee the optimal performance.

On the other hand, cell decomposition decomposes

the target area into smaller areas. Galceran and Car-

ries [12] conducted a survey of an exact and uniform

decomposition of the target area by a grid of equally

spaced cells. Then, the coverage problem can be solved

as the Traveling Salesman problem(TSP) (considered

NP-hard). Subsequently, the Hamiltonian path is deter-

mined using the spanning tree algorithm, which visits

each cell once [11]. Recently, a variant of Hamiltonian

path has been used for the persistent coverage prob-

lem [16,27,32,33,41]. Nonetheless, if there are obstacles

in the target environment, it is impossible to generate

the Hamiltonian path. In such cases, the boustrophedon-

cellular decomposition solves this issue for bounded pla-

nar with known obstacles [38]. The key is to construct a

graph by decomposing the target area subject to obsta-

cle positions and finding a minimal cost tour through all

regions. In literature, we have seen an extension of that

algorithm while respecting sensor feedback [1,18,30,31].

If unknown obstacles exist in the environment, the Morse

decomposition becomes essential for determining critical

points in the target area, and incrementally creating a

Reeb graph that optimally solves the online coverage

problem [2]. Alternatively, the unknown obstacle prob-

lem can be solved using a temporal logic specification

constituting the safety components in a partly unknown

environment [20].

Regarding adversarial coverage in environmental

monitoring problems, Yehoshua [45] suggests a mod-

ification of the spanning tree algorithm; the target en-

vironment is divided into connected areas constituting

the safe/dangerous cells, and then covers safe areas be-

fore moving to dangerous one. Disadvantageously, this

work requires a map of threats prior, which may not

be possible. However, if we make an assumption on the

distribution of phenomena, for instance, a mine-laying

pattern in the minefield is a priori available, the proba-

bilistic demining algorithm [2] can solve our problem.

The shape of environmental boundaries has been

recently studied [3, 5, 25, 42]. Nevertheless, applying a

boundary estimation algorithm to our intended problem

is complex. The primary challenge is that the cover-

age planning assumes that all focused locations contain

similar features, whereas the boundary assessment con-

cludes that a cluster containing the contaminated sites

can be monitored by approximating only a closed bound-

ary. Several boundary estimation methods comprise two

parts: one that defines a threshold to be utilized as

gradient information, and another that minimizes the

square error between the sampling location and the de-

sired threshold to find the robot’s trajectory that close

to the level curve.

Although boundary estimation has not been applied

to the problem of area coverage [36, 39], some methods

have been assessed with the intention of reducing the

search area. For example, split-merge cells have been

utilized for the trapezoidal decomposition of the cell,

which is anticipated to be useful in agricultural applica-

tions. In multi-robot coverage methods, the partitioning

of the targeted area is standard, e.g., the Voronoi-based
coverage control problem introduced in Refs. [4,8,15,22].

Similarly, the recursive geometric subdivision was pro-

posed to monitor a spatial temporal sensitive area [19].

A Voronoi-based coverage control is closely associated

with our work in the sense that it considers the sizes

of various search robots and partitions the search area.

However, our method differs; the sizes of the contami-

nated sections are utilized in place of the sizes of the

various robots, and the section sizes are sampled from

the exploration of a single robot and are computed

online.

An important aspect of path planning is the opti-
mization of resource costs. Since robots have limited

endurance and sensing range, the coverage plan needs to

be optimized for finite resources, especially UAVs. Apart

from the traditional coverage planning where resource

costs are overlooked. An optimal persistent coverage

plan was proposed in [28], wherein the authors obtain a
collection of tours for multiple robots that every target

is visited by the robots and the minimum frequency of

which a target is visited is maximized. When a single

robot is used, a hierarchical planner was proposed in [23]

to compute the mode food ratio heuristic and priori-

tize search regions. [10] proposed energy-aware path

planning algorithm that minimizes energy consumption

while meeting a set of demands by using actual measure-

ment to derive energy model of the UAV. Then, the UAV

calculates velocity that minimizes energy consumption

over a specific distance.

Our work presents the opportunistic and iterative

environmental boundary estimation method for the area

coverage problem. The methodology is evaluated using

two strategies; boundary estimation and coverage plan-

ning, within a novel framework that localizes unknown

ROIs and uses an arbitrary initial robot position. The

novelty of the proposed framework is twofold. First,

we proposed a novel online framework to integrate the

environmental boundary estimation and area coverage
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problem. Second, we demonstrate the performance of

our two algorithms: recursive geometric subdivision and

Voronoi-based coverage.

Although the proposed framework is applied in the

context of field radiation monitoring with a UAV, our

approach is general, can be used with other mobile

robots, and can be scaled to other domains in which an

opportunistic collection of environmental phenomena is

present.

3 Problem Formulation

We are given a target area T , that contains radiation

sources. The strength of the target area can be sensed by

the UAV, and we assume that T can be decomposed into
a regular grid with n cells. Let us denote this grid by G.

Considering that radiation sources that modelled using

Gaussian mixture model (GMM) might be spatially dis-
tributed, G contains two types of cells, namely, free and

contaminated cells. Furthermore, nearby sources cumu-

latively affect the target area, thus resulting in a joint

distribution of measurement attributes. Let us assume

that cell (c1, c2, ..., cn) is associated with a nonnega-

tive measurement attribute (z1, z2, ..., zn). The UAV is

equipped with a sensor to make a pointwise measure-

ment z(t) at its position x(t) at time t. The ROIs in T

are those cells J := {ci|zi > ε} in which the UAV finds

zi > ε, where ε is a threshold value near zero, i.e., ε ≈ 0.

The contaminated areas are contiguous. Therefore, the

robot can trace such areas by tracking only to their

boundaries. Hence, the definitions of the contaminated

and free cells are quantified by a binary variable given

by the following:

pci =

{
0, if zi ≤ ε
1, otherwise

(1)

Fig. 1 shows an example of a 50 × 50 m2 world

map. Depending on the spatial locations of the radia-

tion sources, measurement attributes are also spatially

distributed throughout T . The dark blue cells are the

cells in which pci = 0. The other colored cells represent

the fact that measurement attributes are available such

that pci = 1. We can then find multiple ROIs while

splitting J, subject to spatial distances.

Definition 1 ROIs: Sets of cells that correspond to a

set of contaminated locations in a given target area T .

The global mission of the robot can be defined in

two different ways, that imply two different objective

functions:

– The minimum time to localize an ROI

Fig. 1 The dark blue cells have no measurement attributes,
whereas the other colored cells represent the measurement
attributes.

– The total time to localize all ROIs in T

Without loss of generality, we assume that the travel

time is proportional to the travel distance. Thus, we

will first use the boundary estimation technique that

minimizes robot exploration to localize an ROI. Second,

we will use the heuristic area coverage technique that

ensures the localization of all ROIs in T . The total time

is taken into account by summing the lengths of the

boundary estimation and heuristic area coverage paths.

Let us formally define these objective functions. First,

starting from an initial cell, we denote the coverage path

followed by the robot throughout the free cells by P.

We assume that |J|<< n, i.e., the contaminated cells

are far fewer in number than the total number of cells.

We define the event SP as the event wherein the robot

reaches any ROI, which is not localized beforehand.

Therefore, the cost of finding an ROI B(SP) can be

expressed as follows:

B(SP) =
∑
c∈P

(1− pci) , (2)

Therefore, the first objective is to find an online coverage

path that minimizes B(SP). Note that, in this objective,

the heading of the path is not important; once the

robot heuristically reaches any location of an ROI, the

boundary-tracking algorithm is used to determine the

ROI size.

For the second objective, we denote the sequence

of newly discovered ROIs along the coverage path

P. If k ROIs exist in T , we discretize P to a set

Q = {q1, q2, ..., qk}, where Q is the set of subseqences

of path qi that the robot used visit each ROI along P.

Considering that the travel time is proportional to the



Rapid Coverage of Regions of Interest for Environmental Monitoring 5

length of qi, we want to find the minimum-length paths

in set Q to localize all ROIs. Therefore, the total cost

C (P) that the robot use to localize a finite set of ROIs

is given by the followings:

C (P) =
∑
qk∈Q

B(Sqk) s.t. |Q|≤ |ROI|, (3)

where |Q| is the cardinality of set Q, and |ROI| is the

number of ROIs that are detected in T . If |ROI| is

given a priori, then our focus is to find the minimum

exploration time needed to achieve the number of ROIs.

We then derive the performance index (PI) of the robot

from Eq. (3). A formal definition of the PI is shown in

the following.

Definition 2 PI: PI of the robot is evaluated with

respect to the minimum explored path to localize all

ROIs.

Given that we do not know the exact number of
ROIs that exist in T , it is not possible to stop the

exploration of the robot when all ROIs are localized.

Hence, the exploration of the robot can be terminated

by the exploration budget. Otherwise, the robot’s task

is to plan an online path through T such that every ROI

is rapidly localized, subject to complete area coverage.

4 Adaptive Hierarchical Area Decomposition

and Coverage

Fig. 2 shows the overall schematic of our proposed sys-

tem. The algorithm we propose can be broken down into

three steps. In the first step, namely, the Adaptive Hi-

erarchical Area Decomposition, we adaptively partition
the target area in hierarchical order to reduce the search

space of the robot. We then find the subregions given

by the partition by using the Finding Subregions step.

Once the subregions have been determined, we examine

the utility of traversing each subregion as explained in

the Utility Function Design in the third step. In the

subregion that is determined to have maximum utility,

we plan a coverage path through the set of unvisited

cells. The robot then progresses along this path. If the

robot notices an ROI along its path, it will cease its
exploration more and iterate whole steps. Otherwise,

the whole steps will be iterated after traveling along the

entire path.

4.1 Adaptive Hierarchical Area Decomposition

To reduce the computational complexity while navigat-

ing a large environment, the search space for the path

planning needs to be at a tractable level. We argue that

this objective can be achieved by the adaptive parti-

tioning of the target area in hierarchical order. Given

the position of the ROIs, the hierarchical order is de-

termined by a local minimum distance with respect to

the relative position of the robot. Therefore, we propose

the use of recursive quadratic subdivision and Voronoi-

based partition to limit the search space. Fig. 3 shows

the overall overview of each algorithm. With a given

partition, our goal is to find an ROI through limited

exploration.

Recursive quadratic subdivision (RQS): The RQS al-

gorithm follows a greedy approach, wherein each step

leads the robot to the ROI nearest to its current location

that has not been covered yet. The main idea is that,

an optimal path is generated initially to include every

cell in T , which is induced from the grid cells. A simple

traveling salesman problem (TSP) algorithm is used to

generate this a type of path [24] because it minimizes the

path length between the current location of the robot

and all other unvisited cells in the grid. The robot then

starts to explore along this path. When a contaminated

cell is found, it switches to the boundary estimation

planner. An ROI is then computed from its estimated

boundary. Therefore, the robot determines a minimum

route from its location even if it executes the TSP path

in its entirety. If there are no contaminated cells in the

target area, the robot always optimally explores the

whole target area. However, in the presence of multiple

ROIs, this coverage path can be further optimized on

the basis of a simple heuristic search.

In the second phase, RQS finds a coverage path that

minimizes the travel distance needed to connect the

desired number of ROIs. Finding such a path is made

possible by subdividing the area into four quadrants

from the center of an ROI. As we iteratively localize

the ROIs, the geometric partitions are also subdivided

recursively. As a result, if the area turns out to be either

the entire target area or a subdivision of the previous

decomposition, it is further decomposed into four divi-

sions on the basis of the center of the ROI. The three

basic operations of this decomposition are as follows.

First, we generate a TSP path to explore the unexplored

cells optimally. Second, when an ROI is determined, we

terminate the exploration and decompose the area. Fi-

nally, the region of each division is determined by Alg.

1.

We demonstrate the RQS while the robot is covering

its free space by using an example depicted in Fig. 3(a).

The robot starts to cover the space in a vast cell by

generating a TSP path over the target area from its

starting point at the bottom left corner; the target area

is shown as the red rectangle in Fig. 3(a). When the
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Fig. 2 System Overview: The figure shows all the steps performed during the heuristic area coverage and those performed
by the ROI estimation algorithms. Starting from an arbitrary location, the robot can iteratively localize the desired number of
ROIs by using this framework.

robot reaches the cell in which pci = 1, which is the

unvisited location of a contaminated area, it finishes

covering the TSP path by moving along the path from

its current position to the end of the path. Given that

the contaminated area is unknown a priori, the robot

follows the boundary-tracking algorithm to cover it. The

robot then constructs an ellipse around the estimated

boundary to represent the ROI (orange ellipse in Fig.

3[a]). At this point, it encounters the quadratic subdivi-

sion at the center point of the ellipse (blue lines in Fig.

3[a]). The robot chooses the subdivision that maximizes

the utility function and repeats the step described above

(Fig. 3[a]). Considering that the hierarchical quadratic

subdivisions are connected to each other, the robot is

guaranteed to visit all subdivisions in the target area

and completely cover the space.

Voronoi-Based Subdivision (VBS): The VBS uses the

Voronoi-based approach to partition the target area.

The main idea is to partition the area by representing

the ROI centers as Voronoi centroids. In our case, the

ROI centers are not available a priori; thus, we introduce

a few changes to the original Voronoi-based partition

algorithm described in [29]. First, our proposed version

randomly partitions the target area by using four ran-

dom points inside the target area(the number four was

chosen to facilitate comparison with the four quadrants

from RQS). Second, it leads the robot to the centroid

nearest its initial location. Finally, similar to RQS, the

TSP algorithm generates the coverage path. The robot

starts to explore along this route. However, when a con-

taminated cell is found, it switches to the boundary

estimation planner. An ROI is then computed from its

estimated boundary. Unlike in RQS, the robot finds a

minimum route to an ROI from its location either while

traveling to the Voronoi centroid or while executing the

TSP path. Although these paths increase the probability

of finding an ROI, if there are no contaminated cells in

the subregion, the complete coverage path will be larger

than the RQS coverage path owing to the traveling ac-

tivity to the centroid. Note that, the initial search space

is limited by the random partition in VBS, whereas the

initial search space is the whole target area in RQS. The

partition of the target area is updated by the center

position of the detected ROI.

In the second phase, VBS finds a coverage path

that connects the desired number of ROIs. Finding

such a path is made possible by iteratively updating

the Voronoi centroids. The iterative updates of the cen-

troids lead VBS to generate an optimal partition of the
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(a) RQS decomposition: The area is decomposed into
four subdivisions on the basis of the center positions of
ROIs.

(b) VBS decomposition: Starting with the random par-
titions, the partitions are updated by the center positions
of ROIs.

Fig. 3 Area decomposition: Two different algorithms are
proposed to decompose the search space into smaller regions.
The RQS decomposes the area in a greedy manner, whereas
the VBS iteratively approaches optimal decomposition.

search space without changing the region that will be

explored. However, when the number of ROIs is greater

than the number of random initial points, the parti-

tion centroids are not only updated iteratively but also

constructed incrementally. The four basic operations of

this decomposition are as follows. First, we generate

randomized incremental construction of the partitions

to reduce the search space. Second, the robot moves to

the Voronoi centroid, and the TSP algorithm creates

a coverage path to optimally explore the unexplored

cells of a given subdivision. Third, when an ROI is de-
termined, we terminate the exploration and update the

Voronoi centroids. Finally, the region of each division is

determined by Alg. 1.

Algorithm 1 Finding subregions

Require: Graph, G = (V,E,B)
Ensure: Subregions, Λ
1: for all e ∈ E do
2: ψG ← intersect(e,B)
3: Eψ ← trim(e, ψG)
4: end for{Shorten initial edges}
5: for all b ∈ B do
6: ψb ← intersect(b, E)
7: Eb ← combination(ψb, 2)
8: Eb ← unique(Eb)
9: end for{Finding box edges}

10: E ← {{Eb} ∪ {Eψ}} {update graph}
11: for all p ∈ ψc do
12: Λ← ∪NeighborEdges(p,E)
13: end for{update partition area}

We demonstrate the VBS while the robot is covering

its free space by using an example depicted in Fig. 3(b).

The Voronoi diagram is the partitioning method used

to partition a plane with n points into specific subsets

of the plane such that each subset contains exactly one

generating point. In a typical Voronoi diagram, the set

of generating points is known a priori. The Voronoi

polygons are then constructed in such a manner that

every point in a given polygon is closer to its generating

point than to any other point. However, in our case, we

randomly initialize the generating points and iteratively

update their positions.

The robot starts to cover the space in a vast cell by

moving into the centroid of the current Voronoi region

(red dot), which is located in the rightmost corner; the

target area is depicted as the black rectangle in Fig.

3(b). Thereafter, the robot constructs a TSP path to

cover the given region. Whenever the robot reaches a

cell in which pci = 1, i.e., an unvisited location in a

contaminated area, it finishes covering the centroid path

or the TSP path. Given that the contaminated area is

unknown a priori, similar to that in RQS, the robot

follows the boundary-tracking algorithm to cover it. The
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robot then constructs an ellipse around the estimated

boundary to represent the ROI (orange ellipse in Fig.

3[b]). At this point, it encounters the update of the

Voronoi centroid. The Voronoi centroid of the current

region is replaced by the center point of the ellipse (blue

dot in Fig. 3[b]). If there are more ROIs than the number

of Voronoi centroids chosen initially, the overall Voronoi

partitions are reconstructed with updated centroids.

Note that the minimum number of subdivisions in this

case is four, and the algorithm can also cover more than

four subdivisions. The robot chooses the subdivision
that maximizes the utility function and repeats the

step described above (Fig. 3 [b]). Considering that the

Voronoi regions are connected, the robot is guaranteed

to visit all subdivisions in the target area and completely

cover the space.

4.2 Finding Subregions

At the end of the second phase, each algorithm finds

the subregions on the basis of its partition method. The

algorithm begins by creating the graph G = (V,E,B).

We represent the target area as a rectangular box B in

G. The initial partitions are edge set E which includes

edges with infinite lengths. To find subregions Λ, we first

shorten each edge e ∈ E subject to B. Let V be the set

of vertices that includes three types of subsets such that

V = {{ψG}, {ψb}, {ψc}}. Let ψG be the first subset of V

that represents the vertices at the intersection between

B and E. Furthermore, let ψb be the set of vertices

that represents the corner points of B, and let ψc be

the centroid of the ROIs. Once we trim the long edges,

the new partition is represented by Eψ. Second, we find

all possible combinations of edges on B and represent
them by Eb. G is updated by combining these two sets

of edges such that E ← {{Eb} ∪ {Eψ}}. Finally, we

group all subregions Λ by finding the neighboring edges.

Finding such neighbors is straightforward. Given ψc, an

anticlockwise walk along the E can sort such neighbors.

4.3 Utility Function Design

In the third phase, each algorithm finds the best search

space among all the subdivisions of the target area.

For this action, it computes the utility of each of the

subdivisions. The utility is designed to favor destinations

that offer higher expected information gain. Throughout

this work, we use an explored grid map m to model the

environment. This map is a binary map in which each

cell represents visited or unvisited information. Let i be

the index of each subdivision, and the division of such

a map satisfies the following equation:

m =
∑
i

m[i]. (4)

An action at generated at time step t is represented

by a sequence of relative movements at = ût:T−1 which

the robot must perform starting from its current position

xt. During the execution of at, if the robot finds a

contaminated cell along its path, it estimates an ROI

on the map. Therefore, the explored trajectory of the

robot indicates some of the cells in m:

x1:t = ∃c ∈ m. (5)

In case the robot finds an ROI on the map, we must

treat the ROI cells differently. We assume that traveling

inside an ROI is redundant; thus, we want to avoid such

a region. Therefore, the cells bounded by an ROI are

considered similar to visited cells. Let dt be the set that
represents these cells as follows:

dt = {∀c ∈ ROI1,∀c ∈ ROI2 · · ·}. (6)

Assuming that each cell c in m is independent of the

other cells, the posterior entropy of m can be computed

as follows:

H(p(m|x1:t, dt)) = −
∑
c∈m

p(c) log p(c)+

(1 + p(c)) log(1− p(c)).
(7)

Given a subdivision, the coverage path should include

all cells when computing the expected information gain

because the robot does not know when it will find an

ROI along its path. Therefore, entropy of the target

subdivision can be expressed as follows:

H(p(m[i]|x[i]t+1:T , dt, at)) = −
∑
c∈m[i]

p(c) log p(c)+

(1 + p(c)) log(1− p(c)).
(8)

To compute the information gain of a subdivision,

we calculated the change in entropy caused by the inte-

gration of posterior and predicted prior into the world

model of the robot as follows:

I(m[i], at) = H(p(m|x1:t, dt))−H(p(m[i]|x[i]t+1:T , dt, at)).

(9)

After computing the expected information, the util-

ity for each action under consideration, we select the

action a∗t with the highest expected information:

a∗t = arg max
at

I(m[i], at). (10)
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There are some studies on exploration and mapping

problems that consider another quantity in addition to

the information gain in Eq. (10). This quantity is the cost

for reaching the subdivision. However, we observe that

adding such a quantity to the utility function decreases

the overall performance of both algorithms. Therefore,

every time the robot has to make a decision as to where

to go next, it uses only an information maximization

metric to determine the action a∗t .

5 Finding ROIs

We employ a boundary estimation algorithm to locate

the ROIs by using the proposed exploration method.

In this section, we first explain how to generalize an

arbitrary boundary. Thereafter, we will explore general-

ization properties. Considering that the ROIs are func-

tions of the boundaries, we will focus only on boundary
estimation.

5.1 Environmental Boundary Generalization

ROIs over the target area T are dependent on the bound-

ary line estimated by the environmental boundary al-

gorithm. Memorizing a complex boundary is computa-

tionally expensive; therefore, we require the parametric

estimation of the boundary to obtain a tractable level

of computation.

Definition 3 Boundary line: A line is said to be a

boundary line if it represents the intersection between a

contaminated area and noncontaminated areas.

Assume that a contaminated area δA is a nonconvex

set in which the continuous boundary is defined by a

level set δA as follows:

δA =
{
x ∈ R2|z(x) = β

}
, (11)

where β is the measurement threshold.

The boundary algorithm ensures that an environ-

mental boundary can be estimated by tracking the robot

states in such a manner that δA = {x1:t}. When the

exploration is terminated, this set δA can be used to

estimate the best fit to an ellipse. This generalization

is performed by using the least squares criterion on set

δA. We also consider the possible tilt of the ellipse from

the conic ellipse representation:

ROI(δA) = aSx
2 + bSxSy + cSy

2 + dSx + eSy + f = 0,

(12)

where {Sx, Sy} ∈ δA and a, b, c, d, e, and f are the pa-

rameters for a second-degree polynomial equation. After

the estimation, the tilt is replaced by a rotation ma-

trix from the ROI, and the rest of the parameters are

extracted from the conic representation.

5.2 Analysis of Boundary Estimation Algorithm

Proposition 1 Given a contaminated area Ai ∈ A, the

measurement attribute of a location x is not available if

and only if x /∈ Ai.

Proof Assume that the cardinality of A is one for a given

T . To prove this proposition, we will first show that all

locations bounded by boundary δAi are important and

all locations outside the boundary are negligible.

The sufficiency of this proposition is trivial, and we

can easily prove it by using Definition 1. After using

Definition 1, z(x) > β (where β represents the boundary

threshold) if x is in close proximity to the sources. By

using Definition 3, we can say that all sources are covered

by the boundary lines. Given that β represents the
boundary threshold, we can conclude that ∀x ∈ Ai,
where z > β is bounded by δAi. Similarly, the necessity

of this proposition also follows from Definition 1. Let

xh be the hotspot location for Ai, where z(xh) is a

maximum subject to ∀x 6= xh. As the robot travels far

from xh, the following relationship holds by Definition

1: z(xh) > z (∀x 6= xh). When z(x) << z(xh) i.e., the

measurement of x is also less than xh, we neglect these

locations by drawing the boundary line. Therefore, for

any location outside the boundary line, the measurement

is z(x) < β and it is negligible.

Proposition 2 Let δAi be the estimated area gener-

ated by the boundary-tracking algorithm. Then Ai is a

contaminated area if the effects of all nearby sources can

be described jointly by the area shape.

Proof This is true by the construction of Eq. (11). In

particular, given that δAi is continuous, the contami-

nated area Ai must be continuous. Thus, the continuous

Ai represents the joint effect of all nearby sources.

It is evident from Proposition 2 that the boundary-

tracking algorithm can estimate an ROI. Once the

boundary-tracking algorithm computes the environmen-

tal boundary, we set δA. We then determine the ROI by

fitting an ellipse to the sample points of δA. This gener-

alization is performed by minimizing the least squares

distance between the sample points and the conic repre-

sentation of the ellipse. We extract the parameters from

the conic representation by removing the tilt. There-

after, we will explain the manner in which to extend

this approach to find multiple ROIs.
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Lemma 1 Given a target area T , if δA1 and δA2 are

the two boundaries, then δA1 ∩ δA2 = ∅.

Proof Suppose δA1 ∩ δA2 6= ∅. Thereafter, the contam-

inated area A1 must be overlapped with A2, and this

contradicts Proposition 2.

Lemma 1 1 implies that the boundary-tracking algo-

rithm can efficiently separate the contaminated areas.

Theorem 1 Given a target area T , the boundary algo-

rithm can estimate the boundary of every contaminated

area, i.e., ∀δAi ∈ A.

Proof Suppose that there are n contaminated areas in T

such that n = |A|. We then use mathematical induction

to prove this theorem.

– Base case: If n = 1, it is trivial that the bound-

ary algorithm can estimate a unique boundary of

the contaminated area δAi without overlapping any

other contaminated areas.

– Induction step: Suppose that n = 2. There are two

cases for which the estimated boundaries are not

equal to n. In the first case, the estimated boundaries

are greater than n, which is impossible because this

contradicts Definition 3. In the second case, the

estimated boundaries are less than n, but this is

impossible because this situation contradicts Lemma

1. Therefore, the estimated boundaries are exactly

equal to n as required.

6 Simulation Results

To find the shortest coverage path, we perform four

different experiments. We assume that the target area

contained five ROIs at most. The performance of each

algorithm is evaluated by the distance used to cover the

area. To demonstrate efficiency, we start by localizing

two out of the five ROIs and conclude by localizing all

five ROIs. We also analyze the worst-case performance,

and we present a statistical analysis of two algorithms

using 20 trial runs. The performances of the algorithms

vary significantly from each other. In particular, we

observe a noticeable difference in the algorithms when

localizing uniformly distributed random ROIs. To com-

pute efficiency, the ROI shapes must remain fixed for

each algorithm. We then overlook the additional path

cost required to localize the ROIs.

6.1 Finding the Coverage Path that Connects the

Desired Number of ROIs

We now consider the case of finding the number of ROIs

that meets the desired level of exploration. Therefore, we

focus on the shortest coverage path for a given number

of ROIs. We consider a 50×50m2 grid area in which five

uniformly distributed random ROIs are located. Start-

ing from an initial location (1, 1), the robot must find

the minimum coverage path that connects the desired

number of ROIs. The coverage path can be found by

adjusting the cost to be inversely proportional to the

unexplored area. In other words, the robot explores the

most unexplored region first.

Fig. 4(a) shows an example for the RQS algorithm.

In RQS, the initial search space is fixed as the whole
target area. Once an ROI is found in a subregion, the

search space is subdivided into four regions on the basis

of the center position of the detected ROI. The robot

avoids exploring the cells bounded by the ROI and

starts its exploration from the nearest corner position

of a new subregion. When the next ROI is found, only

that subregion is divided into four more divisions again.

These processes are iterated until the end of the mission.

We observe that a smaller search space leads to a more

efficient RQS. Although the complexity of the TSP

algorithm increases with the dimensions of the search

space, a basic reason for this is that RQS sequentially

narrows down the search space, thus resulting in faster

convergence when the ROIs are located close together.

However, this type of heuristic subdivision may cause

the traveling time of the robot from its current position

to the unexplored region to increase.

Fig. 4(b) shows an example for the VBS algorithm. In

VBS, the initial search space is generated by randomly

choosing four points, namely, the Voronoi centroids,

inside the target area. The initial search space is then

subdivided into four regions on the basis of Voronoi
centroids. The robot moves to the centroid of a Voronoi

region first and exhaustively searches for an ROI within

that region. When an ROI is found while traveling to

the centroid or searching the entire subregion, the robot

updates the Voronoi diagram. Similar to the RQS, the
robot avoids exploring the cells bounded by an ROI.

These processes are iterated until the end of the mission.

We have observed that VBS is more efficient than RQS

because of the initially smaller search space. However,

the VBS requires at least three points to partition the

entire search space optimally. When there are less than

three ROIs in the total area and when the robot has to

localize all of them, the performance of the VBS is not

stable compared with that of the performance of the

RQS.

6.2 Performance Comparison

Fig. 5 shows a performance comparison. To access the

long-term performance of each algorithm, we perform
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(a) RQS coverage paths on a sample map with uniformly
distributed random ROIs. The blue lines in the upper fig-
ures show the coverage path, and the colored lines are the
partitions of the target areas. A region is divided into four
subregions on the basis of the centers of ROIs. For a new
region, the searching process is started from the corner.
The search spaces are iteratively reduced according to the
positions of the centers of ROIs.
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(b) VBS coverage paths on a sample map with uniformly
distributed random ROIs. The dark green lines in the upper
figures show the coverage path, and the colored lines are the
partitions of the target areas. The centroid of each region is
represented by the same colored cycle. For a new region, the
searching process is started from the centroid. The partitions
are iteratively updated on the basis of the true positions of
the centers of ROIs.

Fig. 4 Coverage path: The robot starts the coverage in
cell (1, 1) and detects any three out of five ROIs. The shape of
each ROI is elliptical and is represented in a unique color. The
lower grid map represents the coverage map. The measured
cells are indicated in black. A cell is called to be measured if
it is either included in the coverage trajectory or bounded by
the detected ROIs. In general, the coverage path of VBS is
shorter than that of the RQS.

the same experiment 20 times while gradually increasing

the target numbers. Figs. 5(a), (b), (c), and (d) show the

results in terms of the percentage of the area covered.

We divide the given target area into three different

regions: (1) explored by the robot, (2) covered by the

ROIs, and (3) unexplored. The goal is to minimize the

explored region. To make a fair comparison, we use

five uniformly distributed random ellipses and try to

find the shortest path that connects two, three, four,

and five ROIs. For these, the regions covered by ROIs

represent 6%, 9%, 13%, and 16% of the target area. The
unexplored region is then determined by subtracting the

covered and explored regions from the total area.

The reduction in search space directly influences the

explored areas. When the target number of ROIs is

less than the total ROIs in the target area, the robot

dramatically reduces the region explored. In the worst-

case scenario, in which the robot must localize all five

ROIs, the robot is required to travel to more locations to
find the ROIs, thus resulting in the exploration of more

regions. However, the performance of each algorithm

is not stable, and the error bars on the bars in Fig. 5
represent their standard deviations. For both algorithms,

the deviation increases with the number of target ROIs.

It is evident from Fig. 5 that the VBS always out-

performs the RQS because of its optimal search space

division strategy. Furthermore, when the number of tar-

get ROIs is less than the total number of ROIs, the VBS

significantly reduces the explored region compared with

the RQS. We report the numeric performance compari-

son between the VBS and RQS in Fig. 5. Furthermore,

Fig. 6 shows the performance of the same algorithms

with the same number and size of the ROIs, the only

difference being that the grid area has been expanded
to 100× 100m2. The results are similar to those of the

50× 50m2 grid area.

7 Conclusion

In this paper, we discuss the ROI-determination prob-

lem for a large environment and its various aspects.

First, we propose a novel online framework to integrate

the environmental boundary estimation and area cov-

erage problems. Second, we theoretically analyze the

properties of the boundary estimation algorithm which

is deemed to best satisfy such conflicting requirements.

Third, we propose two different adaptive area decom-

position and search algorithms to rapidly localize the

desired number of ROIs: RQS, which uses a greedy-based

approach for reducing the search space, and VBS, which

uses an optimal partitioning strategy for updating the

search space. Fourth, we demonstrate these algorithms
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Fig. 5 Area coverage: Every bar chart is generated from
20 trial runs of each algorithm in a 50× 50m2 grid area. The
performance is evaluated by comparing the size of following
areas: the unexplored, covered, and explored areas. The error
bars represent the standard deviations for each area.
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Fig. 6 Area coverage performance in a 100×100m2 grid area
with five unknown ROIs. The result is similar to those with
the 50× 50m2 grid area.

in a simulated environment and statistically analyze

their relative performances.

The simulation results show that VBS generally cre-

ates a coverage path that is shorter than the coverage

path produced by RQS. VBS has clear benefits when

handling fewer ROIs because it performs the global plan-

ning of the coverage according to the size of the target

area. By contrast, RQS plans only local-best decompo-

sition, thus resulting in an overall poor performance.

Both algorithms do not require the complete coverage

of the target area and significantly reduce redundant

exploration. By comparing the result of all experiments,

we show that the total area that the robot is required

to explore is smaller than the total unexplored area.

Furthermore, the robot does not need to visit the areas

covered by ROIs. As a result, the required exploration

distance to determine ROIs is always less than that used

by complete area coverage algorithms even in worst-case

scenarios.

In the future, we would like to extend the algorithms

to multi-robot systems. We would also like to consider

the problem associated with more complex environment

and nonstationary environmental boundaries.
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