
A Case for Combinatorics: A Research Commentary

Elise Lockwood
Oregon State University

Nicholas H. Wasserman
Teachers College

Erik S. Tillema
Indiana University

Abstract. In this commentary, we aim to make a case for the explicit inclusion of 
combinatorial topics in the curriculum – both in K-12 classrooms and in introductory 
postsecondary mathematics courses – where it is currently essentially absent. To do so, we 
suggest ways in which researchers might inform the field’s understanding of combinatorics and 
its potential role in curricula. We reflect on five decades of research that has been conducted 
since a call by Kapur (1970) for a greater focus on combinatorics in mathematics curricula. We 
offer five assertions about combinatorics, including three existing assertions and two new 
assertions that relate to increasingly relevant trends in mathematics education. Specifically, we 
discuss the following in making our case for combinatorics: 1) Combinatorics is accessible, 2) 
Combinatorics problems provide opportunities for rich mathematical thinking, 3) Combinatorics 
fosters desirable mathematical practices, 4) Combinatorics can contribute positively to issues of 
equity in mathematics education, and 5) Combinatorics is a natural domain in which to examine 
(and develop) computational thinking and activity. As we discuss each of these ideas, we 
summarize and synthesize existing research and offer new ideas for research. Ultimately, we 
hope to make a case for the valuable and unique ways in which combinatorics might effectively 
be leveraged within K-16 curricula, and we hope to elevate its status in the mathematics 
education research community.
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A Case for Combinatorics: A Research Commentary

1. Introduction and Motivation

Although there have been recent exceptions, the K-16 mathematics curriculum has remained 

largely unchanged for decades. Calculus, an important area of mathematics developed in the 17th 

century, remains the focal point of much of student’s requisite mathematical learning, driving the 

algebra-heavy curriculum of middle and secondary schools. A common course sequence for high 

school students to take is a year studying each of Algebra, Geometry, Algebra II, and 

Trigonometry/Pre-Calculus. Given this course sequence, it would not be uncommon, or untrue, 

for such students to conclude that algebra is mathematics. Yet while the world has changed, 

perhaps most drastically in the realm of computing and technology, course sequences in 

mathematics have remained the same. We see this as problematic and detrimental for several 

reasons that we elaborate in this paper. 

The goal of this commentary is to make a case for combinatorics. That is, we aim to make a 

case for the explicit inclusion of combinatorial topics in the curriculum – both in K-12 

classrooms and in introductory postsecondary mathematics courses – where it is currently 

essentially absent. We regard such inclusion as beneficial both to students and to society. For 

students, this inclusion both provides accessible opportunities for inclusion around mathematical 

learning, and strengthens their mathematical development by deepening their mathematical 

thinking and expanding their notions of mathematics. For society, this inclusion offers 

opportunities to improve civic engagement in a technological world. 

As a research commentary, we specifically look at how existing research has, and future 

research could, draw the field’s attention to the importance of combinatorics and its potential as a 

key element of K-16 curricula. We frame the commentary by focusing on five assertions that 
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emphasize the importance of combinatorics in mathematics education. Specifically, we discuss 

each of these assertions in turn: 1) Combinatorics is accessible, 2) Combinatorics problems 

provide opportunities for rich mathematical thinking, 3) Combinatorics fosters desirable 

mathematical practices, 4) Combinatorics can contribute positively to issues of equity in 

mathematics education, and 5) Combinatorics is a natural domain in which to examine (and 

develop) computational thinking and activity. Our goal is both to summarize existing research in 

combinatorics education to date (particularly as such work addresses each claim above), and to 

highlight areas in which additional research is needed to provide further evidence to substantiate 

these claims. In this way, we can both articulate the current state of research in combinatorics 

education and provide an agenda for future research. Three of these assertions are rationales 

based in existing reasons and calls related to combinatorics (in particular Kapur’s (1970) appeal 

for more research into combinatorics education nearly fifty years ago), and we believe that these 

rationales are still relevant today. In discussing them, we demonstrate ways in which researchers 

have attempted to answer those calls in the intervening fifty years by summarizing existing 

research, and we highlight potential places where researchers could continue to make inroads in 

substantiating these particular claims by suggesting avenues for future research. Then, we 

highlight two new arguments for the importance of combinatorics in mathematics education that 

previously have not been emphasized explicitly, but that align with two trends in mathematics 

education research today. By highlighting these new rationales, we argue that we are making a 

timely case for combinatorics education and research, offering both a retrospective view of what 

has been done in the fifty years since Kapur’s paper, and proposing a forward-looking agenda for 

what research might continue to support the case that combinatorics deserves a substantive place 

in K-16 mathematics education. 
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Before we articulate the problem that we are trying to address, we first briefly specify what 

we mean by combinatorics in this paper.1 Combinatorics is a topic that sometimes faces 

definitional confusion (Berge, 1971), and we adopt the following characterization of the term 

combinatorics. In his Introductory Combinatorics textbook, Brualdi defines combinatorics in the 

following way: “Combinatorics is concerned with arrangements of the objects of a set into 

patterns satisfying specified rules…Thus, a general description of combinatorics might be that 

combinatorics is concerned with the existence, enumeration, analysis, and optimization of 

discrete structures” (Brualdi, p. 1-2, emphasis in original; note here discrete here means non-

continuous). Others offer similar definitions (see, e.g., Cameron, 1994; English, 2005; Mazur, 

2010; Tucker, 2002), all of which capture the idea that combinatorics tends to involve discrete, 

finite sets or structures, answering questions about the existence, enumeration, and properties of 

such structures. 

2. Context and Motivation – 
A Brief History of Combinatorics in the Curriculum in the U. S.

We first note we are writing from the perspective of researchers in the United States where 

the problem we are trying to articulate is especially acute. However, we acknowledge that in 

some countries, including Germany (Höveler, 2017), Israel (Eizenberg & Zaslavsky, 2003, 

2004), Brazil (Borba, Pessoa, Barreto, & Lima, 2011), Spain (Batanero, Navarro-Pelayo, & 

Godino, 1997; Batanero, Godino, & Navarro-Pelayo, 2005; Godino, Batanero, & Roa, 2005), 

and Hungary (Vanscó, Beregszászi, Burian, Emese, Stettner, & Szitányi, 2016), to name a few, 

combinatorics already has a strong presence in school curricula. We do not have space to address 

1 We note that many of the arguments we are making could also be applied to discrete mathematics more broadly; 
however, we focus on combinatorics both because, as combinatorics education researchers, we are most qualified to 
speak more specifically about combinatorics, and because we hope a narrower focus will help to sharpen our 
arguments.
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how combinatorics is treated in each of these other countries, but we use the fact that many other 

countries do include combinatorial topics as motivation to enact change in the U.S. We now 

briefly elaborate on the status and history of combinatorial topics in mathematics education in 

the U.S., which is part of our motivation for writing this commentary. 

Combinatorics is a subset of discrete mathematics, and so some discussion of combinatorics 

necessarily involves treatment of discrete mathematics more broadly. In early standards 

documents, NCTM (1989) included discrete mathematics (in addition to algebra, functions, 

geometry, trigonometry, probability, statistics, pre-calculus) as an explicit content area to be 

incorporated across the high school curriculum, and NCTM offered resources to support this 

(e.g., NCTM, 1991). This was relatively forward-thinking; it was based on NCTM’s (1980) call 

for action that explicitly made a goal of having a “flexible curriculum, with a greater range of 

options…to accommodate the diverse needs of the student population” (p. 17). Indeed, the 

specific inclusion of discrete mathematics (including combinatorics) in the 1989 standards might 

have even been in response to Kapur’s calls in the 1970s, or to other societal developments such 

as handheld computing devices like calculators and personal computers. Some states, such as 

New Jersey, made significant headway into having discrete mathematics standards in schools 

(Rosenstein et al., 1997). 

Yet in the decades that have followed, discrete mathematics has slowly been removed from 

the K-12 curriculum, and it continues to be on the periphery in undergraduate mathematics. Only 

a decade after the 1989 standards, in NCTM’s (2000) standards document, discrete mathematics 

was no longer an explicit content area; there was only one mention of a combinatorial topic in 

the Grade 9-12 standards for Number and Operation: “develop an understanding of permutations 

and combinations as counting techniques.” There were some combinatorial topics that were 
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obliquely included with the data and probability strand (e.g., computing probabilities, sample 

space, etc.), but incorporating combinatorial topics solely within probability is not clearly 

representative of including a combinatorial topic within the curricula. The more recent Common 

Core State Standards for Mathematics (National Governors Association Center for Best 

Practices, 2010) implemented in a majority of states in the U.S., further separate discrete 

mathematics from schools. There are two standards that make explicit mention of combinatorial 

ideas – one in relation to algebra and the binomial theorem, the other in relation to probability; 

however, both of these are (+) standards, which means they are optional – i.e., only for those 

intending further mathematical study. In a concrete sense, combinatorics has been relegated out 

of the K-12 curriculum in the U.S. – it is not framed as something that students should study as 

part of their mathematical education. We interpret this development to be a move backward, 

particularly given how society is changing technologically; a narrowing and standardization of 

mathematics, rather than an injection of diversity and flexibility into the curriculum. 

Furthermore, at the college level, although students have more opportunities to engage with 

combinatorial topics, typically these arise either as a small unit in a transition-to-proof discrete 

mathematics class, or, perhaps, as an elective course for mathematics majors. That is, 

combinatorics again generally appears to be viewed as an unimportant aspect of mathematical 

study. 

Now, one might argue these developments happened for good reason, and society learned a 

lesson and changed course after having attempted to incorporate discrete mathematics into 

schools in the 1990’s. We, however, believe these developments have been a misstep. Somehow 

over the years, the case for combinatorics became lost, and educators and policymakers forgot 
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(or never internalized) the promise for how beneficial combinatorics could be for students. With 

this commentary, we aim to formulate and elaborate this case for combinatorics.   

3. Renewing assertions about the nature of combinatorics in mathematics education

We acknowledge that there have been individuals, and groups, who have made a general case 

for discrete mathematics (and, to some extent, combinatorics) in the past. We seek to build on 

such prior arguments. In particular, we take time here to elaborate and explore some of these 

previous rationales, attempting to defend why we have something novel to contribute to the 

conversation. We first note that in 1970, Kapur published an article in Educational Studies in 

Mathematics, entitled “Combinatorial analysis and school mathematics,” which argued for 

further inclusion of combinatorics into the curriculum even fifty years ago. We provide his list of 

11 reasons in Figure 1. 
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Figure 1: Kapur listed reasons for why combinatorial analysis are important for school 
mathematics (Kapur, 1970, p. 114).

Kapur did not offer empirical evidence for these claims, and this was not his goal. Rather, he 

sought to argue his case and to suggest that the field take up the mantle of exploring and 

substantiating his claims via research. He presented a number of combinatorial problems that 

illustrated his points, and he said the following in his conclusion: 

It will require a great deal of investigation, research, and experimentation to find to which 
problems of combinatorial mathematics can go to school, but it is obvious that along with 
algebraic structures and geometric transformations, combinatorial problems provide a rich 
storehouse for modernizing and revitalizing our school curriculum. It is the author’s hope 
that this source will be fully exploited in the future (Kapur, p. 127). 
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Now, nearly fifty years later, we can examine how combinatorics education has advanced and 

how Kapur’s calls have been addressed. 

Notably, in the intervening there have been other efforts to address the need for more discrete 

mathematics in the curriculum, most of which involved broad discussions of discrete 

mathematics (rather than combinatorics specifically). These included, for example, the work of 

Rosenstein et al. and the DIMACS group about discrete mathematics in schools (e.g., DeBellis & 

Rosenstein, 2004; Rosenstein et al., 1997) and the Topic Study Group (TSG) 17 from ICME 

2016, which focused on the teaching and learning of discrete mathematics and yielded a book 

that argued for the value of discrete mathematics (e.g., Hart & Sandefur, 2017). Others have been 

more specific to combinatorics. English (2005), for example, highlighted a 1986 Working Group 

(K-4) of the Commission on Standards for School Mathematics that recommended 

combinatorics, in elementary school, as “an area of exploration within two of its themes for 

curriculum development” (p. 121); she also argued that much of Kenney and Hirsch’s (1991) 

Discrete Mathematics across the Curriculum, K-12 (Kenney & Hirsch) focused on “the teaching 

of combinatorics especially in the middle and secondary school years” (2005, p. 122). While 

these publications did not typically entail research studies, these chapters offered instructional 

ideas and motivations for incorporating combinatorics practically into the classroom (e.g., 

Althoen, Brown, & Bumcrot, 1991; DeGuire, 1991; Dossey, 1991; Evered & Schroeder, 1991; 

Miller, 1991; Schielack, 1991; Spangler, 1991). In addition, Maher and incorporated 

combinatorics as a key content area in their longitudinal study out of Rutgers University, and 

their work culminated in a book entitled Combinatorics and reasoning: Representing, justifying 

and building isomorphisms (Maher, Powell, & Uptegrove, 2011) that highlights particularly 

important aspects of combinatorics among school-age children, and other teachers and 
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researchers have made arguments for the importance of combinatorics over the years (e.g., 

Batanero et al., 2005; Hurdle, Warshauer, & White, 2016; Sriraman & English, 2004). 

4. Assertions about Combinatorics:
Findings from Research and Opportunities for Additional Investigation

In this section, we highlight five assertions about why, and in what ways, combinatorics 

might have value in school mathematics. For each assertion we will summarize and exemplify 

existing literature related to that assertion, and in this way, this section also offers an extensive 

literature review of research on combinatorics education. Then, we will also suggest ideas for 

what additional research might be needed to better understand and substantiate each assertion 

systematically. Our aim is not merely to state the problem, but to present some practical ideas for 

the kinds of research studies that might help make a case for (and ultimately enact change in 

terms of) incorporating combinatorics into K-16 curricula.  

4.1 Combinatorial Tasks Are Accessible and Require Little Mathematical Background 
Knowledge

One assertion is that combinatorics, as a mathematical domain, is accessible. By accessible, 

we mean that combinatorics problems are characterized by: i) asking concrete questions with 

little technical terminology, (i.e., what the question is asking is easy to understand, with solutions 

often being concrete counting numbers that answer the question “how many”); and ii) requiring 

few mathematical prerequisites for a student to have a chance to explore solutions to those 

problems. Accessibility is an important consideration for thinking about education and school 

mathematics, and the more accessible the material, the fewer barriers there are to having students 

conceptually understand and engage in solving mathematical problems. An implication of 

combinatorics being accessible is that even very young children, as well as students who have 

not had much success with algebraic (or other mathematical) topics, have a chance to 
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meaningfully understand and engage with interesting problems. We discuss how combinatorics 

education researchers have implicitly supported this assertion. We then suggest some ideas for 

research studies that could address this claim more explicitly.

Researchers have implicitly highlighted the accessibility of combinatorics by demonstrating 

student reasoning about counting problems in their studies. In studies about combinatorial 

learning (e.g., Batanero, et al., 1997; English, 1991, 1993; Eizenberg & Zaslavsky, 2004; 

Fischbein & Gazit, 1988; Fischbein & Grossman, 1997; Fischbein, Pampu, & Manzat, 1970; 

Lockwood & Gibson, 2015; Lockwood & Purdy, 2019a, 2019b; Lockwood, Wasserman, & 

McGuffey, 2018; Maher & Martino, 1996a; Maher & Martino, 1996b; Maher, et al., 2011; 

Tillema, 2013, 2014, 2018, in press; Tillema & Gatza, 2016), counting problems often arise from 

every day contexts. This tends to be true of the field of combinatorics in general, but it is 

certainly true of the set of problems explored in such research. For instance, consider a problem 

like the Four-Topping Pizza Problem discussed by Maher, Sran, & Yankelewitz (2011), and at 

length throughout Maher, et al. (2011): 

Kenilworth Pizza has asked us to help design a form to keep track of certain pizza choices. 
They offer a cheese pizza with tomato sauce. A customer can then select from the following 
toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a 
customer have? List all the possible choices. Find a way to convince each other that you 
have accounted for all possibilities (Maher, Sran, & Yankelewitz, 2011, p. 69). 

The students were in fifth grade when they solved this problem. In reading this problem, we 

suggest two things. First, it is not difficult to understand what the question is asking. Ordering 

pizzas is a real world, concrete idea, something children may be familiar with. Further, there is 

no “mathematical terminology” that needs to be unpacked in the question. Second, even if 

students do not know how to solve the problem (or could not articulate a formula or general 

approach), they often can begin to symbolize the set of outcomes (e.g., a sequence Pi, M, S 
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would indicate a pizza had pepperoni, mushrooms, and sausage). This is in fact what Maher et al. 

document, that students represented and listed outcomes, ultimately engaging in meaningful 

justification to explain their work. 

At the elementary level, researchers have shown that even very young children are able to 

successfully symbolize sets of outcomes with the aid of concrete materials (English, 1991, 1993; 

Maher, Sran, Yankelwitz, 2010; Nunes & Bryant, 1996). At the middle grades or high school 

levels researchers have demonstrated that students can symbolize the set of outcomes using 

written lists (Speiser, 2011, Tillema, 2013), tree diagrams (e.g., Fischbein & Gazit, 1988), or 

arrays (Tillema, 2018). Researchers have demonstrated how symbolizing the set of outcomes can 

lead to productive and important conversations about fundamental aspects of problems like 

whether to include ordered outcomes (Tillema, in press) or how to organize a list to determine 

whether it contains all possible outcomes (Muter & Uptegrove, 2011). Even with partial listing, 

students with no prior combinatorial experience can identify patterns and structure within partial 

lists of outcomes (Lockwood & Gibson, 2016). This is what we mean when we say that a 

counting problem is accessible—students are able to understand what a question is asking, they 

can begin a solution path by symbolizing outcomes, and in the process of symbolizing these 

outcomes they can have discussions of key combinatorial ideas. 

This kind of accessibility stands in contrast with many other problems in school mathematics. 

For example, problems like the following may not be inherently tricky or difficult, but they 

require certain background knowledge and expertise: “Prove the identity sin2(x)+cos2(x) = 1,” 

“Determine the roots of the following polynomial,” “Find a function that is differentiable on R 

except at x=0,” and “Is the following topological subspace homeomorphic?” For these problems, 

it would be necessary to unpack certain terms and concepts (e.g., what is a “root”) before one 
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could even parse the problem statements. That is, common questions in many other mathematical 

areas often have specific, technical language that needs to be defined in order for one to 

understand the problem prior to attempting to solve it. 

Researchers have implicitly shown that combinatorial problems are accessible. However, as 

part of an argument for incorporating combinatorial problems (as opposed to other kinds of 

mathematical problems) into K-16 mathematics, there is still a need for clearer empirical 

demonstrations about the accessibility of combinatorial problems. We elaborate on a few 

possible ideas for studies that could not only demonstrate the accessibility of combinatorics 

problems, but that could further show that this is actually beneficial for students. 

First, as a field we might simply explore the use of technical language in combinatorial 

problems versus algebra or geometry problems. For instance, we might analyze prerequisite 

mathematical knowledge required to solve problems: either exploring how many mathematical 

prerequisites there are for a typical problem, or how elementary those prerequisites are (e.g., a 

prerequisite of solving equations would be more advanced (less elementary) than one of 

addition). Either way, by analyzing problems in textbooks, the field might be able to further 

interrogate the claim that combinatorial problems are “more accessible” than other content areas, 

in terms of less technical language, or in terms of fewer, more elementary, mathematical 

prerequisites. We do not currently actually have measures of accessibility, but such information 

could support the claim that combinatorial problems are “more” accessible than other domains. 

Second, we might explore this claim of accessibility empirically with students. Through 

interviews, one might probe students’ understanding of different problems in terms of what 

problems are asking, to see whether combinatorics, as a field, engages students in solving 

problems that are “more accessible” than other areas. That is, accessibility is fundamentally 
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mediated by the interpreter, and exploring students’ interpretations (including different ages, 

groups, levels of mathematical experience, etc.) would further provide a sense of whether 

“accessibility” is a characteristic relatively unique to combinatorics as compared to other 

mathematical areas. If such evidence was found, it could bolster the rationale for incorporating 

these particular kinds of problems into school mathematics. Third, introductory content and 

ideas, as opposed to those that are building on those introductory foundations, tend to require 

less technical vocabulary. It may be that the “accessibility” argument about combinatorics is 

really an observation related to the level of introduction. Because we study algebra for years, for 

instance, algebra problems naturally use more technical vocabulary, as such problems are 

continuing to build on introductory ideas. Combinatorial problems, on the other hand, may tend 

to be introductory simply because they are not built upon to the same extent that algebra 

problems are, and so they may have less technical language. However, we would argue that, 

regardless of whether this is the case or not, there seems to be more one can do with introductory 

ideas in combinatorics than in other fields; that is, other fields necessitate building on concepts 

more quickly than one needs to in combinatorics. Parsing the introductory nature of problems 

versus the mathematical domain would be a challenging but interesting research endeavor and 

could provide further empirical evidence that could be used to inform the accessibility of 

combinatorial problems. 

The discussion around accessibility raises two issues, which we address briefly. The first is 

that accessibility does not mean problems are trivial, a notion we elaborate further in the next 

assertion (Section 4.2) about combinatorial problems providing sufficiently challenging, rich 

mathematical thinking. The second is related to issues around equity. The fact that combinatorics 

lacks prerequisites not only makes it so that more people can understand problems, but it also 
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opens access for broader populations of people to engage meaningfully with mathematical ideas 

and topics. In this way, we view combinatorics as a topic that can be used to contribute 

positively to issues of equity and access that the field of mathematics education is currently 

considering. This is a topic we will discuss further in Section 4.4.

4.2 Combinatorics Problems Provide Opportunities for Challenging, Rich Mathematical 
Thinking for All Students

In noting that combinatorial problems are accessible, we do not want to imply that they are 

easy or trivial for students to solve. Indeed, a number of researchers have documented the 

difficulties that students of all ages face in solving such problems (e.g., Annin & Lai, 2010; 

Batanero et al., 1997; Eizenberg & Zaslavsky, 2004; Hadar & Hadass, 2004; Lockwood & 

Gibson, 2016).2 Yet, these challenges do not mean that combinatorial problems are inaccessible 

or too difficult for students. Rather, we regard these difficulties as suggesting that although 

combinatorial problems can be easy to engage with because their statements are easy to 

understand, they also require careful thought and certain practices to master or to understand 

completely. This means that such problems can appeal to a wide swath of students because they 

are generally comprehensible to students while also providing engaging challenges. Kapur 

(1970) captures this particular feature of combinatorial problems nicely: “Some of these 

problems look trivial in their statements and they present great difficulties in their complete 

solutions, but most of these can be discussed at the school level” (p. 126). This sums up our 

characterization of combinatorial problems as being accessible but still able to pose “great 

difficulties” (or we might say, engaging challenges) in their complete solutions. We discuss three 

2 We do not outline causes for such difficulty in this paper, as that is not our primary goal. Some inherent difficulties 
are discussed in Tucker (2002) and Martin (2001), and reasons for difficulties have been summarized elsewhere, see, 
for example, Lockwood and Purdy (2019a).
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ways in which combinatorics education researchers have supported this assertion. We then 

suggest some ideas for research studies that could address this claim more explicitly

First, part of what makes combinatorial problems unique (with the potential to be so rich) is 

that there is not always a clear path or procedure to solve a given counting problem. We support 

this, first, from mathematicians (textbook authors) providing commentary on their field. Tucker 

(2002) says of his introductory chapter on counting “In this chapter we discuss counting 

problems for which no specific theory exists” (p. 169). Brualdi (2004) says, “The solutions of 

combinatorial problems can often be obtained using ad hoc arguments, possibly coupled with the 

use of general theory. One cannot always fall back on applications of formulas or known results” 

(Brualdi, p. 2-3). Martin (2001) notes that “One of the things that makes elementary counting 

difficult is that we will encounter very few algorithms. You will have to think. There are few 

formulas and each problem seems to be different” (p. 1). That is, unlike problems in calculus, 

say, where there might be a clear procedure for solving a problem, there is not always a clear 

path or process to a solution. This can make counting problems frustrating, but it also sets them 

apart as commonly requiring ingenuity, cleverness, and novel approaches. 

Second, we look at mathematics educators. Annin and Lai (2010) discussed difficulties in 

teaching students to count, and they note that, “What we often find challenging about teaching 

students to count, however, is that most problems do not cleanly fall into one and only one 

standard category of counting problems. Rather, each problem typically involves different 

aspects that rely on different techniques” (p. 404). That is, one pedagogical implication is that 

combinatorial methods cannot be reduced to a procedural application, but they require thinking 

about each problem. As another example, Lockwood, Wasserman, and McGuffey (2019) found 

that undergraduate students faced difficulties in determining when appropriately to apply a 
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formula for combinations, even in the simplest cases where problems fit clearly into the category 

of being “combination” problems. They also found that when given other problems that could be 

solved using a combination formula, students did not recognize that they could apply a formula 

in those cases. The solution path for students, even between relatively simple equivalent problem 

types, was unclear; they could solve one type of problem but not the other. These comments, and 

supporting research studies, highlight perhaps some of what makes combinatorics difficult, yes, 

but they also emphasize what makes combinatorics so unique and engaging – by their very 

nature, combinatorial problems offer great opportunities for critical thinking and reasoning.

Third, in response to some of these claims about (and calls for) ways in which combinatorics 

can foster rich mathematical thinking, the combinatorics education community has demonstrated 

very thoroughly that students can reason richly and deeply within combinatorics. One way in 

which they have done this is to demonstrate sophisticated student understanding of particular 

combinatorial topics, such as the multiplication principle (e.g., Lockwood & Caughman, 2016; 

Lockwood, Reed, & Caughman, 2017; Lockwood & Purdy, 2019a, 2019b), bijections and 

isomorphism (e.g., Mamona-Downs & Downs, 2004; Muter & Maher, 1998; Powell & Maher, 

2003; Tarlow, 2011), combinations and the binomial theorem (Maher & Speiser, 1997; 

Lockwood, Wasserman, & McGuffey, 2018; Speiser, 2011; Tillema & Burch, 2020; Wasserman 

& Galarza, 2019), combinatorial proof (e.g.,  Engelke & CadwalladerOlsker, 2010; Maher & 

Martino, 1996a, 1996b; Lockwood, Reed, & Erickson, in press; Tarlow & Uptegrove, 2011), and 

equivalence (Lockwood & Reed, in press). Take, for instance, the multiplication principle 

(accessible even to elementary students); it is perhaps the most basic counting principle, and yet, 

in research studies, undergraduate students wrestled with its use in combinatorial problems, 

taking several hours over the course of a teaching experiment to articulate subtle nuances in the 
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principle (Lockwood & Purdy, 2019a, 2019b). Across these studies, researchers have provided 

compelling evidence that students can think deeply about a variety of combinatorial topics, and 

that, even though content and ideas are accessible (e.g., multiplication), combinatorics provides a 

domain in which they are also sufficiently rich, and challenging, to promote deep mathematical 

thinking and reasoning. Much of this evidence is qualitative in nature, with researchers 

demonstrating these findings through task-based interviews (e.g., English, 1991, 1993; 

Lockwood & Erickson, 2017; Tillema, 2018, in press) or teaching experiments (e.g., Lockwood, 

Swinyard, & Caughman, 2015; Lockwood & Purdy, 2019a, 2019b; Tillema, 2013, 2014), some 

of which span long periods of time (Maher, et al., 2011).

Combinatorics education researchers have shown ways in which students reason richly 

within the domain of combinatorics, but there is more work to be done to support the integration 

of such topics into the curriculum. One aspect especially in need of further study are what kinds 

of classroom and teacher supports are necessary to ensure that such reasoning and rich thinking 

surface. We hypothesize that there could be a two-pronged approach to such work. On the one 

hand, teachers themselves need sufficient professional development in the area of combinatorics 

for them to be able to know how even very simple problems might be used to surface rich and 

deep thinking. We could investigate teachers’ explorations of questions such as, What exactly 

are the nuances of the multiplication principle? or How might a combinatorial problem, or set of 

problems, be used to engage students richly in thinking about multiplication? On the other hand, 

implementing classroom tasks is a challenge. We have essentially argued that combinatorics, as a 

field, provides many problems that have great potential; however, an important pedagogical 

question to consider is what precisely are the supports to ensure implementation matches 

potential in combinatorics. Research should help us understand whether there are domain-
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specific ways, in the area of combinatorics, for helping ensure implementation that supports rich 

thinking. 

A second question to consider further relates to investigating typical instructional approaches 

used in combinatorics versus in other domains. Much instruction in combinatorics is problem-

based, and particular counting problems are leveraged to develop and apply important 

combinatorial methods and practices. Algebra teaching, in contrast, can often follow a much 

stricter procedural approach to learning algebraic methods. However, this need not be the case, 

and we see opportunities to investigate the relationship between the content that is being taught 

and the pedagogical approaches to teaching that content. We think it would be valuable to study 

whether, for example, combinatorics itself as a domain inherently provides better opportunities 

for rich and challenging thinking than a domain like algebra, or whether any perceived 

differences about combinatorics are actually a result of an implicit pedagogical approach that 

provides such mathematical opportunities. Further research that attempts to differentiate, isolate, 

and understand this interaction would be helpful to investigate whether combinatorics, a 

particular content area, has some inherent benefits for rich and challenging thinking as opposed 

to other domains.

4.3 – Combinatorics Fosters Desirable Mathematical Practices 

There have also been claims that combinatorics can help to foster desirable practices (e.g., 

Lockwood & Reed, 2018; Maher et al., 2011). In their presentation of Standards for 

Mathematical Practice, the CCSSM says, “The Standards for Mathematical Practice describe 

varieties of expertise that mathematics educators at all levels should seek to develop in their 

students” (p. 5).” We follow the CCSSM in characterizing mathematical practices as “rest[ing] 

on important “processes and proficiencies” with longstanding importance in mathematics 
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education” (p. 5). Essentially, these standards focus on broad practices, rather than content, that 

mathematics students should develop over the course of their education. There has been research 

within the combinatorics education community that both implicitly and explicitly ties to some of 

these practices. 

For example, one such practice in the CCSSM is, Construct viable arguments and critique 

the reasoning of others, and there are examples of students engaging in this practice in the 

context of combinatorial problems within the combinatorics education literature. For instance, 

Lockwood (2014a) showed instances of students trying to make sense of two potential answers, 

where they needed to think about a hypothetical (incorrect) solution and make sense of it. There 

have been a number of studies that involve multiple students (such as paired or small-group 

teaching experiments), where we see evidence of productive discussions between students as 

they present, consider, and defend their own and others’ arguments (Eizenberg & Zaslavsky, 

2004; Kavousian, 2008; Lockwood, et al., 2015; Lockwood & Reed 2018; Maher, et al., 2011). 

Often the social dynamic of having students working together in these qualitative studies affords 

students opportunities to think and reason about their own arguments and the arguments of other 

students. Because combinatorial problems cannot often be solved by applying a specific 

procedure (see previous assertion, Section 4.2), students often approach and solve problems very 

differently (i.e., not using the same prescribed procedure). This is an important quality of 

combinatorial problems; it suggests that, perhaps more naturally than in other mathematical 

domains, students will have to defend their own solutions and critique, or come to understand, 

someone else’s. Indeed, part of the fun in combinatorics is realizing that very different solutions, 

in fact, are both correct.
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As another example, the CCSSM includes the practice to Look for and make use of structure. 

There are a number of studies that have highlighted ways in which combinatorics is particularly 

suited for this kind of work. In introductory enumerative combinatorics, there are natural 

structural distinctions among types of combinatorial objects that are being counted, and this can 

be a way to distinguish between fundamental types of counting problems. For example, a 

difference between permutations and combinations can be understood as two different types of 

counting problems that count two different types of objects (sequences and sets, respectively). 

Many researchers (e.g., Lockwood & De Chenne, 2019; Lockwood et al., 2015; Lockwood et al., 

2018; Maher et al., 2011; Powell, 2011; Tarlow, 2011) have highlighted structural commonalities 

and differences among counting problems, and they have documented students’ reasoning about 

such relationships. In addition, some researchers (most notably Batanero et al., 1997) discuss the 

effects of implicit combinatorial models of combinatorial problems, in particular highlighting 

differences between selection, distribution, and partition problems (DuBois, 1984). The existence 

of such models demonstrates important structural aspects of counting problems and highlight 

ways in which students may meaningfully distinguish between structures within combinatorics. 

Another way that researchers have demonstrated that students look for and make use of 

structure within the domain of combinatorics is through numerical expressions that reflect a 

particular counting process (Lockwood, 2013; Lockwood & Reed, 2018). Burch, Ataide-

Pinheiro, and Tillema (2019) have noted a similar phenomenon with pre-service secondary 

teachers as the PSTs determined binomial coefficients; namely the PSTs used different counting 

processes for the same problem and the numerical expressions they produced reflected these 

different counting processes. Finally, some researchers (e.g., English, 1991, Halani, 2012; 

Lockwood, 2013; Lockwood & De Chenne, 2019; Lockwood & Gibson, 2016) have also 
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demonstrated how students might leverage structure of combinatorial objects in developing, 

refining, and implementing listing strategies. 

As a final example of ways in which researchers have examined combinatorics as a domain 

in which to develop mathematical practices, some researchers have explored justification and 

generalization within the context of combinatorics (e.g., Lockwood, 2011; Lockwood & Reed, 

2018; Reed & Lockwood, 2018; Maher et al., 2011). One of the central components of 

justification in combinatorics is providing an argument that demonstrates that one has counted all 

of the desired outcomes exactly once. For example, Maher and colleagues (Maher & Yankelwitz, 

2011; Maher, Sran, & Yankelwitz, 2011) have illustrated that as early as the 2nd and 3rd grade 

children can begin to wrestle with how to justify that they have produced all possible outcomes 

(see also, English, 1991, 1993, 1996), and that by the 5th grade some students in their study were 

able to use case-based arguments to aid in their justifications. At the high school level, Tillema 

and Gatza (2017) have demonstrated the role that justification plays for students prior to them 

being able to conclude that two different ways of counting the same set of outcomes are 

equivalent; namely to conclude equivalence the students needed to first justify that each way of 

counting counted the desired set of outcomes exactly once. In work focused on generalization, 

researchers have demonstrated that within combinatorics there are many opportunities for 

students to generalize beyond just finding numerical or algebraic patterns. Indeed, students have 

been shown to focus on generalizing structural patterns and relationships like those related to the 

binomial coefficients (Muter & Uptegrove, 2011) and the multiplication of binomials (Tillema & 

Gatza, 2017). Moreover, Burch et al. (2019) showed that pre-service secondary teachers saw 

different structures in their lists for the same problem, and that these different structures allowed 

the pre-service teachers to discuss which of the structures were generalizable. Ellis, Lockwood, 
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Tillema, and Moore (2017) have also illustrated that students can establish “relations of 

similarity across problems or contexts” (p. 680) in the domain of combinatorics, a powerful basis 

for beginning to make abstractions about when situations might require a particular 

combinatorial operation. 

There is relatively strong qualitative evidence that students in individual interviews, pairs, or 

small groups can engage in the mathematical practices outlined above. We see several potential 

areas for further research related to mathematical practices. First, the studies cited above show 

that students can and do engage in powerful ways with particular mathematical practices. 

However, the extent to which their engagement in these mathematical practices in a 

combinatorial setting might support them to engage in similar practices in other mathematical 

domains has not been a focal point of study. Conversely, the way that these mathematical 

practices entail domain specific ways of thinking has also not been extensively studied. Both of 

these kinds of investigations could bolster an understanding about mathematical practices, and 

the assertion that combinatorics can be leveraged to help develop them in productive ways. 

Second, there have been relatively few studies that investigate how teachers might learn to 

support students in these mathematical practices in their classroom instruction. Given that K-12 

teachers may have limited experiences with combinatorics, this research needs to include studies 

that provide information on teacher learning in this domain, studies on how teachers come to see 

this domain as connected to the curricula that they teach, and studies that investigate how 

teachers implement and support students to engage with mathematical practices in this domain. 

Notably, this might expose several different approaches for incorporation at the K-12 level; such 

as incorporating combinatorial topics within the development of existing courses and ideas, or as 

a course on its own. At the post-secondary level, classroom studies on how instructors learn to 
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support students to engage in these mathematical practices may be slightly easier given that 

collegiate level combinatorics courses already exist. 

4.4 – Combinatorics Can Contribute Positively to Issues of Equity in Mathematics 

Education

In this section, given the recent long overdue import given to issues around equity in 

mathematics education, we frame a new assertion about the importance of combinatorics, namely 

that combinatorics can contribute positively to issues of equity in mathematics education. We 

acknowledge that this is related to issues of accessibility, but we argue that this is a distinct 

rationale, as it involves not just the nature of combinatorial content but the impact of that content 

on who has access to mathematics within society. In particular, we focus on issues of equity and 

access for students who may not feel welcome as members of the mathematical community 

(which overwhelmingly runs along gender and racial lines (Gutiérrez, 2008, Martin, 2015)). The 

premise is for such students, it is possible that some of their mathematical (non)identification 

may stem from their not being given access to different mathematical domains, ones which 

might align more closely to their own mathematical ways of thinking and doing. By expanding 

students’ ideas about what mathematics is, we can expand access to who believes they can do, 

and who sees values in, mathematics. This is in contrast to current school emphases, which, we 

believe, mistakenly send the message to many students that they are not “mathematics people.” 

Indeed, because combinatorics problems do not require substantial prerequisites or technical 

terminology, it is particularly well-suited for addressing this issue. Even if students are “behind” 

in other areas of mathematics (i.e., they have not done well in algebra), they can get a fresh-start 

in a different area, one that is rooted in the familiar mathematical notion of counting but that also 

involves sufficiently challenging and rigorous mathematics. We now outline three more specific 
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ways in which combinatorial topics could be particularly related to current issues of equity in 

mathematics education, and we suggest that additional research might be carried out in each of 

these areas.

First, counting problems can be naturally applied to issues related to social justice. There are 

many combinatorics problems that can be used to explore relevant social issues. Gatza (2018) 

has used combinatorics problems to explore how middle grades students’ understand racial bias 

in jury selection (see also Gatza, Tillema, & Burch, 2020). In his work, he used combinatorics 

problems to design an intervention intended to help students move from an individual 

understanding of racial bias to a structural one. As students modeled quantitative relationships 

from the combinatorics problems, learned about definitions of race and bias, and about how the 

judicial system works, they came to appreciate the complexity of making a mathematical model 

of a situation (e.g., Are racial categories discrete? If so, what are the historical origins of treating 

them as discrete categories? How have these categories changed over time?). Using mathematics 

to explore relevant social issues is not unique to combinatorics, but because many counting 

problems arise from readily accessible contexts there is great promise in using combinatorics for 

such purposes.

Second, combinatorics could expand students’ views of what mathematics is. Students may 

not regard discrete mathematics as "math," perhaps because of how different it seems from 

algebra and calculus to which they are accustomed. Again, presenting mathematics as a 

singularity (algebra) potentially limits students’ conception of what mathematics is; pointing out 

discrete mathematics as “math” can expose students to mathematics as a multiplicity. Further, 

students may not be used to its connection to every day contexts, and the goals of problem 

solving often seem different from other branches of mathematics. Even historically, discrete 
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mathematics was not necessarily considered mathematics by mathematicians. Euler, who first 

posed and solved the now-famous Königsburg bridge problem in the 1700s, did not even 

consider the problem to be “mathematics” because it was utterly different from other areas of 

mathematics. It is now a quintessential problem in graph theory. We see this difference as an 

inroad to conversations about the nature and applications of mathematics. For example, in 

contemporary times combinatorics is at the root of how computing systems work, a discussion 

that we think has the potential to capture students’ imaginations (e.g., when I press an “A” on my 

keyboard why does the letter appear on my screen?; how is a binary number system involved in 

satellite communication?). These kinds of opportunities allow students to consider (like Euler 

did) that something they may not recognize as mathematical is in fact deeply mathematical. 

Combinatorics provides opportunities for students to see many additional mathematical 

topics and ideas that offer different perspectives on the nature of mathematics. We see this both 

in the actual content, and in typical approaches to problem solving within various domains. That 

is, combinatorics offers new interesting topics that they may not see in algebra or calculus, such 

as counting techniques and recurrence relations. But, combinatorics also offers a different way of 

approaching and solving problems. As we have noted, counting requires ingenuity, and solutions 

do not follow predictable procedures or algorithms. Even seeing that combinatorics requires a 

different way of approaching problems could expand students’ view of the mathematical process, 

and students who are not satisfied with applying procedures and calculations may be compelled 

by what combinatorics as a mathematical domain has to offer.

Consider, for instance, combinatorial proofs. These are not exercises in symbolic 

manipulation, but rather they entail articulating enumerative arguments about certain sets of 

objects (see Lockwood, Reed, & Erickson, in press). They even look different than proofs in 
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other domains, as they consist simply of sentences of text and may not contain any symbols at 

all. This stands in contrast to the kinds of proof and argumentation that many students at an early 

mathematical level are used to, which primarily involve algebraic manipulation. As another 

example, consider the relationship between discrete mathematics and computers, a topic we 

discuss further in Section 4.5. Mathematics related to computers involves not continuous 

structures, but logic, recurrences, combinatorial arguments, algorithms, and more. These are 

topics that are fundamentally mathematical and are essential to computers, but, in the focus on 

continuous math of algebra and calculus, many students never learn that mathematics entails 

such topics.

Third, if students can gain broader perspectives on the nature of mathematics, then we also 

contend that combinatorics can broaden opportunities for students to feel like they are capable at 

mathematics. Simply because of curricular emphases on algebra and calculus that we have 

mentioned, students may conclude that if they do not excel at algebra, they simply are not 

mathematics people. We thus may lose people to studying mathematics simply because they do 

not associate their interests, or talents, with mathematics. Indeed, ask many people if they use 

mathematics in their jobs, and they will say no–that is, rarely do they do some activity they 

associate with mathematics, like “solving for x” or “applying the quadratic formula.” But if 

people regarded networks, or logistics operations, as graphs from discrete mathematics, or 

recognized sets and enumeration as informing their daily technological interactions, they might 

have a different view about mathematics. In other words, some who identify as non-math people 

may, in fact, be more likely to identify as math people after realizing that mathematics is not 

only algebra, by being given opportunities to study a fundamentally different domain of 

mathematics. To be clear, these questions of what mathematics is and who can do mathematics 
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are fundamentally issues of access and equity. Currently, people who are considered (by 

themselves or others) as non-math people base these evaluations on their own perception of 

mathematics, one that is skewed by their exposure to mathematics from their own learning. 

In sum, by studying a different area of mathematics, students who previously did not identify 

with mathematics might now identify with mathematics; by providing students with an area 

where problems are easily accessible despite prior study, students who were poor in some areas 

might find they excel in a different area; and by incorporating combinatorics problems, students 

can develop computational and other mathematical ways of thinking that give access to 

technology-based (or other STEM) careers.  

We thus see a great need for researchers to study the potential for discrete mathematics, and 

combinatorics in particular, to capture the interest of and engage students who might otherwise 

dismiss mathematics. This simply has not been systematically investigated, and results from such 

studies could provide insight on the extent to which combinatorics can and should be used to 

broaden participation in mathematics. For example, aside from Gatza’s work, we are not aware 

of studies that have leveraged combinatorial problems to explore issues of social justice. Thus, 

we see potential for research studies that might actually examine the effectiveness of 

combinatorics in this context. We also feel strongly that combinatorics could give students 

opportunities to broaden their perspective on the nature of mathematics. Yet, there is a need to 

examine this phenomenon empirically. As an example, the field might examine students’ current 

conceptions of mathematics (as related to algebra and calculus versus discrete mathematics and 

combinatorics), and investigate ways to expand students’ views of mathematics through 

combinatorics. One might ask students, through surveys and interviews, about their conceptions 

of mathematics, or about which kinds of problems they associate most with mathematics, before 
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and after taking a discrete mathematics course. By doing this for different levels and populations 

of students, we could see what kinds of perspectives exist for various populations. In addition, 

we could give students problems from different domains and query the extent to which those 

various problems reflect what the students believe about the nature of mathematics. Then, with 

such information, we could investigate ways in which to help students actually broaden and 

expand their views of mathematics, and we could use combinatorics to do so. This might entail 

giving students combinatorial tasks and also giving reflective questions that draw their attention 

to the nature of mathematics. Lastly, explicit investigation about access and equity could be 

valuable. As an example, one might study people who identify as “non-math” people in order to 

disentangle whether their identification is based on a singular domain-specific view of 

mathematics; one might explore the effect taking a discrete mathematics has on mathematical 

self-efficacy for such students. That is, does studying combinatorics actually shift people’s 

mathematical identities, or their sense of self-efficacy in mathematics? In such cases, it might be 

important to attempt to explore whether shifts in identity are associated with the content in 

particular, or with an implicit pedagogical approach to teaching that content? Similarly, one 

might study whether exposing students to different areas of mathematics, including 

combinatorics, perhaps alters their future mathematical course-taking. Such studies might pave 

the way for understanding the way that combinatorics might be used to expand access and equity 

to mathematics. Although we find each of these compelling for their potential, the mathematics 

education research community needs to take up this issue to explore whether these ideas in fact 

have merit. 

4.5 – Combinatorics Is a Natural Domain in which to Examine (and Develop) 
Computational Thinking and Activity
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Our world is increasingly computer-oriented, and our interactions are regularly mediated by 

technology. Combinatorics is an essential mathematical topic for computer scientists to know 

and to understand, but it is also increasingly essential to everyday citizens being able to 

understand, and critically engage in, our technological world. Even more, increasing numbers of 

fields are involving computing, and more and more jobs involve computational literacy and 

fluency. Along with others (e.g., Abramovich & Pieper, 1996; Buteau & Muller, 2019; Cetin & 

Dubinsky, 2017; diSessa, 2018; Hickmott, Prieto-Rodriguez, & Holmes, 2018; Lockwood, 

DeJarnette, & Thomas, 2019; Papert, 1980; Pei, Weintrop, & Wilensky, 2018; Sinclair & 

Patterson, 2018), we are becoming convinced that it is our responsibility as mathematics 

educators to help our students develop an understanding of computing and to be able to reason 

about and use computing as a part of their scientific and mathematical work. There have been 

calls for more integration of computing into curricula (see, for example, CS for all and increasing 

number of calls by federal and private funding agencies to focus on CS education (e.g., Blikstein, 

2018)). With this increased attention on seeing computing integrated more wholly into the 

curriculum, we contend that we as a field would do well to look to combinatorics as a natural 

place to introduce fundamental computing structures and concepts into the mathematics 

curriculum. 

There are inherent connections between discrete mathematics and computers and computer 

science, as data and information must be discretized for computers to be able to process and 

work with such data. Even decades ago Kapur (1970) raised some of these connections, noting 

that in combinatorics “enough motivation for working with computers can be provided” (p. 114) 

and “Students can appreciate the powers and limitations of mathematics as well as the power and 

limitations of computers through combinatorial mathematics” (p. 114). These comments were 
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from fifty years ago, and we now have much clearer examples of such connections to computers. 

For example, one point of connection is a common process connection between combinatorics 

and computing. It is very common in combinatorics to break a problem (or proof) up into several 

cases (often disjoint) and solve each individually; by doing so in a systematic way, we end up 

with a solution based on cases. This case-based, systematic, way of reasoning is also useful in 

computing, as many computational approaches consider the space of possible cases, and design 

solutions to these different cases as a means of solving the larger problem. Because computing, 

and discrete mathematics, are fundamentally about finite (and not infinite) processes, cases exist 

and are a useful and productive approach in both domains. This is but one example of ways in 

which combinatorial topics and approaches can complement ideas in computer science. While 

Kapur did not elaborate these ideas or show evidence with data, we now have a chance to 

identify ways in which research has supported these claims over the last several decades, and to 

make new arguments for additional research that could support these claims. 

As an example of work that is exploring relationships between combinatorics and 

computational thinking and activity in particular, some researchers have investigated ways in 

which combinatorial thinking may be well-suited for fostering computational thinking and 

activity, as well as how computational settings might reinforce and enrich students’ reasoning 

about combinatorics problems (e.g., Fenton & Dubinsky, 1996; Lockwood & De Chenne, 2019; 

De Chenne & Lockwood, 2020; Lockwood, Valdes-Fernandez, & De Chenne, 2019). For 

instance, in their book Introduction to Discrete Mathematics with ISETL, Fenton and Dubinsky 

(1996) proposed a new programming language (ISETL) that would explicitly help to reinforce 

topics of discrete mathematics in a computational setting. As another example, Lockwood & De 

Chenne (2019) report on two students’ exploration of tasks in which they solved counting 
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problems in a computational setting of programming involving coding in Python. Lockwood and 

De Chenne provided evidence “that students were able to reason about, understand, and use 

nested for loops and particular conditional statements within those for loops to computationally 

generate lists of outcomes for three main types of problems” (p. 47), and they suggested that “the 

symbols in the Python code seemed to enrich the students’ combinatorial reasoning by affording 

opportunities for the students to make a connection to the kinds of outcomes they were counting” 

(p. 47). The students in their study, some of whom were novice counters, expressed that they 

found the context to be an effective introduction to principles of computing. 

As a field, then, we are gaining empirical evidence for ways in which combinatorics can help 

to enrich students’ computational thinking and activity, but we see a need continued work in this 

area. Specifically, the field could conduct studies that investigate what relationships students see 

between the structure of counting problems and computing languages, which could help to 

identify what kinds of counting problems and structures students might use to support the 

development of computing languages and vice versa. Researchers could also analyze extant 

curricular materials that identify combinatorics problems that afford opportunities for supporting 

the development of computational thinking. We also consider design experiment studies that 

investigate novel curricular interventions aimed at supporting the mutual development of 

combinatorial reasoning and computational thinking to be an important area for further research. 

That is, prior to implementation in classrooms we think it is important to have studies that test 

the affordances and limitations of particular curricular interventions in experimental settings in 

order to inform subsequent classroom implementation. These studies could answer questions 

such as: What are the necessary ingredients for a curricular intervention to mutually support 

combinatorial reasoning and computational thinking? In what ways is each mutually supported? 
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How do computing foci versus mathematics foci influence the ways in which these two are 

mutually supported?     

5. Discussion and Conclusion

In this commentary, we have attempted to make a case that more attention should be paid to 

combinatorics within K-16 mathematics curricula. We have argued that combinatorics has 

potentially unique affordances within the realm of mathematics education. In particular two 

current trends in mathematics education, including increased attention to issues of access and 

equity, and the current national push toward computational thinking initiatives in mathematics 

education, suggest that this case for combinatorics is timely. Notably, through this commentary, 

we have tried to synthesize existing literature from the past five decades in combinatorics 

education research, while also identifying an agenda for the kinds of work and research that still 

needs to be done. To conclude, we offer a vision of what a multi-pronged effort in this area, 

which involves researchers, practitioners, and policy-makers, might look like.

First, for researchers, we regard the exploration and substantiation of claims to be of utmost 

importance. That is, as a field, to accomplish the incorporation of discrete mathematics and 

combinatorics into the curriculum, we need strong foundations on which to make such 

arguments. While existing research provides some of these foundations, there is more to be done. 

In addition to small qualitative work, we need larger-scale quantitative studies that help us 

understand generalizations that can be made. We need to not rely just on compelling theoretical 

arguments about the utility of discrete mathematics (e.g., that it might expand students’ sense of 

what mathematics is), but continue to push for increasing the number and amount of empirical 

studies and evidence. Such evidence forms the solid backbone of arguments for broader 

incorporation.
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Second, for practitioners, we need people willing to engage in the practical work of 

developing curricular ideas and resources in K-16 mathematics. First, for K-16 mathematics 

educators, we need people willing to generate curricular resources that are age-appropriate for 

specific students. Notably, this might involve multiple different approaches to thinking about the 

incorporation and inclusion of discrete mathematics and combinatorics into the curriculum. We 

name two, as examples. First, we might consider entire units, or courses, devoted to topics in 

combinatorics. These might be multi-week units, or even semester long courses in high school, 

but these kinds of approaches would represent a valuing of combinatorics as mathematics in its 

own right – similar to units and courses on topics in probability, or statistics. As an alternative, 

we might consider ways that discrete and combinatorial topics might be incorporated for the 

purpose of deepening students understanding of current curricular goals, for example, in algebra. 

One could imagine that exploring counting problems, because they lend themselves to different 

equivalent expressions might help students attend to (and interpret) the structure of algebraic 

expressions (e.g., CCSSM (2010) standards HSA.SSEA.1 and A.2). That is, combinatorial 

problems might be used to help students learn algebraic (or other) topics. In either case, we need 

practitioners working on practical ways to incorporate discrete mathematics and combinatorics 

into K-16 curricula. Second, for K-16 mathematics teacher educators, we need to consider the 

practical necessity of teacher preparation. Existing teachers might not have the mathematical 

expertise to feel comfortable teaching students combinatorial topics; teacher educators are the 

ones that must be tasked with the challenge of how to prepare a teacher workforce for such 

incorporation. This includes developing professional development, rethinking teacher 

preparation program requirements and courses, etc. Practitioners of mathematics teacher 

education are a necessary prong for realizing such goals.
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Third, for policy-makers, we need public voices and larger policy mechanisms in place to 

help support and bolster such efforts. Here, we make an analogy to statistics education. Over the 

past 20 years, statistics educators have been extremely successful at shaping the mathematics 

curricula to include more statistics. Not only have they worked to build a research based in 

statistics education, but they have done an excellent job in helping the public understand the 

importance and necessity of statistics in today’s world; the public now generally believes 

statistics to be very important. Indeed, many in the public argue now that data and statistics 

should be at least a, if not the, primary part of student’s mathematics education. The statistics 

education community has also benefitted from other driving forces; the existence of an AP 

Statistics course, as an alternative to AP Calculus, in high school, for example, has been used as 

a mechanism to increasingly incorporate statistics throughout the curriculum and to provide 

alternative mathematical options for study. Hence, from this analogy, we see the need for voices 

to help make the argument to the public for the importance of discrete mathematics and 

combinatorics to students’ mathematical education. Notably, we believe arguments that leverage 

the current emphases on computational thinking, and on how combinatorial reasoning can help 

everyday citizens understand the role and nature of computers and algorithms in their everyday 

lives (which are increasingly mediated by technological interactions), could be especially 

compelling. Additionally, promoting the diversity of mathematics, and asking the public to 

demand an education that sheds light on this mathematical diversity, because such diversity is 

important to conversations about access and equity, is similarly important. Having voices to help 

shape public perception is an important prong in such efforts. Similarly, efforts to entrench 

combinatorics as important aims in public policy and the public infrastructure is important. For 

example, having people fight for the inclusion of standards that emphasize discrete mathematics 
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topics; having public organizations such as the National Council of Teachers of Mathematics 

(NCTM), or the Mathematical Association of America (MAA), etc., vie for education to portray 

the diversity of mathematics, including discrete; and perhaps even having organizations like the 

College Board consider the creation of an AP Discrete Mathematics exam. All of these efforts 

would be useful toward accomplishing the broader aim for which we have advocated in this 

commentary.  
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