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ABSTRACT
In Bitcoin’s incentive system that supports openmining pools, block

withholding attacks incur huge security threats. In this paper, we

investigate the mutual attacks among pools as this determines the

macroscopic utility of the whole distributed system. Existing stud-

ies on pools’ interactive attacks usually employ the conventional

game theory, where the strategies of the players are considered

pure and equal, neglecting the existence of powerful strategies and

the corresponding favorable game results. In this study, we take ad-

vantage of the Zero-Determinant (ZD) strategy to analyze the block

withholding attack between any two pools, where the ZD adopter

has the unilateral control on the expected payoffs of its opponent

and itself. In this case, we are faced with the following questions:

who can adopt the ZD strategy? individually or simultaneously? what
can the ZD player achieve? In order to answer these questions, we

derive the conditions under which two pools can individually or

simultaneously employ the ZD strategy and demonstrate the effec-

tiveness. To the best of our knowledge, we are the first to use the

ZD strategy to analyze the block withholding attack among pools.

CCS CONCEPTS
• Security and privacy→ Network security; • Networks→ Net-
work reliability.
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1 INTRODUCTION
As the most prevailing and typical cryptocurrency, Bitcoin [1] owns

a market capitalization of 186 billion US dollars in current time,

occupying an increasingly high market share of 56% in the whole

cryptocurrency market
1
. The success of Bitcoin is based on its ro-

bust incentive mechanism where the miners are rewarded with

valuable bitcoins for their submitted proofs of work (PoWs) through

solving cryptographic puzzles. As the global ledger of a distributed

system, Blockchain records all the historical transactions in a serial-

ization form, with each block being generated by a full PoW costing

a larger amount of computational power of the miners, so as to

guarantee the inalterability and integrity of the transactions, and

further maintain the stability and scalability of the whole system.

Being aware of the difficulty of mining blocks individually to

acquire revenues, miners are inclined to form mining pools so as

to obtain stable incomes, where all participants in a pool mine

blocks cooperatively and share the benefit once a valid block is

generated. In order to conduct fair distribution of the reward among

all participating miners in a pool, the pool manager evaluates their

efforts according to the submitted partial PoWs from the miners. In

this case, a malicious miner can launch a block withholding attack to
an open pool by submitting only partial PoWs to unfairly share the

achievements of other honest miners, which yields huge security

threats to the distributed system as only a full PoW can produce a

valid block representing an effective contribution. This attack was

carried out in practice at 2014, resulting in a loss of about 300 BTC

at the victim pool
2
.

On account of the tremendous threats of block withholding

attacks, numerous studies have been conducted, which can be clas-

sified into individual attacker based [2–5] and competitive pool

based [6, 7]. Analysis from the perspective of an individual attacker

is committed to working out an optimal attacking strategy for the

rogue miner to acquire filthy lucre as much as possible, such as

how to wisely split the computational power for attacking and hon-

estly mining; while research on block withholding attack among

pools concentrates on the impact of attacking each other on the

short-term utilities of the pools and long-term status of the system.

In this paper, we are also engaged in the pools’ mutual attack as it

depicts the attacking behavior on a macroscopic level, boosting our

further understanding about the dynamics of the block withholding

attack and its impact on the whole system.

1
https://www.newsbtc.com/2018/09/11/cryptocurrency-market-update-bitcoin-

dominance-reaches-new-2018-high/

2
https://bitcointalk.org/?topic=441465.msg7282674
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Existing studies on block withholding attacks among pools al-

ways make use of game theory to model the mutual attacks as it

can well describe the competitive relationship among pools and

capture their antagonistic interactions of the attacking behaviors

[6, 7]. However, the pools’ strategies of attacking or not are consid-

ered pure and equally important in the above conventional game

theory based studies, which prevents the discovery of interesting

and advantageous results.

In this paper, we conduct an analysis on the block withholding

attack among two pools from a new game theoretic perspective

where the strategy of one player can unilaterally and significantly

affect the game result. This unique property stems from the power

of the Zero-Determinant (ZD) strategy [8], which thoroughly re-

freshes our understanding of the two-player game. Particularly, by

utilizing ZD, one game player can unilaterally control the weighted

sum of the two players’ expected payoffs, as well as the specific

payoff of the opponent or itself, regardless of the strategy of the

opponent. With such a powerful strategy, we are faced with the fol-

lowing questions in our pool game: who can adopt the ZD strategy?
individually or simultaneously? what can the ZD player achieve?

In order to answer the above questions, we model the block

withholding attack among any two pools in the Bitcoin system
3
as

a two-player simultaneous game, based on which we conduct a ZD

strategy oriented analysis. More specifically, we first investigate

the condition under which any pool can employ the ZD strategy

individually; besides, we examine the possibility of both pools em-

ploying ZD concurrently and demonstrate the effectiveness of the

ZD strategy as well. To the best of our knowledge, we are the first

to utilize ZD for analyzing the block withholding attack among

mining pools. Our conclusions can be summarized as follows:

• Each pool can individually utilize ZD to set the expected

payoff of itself or that of the opponent.

• Both pools can simultaneously employ ZD to set the expected

payoffs of each other under certain condition, but they are

not eligible to set their own expected payoffs concurrently.

• When two pools can simultaneously use ZD, the game be-

comes a Prisoner’s Dilemma where the Nash equilibrium

leads to the lowest social welfare. In this case, even though

ZD is not constantly dominant to the classical strategies,

it provides a relatively good result. More importantly, the

ZD strategy enables the ZD player to solely enforce a fixed

social welfare which is larger than that in the equilibrium

state, no matter what strategy the opponent employs.

• In the case where only one pool is capable of using ZD, when

the ZD player sets the highest expected payoff for itself, the

non-ZD player suffers a lower payoff, and its best response

action is to not attack.

The rest of the paper is organized as follows. We investigate

the most related work in Section 2 and formulate the problem in

Section 3. In Section 4, we analyze the pool strategies and study

the case of using the ZD strategy individually. Then we explore

the possibility of simultaneously employing ZD for two pools in

Section 5, which is further evaluated in Section 6. We conclude the

paper in Section 7.

3
Our results are applicable to all similar cryptocurrency systems.

2 RELATEDWORK
Typically, there exist two types of threats in Bitcoin by means of

withholding blocks, i.e., block withholding delay and block withhold-
ing attack, which differ in that whether the withheld blocks are

finally published or not.

Block withholding delay refers to the temporary and intentional

delay of publishing amined valid block, so as to increase the revenue

of the attackers. In this case, two specific attacks can be achieved, i.e.,

selfishmining and double spending. A selfish-mining attacker utilizes

the withheld block to prevent the successful block publication of

the other pools, which can help increase its own relative revenue

in the whole mining system [9–11]. While double spending can

be realized through withholding one block containing a specific

transaction but publishing another conflicting transaction, and then

posting the former one to invalidate the published one that has been

admitted by the recipient, so as to improve the absolute revenue of

the attacker [12].

In the block withholding attack, the withheld blocks will never

be published; instead, they are discarded at once, degrading the

mining utility of the victim pool, as well as undermining the overall

performance of the whole Bitcoin network. According to [2], Rosen-

feld was the first to put forward this attack. After that, Courtois

et al. [3] refined the concrete concept of block withholding attack

and presented the detailed implementation steps for rogue miners

to get maximized benefit in the long term. While in [4], Bag et al.
proposed a variant block withholding attack where the attacker

was sponsored by one pool to attack another pool and derived the

optimal strategy for the attacker to split its mining power wisely

so as to obtain the highest revenue. To suppress such a malicious

attack, countermeasures [13, 14] were designed to eliminate the

behavior of withholding valid blocks by providing extra incentives

of submitting blocks to attackers.

Beyond these conventional studies on block withholding at-

tacks, many researchers turn to employ game models to investigate

the problem as game theory can capture complicated interactions

among competitive parties. In [5], a computational power splitting

game was formulated to analyze the block withholding attack in

Bitcoin, which demonstrates the long-run incentive of the attackers.

Note that the mutual attack of the competitive pools was not consid-

ered in [5]. Eyal [6] modeled the block withholding attack among

identical mining pools as a pool game, drawing the conclusion that

no attack was not the Nash equilibrium and a dilemma was thus

formed. Kwon et al. [7] proposed an upgraded version of the block

withholding attack named Fork After Withholding Attack, which
could benefit the attacker 56% more than the traditional one, and

conducted a game theoretic analysis on two pools’ mutual attack.

The study in [7] also reported that under certain specific conditions,

the miner’s dilemma mentioned above disappears. Note that the

pool strategies in the above two studies were considered pure and

identical, missing other promising and favorable game results.

It is obvious that most existing game theory based studies on

block withholding attacks either involve no interactive behaviors

among pools or analyze the strategies of pools in an equivalent

manner. In contrast, our work consider the mutual attack of pools

with mixed game strategies to explore the unexpected existing of

unilateral control in the game.
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3 PROBLEM FORMULATION
In most of the contemporary digital currency systems, e.g., Bitcoin,

miners often formmining pools to get stable incomes. Asmentioned

in [6], a pool may use a certain amount of infiltrating mining power

to perform block withholding attacks to sabotage another pool

for more interest. In this paper, we consider a scenario with two

mining pools in a distributed system, where both pools can perform

block withholding attacks to against each other during the mining

process of an effective block. Once a legitimate block is generated

by a miner in a pool, the pool manager would publish it and get

the corresponding revenue. In order to fairly distribute the revenue

to all participating miners, the pool manager collects partial PoWs

to evaluate the miners’ respective efforts in mining the block. As

the infiltrating mining power also contributes to partial PoWs, the

victim pool is hard to detect the attacking behavior in a timely

manner while it may figure out the malicious attack in a long run

as its real income would be less than that brought by the estimated

mining power from partial PoWs. Thus, the victim pool may fight

back in the subsequent mining process. This sort of interactions

between twomining pools can exactly be considered as a two-player

simultaneous game. In the case of repeated interactions between

them, the game turns to be iterated.

Generally speaking, the action of a pool mining without attack-

ing another pool is defined as cooperation (c), and mining with

attacking is denoted as defection (d). For differentiation, we name

the two pools as pool 1 and pool 2, and their actions are denoted as

a1 and a2, respectively. Thus we have four possible game results

a1a2 = (cc, cd,dc,dd).
Denote by m1 and m2 the registered mining power of pool 1

and pool 2, respectively. As the probability of finding a new block

by a pool equals the ratio of the pool’s effective mining power to

the total mining power in the whole system, which is assumed

to be m, the revenue of each pool is proportional to the share

of its mining power, i.e.,
m1

m for pool 1 and
m2

m for pool 2. For

simplicity, we regard this mining power share as the payoff in the

game. Thus, the above values are the payoffs of the two pools when

both cooperate. When pool 2 sabotages pool 1 with an amount of

x2 malicious mining power but pool 1 remains cooperative, the

victim’s effective mining power becomes m1 − x2. Because the

malicious attacking mining power is only used to solve partial

PoWs rather than any full PoW, the total mining power of the

system is also reduced by x2. Thus, pool 1’s payoff decreases to

m1−x2
m−x2 , but pool 2 obtains a higher payoff as

m2

m−x2 . Similarly, when

pool 1 chooses defection by attacking pool 2 through infiltrating x1
amount of mining power to carry out the block withholding attack

but pool 2 behaves cooperatively, the effective mining power of

pool 2 for mining a full block decreases tom2 − x1 and its share of

mining power in thewhole system becomes
m2−x1
m−x1 , while that of the

attacker, i.e., pool 1, increases to
m1

m−x1 . If both pools are defective,

i.e., attacking each other, their payoffs turn to be
m1−x2

m−x1−x2 and

m2−x1
m−x1−x2 . We summarize the above four situations with different

payoffs of the two pools in Table 1 and denote the payoff vectors

of pool 1 and pool 2 respectively as,

S1 = (S1
1
, S2

1
, S3

1
, S4

1
)

= (
m1

m
,
m1 − x2
m − x2

,
m1

m − x1
,

m1 − x2
m − x1 − x2

),

S2 = (S1
2
, S2

2
, S3

2
, S4

2
)

= (
m2

m
,

m2

m − x2
,
m2 − x1
m − x1

,
m2 − x1

m − x1 − x2
),

following the order of the game results a1a2 = (cc, cd,dc,dd).

Table 1: Payoff Matrix.

Pool 1

Pool 2

Cooperation Defection

Cooperation
m1

m ,
m2

m
m1−x2
m−x2 ,

m2

m−x2
Defection

m1

m−x1 ,
m2−x1
m−x1

m1−x2
m−x1−x2 ,

m2−x1
m−x1−x2

Note that the infiltrating mining power from the attacker should

be less than that of the victim pool; thus we have constraints 0 <

x1 < m2 and 0 < x2 < m1. On the other hand, according to the

stability requirement of the cryptocurrency system, we assume

that no pool can control the majority of the mining power, i.e.,

m1,m2 <
m
2
.

Given the above two-player simultaneous game, it is clear that

the payoff of each side is jointly determined by the actions of both

players. And when the game is repeated round-by-round, a player’s

individual choice of action is also affected by that of its opponent.

However, the ZD strategy proposed in [8] provides us new inspira-

tions to study the interactions between two players, where one can

dominantly formulate a linear relationship between the expected

payoffs of both sides, and further unilaterally set the expected pay-

off of itself or its opponent, no matter what action of the opponent

is. Such nice features of ZD motivate us to design ZD-based strate-

gies to drive both players cooperate. To proceed, we need to answer

the following questions: who can adopt the ZD strategy? individ-

ually or simultaneously? what can the ZD player achieve? In the

following we study the ZD strategy under the block withholding

attack scenario in Blockchain and analyze the attacking results

between two mining pools.

4 INDIVIDUAL ZD STRATEGY ANALYSIS
In this section, we investigate the problem of identifying which

player in the above pool game can individually adopt the ZD strat-

egy. As mentioned before, the game result in the previous round can

influence the actions of both sides. Thus we define the strategies of

the two pools as the conditional probabilities of cooperation under

different outcomes of the last round.

Definition 4.1. The strategy of pool 1 is p = (p1,p2,p3,p4), where
each element is the probability of pool 1 choosing cooperation when

the game result of the previous round is a1a2 = (cc, cd,dc,dd).

Definition 4.2. The strategy of pool 2 is q = (q1,q2,q3,q4), where
each element is the probability of pool 2 choosing cooperation when

the game result of the previous round is a2a1 = (cc, cd,dc,dd).
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The probabilities of the two pools being defective under different

previous game results are 1 − pi and 1 − qi , i ∈ {1, 2, 3, 4}, respec-

tively. In light of this, one can derive the Markov state transition

matrix of the game as follows:

M =


p1q1 p1(1 − q1) (1 − p1)q1 (1 − p1)(1 − q1)
p2q3 p2(1 − q3) (1 − p2)q3 (1 − p2)(1 − q3)
p3q2 p3(1 − q2) (1 − p3)q2 (1 − p3)(1 − q2)
p4q4 p4(1 − q4) (1 − p4)q4 (1 − p4)(1 − q4)

 ,
where each elementMi j , i, j ∈ {1, 2, 3, 4}, denotes the probability of

the game outcome in the current round being a1a2 ∈ {cc, cd,dc,dd}
given the previous outcome of a′

1
a′
2
∈ {cc, cd,dc,dd}. For example,

M12 = p1(1 − q1) is the probability of the game state in the current

round a1a2 = cd when that in the last round is a′
1
a′
2
= cc .

Suppose that the stable vector of the above Markov matrix is v;
then one can calculate the expected payoffs of the two pools as:

E1 =
v · S1
v · 1

, E2 =
v · S2
v · 1

, (1)

where 1 is the vector with four elements of 1.

At the stable state, there exists vTM = vT. Denote by M′ =

M − I; then we have vTM′ = 0.On the other hand, by applying

Cramer’s rule onM′
we get Adj(M′)M′ = det(M′)I = 0. According

to the above two equations, we can conclude that each row of

Adj(M′) is proportional to the stable vector v. Thus, for any vector

y = (y1,y2,y3,y4), its dot product with v can be written into the

following equation after the elementary column transformation

on matrix M′
by adding the first column to the second and third

columns,

v · y = det


p1q1 − 1 p1 − 1 q1 − 1 y1
p2q3 p2 − 1 q3 y2
p3q2 p3 q2 − 1 y3
p4q4 p4 q4 y4

 . (2)

It is worthy of noting that the second column of the above matrix

is only dependent on the strategy of pool 1, which is denoted as

p̃ = (p1−1,p2−1,p3,p4)
T
; similarly, the third column is only related

to the strategy of pool 2, denoted as q̃ = (q1 − 1,q3,q2 − 1,q4)
T
.

Thus, given constant parameters α , β , and γ , according to (1),

one can calculate a linear combination of the expected payoffs of

the two pools as

αE1 + βE2 + γ =
v · (αS1 + βS2 + γ1)

v · 1
.

As indicated by (2), we can find that when p̃ or q̃ is proportional to

the last column, i.e., αS1 + βS2 + γ1, the above equation turns to

be zero as the determinant in the numerator is vanished. In other

words, when the strategy of pool 1 p satisfies p̃ = χ (αS1 + βS2 +
γ1), (χ , 0), or that of pool 2 q complies with q̃ = χ (αS1 + βS2 +
γ1), (χ , 0), we have

αE1 + βE2 + γ = 0. (3)

Then the corresponding strategy is therefore named zero-determinant
(ZD) strategy. Particularly, the ZD player (the ZD-strategy adopter),

either pool 1 or pool 2, can specifically set α = 0 or β = 0 to enforce

E2 = −
γ
β or E1 = −

γ
α , as long as their strategies are meaningful,

i.e., pi ,qi ∈ [0, 1], i ∈ {1, 2, 3, 4}. In other words, each player may

be able to unilaterally set the expected payoff of its opponent or

itself with the help of the powerful ZD strategy.

In the following, we inspect the possibility of any pool being a

ZD player individually and reveal the corresponding conditions.

4.1 Pool 1 Using the ZD Strategy
We first examine the potential of pool 1 adopting the ZD strategy

to set the expected payoff of the opponent and its own.

4.1.1 Pool 1 Sets Pool 2’s Expected Payoff.

Theorem 4.3. When the infiltrating mining powers of the two
pools satisfy x1

x2 >
m2

m−m2

, pool 1 can utilize the ZD strategy to inde-

pendently set the expected payoff of pool 2 as E2 =
(1−p1)S4

2
+p4S1

2

1−p1+p4 .

Proof. When pool 1 uses the ZD strategy to control pool 2’s

expected payoff as E2 = −
γ
β with α = 0, the specific ZD strategy of

pool 1, i.e., p, should satisfy p̃ = χ (βS2 + γ1), (χ , 0). Specifically,
p1 − 1 = χ (βS1

2
+ γ ),

p2 − 1 = χ (βS2
2
+ γ ),

p3 = χ (βS3
2
+ γ ),

p4 = χ (βS4
2
+ γ ).

Using p1 and p4 to express β and γ , we have
β =

p1 − p4 − 1

S1
2
− S4

2

,

γ =
(1 − p1)S

4

2
+ p4S

1

2

S1
2
− S4

2

.

Furthermore, we can solve p2 and p3,
p2 =

p1(S
2

2
− S4

2
) − (1 + p4)(S

2

2
− S1

2
)

S1
2
− S4

2

,

p3 =
(1 − p1)(S

4

2
− S3

2
) + p4(S

1

2
− S3

2
)

S1
2
− S4

2

.

By examining all the payoff-related components in the above equa-

tions, we find those components in the numerators satisfy

S2
2
− S4

2
=

(m −m2 − x2)x1
(m − x2)(m − x1 − x2)

> 0,

S2
2
− S1

2
=

m2x2
m(m − x2)

> 0,

S4
2
− S3

2
=

(m2 − x1)x2
(m − x1)(m − x1 − x2)

> 0,

S1
2
− S3

2
=

(m −m2)x1
m(m − x1)

> 0,

since x1 ∈ (0,m2),x2 ∈ (0,m1) and m1 + m2 < m. While the

denominators of p2 and p3, i.e.,

S1
2
− S4

2
=

(m −m2)x1 −m2x2
m(m − x1 − x2)

,

has no certain sign relationship.

Considering the constraint pi ∈ [0, 1], i ∈ {1, 2, 3, 4}, we know

that only when S1
2
− S4

2
> 0 can p2 and p3 have feasible solutions;

otherwise, we have p2 ≥ 1 and p3 ≤ 0, which renders the strategy

of pool 1 to have only one fixed solution p = (1, 1, 0, 0), i.e., always

cooperating or defecting. This strategy is obviously impractical to

control the expected payoff of pool 2.
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Thus, we have
(m−m2)x1−m2x2
m(m−x1−x2)

> 0, which leads to
x1
x2 >

m2

m−m2

.

On the other hand, E2 = −
γ
β =

(1−p1)S4

2
+p4S1

2

1−p1+p4 , which has a range of

[S4
2
, S1

2
]. □

4.1.2 Pool 1 Sets Its Own Expected Payoff.

Theorem 4.4. When the infiltrating mining powers of the two
pools satisfy x1

x2 >
m−m1

m1

, pool 1 can unilaterally set its own expected

payff as E1 =
(1−p1)S4

1
+p4S1

1

1−p1+p4 .

Proof. As mentioned before, pool 1 can set E1 = −
γ
α regardless

of the strategy of pool 2 through executing the ZD strategy with

β = 0, and its ZD strategy p needs to meet p̃ = χ (αS1+γ1), (χ , 0),

i.e., 
p1 − 1 = χ (αS1

1
+ γ ),

p2 − 1 = χ (αS2
1
+ γ ),

p3 = χ (αS3
1
+ γ ),

p4 = χ (αS4
1
+ γ ).

We can solve it for p2 and p3 as
p2 =

(1 + p4)(S
1

1
− S2

1
) − p1(S

4

1
− S2

1
)

S1
1
− S4

1

,

p3 =
−(1 − p1)(S

3

1
− S4

1
) − p4(S

3

1
− S1

1
)

S1
1
− S4

1

.

As x1 ∈ (0,m2),x2 ∈ (0,m1) andm1 +m2 < m, the components

related to pool 1’s payoff vector in the above expressions satisfy

S1
1
− S2

1
=

(m −m1)x2
m(m − x2)

> 0,

S4
1
− S2

1
=

(m1 − x2)x1
(m − x2)(m − x1 − x2)

> 0,

S3
1
− S4

1
=

(m −m1 − x1)x2
(m − x1)(m − x1 − x2)

> 0,

S3
1
− S1

1
=

m1x1
m(m − x1)

> 0,

but the denominator S1
1
− S4

1
needs further discussion.

When S1
1
− S4

1
> 0, it is easy to figure out that p2 ≥ 1,p3 ≤ 0,

leading to the single feasible point of pool 1’s ZD strategy, which is

obviously meaningless for our scenario. While S1
1
− S4

1
< 0 results

in p2 ≤ 1,p3 ≥ 0, and thus p has more solutions so as to control its

own expected payoff in a range.

In other words, the condition for pool 1 being the ZD player to set

its own expected payoff is
(m−m1)x2−m1x1
m(m−x1−x2)

< 0, i.e., x1x2 >
m−m1

m1

.

And its expected payoff becomes E1 = −
γ
α =

(1−p1)S4

1
+p4S1

1

1−p1+p4 ∈

[S1
1
, S4

1
]. □

4.2 Pool 2 Using the ZD Strategy
We adopt a similar analysis for pool 2 to derive the conditions on

which it can employ the ZD strategy to set the expected payoff of

its opponent (i.e., pool 1) and that of itself.

4.2.1 Pool 2 Sets Pool 1’s Expected Payoff.

Theorem 4.5. When x2
x1 >

m1

m−m1

, pool 2 can use the ZD strategy to

unilaterally set the expected payoff of pool 1 to be E1 =
(1−q1)S4

1
+q4S1

1

1−q1+q4 .

Proof. By setting β = 0, pool 2 can enforce the expected payoff

of pool 1 as E1 = −
γ
α when it sets the ZD strategy q as q̃ = χ (αS1 +

γ1). We can derive q2 and q3 in terms of q1 and q4,
q2 =

−(1 + q4)(S
3

1
− S1

1
) + q1(S

3

1
− S4

1
)

S1
1
− S4

1

,

q3 =
q4(S

1

1
− S2

1
) + (1 − q1)(S

4

1
− S2

1
)

S1
1
− S4

1

.

As analyzed in Section 4.1.2, all the payoff-related components in

the numerators of q2 and q3 , i.e., (S
3

1
− S1

1
), (S3

1
− S4

1
), (S1

1
− S2

1
), and

(S4
1
−S2

1
), are positive, but the sign of the denominator , i.e., S1

1
−S4

1
,

is not determinate. With a similar discussion, we can conclude that

only when S1
1
− S4

1
=

(m−m1)x2−m1x1
m(m−x1−x2)

> 0, which is equivalent to

x2
x1 >

m1

m−m1

, can q2 and q3 have feasible solutions. Thus we have

E1 =
(1−q1)S4

1
+q4S1

1

1−q1+q4 , ranging in [S4
1
, S1

1
]. □

4.2.2 Pool 2 Sets Its Own Expected Payoff.

Theorem 4.6. When x2
x1 >

m−m2

m2

, pool 2 can take advantage of
the ZD strategy to unilaterally set its own expected payoff as E2 =
(1−q1)S4

2
+q4S1

2

1−q1+q4 .

Proof. When pool 2 wants to set its own expected payoff E2 =
−
γ
β with α = 0, the corresponding ZD strategy should be calculated

by q̃ = χ (βS2 + γ1). Thus, we have
q2 =

(1 + q4)(S
1

2
− S3

2
) − q1(S

4

2
− S3

2
)

S1
2
− S4

2

,

q3 =
−(1 − q1)(S

2

2
− S4

2
) − q4(S

2

2
− S1

2
)

S1
2
− S4

2

.

Since the payoff-based components are proved to be positive in

Section 4.1.1, here we omit it for brevity. And it is easy to prove that

if S1
2
−S4

2
=

(m−m2)x1−m2x2
m(m−x1−x2)

< 0, there exist feasible solutions for the

above equations. That is, when the infiltrating mining powers of the

two pools x1 and x2 satisfy
x2
x1 >

m−m2

m2

, pool 2 can take advantage

of the ZD strategy to unilaterally adjust its own expected payoff as

E2 =
(1−q1)S4

2
+q4S1

2

1−q1+q4 ∈ [S1
2
, S4

2
]. □

In conclusion, one can see that both players are capable of indi-

vidually conducting the ZD strategy to unilaterally set the expected

payoff of its opponent or itself, with each corresponding to a unique

condition of the relationship between the attacking mining powers

of two pools.

Note that since both pools can individually utilize the ZD strat-

egy under specific circumstances, we are faced with the following

new problem: whether it is possible for both pools taking the ZD

strategies concurrently to set the expected payoff of each other or

those of themselves. This will be studied in the next section.
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5 SIMULTANEOUS ZD STRATEGY ANALYSIS
In this section, we analyze the potential for the two players in the

pool game to simultaneously employ the ZD strategies with the

objective of independently controlling the expected payoffs of their

opponents or themselves.

5.1 Setting the Expected Payoffs of the
Opponent

We first study the situation where both pools utilize the ZD strate-

gies to set the expected payoff of each other, which can be settled

by the following theorem.

Theorem 5.1. When the infiltrating mining powers set by pool 1
and pool 2 for the block withholding attack satisfy

m2

m −m2

<
x1
x2
<

m −m1

m1

,

the two pools can achieve the goal of using ZD strategies to set the
expected payoff of the opponent at the same time.

Proof. As analyzed in Section 4.1.1, the necessary condition for

pool 1 using the ZD strategy to set the expected payoff of pool 2 is

x1
x2 >

m2

m−m2

; and as indicated in Section 4.2.1, the corresponding

condition for pool 2 to set the expected payoff of pool 1 is
x2
x1 >m1

m−m1

. Combining the above two conditions, we have

m2

m −m2

<
x1
x2
<

m −m1

m1

.

In order to guarantee the rationality of the above constraint, we

have to ensure that the relationship between the upper bound and

the lower bound satisfies
m2

m−m2

< m−m1

m1

, which is equivalent to

m1m2 < (m −m1)(m −m2). This relationship obviously holds since

m > 0 andm > m1 +m2. □

As the above parameter relationships are originated from the

relationships between the payoffs of the game results a1a2 = cc
and dd , i.e., S1

1
> S4

1
and S1

2
> S4

2
, we have the following theorem.

Theorem 5.2. In case of both pools simultaneously adopting ZD
strategies, i.e., m2

m−m2

< x1
x2 <

m−m1

m1

, the game between the two pools
becomes a Prisoner’s Dilemma (PD).

Proof. In order to prove that the pool game is a PD, we need to

illustrate that the game satisfies the following two requirements: i)

mutual defection (a1a2 = dd) is the Nash equilibrium of the game;

and ii) mutual cooperation (a1a2 = cc) is the state with maximum

social welfare.

The first condition implies that no matter what the opponent’s

action is, defection is the dominant action for both players as it

brings a higher payoff than cooperation. For pool 1, this means

that its payoff in state a1a2 = dc is larger than that in a1a2 = cc ,
which is larger than that in a1a2 = dd , and greater than that in

a1a2 = cd . As clarified in Section 4.1.2, we know that S3
1
− S1

1
> 0

and S4
1
− S2

1
> 0. Combining with the relationship S1

1
> S4

1
implied

by the parameter constraint, we have

S3
1
> S1

1
> S4

1
> S2

1
.

Similarly, for pool 2, it gets a higher payoff in state a1a2 = cd than

that in a1a2 = cc which is larger than that in a1a2 = dd and then

its payoff comes to the smallest in a1a2 = dc . As demonstrated in

Section 4.1.1, we have S2
2
− S1

2
> 0 and S4

2
− S3

2
> 0. In addition, the

parameter relationship is resulted from S1
2
> S4

2
; thus there exist

S2
2
> S1

2
> S4

2
> S3

2
.

The second requirement indicates that the total payoff of the

two pools in state a1a2 = cc is the largest compared to the other

three states,

S1
1
+ S1

2
> S2

1
+ S2

2
,

S1
1
+ S1

2
> S3

1
+ S3

2
,

S1
1
+ S1

2
> S4

1
+ S4

2
.

Referring to Table 1, one can see clearly that the above relationships

hold as

m1 +m2

m
>

m1 +m2 − x2
m − x2

,

m1 +m2

m
>

m1 +m2 − x1
m − x1

,

m1 +m2

m
>

m1 +m2 − x1 − x2
m − x1 − x2

,

given x1 ∈ (0,m2), x2 ∈ (0,m1), andm > m1 +m2. □

In this case, during the iterated game process, both pools witness

that the Nash equilibrium of the game consists of their dominant

actions, i.e., a1a2 = dd , which is unfavorable when compared to

the mutual cooperation a1a2 = cc , from either the perspective

of individual interest as S1
1
> S4

1
, S1

2
> S4

2
, or that of the group

revenue because of S1
1
+ S1

2
> S4

1
+ S4

2
. Therefore, both players have

the incentive to let the game result be close to mutual cooperation

as much as possible for the optimum social welfare. However, as

the players choose the actions at the same time at each round with

no accurate information of the opponent’s intention, it is risky for

any player to rashly select cooperation because it may suffer from

the lowest payoff once its opponent performs defection.

On the other hand, as we summarized in Theorem 5.1, both pool 1

and pool 2 are capable of employing the powerful ZD strategy under

the parameter conditions mentioned above to achieve the effective

control of the opponent’s expected payoff, no matter what action

of the opponent is. Thus, it inspires us to think about whether it is

possible for any player using the ZD strategy to control the game

result as a whole and elicit the best result where the social welfare

is maximized, without worrying about any trick from the opponent.

In the following, we take pool 1 as an example to illustrate how to

solve this problem.

As mentioned in Section 4, when pool 1 sets its strategy p satisfy-
ing p̃ = χ (αS1 + βS2 +γ1), (χ , 0), there exists αE1 + βE2 +γ = 0.

In light of this, pool 1 can set α = β = 1 to get the social welfare as

Eall = E1 + E2 = −γ . (4)

In order to maximize the social welfare leveraging only its own

power, pool 1 can make use of the ZD strategy, which can be for-

mulated as

max Eall = E1(p, q) + E2(p, q),∀q,

s.t.

{0 ≤ p ≤ 1,
E1 + E2 + γ = 0.
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As shown in (4), the above optimization problem is equivalent to

min γ ,

s.t.


0 ≤ p ≤ 1,

p̃ = χ (S1 + S2 + γ1),
χ , 0.

Because the sign of χ affects the calculation process, we consider

the following two cases.

Case 1: χ > 0. On one hand, as p ≥ 0, we can infer the lower

bound of γ as

γmin = max(Ri ), i ∈ {1, 2, 3, 4},

where Ri is

Ri =


− Si

1
− Si

2
−

1

χ
, i = 1, 2,

− Si
1
− Si

2
, i = 3, 4.

On the other hand, it is necessary to guarantee that p ≤ 1, which
leads to the upper bound of γ ,

γmax = min(Rj ), j ∈ {5, 6, 7, 8}.

And Rj is calculated by

Rj = Ri+4 =


− Si

1
− Si

2
, i = 1, 2,

− Si
1
− Si

2
+

1

χ
, i = 3, 4.

As only when γmin < γmax can γ have a feasible solution,

we need to ensure that max(Ri ) < min(Rj ), i ∈ {1, 2, 3, 4}, j ∈

{5, 6, 7, 8}, holds. Thus, once there exists any χ∗ > 0 that can meet

this requirement, we can get the minimum value of γ as

γmin = max{−S1
1
− S1

2
−

1

χ∗
,−S2

1
− S2

2
−

1

χ∗
,−S3

1
− S3

2
,−S4

1
− S4

2
}.

Case 2: χ < 0. Similarly, we first consider the constraint p ≥ 0;
then the upper bound of γ can be derived as

γmax = min(Ri ), i ∈ {1, 2, 3, 4}.

While in light of p ≤ 1, we have

γmin = max(Rj ), j ∈ {5, 6, 7, 8}.

And it is also true that only γmin < γmax can bring feasible

solutions to γ , which is equivalent to max(Rj ) < min(Ri ), i ∈

{1, 2, 3, 4}, j ∈ {5, 6, 7, 8}. Again, if there exists a specific χ∗ < 0

satisfying this condition, the minimum γ is given by

γmin = max{−S1
1
− S1

2
,−S2

1
− S2

2
,−S3

1
− S3

2
+

1

χ∗
,−S4

1
− S4

2
+

1

χ∗
}.

No matter which case is met, as long as the minimum value of γ
is derived as γmin with a certain χ∗, the ZD strategy of pool 1 is

pi =

{
χ∗(Si

1
+ Si

2
+ γmin ) + 1, i = 1, 2,

χ∗(Si
1
+ Si

2
+ γmin ), i = 3, 4.

Thus, the solution of pool 1 using the ZD strategy to maximize

the social welfare exists, which can never be influenced by the

action and strategy of its opponent in the pool game.

It is worth noting that as pool 2 is also able to utilize the ZD

strategy under the same condition of
m2

m−m2

< x1
x2 <

m−m1

m1

, one

can use the same calculation method presented above to deduce the

maximum social welfare as well as the corresponding ZD strategy.

Thus we omit it here for brevity.

In summary, it is practical for both pools simultaneously using

the ZD strategies to unilaterally set the expected payoff of each

other under certain circumstance, where a PD game is formulated

and each side is capable of taking advantage of the ZD strategy to

enforce the best game result for both sides with no need to consider

the strategy of the other side.

5.2 Setting the Expected Payoffs of Themselves
Now we turn to investigate the case of two pools relying on the

ZD strategies to control their own expected payoffs concurrently.

Theorem 5.3. It is impossible for two pools simultaneously using
the ZD strategies to adjust their own expected payoffs.

Proof. As shown in Section 4.1.2, if pool 1 aims to set its own

expected payoff with the help of the ZD strategy, it is required that

its attacking mining power must be higher than that of pool 2, i.e.,

x1
x2 >

m−m1

m1

. On the other hand, as elaborated in Section 4.2.2, the

condition for pool 2 utilizing the ZD strategy to control its own

expected payoff is
x2
x1 >

m−m2

m2

. Therefore, if both pools implement

the ZD strategies so as to determine their own expected payoffs at

the same time, their infiltrating mining powers should satisfy the

following constraint,

m −m1

m1

<
x1
x2
<

m2

m −m2

.

However, when we scrutinize the relationship of the upper and

lower bounds in the above formula, we find that
m−m1

m1

< m2

m−m2

can never be met asm(m −m1 −m2) < 0 never holds withm > 0

andm > m1 +m2. That is,
x1
x2 has no feasible solution under the

above constraint. Thus, one can conclude that the two pools cannot

simultaneously employ the ZD strategies to determine the expected

payoffs for themselves in the game. □

According the theorem presented above, we know that if any

pool i, i ∈ {1, 2} in the game tries to utilize the ZD strategy to

set its own expected payoff, its attacking power xi should be large

enough to meet xi >
m−mi
mi

x−i , where x−i denotes the attacking

power of its opponent. And in this case, the opponent is absolutely

not qualified to use the ZD strategy to control the expected payoff

of either the ZD player or itself.

In light of this, it is evident that the ZD player can dominate the

pool game over its opponent. Then one may concern about how bad

the situation of the weak side (i.e., the non-ZD player) can be when

it does not have the ability to execute the ZD strategy. Without loss

of generality, we assume that it is pool 1 who can adopt the ZD

strategy to set its own expected payoff.

As mentioned above, when the infiltrating mining power from

pool 1 to attack pool 2 is larger than that in the opposite direction,

i.e., x1 >
m−m1

m1

x2, the expected payoff of pool 1 can be set to

E1 =
(1−p1)S4

1
+p4S1

1

1−p1+p4 , which is clearly a weighted sum of S1
1
and S4

1
.

As an intelligent and profit-driven player, pool 1 with the powerful

ZD strategy inclines to set the highest expected payoff for itself,

i.e., E1 = S4
1
, which can be achieved with the strategy p1 , 1 and
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p4 = 0. On the other hand, as shown in Section 4.1.2, we have

p2 =
(1 + p4)(S

1

1
− S2

1
) − p1(S

4

1
− S2

1
)

S1
1
− S4

1

,

p3 =
−(1 − p1)(S

3

1
− S4

1
) − p4(S

3

1
− S1

1
)

S1
1
− S4

1

.

Obviously, p2 and p3 have feasible solutions only when p1 → 1

and p4 → 0 and the corresponding values are p2 → 1 and p3 → 0.

Thus given p1 , 1 and p4 = 0, we have p2 =
(S1

1
−S2

1
)−p1(S4

1
−S2

1
)

S1

1
−S4

1

,p3 =

−(1−p1)(S3

1
−S4

1
)

S1

1
−S4

1

. In order to make p2,p3 ∈ [0, 1], and further consid-

ering constraint p1 , 1, one can derive the range of p1 to be

max

(
S1
1
− S2

1

S4
1
− S2

1

, 1 −
S4
1
− S2

1

S3
1
− S4

1

)
≤ p1 < 1.

Thus, for any p∗
1
satisfying the above constraint, the ZD strategy for

pool 1 is fixed as p∗ = (p∗
1
,
(S1

1
−S2

1
)−p∗

1
(S4

1
−S2

1
)

S1

1
−S4

1

,
−(1−p∗

1
)(S3

1
−S4

1
)

S1

1
−S4

1

, 0). In

this case, pool 2’s expected payoff E2 is only dependent on its own

strategy q. For any rational player under this circumstance, the best

response strategy is to maximize its own expected payoff to fight

against the dominant ZD player. Thus, pool 2 can take advantage

of any existing algorithm for multivariable function optimization

(e.g., genetic algorithm), so as to derive its best strategy q∗ and the

corresponding maximum expected payoff E∗
2
.

To explicitly study the outcomes of pool 2, we assume that the

total mining power in the distributed network ism = 1, and the min-

ing powers of the two pools arem1 = 0.1 andm2 = 0.2. Note that

other values ofm1 andm2 are also studied, which result in the same

conclusions. Then the payoff vectors of the two players are S1 =
(0.1, 0.1−x2

1−x2 ,
0.1
1−x1 ,

0.1−x2
1−x1−x2 ) and S2 = (0.2, 0.2

1−x2 ,
0.2−x1
1−x1 ,

0.2−x1
1−x1−x2 ).

As the attacking mining power from pool 1 should be large enough

to meet the condition x1 > 9x2, we assume that x1 = 0.19, which

is close to its upper bound m2 = 0.2. Then the range of x2 is

0 < x2 < 0.0211. Besides, according to the above analysis, p1
should be in an appropriate range so that p2,p3 ∈ [0, 1]. In this case,

it turns out to be

max(θ (x2),δ (x2)) ≤ p1 < 1,

where θ (x2) =
900x 2

2
−729x2

190x2−19 and δ (x2) =
143900x2−1539

71000x2 are the lim-

itations corresponding to p2,p3 ∈ [0, 1]. As shown in Fig. 1, the

lower bound of p1 increases with x2 ∈ (0, 0.0211); thus we can set

p1 = max(θ (0.0211),δ (0.0211)) = 0.9995. Then p2 and p3 can be

calculated accordingly, which turn out to be functions of x2.
E2 can be calculated as a function of q and x2. Here we omit

the detailed expression as it is over-lengthy. By solving
∂E2
∂q = 0,

we get the stationary point q∗ = (q∗
1
, 0, 1, 0), where q∗

1
relies on

x2 and its trend with x2 ∈ (0, 0.0211) is demonstrated in Fig. 2.

It is obvious that the value of q∗
1
is always larger than 1 in the

domain of x2, which is out of the range of a meaningful q. Thus,
we can infer that the maximum value of E2 can only be obtained

in the 16 endpoints, which turns out that both q = (1, 1, 0, 1) and

q = (1, 1, 1, 1) can achieve the optimum E2 = −
700x2+1
100x2−81 . Based on

this, one can conclude that under the dominance of the ZD player

setting the highest expected payoff for itself, the best response
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Figure 1: p1’s lower bound.
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Figure 2: q∗
1
.

strategy for the weak side is to cooperate as much as possible.

Further, it is easy to observe that E2 increases with x2 ∈ (0, 0.0211)

and always less than 0.2, which brings us another conclusion that

even if the non-ZD player exerts all its infiltrating mining power

to attack against the ZD player, it still suffers from a lower revenue

than that in a1a2 = cc .

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed social

welfare maximization mechanism when both players are simulta-

neously available to adopt the ZD strategies for payoff control of

each other as well as the performance of the non-ZD player in the

situation where only one player can use the ZD strategy to set its

own expected payoff.

We first verify the effectiveness of the ZD based social welfare

maximization scheme proposed in Section 5.1 with the parameter

settings ofm = 1,m1 = 0.1, andm2 = 0.2. As implied in Theorem

5.1, the values of x1 and x2 in this case must satisfy
1

4
< x1

x2 < 9;

thus we fix x1 = 0.1 and x2 = 0.05. Note that we also conduct

experiments with other parameter settings and obtain similar re-

sults, which are omitted for brevity. Note that we simulate the game

between the two pools for 100 rounds to reach the stable state.

Specifically, we compare the social welfare of the game when

pool 1 adopts the ZD strategy as well as five other classical strate-

gies: all-cooperation (ALLC, p = (1, 1, 1, 1)), all-defection (ALLD,

p = (0, 0, 0, 0)), tit-for-tat (TFT, p = (1, 0, 1, 0)), win-stay-lose-shift

(WSLS, p = (1, 0, 0, 1)), and random (RDM, p = (0.5, 0.5, 0.5, 0.5)).

Pool 2 also adopts these six strategies; thus we have 36 strategy

combinations. For each combination, we report the evolution of the

social welfare as the game proceeds and the relative payoffs of the

two pools in the corresponding stable state. The results are illus-

trated in Figs. 3 to 8, with each showing a case when the strategy

of pool 2 is fixed while that of pool 1 varies, so as to demonstrate

whether the proposed ZD strategy is the best decision for pool 1.

Fig. 3 reports the results when pool 2 adopts ALLC. It is obvious

that a reasonable pool 1 can employ either ALLC or TFT to provide

the highest social welfare and fairly high payoffs for both sides. This

corresponds to the case in state a1a2 = cc; and ZD is only better

than ALLD. When pool 2 adopts the ALLD strategy (Fig. 4), it seems

that there exists no perfect strategy for pool 1. Reluctantly, WSLS

and RDM perform slightly better than the other four strategies

for pool 1 since ALLD and TFT result in the lowest social welfare;

and although ALLC and ZD can bring a higher social welfare, they

cause the lowest payoff for pool 1. This result is understandable as

a stubbornly defective player can never be beaten by anyone. For

a TFT pool 2 (Fig. 5), an ALLC pool 1 is the best as it can elicit c
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from the TFT player, and the ZD strategy performs sub-optimally.

In Fig. 6 where pool 2 adopts WSLS, one can see that WSLS is

the optimal strategy for pool 1 as the two players with WSLS can

definitely lead to mutual cooperation, and ZD is better than the

other four strategies with a relatively high social welfare and fair

payoffs. When pool 2 adopts the RDM strategy (Fig. 7), it is clear

that ZD outperforms others as it brings a relatively large social

welfare and fairly good payoffs for both sides. Finally, when pool 2

employs the ZD strategy shown in Fig. 8, ZD and TFT are equally

good from the perspectives of both social welfare and individual

payoffs. From the above observations, we can derive the following

conclusions:

(1) When pool 2 adopts two stubborn strategies, i.e., ALLC and

ALLD, the proposed ZD strategy has no advantage over the

other five classical strategies for pool 1.

(2) When pool 2 utilizes the two adaptive strategies, i.e., TFT and

WSLS, ZD is a sub-optimal choice for pool 1 as ALLC and

WSLS can evoke cooperation of pool 2 when it takes TFT and

WSLS, respectively, and finally achieve mutual cooperation.

(3) When pool 2 utilizes the RDM or ZD strategy, ZD turns out

to be attractive for pool 1 since it can bring the highest social

welfare and fair payoffs.
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 3: Case of pool 2 adopting the ALLC strategy.
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 4: Case of pool 2 adopting the ALLD strategy.
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 5: Case of pool 2 adopting the TFT strategy.

On the other hand, to explicitly explore the value of the ZD

strategy, we plot the time-varying social welfare in Fig. 9 when
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 6: Case of pool 2 adopting the WSLS strategy.
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 7: Case of pool 2 adopting the RDM strategy.
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(b) Pool 1’s payoff.
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(c) Pool 2’s payoff.

Figure 8: Case of pool 2 adopting the ZD strategy.

pool 1 fixes its strategy while pool 2 varies by taking six different

strategies. It is easy to see that only when pool 1 uses ZD can the

social welfare of the game stay at a fixed value of 0.243 no matter

what strategy pool 2 employs, which is explicitly larger than that

in state a1a2 = dd of 0.176; the other five classical strategies have

no such property, and the social welfare in these cases are jointly

determined by the strategies of the two pools.
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(d) TFT.
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Figure 9: Social welfare with a certain strategy of pool 1.

Next, we examine the results of the non-ZD player when only

one player is capable of adopting the ZD strategy, so as to verify

the conclusion we present before. Basically, we use the same values
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ofm,m1, andm2 as in Section 5.2, and set the values of x1,x2 to
meet the conditions of

x1
x2 > 9 for pool 1 and

x2
x1 > 4 for pool 2,

such that each can adopt the ZD strategy to control its own payoff.

Specifically, as analyzed in Section 5.2, the optimum payoff of

the non-ZD player is obtained at one of the 16 end-point strategies,

which are denoted by the binary notation of 0 to 15, i.e., (0, 0, 0, 0),

(0, 0, 0, 1), (0, 0, 1, 0), · · · , (1, 1, 1, 1). And the range of the non-ZD

player’s infiltrating mining power (attacking parameter) is divided

into 10 intervals. In Fig. 10, we plot the expected payoffs of pool 2

at the 16 endpoints when the value of its own attacking parameter

x2 changes while pool 1 adopts the ZD strategy to set its own

payoff to be the highest. In the case of x1 = 0.19, the range of

x2 is (0, 0.0211); while when x1 = 0.10, x2 ∈ (0, 0.0111). One can

easily figure out that the more cooperative pool 2 is, the higher its

expected payoff; and for a specific end-point strategy, the higher

the attacking parameter of pool 2, the higher the payoff; but the

payoff is always less than 0.2. We also study the case of pool 2

adopting the ZD strategy to set the highest payoff for itself, where

x2 is fixed to 0.09 or 0.05 to meet the condition of x2 < m1, and

accordingly, the respective range of x1 is (0,0.0225) and (0,0.0125).

As shown in Fig. 11, the changes of the payoffs of pool 1 with x1
and x2 under different strategies demonstrate a similar conclusion.
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(a) x1 = 0.19.
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(b) x1 = 0.10.

Figure 10: Pool 2’s payoffs at the end points change with x1
and x2 when pool 1 adopts the ZD strategy.
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(a) x2 = 0.09.
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Figure 11: Pool 1’s payoffs at the end points change with x1
and x2 when pool 2 adopts the ZD strategy.

7 CONCLUSIONS
In this paper, we focus on the block withholding attack among

mining pools in Bitcoin. Different from the state-of-the-art research

that studies the mutual attack among pools relying on the tradi-

tional game theory, we conduct an analysis from special perspective

with the ZD strategy by which the ZD player can achieve the uni-

lateral control of the expected payoff. Specifically, we model the

block withholding attack between any two pools as a two-player

simultaneous game. Based on this game model, we investigate the

conditions under which any pool can individually adopt the ZD

strategy and two pools can concurrently employ it. Through the-

oretical derivation and numerical analysis, we demonstrate the

effectiveness of the ZD strategy in block withholding attacks. To

the best of our knowledge, we are the first to use the ZD strategy

to analyze the block withholding attack among mining pools.
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