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Abstract

The extensive Late Cretaceous – Early Paleogene sedimentary succession of

Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to

examine the evolutionary origins of a modern polar marine fauna. Some 38 modern

Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing

approximately 18% of the total modern benthic molluscan fauna, can now be traced

back through at least part of this sequence. As noted elsewhere in the world, the

balance of the molluscan fauna changes sharply across the Cretaceous –

Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse

than bivalves. A major reason for this is a significant radiation of the

Neogastropoda, which today forms one of the most diverse clades in the sea.

Buccinoidea is the dominant neogastropod superfamily in both the Paleocene

Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene

La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for

the first time in the latter. This radiation of Neogastropoda is linked to a significant

pulse of global warming that reached at least 65 S̊, and terminates abruptly in the

upper LMF in an extinction event that most likely heralds the onset of global cooling.

It is also possible that the marked Early Paleogene expansion of neogastropods in

Antarctica is in part due to a global increase in rates of origination following the K/

Pg mass extinction event. The radiation of this and other clades at ,65˚S indicates

that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early –

Middle Eocene. Evolutionary source – sink dynamics may have been significantly

different between the Paleogene greenhouse and Neogene icehouse worlds.
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Introduction

A series of recent studies has clarified that a number of key components of the

modern Antarctic marine fauna were in place well before the onset of global

cooling in the late Middle Eocene. This is particularly so within the marine

invertebrates where significant elements of the numerically dominant Mollusca

occur in the fossil record as much as 20 m.y. before the initial stages of cooling at

,42 Ma [1, 2]. The critical faunas on which these findings are based are all from

Seymour Island at the north-eastern tip of the Antarctic Peninsula (Fig. 1) where

excellent vertical and lateral exposure has allowed unprecedented access to Late

Cretaceous – Early Paleogene marine faunas and floras at a high paleolatitude

(,65 S̊) [3–7]. Since the initial discovery of these representatives of the modern

Antarctic marine fauna, work has continued to refine both their taxonomic

affinities and relative biostratigraphical positions. A number of new occurrences

of modern Antarctic taxa in the fossil record have been recognised and it is

important to place these and all previous records in as accurate a stratigraphical

framework as possible. Within this highly fossiliferous locality it should be

possible to match faunal trends and patterns directly with changes in

paleoclimates and paleoenvironments. Is the introduction of elements of the

modern fauna in some way linked to the aftermath of the mass extinction event at

the Cretaceous – Paleogene (K/Pg) boundary, or perhaps to paleoclimatic events

such as Early – Middle Eocene global warming? Are there elements within the

fauna that might help us to determine whether Antarctica acted as an evolutionary

source or sink during the Early Cenozoic?

Materials and Methods

The Upper Cretaceous – Lower Paleogene strata of Seymour Island comprise the

stratigraphically highest exposed levels of an extensive sedimentary basin situated

on the north-eastern flank of the Antarctic Peninsula [8] (Fig. 1). In total, the

sedimentary succession comprises a thickness in excess of 2325 m, although the

stratigraphy is complicated by the fact that the two highest formations represent

large-scale channel structures that have been cut into older, more regularly bedded

units [4, 9–11]. The component sediments are overwhelmingly volcaniclastic in

origin and dominated by mudstones, siltstones and sandstones deposited in

various shallow-marine, shelf-deltaic environments. They are fossiliferous

throughout, with particularly dense accumulations forming prominent shell beds

(or coquinas) in the mid- to upper levels of the Eocene La Meseta Formation

(LMF) [11]. It is important to emphasise that this very thick succession of

sediments is by no means continuous, with the upper levels in particular being

characterised by a series of unconformity-bounded transgressive – regressive

cycles [12–14]. Nevertheless, as will be argued below, the overall faunal record is

complete enough to allow a detailed analysis of changes in a number of major

taxonomic groups between the latest Cretaceous (Maastrichtian) and latest

Eocene (i.e. spanning the period between approximately 70–35 Ma). A
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comprehensive review of the litho-, bio-, and chrono-stratigraphies of the latest

Cretaceous – Early Paleogene strata of Seymour Island is contained in S1

Appendix.

The positions of all gastropod and bivalve molluscs were plotted as accurately as

possible within the generalised stratigraphic scheme presented in S1 Appendix; all

British Antarctic Survey (BAS) field data were determined by abney level and

Jacobs staff on a series of measured sections (Fig. 1). Latest Maastrichtian taxa

were collected from a series of sections measured in central Seymour Island, with

section DJ. 953 crossing the Cretaceous/Paleogene boundary (K/Pg) and recovery

interval Kplb 10, and then terminating in the base of the Sobral Formation (SF)

(Fig. 1). The K/Pg and Kplb 10 sections were repeated at D9. 205/207 and then

extended vertically through the complete thickness of the SF (D9. 209/210, Fig. 1).

Extensive use was also made of the stratigraphic positions of Maastrichtian -

Figure 1. Geological and locality map for Seymour Island, north-eastern Antarctic Peninsula. Roman
numerals within the La Meseta Formation indicate Telms 1–7; Telm 4 is a very thin unit that can be traced
intermittently along the boundary between Telms 3 and 5. KPB5 Cretaceous/Paleogene boundary. Further
details on stratigraphic nomenclature are contained in the text and S1 Appendix. Based on Montes et al [117],
with modifications. Cross Valley lies between López de Bertodano Bay and Penguin Bay.

doi:10.1371/journal.pone.0114743.g001
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Paleocene molluscs described in the taxonomic monographs by Zinsmeister &

Macellari [15] and Stilwell et al. [16]. In the latter study specimens were collected

from numerous localities in a 70 km2 area of south-eastern Seymour Island and

then co-located on a single master section using stratigraphic plane analysis [17].

Whilst this is indeed an interesting and innovative technique, it was found in

practice that it produced a number of ranges that contrasted significantly with

those in section D9. 209/210. These conflicts are outlined in more detail in the

taxonomic appendix (S2 Appendix) where additional Maastrichtian – Paleocene

records were added from all published sources, plus the collections of the

Paleontological Research Institution (PRI), Ithaca, New York.

The Eocene LMF was investigated using transects at both the northern and

south-western ends of the area of outcrop (Fig. 1). In the former of these regions

the transect stretches from locality DJ. 78 in informal mapping unit Telm 1,

through DJ. 77 (Telms 2 & 3) to DJ. 79 & 80 (Telm 3), and finally DJ. 81 (Telm 4).

In the latter, Telm 1 was investigated at D9. 208 & 213, Telm 2 at D9. 212, and

Telm 5 at D9. 214 (Fig. 1). In addition, extensive use was made of reference

sections S1-2/LM86-1 on the western flank of the LMF, and D-8 on the northern

flank in the taxonomic monograph published by Stilwell & Zinsmeister ([18], p.

23 & fig. 39). In this work the stratigraphic occurrences at a large number of

localities were projected onto the sections and the results presented as four

composite range charts([18], figs 40–43). As Stilwell & Zinsmeister ([18], p. 23)

pointed out, it is not a straightforward task to combine sections from different

localities into a single reference scheme for the whole LMF. This is because of the

marked lenticular nature of the Telms and some significant NNE – SSW variations

in thickness across the area of outcrop. In this study a single LMF reference

section was established using the stratigraphic scheme presented in Casadio et al.

([19], fig, 2). In some cases it was then possible to plot stratigraphic positions and

ranges directly onto it with reasonable accuracy, but in others only relative

positions such as ‘‘mid-point in Telm’’ or ‘‘upper one-third of Telm’’ could be

obtained. Further details of the ranges used and specimens examined for each

taxon are given in the S2 Appendix, which includes a review of all relevant

published sources, and the collections of the PRI. Because the biostratigraphical

ranges used in this study were established by a variety of different means, and

different research groups, it was not possible to fit confidence intervals to them

[20].

The numbers of all specimens examined are catalogued in S2 Appendix, where

reference is also made to the exact coordinates of each locality. The specimens

collected in the 2009–10 field season were obtained under permit from the

Foreign & Commonwealth Office, United Kingdom of Great Britain and

Northern Island. Permit No. S6-5/2009 was granted under Section 6 of the

Antarctic Act 1994 to the Director of the British Antarctic Survey, who then

delegated authority for the material to be obtained by the authors. Specimens

from earlier field seasons were collected under similar regulations. All UK

specimens collected from Antarctica are contained within the reference collections

of the British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET,
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UK, and may be accessed via the NERC Polar Data Centre (http://pdc.nerc.ac.uk).

Seymour Island specimens held within the Paleontological Research Institution,

Ithaca, New York, the Smithsonian Institution, Washington, D.C., and the

collections of GNS Science, Lower Hutt, New Zealand were also examined.

Results

Thirty-eight modern Southern Ocean molluscan genera are represented in the

latest Cretaceous – early Paleogene fossil record of Seymour Island; these comprise

26 gastropods and 12 bivalves. In total these represent approximately 18% of the

total modern fauna, 19% of the gastropod genera and 17% of the bivalves (http://

www.biodiversity.aq). When traced back through the composite reference section,

it is apparent that only five of the 38 genera (13%) extend across the K/Pg, and

these are all bivalves: Leionucula, Limopsis, Limatula, Conchocele and Thracia

(Fig. 2) (S2 Appendix). With the probable exception of Conchocele, all of these

taxa are known to have extensive Late Cretaceous and earlier fossil records

(Paleobiology Database; http://paleobiodb.org): Limopsis is now known to have an

Early Cretaceous (Albian) origin [21, 22], Limatula can be traced back to at least

the Late Jurassic, and Thracia to the latest Paleozoic (http://paleobiodb.org). It is

likely that the occurrence of Conchocele in the earliest Maastrichtian of the Snow

Hill Island Formation, James Ross Basin, represents the first global fossil record

for the genus [23, 24] (S2 Appendix).

Therefore it is possible to draw at least a preliminary conclusion that the

modern Antarctic bivalve fauna has deeper temporal roots than the gastropod

one, and this can be strengthened by the fossil record of at least two other

Southern Ocean genera. Although Astarte does not occur in the Seymour Island

section, it can clearly be traced back in the global fossil record and shown to be

widespread in its distribution through the greater part of the Mesozoic era (http://

paleobiodb.org). Similarly, the lucinid Lucinoma occurs in the subantarctic

regions at the present day and can be traced back as far as the Early Cretaceous in

Japan [25] and latest Cretaceous in Denmark [26]. In comparison, it is not

possible to trace any of the modern Antarctic gastropod genera back to the

Cretaceous (Fig. 2). The one possible exception to this rule might be the

struthiolariid, Perissodonta, which has an extensive Paleocene – Eocene record on

Seymour Island (#7, Fig. 2). In a review of the phylogeny of the Struthiolariidae,

Zinsmeister & Camacho [27] suggested that the Late Cretaceous New Zealand

genus Conchothyra could be stem to the entire lineage, but it has to be stressed

that no specimens of Conchothyra have yet been reported from Antarctica

(S2 Appendix).

Within the uppermost levels of the Maastrichtian part of the López de

Bertodano Formation (LBF) (Units Klb 6–9, i.e. the uppermost 450 m) there are

approximately 19 genera/23 species of gastropods and 28 genera/33 species of

bivalves ([28–31]; faunal list in S1 Appendix.). In addition it is apparent that

within this interval bivalves are very much more abundant than gastropods, with
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estimates from various reference collections being in the region of 2:1. Such a

taxonomic structure for the latest Cretaceous Antarctic molluscan fauna is similar

to that known from the very well studied U.S. Gulf Coast region. An analysis of

the Late Maastrichtian Owl Creek, Prairie Bluff, Providence and Severn

Formations combined produced the following results: 116 genera/207 species of

gastropods, and 104 genera/206 species of bivalves. Some 97,000+ individual

specimens of gastropods and bivalves have been examined from these four

formations and they reveal a ratio of gastropods to bivalves of approximately 1:4

[32–38]. In other words, although the absolute numbers are much higher on the

Gulf Coast (it is, after all, a much bigger area), the relative proportion of

gastropods to bivalves in terms of genera or species is very similar, but in terms of

numbers of individuals is somewhat higher than in Antarctica. Relative parity in

Figure 2. The fossil record of 38 modern Southern Ocean molluscan genera. Solid lines and dots depict actual fossil occurrences and ranges of 38
molluscan genera (1–265 gastropods, 27–385 bivalves). Full details as to how the occurrences and ranges were established within the stratigraphic
framework are contained within the text and S2 Appendix. Klb 9 represents the topmost Maastrichtian stratigraphic unit of the LBF, KPB5 Cretaceous/
Paleogene boundary, and (10) is Kplb 10, the recovery interval and topmost informal stratigraphic unit of the LBF. T1–75 Telms 1–7 of the LMF; ages (in Ma)
are approximate and taken from Montes et al. [117] for the SF, CVF and topmost LMF (Telms 6–7). Further details on the age of the La Meseta Formation are
given in S1 Appendix. Gastropods arranged in taxonomic order according to Bouchet & Rocroi [118]; bivalves according to Bouchet & Rocroi [119] and
Taylor et al. [120]. 1.Calliotropis; 2. Collonia; 3. Euspira?; 4. Amauropsis?; 5. Falsilunatia; 6. Sinuber; 7. Perissodonta; 8. Probuccinum?; 9. cf. Germonea;
10. Prosipho; 11. Pareuthria; 12. Chlanidota; 13. Trophon; 14. Fulgurofusus; 15. Volutomitra?; 16. Miomelon?; 17. Tractolira; 18. Aforia?; 19. Spirotropis?;
20. Typhlomangelia; 21. Epitonium; 22. Acirsa; 23. Acteon; 24. Neoacteonina; 25. Tornatellaea; 26. Kaitoa; 27. Leionucula; 28. Yoldia (Aequiyoldia); 29.
Limopsis; 30. Limatula; 31. Cyclocardia; 32. Parathyasira; 33. Conchocele; 34. Mysella; 35. Gaimardia; 36. Cyamiomactra; 37. Hiatella; 38. Thracia.

doi:10.1371/journal.pone.0114743.g002
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numbers of taxa, and in particular number of species, would appear to be a

reasonably consistent feature of Late Cretaceous benthic molluscan assemblages

per se [35, 39, 40].

In Antarctica the K/Pg is followed immediately by a 55–60 m thick recovery

interval which is informally known as unit Kplb 10 of the LBF [5, 10]. It contains a

genuine low diversity – high abundance fauna with just six gastropod and eight

bivalve species (faunal list in S1 Appendix.). This fauna contrasts strongly with

that found in the lower levels of the overlying Early Paleocene (Danian) SF, where

the relative proportion of gastropods to bivalves changes substantially. Within this

formation there are approximately 31 genera/34 species of gastropods and 14

genera/18 species of bivalves (Table 1; S2 Appendix); this increase in the relative

proportion of gastropods to bivalves from the Maastrichtian to the Paleocene is

statistically significant at both genus and species levels (exact binomial tests,

P,0.003). Similarly, an analysis of the Danian Kincaid, Aquia and Clayton

formations from the Gulf Coast yields a value of 1.4:1 at the species level, the

Danian Wangaloa Formation of New Zealand ,3:1, Middle Paleocene faunas of

Europe and Greenland between 2.3:1 and 2.5:1, and Early – Middle and Middle

Paleocene faunas of the Gulf Coast (Wills Point, Porters Creek and Naheola

Formations) as high as 4:1 (using references cited in ([2], S1 Appendix). Analyses

of patterns of relative abundance are less precise in the Paleocene but there is a

general impression from all regions of a steep increase in the number of gastropod

individuals too.

In the Early Paleocene gastropods take over from bivalves globally as the

dominant element in benthic molluscan assemblages and this is due very largely,

but not exclusively, to the rise of one very large clade, the Neogastropoda [40–43].

To give some idea of the scale of this expansion through the Cenozoic the total

number of neogastropod species in the terminal Cretaceous Maastrichtian stage

globally can be estimated at 220 (http://paleobiodb.org) and those at the present

day at ,26000 [2]. Of course, the number of Maastrichtian taxa could be a

significant underestimate (especially of those in the tropics) [44, 45], but

nevertheless the scale of this global expansion is impressive and can probably be

traced right back to a significant radiation in the Early Danian. Approximately

50% of the total Antarctic gastropod fauna at the species level at this time belongs

within the Neogastropoda.

In order to track this radiation more closely the stratigraphic ranges of all

neogastropods in the Seymour Island section were plotted at the species level

(Fig. 3). Of the eight neogastropods known from the latest Maastrichtian, only

one of them, Heteroterma sp., appears to cross the K/Pg (#2, Fig. 3). However, it

should be stressed that this taxonomic category is a broad one and it cannot be

determined with certainty that the single specimen occurring ,8.5 m beneath the

K/Pg is precisely equivalent to either that occurring in the mid-levels of the SF, or

the four from the topmost levels of the same unit (S2 Appendix). Heteroterma is

an essentially Maastrichtian – Paleocene genus restricted to the high southern

latitudes and eastern Pacific margins (S2 Appendix).
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In all other respects, the SF neogastropod fauna of Seymour Island is very

different from that of both the latest Cretaceous LBF (units Klb 6–9) and the

recovery interval, Kplb 10. The only neogastropods definitely recorded from the

latter are a small number of specimens of the buccinoidean Austrosphaera

bulloides (#11, Fig. 3; S1 Appendix), which occurred in the topmost 6 m of

section DJ. 953 (Fig. 1). Thereafter, neogastropods begin to appear in some

numbers in the fossiliferous concretionary interval at 48–120 m in the SF (Fig. 3).

At least 16 different species have been recorded from this level and they have an

altogether much more modern aspect than their latest Cretaceous counterparts.

Within the large superfamily Buccinoidea there is at least one species referable to

the modern Southern Ocean genus Probuccinum, and one very close to the living

deep-sea genus Germonea (#14, 15, Fig. 3). A third new buccinid, assigned to the

modern boreal genus Colus by Stilwell et al. [16], is in fact more likely to be a new

genus (S2 Appendix), but its presence does serve to reinforce the sudden change

to a gastropod fauna of much more modern aspect. In addition there is a volutid

very close to the modern genus Miomelon from southernmost Patagonia (#54,

Fig. 3), and a probable species of Volutomitra (#60, Fig. 3). At the genus level

there is a statistically significant increase in the proportion of neogastropods in

the total gastropod fauna from 28% in the Maastrichtian to 47% in the Paleocene

(x2 test, P50.011).

The true extent of the stratigraphic gap between the top of the SF and base of

the Eocene LMF is unknown but must be at least equivalent to the interval of time

represented by the deposition of the CVF (S1 Appendix). In addition it should be

stressed that in the stratigraphic column presented here (Fig. 3) the maximum

thickness of Telm 1 at the base of the LMF (5160 m) is shown, even though it is

known to be considerably thinner over much of the basin. But what is apparent is

that at a relatively low level in Telm 2 a prolific molluscan fauna is exposed and

this can be traced through to the top of Telm 5 (Fig. 3). Whereas the total of 63

gastropod genera recorded from Telms 2–5 represents an approximate doubling

in number from the Paleocene SF, the 100 species represents a three-fold increase;

this in turn reflects, for the first time, the rise of several species-rich clades

Table 1. Numbers of gastropods and bivalves in the three stratigraphic intervals investigated.

gastropod
genera

gastropod
species

bivalve
genera

bivalve
species neogastropod genera

neogastropod
species

Early - Middle Eocene
(Telms 2–5, LMF)

63 100 37 49 33 52 (16.88)*

Paleocene (SF) 31 34 14 18 16 16 (11.02)*

Maastrichtian (LBF,Units Klb
6–9)

19 23 28 33 8 8 (7.95)*

Owing to the fact that they were collected over a number of years and by different groups it was not possible to sample-standardise the general collections of
gastropods and bivalves with any degree of accuracy. However, the neogastropod collections are better constrained and reasonably accurate estimates of
numbers of individuals can be made for all species. Therefore it is possible to use rarefaction to at least partially sample-standardise for the fact that the
three time bins are of unequal stratigraphic thickness and temporal duration. * represents values for rarefaction to 100 individuals, i.e. E(S100). Total numbers
of neogstropods for the three time bins are: Maastrichtian 5344; Paleocene 5343; Early - Middle Eocene 53483. Key: LBF5 López de Bertodano
Formation; SF5 Sobral Formation; LMF5 La Meseta Formation.

doi:10.1371/journal.pone.0114743.t001
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(Table 1; S2 Appendix). In comparison, there are only 37 genera of bivalves from

the same unit, although it should be pointed out that some of these taxa are still

extremely abundant, such as the species of Cucullaea and Retrotapes that are so

Figure 3. The stratigraphical radiation of the Neogastropoda in Antarctica. Solid lines and dots depict actual fossil occurrences and ranges of 80
neogastropod species. Full details as to how the occurrences and ranges were established within the stratigraphic framework are contained within the text
and S2 Appendix. Klb 9 represents the topmost Maastrichtian stratigraphic unit of the LBF, KPB5 Cretaceous/Paleogene boundary, and (10) is Kplb 10, the
recovery interval and topmost informal stratigraphic unit of the LBF. T1–75 Telms 1–7 of the LMF; ages (in Ma) are approximate and taken from Montes et
al. [117] for the SF, CVF and topmost LMF. Further details on the age of the La Meseta Formation are given in S1 Appendix. Gastropods arranged in
taxonomic order according to Bouchet & Rocroi [118]. 1.Heteroterma sp. 2; 2. Heteroterma sp.; 3. Antarctissitys austrodema; 4. Pyropsis sp.; 5. Taioma
charcotiana; 6. Taioma sobrali; 7. Taioma bicarinata; 8. Taioma? antarctocarinata; 9. ‘‘Cassidaria’’ mirabilis; 10. Neogastropod, n. gen. B; 11. Austrosphaera
bulloides; 12. n. gen. woolfei; 13. ‘‘Colus’’ delrioae; 14. Probuccinum? palaiocostatum; 15. cf. Germonea n. sp.; 16.?Pseudotylostoma pyrinota; 17. n. gen.?
polaris; 18. ‘‘Penion’’ n. sp. A; 19. ‘‘Penion’’ n. sp. B; 20. Penion australocapax; 21. Prosipho stilwelli; 22. Prosipho lawsi; 23. Prosipho delli; 24. Prosipho
polaris; 25. Prosipho antarctocosta; 26. Prosipho n. sp. 1; 27. Prosipho lamesetaensis; 28. Pareuthria hookeri; 29. Pareuthria n. sp. 1; 30. Chlanidota
antarctica; 31. Chlanidota tuberosa; 32. Chlanidota antarctohimaleos; 33. Chlanidota?antarctohimaleos; 34. Chlanidota n. sp. 1; 35. Austroficopsis
seymourensis; 36. Austroficopsis wimani; 37. Austroficopsis australis; 38. Austroficopsis austrinus; 39. Austroficopsis meridionalis; 40. n. gen. verrucosa;
41. Neogastropod, n. gen. A; 42. Cryptorhytis philippiana; 43. Microfulgur binodosa; 44. Paleopsephaea? nodoprosta; 45. Fusinus? doylei; 46. Microfulgur
byrdi; 47. Fusinus? eonodatus; 48. Fusinus? suraknisos; 49. Fusinus? graciloaustralis; 50. Trophon radwini; 51. Eupleura suroabdita; 52. Turbinellidae
indet.; 53. Fulgurofusus brecheri; 54. Miomelon? sp.; 55. Adelomelon fordycei; 56.?Adelomelon suropsilos; 57. Odontocymbiola amundseni; 58. Miomelon
antarctica; 59. Tractolira n. sp.; 60. Volutomitra? antarctmella; 61. Volutomitra? cernohorskyi; 62. Volutomitra? iredalei; 63. Marshallaria? sp.;
64.?Cosmasyrinx (Tholitoma) antarctigera; 65. Zemacies finlayi; 66. Aforia canalomos; 67. Marshallaria? oliveroi; 68. Austrotoma n. sp.; 69. Austrotoma?
ventricosa; 70. Austrosullivania lata; 71. Austrosullivania striata; 72. Gemmula askinae; 73. Spirotropis? n. sp.; 74. Typhlomangelia? n. sp.; 75. Agladrillia? n.
sp.; 76. Makiyamaia? n. sp.; 77.? Splendrillia antarctoliqua; 78.? Cochlespira brychiosinus; 79. Pristimercia australis; 80. Coptostomella? notopolaris.
Species 1–10 unassigned to superfamily; 11–49, Buccinoidea; 50–62, Muricoidea; 63–78, Conoidea; 79–80, Cancellarioidea.

doi:10.1371/journal.pone.0114743.g003
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prominent in the coquinas of Telm 5 [18]. There is a rise in the proportion of

modern gastropod genera between the Paleocene SF (23%) and Early Eocene

LMF, Telms 2–5 (33%) but neither this nor a similar comparison between bivalve

genera (21% v 24%) is statistically significant (x2 test, P.0.115). However, at the

species level there is a significant increase in gastropods from 21% in the SF to

40% in the LMF (P50.004) (Fig. 3).

Finally, it is readily apparent that there is a very marked reduction in the

number of molluscan species at the boundary between Telms 5 and 6 in the LMF

(Fig. 3). The overall reduction in gastropods and bivalves between Telms 2–5 on

the one hand and Telms 6 & 7 on the other is 63% (i.e. at the species level); the

figure for gastropods alone is 68%, and that for neogastropods is 74%. This is the

level at which there is a marked facies change and possible stratigraphical hiatus

(S1 Appendix).

Discussion

(i) The K/Pg resets the evolutionary stage

Whereas five of the twelve modern bivalve genera having a fossil record on

Seymour Island can be traced back to the Cretaceous period, or earlier, none of

the 26 gastropods can (Fig. 2). Thus it would appear that the evolution of this key

component of the living Antarctic marine fauna [46] is an essentially Cenozoic

phenomenon. Study of the global fossil record indicates that mass extinctions are

invariably followed by episodes of rapid diversification and biological restruc-

turing [47–49], and this would certainly seem to have been the case in the Early

Paleocene (Danian) SF. Here, a rapid development of gastropods, particularly at

the 48–120 m interval, sees the establishment of a fauna comprising 31 genera, of

which five had crossed the K/Pg (but became extinct at a higher level in the

sequence) and seven (523%) are modern. The latter comprise the first occurrence

of the struthiolariid Perissodonta, two naticids (Amauropsis?, Euspira?) and four

neogastropods (Probuccinum?, cf. Germonea, Miomelon? and Volutomitra?) (#
8,9,15,16, Fig. 2). In total, neogastropods comprise 50% (genus or species levels)

of the fauna, with by far the largest grouping occurring within the Buccinoidea.

This appears to have been the dominant superfamily in the polar regions from the

Paleocene onwards [1, 2].

Following the approach adopted in a number of recent studies, we can assign

the SF neogastropod taxa to three basic categories: survivors, invaders and locally

evolved new taxa [50, 51]. Of the 16 genera, probably only two can be placed in

the survivor category, in the sense that they survived the K/Pg extinction event in

Antarctica (Heteroterma, Taioma; #2,6, Fig. 3); a third possible survivor is

Pyropsis (#4, Fig. 3), which was widespread in both hemispheres in the Late

Cretaceous (http://paleobiodb.org). Austrosphaera is a possible immigrant from

central Chile [52], and Paleopsephaea? from the U.S. Gulf Coast (S2 Appendix).

All the other 11 genera (569% of Paleocene neogastropods) show strong southern

high-latitude affinities. Probuccinum?, cf. Germonea and three new genera
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(‘‘Colus’’, n. gen. woolfei and n. gen.? polaris) can be classified as Antarctic taxa,

and Microfulgur, Marshallaria? and?Cosmasyrinx (Tholitoma) suggest links with

New Zealand.? Pseudotylostoma and Miomelon? in turn have lnks with Patagonia,

and Volutomitra? shows more general southern high-latitude affinities (S2

Appendix).

The Paleocene radiation of gastropods continues into the Early - Middle Eocene

LMF (S1 Appendix) where there is a two-fold increase in numbers at the genus

level, and three-fold at the species level in Telms 2–5 (Table 1, Fig. 3). Of the 40

species assigned to modern Antarctic genera, two are vetigastropods, six

struthiolariids (i.e. Perissodonta), three naticids, five ptenoglossans, 20 neogas-

tropods, three heterobranchs and one opisthobranch. The total number of

neogastropods in this unit (i.e. modern + extinct taxa) is 32 genera (a two-fold

increase from the Paleocene) and 52 species (a three-fold increase). The

Buccinoidea is again the dominant group (47%) and for the first time the

Conoidea (25%) form a prominent element. Gastropods in general, but

neogastropods in particular, show a very significant increase in numbers in

Antarctica between the K/Pg and approximately late Middle Eocene, and this

trend is still apparent after partial sample-standardisation of the three time bins

using rarefaction (Table 1, Fig. 3).

(ii) Diversification in a greenhouse world

It is by now well established that an approximately 20 m.y. interval between the

mid-Paleocene and the late Middle Eocene (i.e. ,42–62 Ma) represents the

globally warmest time of the last 75 m.y. [53]. During the acme of this greenhouse

world, the Early Eocene Climatic Optimum (EECO) (51–53 Ma), the polar –

equatorial thermal gradient was unusually low and tropical rainforests spread to

paleolatitudes of 55 –̊65˚ N and S, or occasionally even higher [54–57]. At the

Eureka Sound locality, Ellesmere Island, Canadian Arctic (,75 N̊), lush mixed

conifer – broadleaved forests inhabited by alligators, turtles and thermophilic

mammals suggest summer temperatures of 20 C̊, or more, and above-freezing

winters [58]. Similarly, in Patagonia (,47 S̊) a highly prolific Early Eocene leaf

flora with tropical affinities indicates winter temperatures warmer than ,10 C̊

[59, 60].

In the marine realm it has been estimated that during the Early – Middle

Eocene the tropics and subtropics were some 40–50% greater in areal extent than

at the present day [61]. By the Late Paleocene, equatorial sea surface temperatures

(SSTs) were in the region of 20 –̊26 C̊, and in the high latitudes approximately 8 –̊

12 C̊; the overall latitudinal temperature gradient was in the order of half what it

is at the present day (i.e. 28 –̊30 C̊) [62]. The polar – equatorial temperature

contrast was reduced even further in the Early Eocene, with a combination of

dinocyst assemblages and archael membrane lipid (TEX86) analysis indicating

background Arctic SSTs of ,22 C̊ that rose to as high as 26 –̊27 C̊ during the

EECO [63, 64]. The same drill core samples from the Lomonosov Ridge have also

yielded fossil palm pollen [64]. Using both Mg/Ca ratios and d18O values from
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planktonic foraminifera, and TEX86 from bathyal sediments, SSTs of ,30 C̊ have

been obtained from the Canterbury Plains, New Zealand (paleolatitude 55 S̊) for

the interval 50.7–46.5 Ma (with peak values concentrated at 50.7–48.3 Ma) [65].

Even higher values of 34 C̊ have been obtained from TEX86 analysis from the East

Tasman Sea, S.W. Pacific (paleolatitude 65 S̊) for ,53 Ma [66], but it has to be

stressed that such values are almost certainly significant over-estimates and biased

towards high summer values [67]. Nevertheless, they are testament to a very much

reduced latitudinal gradient in SSTs in the Early – Middle Eocene [68, 69], and

such gradients are in close agreement with those based on Mean Annual

Temperature (MAT) and Coldest Mean Month (CMM) for Early Eocene

continental interiors [57, 70].

There is a considerable volume of paleontological evidence to link this 20 m.y.

period of extreme global warmth with a major phase of biotic diversification. This

was certainly a time of significant radiation of tropical plants [60, 71] and in all

probability this in turn facilitated the coeval proliferation of many insect, bird and

mammal lineages [72–77]. In the marine realm too, there was a very marked

increase in the numbers of invertebrate taxa, such as tropical corals, brachyuran

crabs and molluscs, as well as many groups of fish [40, 78–81].

So, what precisely was the climate of Antarctica in the Early – Middle Eocene?

Some exciting evidence from IODP Site U1356, approximately 300 km off the

Wilkes Land Coast, East Antarctica (paleolatitude ,65 S̊), indicates persistent

near-tropical warmth throughout the Early Eocene. A palynological assemblage

demonstrates that in the hinterland of the Antarctic continent, at ,70 S̊, there

were forests with diverse mesothermal to megathermal elements, including both

palm and baobab trees [82]. Paratropical conditions in the lowlands of the Wilkes

Land margin persisted in the interval 51.9–53.6 Ma but were replaced by a strong

expansion of Nothofagus-dominated temperate rainforests between ,46.0–

49.3 Ma [82].

In comparison, the paleoclimate record of West Antarctica at approximately

equivalent paleolatitudes is somewhat different. A variety of paleontological and

geochemical proxies suggest that Late Cretaceous temperatures peaked in the

Coniacian – Early Campanian (,82–89 Ma) with MATs in the region of 16 –̊20 C̊

on land, and up to 17 C̊ in the Southern Ocean [83–86]. Thereafter marine

temperatures declined steadily through the Late Campanian, and apart from brief

excursions just before the K/Pg, were in the region of 8 C̊ in the Late

Maastrichtian – Early Paleocene [86, 87]. A recent comprehensive study of both

the Sobral and Cross Valley formations using branched glycerol dialkyl glycerol

tetraethers (br GDGTs) in bacterial membrane lipids has yielded continental

paleotemperature estimates of 12.4+/25 C̊ for the latest Maastrichtian – earliest

Paleocene and 8.7+/25 C̊ for the mid- to late Paleocene [88]. A predominantly

cool temperate climate during the latest Cretaceous and Paleocene for the

Antarctic Peninsula region is supported by paleobotanical data [84] and is

consistent with paleofloral and GDGT- derived estimates from New Zealand [88].

Detailed correlation of the Eocene open ocean paleoclimate record with that of

the Seymour Island continental margin sequence has always proved problematic.
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A general impression of the latter, gained from studies to date using a variety of

paleoclimatic proxies, is that the LMF has a genuine admixture of both warm- and

cool-temperate affinities, and that there is a significant cooling event somewhere

near the top of the section [89–92]. The most recent and detailed paleotem-

perature analysis used clumped isotopes from bivalve shells to give temperature

estimates in the range of 7 –̊10 C̊ throughout the LMF. Such values are generally

1 –̊5 C̊ higher than the previous d18O estimates obtained by Ivany et al. [92], but

are in good agreement with TEX86 temperatures of 9 –̊17 C̊ obtained from

sediments hosting the bivalve fossils [93]. These Eocene SST values from Seymour

Island are on average 7 C̊ lower than TEX86 temperatures obtained from a similar

paleolatitude in the SW Pacific (East Tasman Plateau) [66]. This and other lines of

evidence strongly suggest that there was a large-scale Eocene zonal SST gradient

between the South Atlantic and SE Pacific oceans [93]. The most likely cause of

this was poleward flow of warm subtropical waters into the Ross Sea region and

then net return at depth by thermohaline circulation [93].

The overwhelming affinities of the LMF molluscan fauna are temperate, but it

could be argued that, with over 100 species of gastropods and a bivalve fauna rich

in cucullaeids, mytilids and a variety of heterodonts, these were predominantly

warm-temperate [18]. Micropaleontological evidence suggests that characteristic

subtropical fauna and flora appeared at least periodically in the Southern Ocean

by the latest Paleocene and reached peak abundance in the Early – Middle Eocene

[94, 95]. Further signs of what may well have been distinct pulses of cool-

subtropical waters into the Seymour Island region during the Early – Middle

Eocene are provided by the regular occurrence of nautiloids in Telms 1–3, and

their less frequent appearance in Telms 4–6 [96]; turtles have also been found in

Telms 2–5 [97].

Therefore the prominent radiation of neogastropods and other marine taxa on

Seymour Island could be linked to a significant rise in SSTs from the Paleocene

into the Early – Middle Eocene [88]. The cause of the abrupt reduction in the

neogastropod radiation at the Telm 5–6 boundary is currently unknown, but is

quite possibly climate-related (S1 Appendix). Superimposed on a general shallow

cooling trend that may have initiated as early as early Middle Eocene [53], there is

evidence of three distinct climate steps in the Weddell Sea region that are

associated with temperature drops of approximately 3 C̊; these occurred at ,43,

40 and 36 Ma [98]. The prominent cooling step at ,41 Ma detected by Ivany et

al. [92] within Telm 6 is also seen in the new paleotemperature curve developed

by Douglas et al. [93], and there is evidence of an even steeper drop at ,42 Ma

that we have tentatively linked to the Telm 5–6 boundary (S1 Appendix). The

position of the last (,36 Ma) step is less clear but as this is close to the Eocene –

Oligocene transition it may not be preserved on Seymour Island. It is becoming

steadily more apparent that global climates deteriorated substantially well before

the Eocene – Oligocene boundary, and a variety of evidence points to fluctuating

volumes of ice on the Antarctic continent by ,42 Ma [99].
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(iii) Implications for global biodiversity models

The marked increase in gastropods in general, and neogastropods in particular,

between the mid-Paleocene (,63 Ma) and late Middle Eocene (?42 Ma) in the

Seymour Island section (Table 1, Fig. 3) can be interpreted as a significant high-

latitude evolutionary radiation. This is particularly so when it is considered that

33% of all gastropod genera and 40% of all species within Telms 2–5 of the LMF

can be linked to modern Southern Ocean taxa. There are at least 52 neogastropod

species in this interval and 40% of these belong within modern Antarctic genera.

It is important to emphasise that other taxonomic groups radiated substantially in

Antarctica at this time too. One of the most important examples to emerge to date

is that of fish, where some 35 species from 26 families have so far been identified

from Telm 4 alone [100]. And at one remarkable locality in Telm 5 no fewer than

14 shark species have been recorded. This would appear to represent a level of

taxonomic diversity equivalent to that of the tropical eastern Pacific at the present

day [101, 102].

Although qualitative comparisons suggest that the scale of the taxonomic

diversity increase in neogastropods was eclipsed by that seen in tropical/

subtropical Paleocene – Eocene sections in both the U.S. Gulf Coast and Anglo-

Paris basins ([2, 78]; JAC, unpublished observations], it is nevertheless intriguing

to consider that the Early Cenozoic evolution of what is today one of the largest

clades in the sea [2] may have been marked by a truly global radiation. And this is

in turn important because it would indicate that the Antarctic was not necessarily

acting as an evolutionary sink at this time for taxa that originated elsewhere. The

concept of the tropics acting as an evolutionary source and both polar regions as

sinks can be traced back some way in the scientific literature [103–105]. It received

considerable impetus in the terrestrial realm from the formulation of the principle

of Tropical Niche Conservatism (TNC), which simply states that many modern

taxonomic groups originated in the formerly much more extensive tropics, with

comparatively few spreading subsequently into temperate, high-latitude regions

[106, 107]. Such a concept views the tropics as both an evolutionary cradle and a

museum, but the poles as essentially just museums [108, 109].

Closely allied to TNC is the ‘‘Out of the Tropics’’ (OTT) hypothesis, which has

been much more specifically linked to the marine realm. In this scenario many

marine taxa preferentially originate in the tropics and then expand into higher

latitudes but without losing their original tropical distributions; over time a

distinct latitudinal gradient in taxonomic diversity is built up [110]. Significant

empirical support has been obtained for OTT from a comprehensive global

dataset of both living and fossil marine bivalves, and this in turn has been used to

develop a dynamic evolutionary model that describes diversity, endemism and age

in a system containing two distinct regions: the tropics and extra-tropics [111].

This model predicted that, on average, the polar regions would have a lower rate

of origination, higher rate of extinction, and higher rate of immigration of marine

bivalve genera than tropical/lower latitude regions. Taxonomic diversity in the
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polar regions predominantly reflects dispersal of taxa that evolved elsewhere

rather than in-situ origination – extinction dynamics ([111]; see also [112]).

Clearly, our knowledge of gastropod clade dynamics lags significantly behind

that of bivalves and the true biogeographic significance of the Early Cenozoic

radiation of neogastropods in Antarctica is largely unknown. In the future it will

be important to determine both whether the scale of increase from the Paleocene

to Early – Middle Eocene is similar to that of lower-latitude localities, and whether

there was significant faunal interchange between high- and low-latitudes during

this interval. But the pattern established here offers a rare glimpse of high-latitude

evolutionary dynamics in a greenhouse world and suggests that, at least for the

neogastropods, Antarctica was not an evolutionary sink in the Early Cenozoic.

Perhaps there was a fundamental difference in evolutionary source – sink

dynamics between the Early Cenozoic greenhouse and Late Cenozoic icehouse

worlds?

Finally, Erwin [113] has raised the intriguing possibility that taxonomic

diversity does not necessarily track climate as closely as is often imagined. It may

indeed build up during greenhouse intervals but then does not necessarily fall by

equivalent amounts when climates deteriorate. In this way greenhouse intervals

may act as essential global biodiversity pumps through long intervals of geological

time. The relative balance of biodiversification between greenhouse and icehouse

states is currently an area of intense investigation [114–116].

Conclusions

N A comprehensive biostratigraphical analysis of the latest Cretaceous – early

Paleogene molluscan fossil record of Seymour Island, Antarctica indicates the

presence of 38 modern Southern Ocean genera (i.e. 26 gastropods and 12

bivalves). This figure is equivalent to ,18% of the total modern benthic

molluscan fauna.

N Only five of these genera can be traced back over the K/Pg into the Late

Maastrichtian, and they are all bivalves. There is paleontological evidence to

suggest that these five, and at least two other bivalve genera, have Late

Cretaceous or earlier origins.

N The relative balance of benthic molluscan faunas changes immediately after the

K/Pg with gastropods taking over as the dominant group; this is a reflection of

a global trend. 50% of the species occurring within a prominent radiation of

gastropods in the Early Paleocene Sobral Formation can be assigned to the large

neogastropod clade; a number of these have a distinctly modern aspect.

N There is a more than three-fold increase in molluscan taxa at the species level

between the SF and the essentially Early – Middle Eocene Telms 2–5 of the

LMF. 52 species of Neogastropoda occur in this interval, and of these 21 can be

assigned to modern Antarctic genera; overall, 40% of the total gastropod fauna

has modern Southern Ocean affinities. The Buccinoidea is particularly

common and contains a number of species-rich genera.
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N The radiation of gastropods in general, and neogastropods in particular, can be

linked to a distinct phase of global warming. There is no real evidence of

persistent tropical climates within the LMF but it was certainly temperate, and

in all probability warm-temperate, for long periods of time. The Early – Middle

Eocene greenhouse world seems to have initiated a major phase of global

diversification that included the polar regions in both the marine and terrestrial

realms.

N A pronounced extinction event at the Telm 5–6 boundary (42 Ma?) may

represent the first of three stepwise cooling events recognised in the Middle –

Late Eocene deep-sea record of the Weddell Sea.

N It would appear that the roots of the modern Antarctic marine fauna may well

lie within the last major phase of global greenhouse diversification (i.e. Early –

Middle Eocene). This would imply that a number of taxa were able to adapt

successfully to subsequent global cooling. Prior to the onset of global cooling in

the late Middle Eocene, Antarctica may have served as a significant evolutionary

centre for a variety of marine taxa. Source – sink models such as TNC and

OTT, wherein the tropics act as an evolutionary source, and the poles as sinks,

may be inappropriate for at least some major clades in a greenhouse world.
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