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COMPUTATIONAL AND ASYMPTOTIC METHODS IN
AEROACOUSTICS WITH APPLICATIONS

C. F. DELALE1, B. ZAFER2 AND A. R. ASLAN2 §

Abstract. In this article the computational and asymptotic methods used in aeroacous-

tics are reviewed. In particular, two different aeroacoustic applications are demonstrated.

In the first problem we investigate the first and second order asymptotic predictions of

the thickness and loading noise of a subsonic B-bladed helicopter rotor in the far field and

compare the SPL noise results with those of full numerical computations. The results of

the second order asymptotic formula seem to be in better agreement with full numerical

computations than the first order asymptotic formula. In the second problem, the ef-

fect of acoustic wave propagation in transonic nozzle flow is investigated by solving the

unsteady quasi-one-dimensional transonic nozzle equations in conservative form using

high order computational aeroacoustic schemes, where a novel non-reflecting boundary

condition is implemented in addition to the standard non-reflecting boundary condition

using characteristics. Excellent agreement with the exact solution is obtained in each

case.
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bances, Transonic Nozzle Flows.
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1. Introduction

Aeroacoustics is concerned with sound, generated by turbulent fluid motion or aero-
dynamic forces interacting with surfaces as mentioned before. Governing equations of
gas dynamics (e.g. the Navier-Stokes equations) describe the motion in a fluid. Hence,
the solution of these equations, subjected to boundary conditions, will include not only
convection and diffusion, but also acoustic wave propagation. The acoustic part of the
solution can not, in general, be separated from the rest of the solution. However, in many
solution methods such as acoustic analogy and numerical prediction methods, the flow
and the acoustics are assumed as two different fields. Aeroacoustics is a relatively new
research area which began about fifty years ago. It was developed in order to investigate
the reduction of aircraft noise levels. In the beginning, jet noise was the most important
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e-mail: delale@isikun.edu.tr
2 Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469 Maslak, Istanbul,

Turkey,

e-mail: zaferba@itu.edu.tr and aslanr@itu.edu.tr

§ Manuscript received 1 May 2011.

TWMS Journal of Applied and Engineering Mathematics Vol.1 No.1 c© Işık University, Department
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noise source because of the use of aircraft turbojet engines. During the three decades
between 1960 and 1990, rotating blades of machinery became a significant source because
of the development of turboshaft engines. The field of aeroacoustics can be classified as
free space domain problems (e.g. jet noise), free space domain problems with solid sur-
faces (e.g. helicopter rotors and propellers) and bounded domain problems (e.g. ducted
fans). In free space problems with solid surfaces, noise has been an undesirable phenome-
non of aerospace vehicles since the early years of propulsion. For instance, the operating
environment of a helicopter rotor is extremely complex and fundamentally unsteady [1].
The various types of helicopter noise contribute to both discrete frequency and broadband
noise generation through several distinct noise mechanisms. Thickness noise and loading
noise, known together as rotational noise, are related to linear aerodynamic theory. In
this theory quadrupole effects can be neglected completely. Thickness noise is due to the
displacement of the fluid in the flow field by the rotor blade, and loading noise is caused by
the accelerating force on the fluid generated by the moving blade surface. Blade-Vortex
Interaction noise (BVI) occurs as a result of the tip vortex interacting with the blade.
At high advancing tip speeds, the rotor generates impulsive noise of high intensity, called
High Speed Impulsive noise (HSI). Essentially all broadband noise is generated by random
loading on the rotor blade. Broadband noise can be generated by turbulence phenomena
associated with the flow near or on the blade surface that is usually called turbulence
noise [1]. In order to understand the more recent advances in helicopter noise prediction,
it is helpful to go back to the late 1930s. The earliest methods used a point force model
of the propeller for noise prediction. The first successful prediction theory was developed
by Gutin [2] and the first theoretical result was obtained by using a stationary oscillating
point force for calculating the first few harmonics of propeller noise due to blade loads.
Later a thickness source was added. Ernsthausen in Germany [3] and Deming in the U.S.
[4] recognized the importance of finite blade thickness. Garrick and Watkins [5] extended
Gutin’s result to propellers in forward flight in the early fifties. In the mid-fifties, Arnoldi
[6] obtained an expression for thickness noise in the frequency domain. All of the early
studies investigated only propeller noise. In 1952, Lighthill [7] introduced the acoustic
analogy. Lighthill proposed a methodology for the prediction of aerodynamic noise. He
suggested that in the neighborhood of a source, space can be divided into two regions.
Noise is generated in the near vicinity of the source, called compact source region, which
has a relatively small space extent. Then the generated acoustic waves propagate linearly
through the undisturbed medium, called the propagation region. Lighthill introduced this
space splitting into the conservation equations of fluid dynamics and derived the so-called
Lighthil’s acoustic analogy. The major significance of Lighthill’s acoustic analogy is that
sound generated aerodynamically is computed based on aerodynamical data obtained from
Computational Fluid Dynamics (CFD). Since Lighthill’s acoustic analogy is based on the
conservation laws and no simplifications are made during the derivation, the analogy is
valid for all flows without limitation [8]. In the 1960’s, the noise of helicopters became an
important issue. Initially both the piston engine and the rotor were the major generators
of noise, but with the introduction of the turboshaft engine, the main and tail rotors be-
came the dominant external noise sources because of the high speed of the rotors. Some
of the first noise prediction theories applied specifically to helicopter rotors were devel-
oped by Lowson [9] and Wright [10]. Lowson arrived at a simple, but powerful expression
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for a moving point source. At this time, the development of high speed digital computers
helped the researcher to use more realistic models in their study. For instance, Lowson and
Ollerhead [11] developed a computer code for rotor noise prediction. Considerable experi-
mental and theoretical studies have been carried out to understand the source mechanisms
of helicopter rotors. In 1969, Ffowcs Williams and Hawkings (FW-H) published their now
classic paper ”Sound Generation by Turbulence and Surfaces in Arbitrary Motion” [12],
which generalized Lighthill’s acoustic analogy [7] to include the effects of general types
of surfaces and motions. Using the mathematical theory of distributions (also known as
generalized functions), they were able to rearrange the Navier-Stokes equations into the
form of an inhomogeneous wave equation with a quadrupole source distribution in the vol-
ume surrounding the body and monopole and dipole sources on the body surface. Ffowcs
Williams and Hawkings paper encouraged theoretical work on helicopter rotor noise in
the 1970’s. Hawkings and Lowson [13] and Farassat [14,15] applied the FW-H equation to
the problem of rotor noise prediction. At this time acoustic code prediction development
was limited by the lack of aerodynamic theories which were not sophisticated enough to
satisfy the input requirements of the aeroacoustic codes. The insight into noise generation
aspect of high speed propeller was given by Yu [16] which was an extended version of the
study of Hawkings and Lowson [13] in forward flight. Also in the same period, Hanson
[17,18] had successfully adapted his frequency domain method to aeroacoustic design of
high speed propellers. By the 1980’s, theoretical development in aeroacoustics became
more complicated. Several model scale and flight tests were carried out to understand
and classify the physical sources of helicopter rotor noise. For instance, NASA/AHS Ro-
torcraft Noise Reduction Program (NR) [19] improved experimental data and theoretical
understanding of sound generation. In parallel with the NR program, there were several
high quality acoustic tests conducted in the German-Dutch Wind tunnel (DNW) [20,21].
Farasat and Succi [22] predicted the transonic effects contained in the quadrupole term.
Brentner [23] incorporated the Farassat and Succi formulation into NASA Langley’s code,
which is now called WOPWOP. This code has been used for the prediction of helicopter
rotor thickness and loading noise including detailed blade motion. In 1990’s, much of the
research focused on the prediction of impulsive and broadband noise and the quadrupole
term of the FW-H equation. Also, the Kirchhoff formulation for moving surfaces rapidly
gained popularity [24], but later it was demonstrated that the FW-H equation is better
than the Kirchhoff formula, especially when used with a permeable surface surrounding
all the sources [25]. In order to understand impulsive noise, Brentner and Farassat [26]
developed a supersonic quadrupole formulation that did not have a Doppler singularity
in their formulation. Howe [27] gives a comprehensive account of rotor broadband noise
prediction. Ianniello [28,29] has also developed quadrupole noise prediction codes that
integrate the FW-H equation on a supersonic rotating domain. In the same time period,
there has been an increased interest in the development of methods suitable for numeri-
cal simulations of unsteady wave propagation in aeroacoustics. Consequently, a new field
known as computational aeroacoustics (CAA) emerged. It became an efficient tool for
noise prediction that depended on high capacity and fast computer technology. Com-
putational aeroacoustics (CAA) is mostly employed in research, in order to investigate
the noise generation and propagation mechanisms in detail. The need of highly accurate
numerical methods was recognized since the earliest stages of the development of CAA.
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The propagation of sound waves in far-field requires long-time integration with minimal
dissipation and dispersion, and this cannot be done using the numerical schemes generally
used in Computational Fluid Dynamics (CFD). Therefore, new schemes with higher ac-
curacy were proposed. Most aeroacoustics problems involve small-amplitude linear wave
propagation. Today, the high order explicit Dispersion-Relation-Preserving (DRP) scheme
of Tam and Webb [30] and the Optimized Compact (OC) schemes [31-35] possess the nec-
essary accuracy and wave propagation properties for calculating linear wave propagation
with minimal spatial resolution. Tam and Webb [30] presented a low dispersion scheme for
the numerical solution of the linearized Euler equations. Improved dispersion character-
istics in wave propagation problems were also demonstrated by Zingg [35] and Haras and
Taasan [32] who optimized high-order, centered, finite-difference schemes. Low dispersion
and dissipation criteria necessary for aeroacoustics computations are also fulfilled by the
fourth-order accurate in space predictor corrector-type scheme, known as the 2-4 MacCor-
mack scheme [36]. Finally, time integration was also optimized for noise computation, and
low-dissipation and low-dispersion. Later the Adams-Bashforth [30] and Runge-Kutta al-
gorithms [37-39] were constructed. Detailed comparison of advantages and disadvantages
of other schemes can be found in CAA review articles by Tam [40,41], Colonius and Lele
[42], Wells and Renaut [43] and Wang et al. [44].

In this investigation two different aeroacoustic problems are considered. In the first
problem, propeller noise is investigated using the Green’s function solution of the FW-H
equation. We neglect the quadrupole term and use the frequency domain solution given
by Hanson[18] using helicoidal coordinates to represent the thickness and loading source
terms for subsonic flow. In this study we investigate the first and second order asymp-
totic predictions [45-47] in the far field, as well as the full numerical computations, for
the thickness and loading noise of a subsonic B-bladed helicopter rotor. In particular we
obtain the first and second order asymptotic formulas using the Debye approximation for
Bessel functions of high order and evaluating the resulting integral by Laplace’s method
[48,49]. A 3D compressible CFD code is used to compute the aerodynamic loading on the
straight rectangular blade of a 4-bladed helicopter rotor in hover. The SPL noise is then
calculated by the first and second order asymptotic formulas and by full numerical compu-
tations taking into account the loading and thickness contributions. The differences in the
SPL noise seem to increase with increasing Mach number, with the second order asymp-
totics being in much better agreement than the first order in comparison with the full
numerical computations. In the second problem, the capabilities of the implementation of
high order computational aeroacoustic schemes are investigated for a NASA benchmark
problem [50]. In this problem the effect of acoustic wave propagation in transonic nozzle
flow is investigated by solving the unsteady quasi-one-dimensional transonic nozzle equa-
tions in conservative form using high order computational aeroacoustic schemes, namely
the Dispersion Relation Preserving (DRP) scheme of Tam and Webb [30] and the Opti-
mized Compact (OC) scheme of Kim and Lee [33]. For the initial distribution we use the
classical quasi-one-dimensional steady-state nozzle flow solution. In addition, we use two
different nonreflecting boundary conditions, namely the well-known standard nonreflect-
ing boundary condition of Thompson [51] and a novel one, called random nonreflecting
boundary condition. Both nonreflecting boundary conditions are implemented in the two
computational aeroacoustic schemes used ( DRP and OC). The numerical results obtained
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for each scheme are then compared against those obtained by the exact solution of the
unsteady quasi-one-dimensional linearized nozzle flow equations. In particular, the ex-
act and computed maximum pressure envelope and time-dependent pressure distributions
show very good agreement.

2. The Acoustic Analogy: The Lighthill and Ffowcs Williams-Hawkings

Equations

The acoustic analogy was introduced into aeroacoustics by Lighthill [7] to predict the
noise generated by the jet of an aircraft turbojet engine. In this work acoustic radiation
from relatively small regions of turbulent flow was calculated in an otherwise quiescent
medium in which the speed of sound is c0, the density is ρ0 and the pressure is p0. It
was shown that, away from the compact turbulent flow region, the propagation of small
pressure or density disturbances was governed by an inhomogeneous wave equation. For
the derivation of Lighthill’s equation, we let the acoustic density (small perturbation) be
defined by ρ′ = ρ − ρ0 and the acoustic pressure be given by p′ = p − p0, where ρ and p,
respectively, define the density and pressure. In particular, they are related by p′ = c2

0 ρ′.
The continuity and momentum equations then become

∂ρ′

∂t
+

∂

∂xi
(ρui) = 0 , (2.1)

∂ρui

∂t
+

∂

∂xj
(ρuiuj) +

∂Pij

∂xj
= 0 (2.2)

where ui denote the i -th component of the velocity field, Pij denotes the ij -th component
of the compressible stress tensor ( Pij = pδij − eij , with eij denoting the ij -th components
of the viscous stress tensor, for the Navier-Stokes equations and Pij = pδij for the inviscid
Euler equations, where δij denotes the ij -th component of the Kroneckar delta), xi denotes
the i -th component of the spatial coordinates and t denotes the time. By taking ∂/∂t of
eq. (2.1) and ∂/∂xi of eq. (2.2) and subtracting the latter operation from the former
operation, we obtain

∂2ρ′

∂t2
=

∂2

∂xixj
(ρuiuj + Pij). (2.3)

If we now write p′ = c2
0 ρ′ and subtract ∇2p′, we obtain Lighthill’s equation of acoustic

analogy as
1
c2
0

∂2p′

∂t2
− ∇2p′ =

∂2

∂xixj
(Tij) (2.4)

where Tij denote the components of the Lighthill stress tensor and are given by

Tij = ρuiuj + Pij − c2
0 ρ′ δij . (2.5)

It is important to note that the source term in eq. (2.4) can be shown to be of quadrupole
type in an otherwise quiescent medium. Its evaluation requires knowledge of the complete
flow field inside the compact region, which presumably is obtained by CFD methods. We
also note that in the far field the Lighthill stress tensor Tij vanishes and eq. (2.4) reduces
to the classical homogeneous wave equation whose solution is readily available.
Lighthill’s equation (2.4) contains only contributions from volumetric flow-induced noise
sources and has to be modified when sound is generated by moving, impenetrable surfaces.
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An equation in this direction has been derived by Ffowcs Willams and Hawkings [12]. We
let f(x, t) = 0 describe a moving, impenetrable surface of a body such that f > 0
characterizes outside the body and n = ∇f/|∇f | denote the unit outward normal to the
surface. We also assume that the fluid is at rest in the interior of the body (f < 0) so
that we introduce an artificial discontinuity at the surface of the body (f = 0). Because
of this artificial discontinuity, we must modify the continuity and momentum equations as

∂ρ′

∂t
+

∂

∂xi
(ρui) = ρ0 vn δ(f) , (2.6)

∂ρui

∂t
+

∂

∂xj
(ρuiuj) +

∂Pij

∂xj
= li δ(f) (2.7)

where all partial derivatives are now to be understood as generalized derivatives and δ(f)
is the Dirac delta distribution of f , with vn = ∂f/∂t denoting the local normal velocity
of the surface f = 0 and li = Pij nj denoting the components of the local force intensity
(force per unit area) that acts on the fluid. If we now take ∂/∂t of eq. (2.6) and ∂/∂xi of
eq. (2.7) and subtract one from the other, we obtain

∂2ρ′

∂t2
− ∂2

∂xixj
(ρuiuj + Pij) =

∂

∂t

[
ρ0 vn δ(f)

] − ∂

∂xi

[
li δ(f)

]
. (2.8)

Similar to the procedure of the derivation of Lighthill’s equation, if we now write p′ = c2
0 ρ′

and subtract ∇2p′ from eq. (2.8), we get the Ffowcs Willams-Hawkings (FW-H) equation
[12] as

1
c2
0

∂2p′

∂t2
− ∇2p′ =

∂

∂t

[
ρ0 vn δ(f)

] − ∂

∂xi

[
li δ(f)

]
+

∂2

∂xixj

[
Tij H(f)

]
(2.9)

where H(f) is the Heaviside function of f . The three terms on the right-hand side of the
FW-H equation, eq. (2.9), are known as the thickness, loading and quadrupole source
terms. The FW-H equation generalizes Lighthill’s equation. The thickness and loading
terms arise from surface contributions whereas the quadrupole term arises from volume
contributions to the sources.

Figure 1. Surface forces and geometric description of a single rotor blade.



C. F. DELALE, B. ZAFER, A. R. ASLAN: COMPUTATIONAL AND ASYMPTOTIC METHODS IN ... 7

3. Asymptotic Methods for Propeller Noise

The FW-H equation is valid through the entire space so that its solution can be written
in terms of the Green’s function of the wave equation as

p′ = −
∫ ∞

−∞

∫

S(τ)

(
ρ0 vn

∂G

∂τ
+ li

∂G

∂yi

)
dS(y)dτ

+
∫ ∞

−∞

∫

V (τ)
Tij

∂G

∂yi yj
dV (y)dτ (3.1)

where the Lighthill stress tensor components Tij become

Tij = ρuiuj + (p′ − c2
0 ρ′) δij (3.2)

for inviscid flow and where the Green’s function of the wave equation for the entire space
is given by

G(x, t;y, τ) =
δ(t − τ − r/c0)

4π r
(3.3)

for −∞ < τ ≤ t and zero for τ > t with r = |x − y|, (x, t) and (y, τ) denoting the
observer and source space-time coordinates.

Most of the applications of the FW-H equation has been for rotating sound fields, in
particular, for propeller noise. In this case the FW-H equation can be solved in two dif-
ferent domains: time domain and frequency domain. Time-domain methods are used to
solve eq. (2.9) directly in terms of the space-time variables. These methods are appeal-
ing because they can treat blade geometry with any desired level of precision without any
approximation [1]. However, in the time domain, singularities will occur as the Mach num-
ber of the source in the direction of the observer approaches unity. For this reason, many
workers (i.e. Hawkings and Lowson [13] and Hanson [18]) have taken the step of Fourier
transforming the equation into the frequency domain. Moreover, they employed the thin
blade approximation so that the surface integrals could be replaced by integrating over
the mean planform area. The thin blade approximation also leads to the dropping of the
quadrupole term in the original equation (2.9). In applying frequency domain methods to
the FW-H equation, some precision in the representation of blade geometry is usually lost
through the transformation, but this loss is generally acceptable for harmonics to a fairly
high order. The transformation also gives rise to Bessel functions which are indicators
of radiation efficiency [18]. Harmonics are computed once at a time and waveforms are
generated by summing a Fourier series. A transformation to the frequency domain elimi-
nates the need for computing retarded blade locations and their numerical derivatives. By
representing blades as helicoidal surfaces, far-field noise formulas that are easily coded on
a personal computer can be derived. Furthermore, these formulas give direct insight to
the influence of blade geometry and operating conditions on the sound harmonics.

Parry and Crighton [45] carried out the analytical evaluation of the Hanson integrals
by asymptotics for steady loading dipole and monopole thickness noise of a propeller.
In the case of straight blade, the phase contribution due to blade sweep is set equal to
zero, because chordwise noncompactness factors are not important for low and moderate
subsonic speeds. With these assumptions, Hanson’s integral for subsonic speeds can be
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written in the harmonic components of the sound field as [45]

p′ = − ρ0 c2
0 D B

8π r0 (1 − Mx cosθ)

×
∞∑

m=−∞
exp

[ imB Ω
1 − Mx cosθ

(
t − r0

c0

)
+ i mB

( π

2
− ψ0

) ]
Pm (3.4)

where m is the harmonic number, B is the number of blades, r0 is the distance between the
observer and the propeller hub, Ω is the propeller shaft angular speed, θ is the radiation
angle between the propeller axis and the observer point, ψ0 is the circumferential angle and
Mx is the forward flight Mach number (see Figure 1). In eq. (3.4), Pm is mth harmonic
component of the sound field and is given by

Pm =
∫ 1

s0

Sm(s) JmB

[ mB s Mt sinθ

(1 − Mx cosθ)

]
ds (3.5)

where Jn denotes Bessel function of the first kind and of order n, s is the normalized
chordwise coordinate of the blade with unity at the blade tip and Mt is the blade tip
Mach number. The source strength Sm(s) in eq. (3.5) is

Sm(s) = M2
r

(
i ky

CL

2

)
(3.6)

for loading and

Sm(s) = M2
r

(
k2

x

b

c

)
(3.7)

for thickness where Mr is the relative Mach number of the blade section,CL is the lift
coefficient of the blade, b the maximum blade thickness, c is the chordwise blade length,
and where the wave numbers kx and ky are given by

kx =
2mB (c/D) Mt

Mr (1 − Mx cosθ)
, (3.8)

ky =
2mB (c/D) (M2

r cosθ − Mx

sMr (1 − Mx cosθ)
. (3.9)

If the order of the Bessel function mB in eq. (3.5) is assumed to be large, the Debye
approximation [52] holds:

JmB(sechβ) =
exp[mB (tanhβ − β) ]

(2π m B tanhβ)1/2
(3.10)

where β is given by

sech(β) =
sMt sinθ

1 − Mx cosθ
. (3.11)

With the Debye approximation, eq. (3.5) becomes

Pm =
∫ 1

s0

Sm(s)
exp[mB (tanhβ − β) ]

(2π mB tanhβ)1/2
ds (3.12)

with β given by eq. (3.11). Equation (3.12), in the limit mB → ∞ suggests the use of
Laplace’s method [48,49] for the evaluation of integrals containing an exponential term
with large argument, where the major contribution to the integral arises from the blade
tip (s = 1). This integral, to first order, was first carried out by Parry and Crighton [45],
where the term Sm(s) in eq. (3.12) was approximated by a power law for both loading and
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thickness. In this work we generalize this by using a polynomial fit for Sm(s) for loading
in the form

Sm(s) =
N∑

`=0

(Sm)` (1 − s)` , (3.13)

and retaining the power law dependence for thickness in the form

Sm(s) = S̄ (1 − s)ν . (3.14)

The first order asymptotic formulas of Parry and Crighton [45] for subsonic flow in the
far field become

Pm =
exp[m B (tanhβt − βt) ]

(2π m B tanhβt)1/2

N∑

`=0

(Sm)`
Γ(` + 1)

(mB tanhβt)`+1
(3.15)

for loading and

Pm =
exp[m B (tanhβt − βt) ]

(2π m B tanhβt)1/2
S̄

Γ(ν + 1)
(mB tanhβt)ν+1

(3.16)

for thickness where βt is β evaluated at the blade tip (s = 1). Second order integrals for
loading and thickness are also given by Zafer et al. [46,47] using Laplace’s method. For
the same source functions Sm(s), the second order asymptotic formulas become

Pm =
exp[mB (tanhβt − βt) ]

(2π m B tanhβt)1/2

N∑

`=0

(Sm)`
Γ(` + 1)

(mB tanhβt)`+1

×α`+1 D−`−1(α) exp
[ α2

4

]
(3.17)

Rotational Tip Mach Number

S
P

L
(d

B
)

0.5 0.55 0.6 0.65 0.7
40

45

50

55

60

65

70

75

80

85

90

Parry-Crighton-Loading Term
Present Formula-Loading Term
Full Numerical-Loading Term

Figure 2. Comparison of asymptotic predictions for the loading term between
the Parry-Crighton formula [45], and the present formula (eq. 3.17 ) [46,47] and
full numerical solution [53] for the SPL (dB) for an observer located at ro = 100
m with a radiation angle θ = 60o.
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for loading and

Pm =
exp[mB (tanhβt − βt) ]

(2π m B tanhβt)1/2
S̄

Γ(ν + 1)
(mB tanhβt)ν+1

αν+1 D−ν−1(α) exp
[ α2

4

]
(3.18)

for thickness where D−ν(x) is Whittaker’s parabolic cylinder function [51] and where α is
given by

α =
mB tanhβt√

2m B κ2 (cosh3βt/sinhβt)
(3.19)

with κ defined by

κ =
Mt sinθ

1 − Mx cosθ
. (3.20)

We can now compare the first and second order asymptotic formulas obtained with full
numerical solution of the loading and thickness noise terms. For the full numerical solution
of the loading and thickness noise of the helicopter rotor, the integrals given by eq. (3.5)
for the mth harmonic pressure Pm should be carried out and should be summed over all
harmonics. Therefore, an accurate numerical scheme is needed where the high order Bessel
functions are evaluated within any desired accuracy. Fortunately a very fast algorithm for
the evaluation of high order Bessel functions already exists [53]. This algorithm is useful
since it does not require recalculations using the normalization relations. Instead, it uses
the continued fractions method to evaluate the ratio of Jn/Jn−1 for a sufficiently large
value of n. Using Gaussian quadrature together with the above mentioned algorithm for
high order Bessel functions, the full numerical solution of the radiation integrals for loading
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Present Formula-Thickness Term
Full Numerical-Thickness Term

Figure 3. Comparison of asymptotic predictions for the thickness term between
the Parry-Crighton formula [45], and the present formula (eq. 3.18) [46,47] and
full numerical solution [53] for the SPL (dB) for an observer located at ro = 100
m with a radiation angle θ = 60o.
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and thickness noise of the rotor blades can be obtained within any desired accuracy. The
aerodynamic loading for the rotor are obtained by CFD computations independently. As
a result of this computation [46], the calculated pressure, lift and drag coefficients (Cp,
CL and CD) are taken as input to the aeroacoustic computation, both in asymptotics and
in full numerical computations. For the aerodynamic computations, a three dimensional
body fitted computational grid is generated for a rectangular rotor blade with SC1095
airfoil section. The grids that are used here have 121 points in the wraparound direction,
43 points in the normal direction and 31 points in the spanwise direction (121x43x31).
The grid was clustered near the leading and trailing edge and also near the tip region.
Finite volume method is used to calculate the flow field by using ROE discretization
scheme with the Spalart-Allmaras turbulence model. The 3D compressible CFD code first
validated against the results of Wake and Baeder [54] for a four bladed helicopter rotor
in hover. In this case, the tip Mach number was chosen in the range between 0.5 and 0.7
and the radiation angle was varied from 0o to 90o. Results of the SPL noise for loading
and thickness contributions using first and second order asymptotic formulas as well as
full numerical results are shown in Figures 2-5. The asymptotic predictions are in better
agreement with the full numerical results for thickness than for loading, with the second
order asymptotic yielding results very close to the full numerical results in this case. In
general, the second order asymptotic is in much better agreement than the first order in
comparison with the full numerical computations. This investigation has demonstrated

SPL(dB)
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0 20 40 60 80 100

Parry-Crighton-Loading Term
Present Formula-Loading Term
Full Numerical-Loading Term

Figure 4. Comparison of the Parry-Crighton formula [45] and the present for-
mula [46,47] asymptotic predictions with full numerical computations [53] of the
SPL (dB) polar distribution of the loading term with radiation angle θ = 60o be-
tween 0o and 90o from a 4-bladed helicopter rotor in hover at an observer distance
ro = 100 m away from the rotor hub and with a tip Mach number (a) Mt = 0.5
and (b) Mt = 0.7.
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the advantages of using the second order asymptotic formulas for loading and thickness,
at least for the prediction of the SPL noise of a helicopter rotor in hover in the far field.

4. Computational Aeroacoustics (CAA)

Computational Aeroacoustics (CAA) can be considered as a branch of applied mathe-
matics. The basic idea is replacing the governing differential equation of fluid flow with
a set of algebraic equations. This process is called discretization. All of the discretizated
equations can be solved with the aid of a digital computer to get an approximate solution.
The well-known discretization methods used in CFD / CAA are Finite Difference Method
(FDM), Finite Volume Method (FVM), Finite Element Method (FEM) and Boundary El-
ement Method (BEM). The best choise of numerical discretization requires computational
efficiency, easy implementation of boundary conditions, efficiency of parallelization, mem-
ory usage and proper numerical capability in complex geometries and flow configurations.
All numerical discretization methods have advantages as well as disadvantages [42]. In
CAA, optimized high order finite difference schemes are used because of the required high
resolution and high accuracy.

Finite difference method (FDM) is the oldest (Euler, 1834) method used in the numerical
solution of differential equations. Here the domain including the boundary of the physical
problem is covered by a grid or mesh. At each of the interior grid points, the original
differential equations are replaced by equivalent finite difference approximations. For first
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Figure 5. Comparison of the Parry-Crighton formula [45] and the present for-
mula [46,47] asymptotic predictions with full numerical computations [53] of the
SPL (dB) polar distribution of the loading term with radiation angle θ = 60o be-
tween 0o and 90o from a 4-bladed helicopter rotor in hover at an observer distance
ro = 100 m away from the rotor hub and with a tip Mach number (a) Mt = 0.5
and (b) Mt = 0.7.
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order differential equations, the generic form of any finite difference scheme for a function
f(x) with first derivative f ′(x) can be written as

L∑

j=−L

βj f ′`+j =
1

∆x

N∑

j=−M

aj f`+j + O( [∆x]n ) ` = 1, 2, ..., m . (4.1)

where m is the number of grid points. In eq. (4.1), f` = f(x`), f ′` = f ′(x`), M and
N denote, respectively, the number of grid points used in the finite difference formula to
the left and to the right of the point x`, aj ; j = −M, ..., N are the coefficients relating
the values of the function f at the neighboring grid points of any finite difference formula
and βj ; j = −L, ..., L with β0 = 1 are the coefficients relating the values of the first
order derivative f ′ at the neighboring grid points of the implicit finite difference formula.
If L = 0, the scheme is termed explicit. By contrast, if L 6= 0, then it is called implicit or
compact. In compact finite difference schemes, each derivative depends on the value of its
neighboring derivatives. Therefore, it requires the solution of a linear system of equations
to determine the values of the derivatives. On the contrary, the values of each derivative
are independent of its neighbors in explicit finite difference schemes. Conventionally, the
coefficients are chosen to give the largest possible exponent, n, in the error term. In the
Taylor series expansions of the generic equation (4.1), the maximum possible exponent is
given by

nmax = 2L + M + N . (4.2)

The error term is a function of the order of accuracy of the scheme. The leading order
term in the truncation error in eq. (4.1), depends on choice of coefficients and the order of
the highest derivative truncated in the Taylor series expansion. It is a good measure of the
actual error only for sufficiently small ∆x when high order derivatives of the function are
continuous [55]. To provide a more useful estimate of the magnitude of the error, we refer
to the work of Lele [31] and Tam and Webb [30] In addition, it is possible to optimize the
coefficients of finite difference schemes to reduce dissipation and dispersion errors. In what
follows we discuss the frequently used high order schemes for CAA, namely the Dispersion
Relation Preserving scheme and the Optimized Compact scheme.

4.1. High Order Schemes for CAA. Dispersion Relation Preserving (DRP) finite dif-
ference scheme was proposed by Tam and Webb [30] used to discretize the governing
differential equations. They used central difference, i.e., N = M , for spatial discretiza-
tion. The discretization of any DRP scheme for the spatial partial derivative on a uniform
grid with spacing ∆x can be written as

(
∂f

∂x

)

`

=
1

∆x

N∑

j=−M

aMN
j f`+j . (4.3)

where aMN
j ’s are the coefficients optimized to reduce the error within any required order

of accuracy and ` is an integer representing the grid nodes. The notation of the coeffi-
cients aMN

j represents a stencil of width N + M + 1 for computing the spatial partial
derivative of a function using the values of the function starting at M points to the left
and ending at N points to the right of the node (x`) where the derivative is evaluated. In
particular, the case N = M corresponds to central difference stencils, the case of N 6= M

corresponds to non-central difference stencils and the case of either M = 0 or N = 0
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corresponds to the one-sided difference stencils. Traditionally, the stencil coefficients aMN
j

are found by expanding the right side of eq. (4.3) as Taylor series in ∆x and then equating
coefficients of the same powers of ∆x. This truncated Taylor series method does not offer
any information on propagation errors when the finite difference approximation is used
to solve wave propagation problems. Tam and Webb [30] considered the finite difference
approximation using Fourier analysis. In their approach, ∆x was taken of finite size, not
necessarily small. They regarded the coefficients aMN

j to be free parameters that were to
be determined so that eq. (4.3) was an optimized approximation. Typical coefficients for
a 7-point central difference stencil (N = M = 3) for which a33

−j = − a33
j are shown in

Table 1.

Table 1. The DRP scheme coefficients of Tam and Webb [30] for a 7-point
stencil (N = M = 3) where a33

−j = − a33
j ; j = −1,−2,−3, 0.

j -3 -2 -1 0
a33

j -0.0208431427703 0.166705904415 -0.770882380518 0.0

The Pade type or compact finite difference schemes are different from the explicit
schemes. One of the important difference between the two schemes is that the compact
schemes approximate derivatives implicitly where the derivatives are solved for. Another
difference is that the compact schemes use less stencil points and have smaller dispersion
errors compared to explicit schemes of the same order of accuracy. Higher computational
costs is the disadvantage of compact schemes since extra efforts are needed to solve the
linear system that contains all the derivatives. Lele [31] showed the spectral-like resolution
of the compact schemes for the evaluation of spatial derivatives. The emphasis was on
improving a wide range of wave numbers rather than simply increasing the order of accu-
racy. A family of compact schemes was derived by matching the Taylor series coefficients
of various orders. The first unmatched coefficient was the formal truncation error of the
scheme. Here, in addition to the DRP scheme discussed above, we also use the Optimized
Compact (OC) scheme of Kim and Lee [33]. This scheme is constructed from the equation

β

(
∂f

∂x

)

`−2

+ α

(
∂f

∂x

)

`−1

+
(

∂f

∂x

)

`

+ α

(
∂f

∂x

)

`+1

+ β

(
∂f

∂x

)

`+2

=
1

∆x

3∑

j=1

aj

(
f`+j − f`−j

)
` = 1, 2, ...,m . (4.4)

where f` and (∂f/∂x]`, respectively, denote the values of the function and its spatial partial
derivative at a grig point x`, ∆x denotes the spacing in a uniform grid, aj ; j = 1, 2, 3
are the coefficients of discretization and where α and β are the coefficients of the compact
scheme. Matching the same terms from the Taylor series expansion of eq. (4.4) up to
fourth-order results in the following two equations:

1 + 2 (α + β) = 2
3∑

j=1

j aj (4.5)
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and

3 (α + 22 β) =
3∑

j=1

j3 aj (4.6)

By solving the equations obtained by error optimization together with the linear algebraic
equations (4.5) and (4.6), all of the five coefficients are determined with maximum reso-
lution among the fourth-order schemes [33]. The optimized coefficients of the Optimized
Compact (OC) scheme are shown in Table 2.

Table 2. The OC scheme coefficients of Kim and Lee [33].

α β a1 a2 a3

0.58627 0.095495 0.643141 0.258601 0.007141

4.2. One-Dimensional Non-reflecting Boundary Conditions. For purposes of ef-
ficiency and accuracy, appropriate non-reflecting boundary conditions are required for
relatively small computational domains. In this case, Hedstrom’s classical method of
characteristic solution [56] gives the artificial boundary conditions. The main idea of this
method is to locally decouple the three waves, namely the entropy wave and the two acous-
tic waves, and identify them as incoming and outgoing waves. Then the non-reflecting
boundary conditions can be obtained by simply setting the characteristic variables, cor-
responding to incoming characteristic curves, to a constant in time. Thompson [51] has
improved Hedstrom’s method taking into account the contributions from the time deriva-
tives of the incoming waves. Thompson’s approach is intrinsically one-dimensional and is
suited for flow perpendicularly reaching the outer boundaries. Giles [57] has generalized
Thompson’s approach for the case of oblique incidences. In this investigation we will be
using Thompson’s non-reflecting boundary condition, which we will refer to as the stan-
dard boundary condition, together with a new non-reflecting boundary condition (random
non-reflecting boundary condition) given below for comparison reasons

Here we introduce a novel non-reflecting boundary condition for one-dimensional un-
steady flows based on imposing small random perturbations on the specified boundary
conditions to avoid spurious reflections in the artificial computational domain. These
small perturbations are produced by a random number generator, and they are imple-
mented in such a way that they alternate in sign in successive time steps. The magnitude
of these small perturbations is usually chosen depending on the desired accuracy of the nu-
merical scheme. For the implementation of non-reflecting random boundary conditions in
one-dimensional computational domains, we let the specified boundary conditions for the
acoustic density, the acoustic flow speed and the acoustic pressure at any boundary point
be given by the functions ρ′(t), u′(t) and p′(t), respectively. We also define the numerically
calculated values of the acoustic pressure at time tn, with n denoting the nth time step,
by p′n . The specified value, for sufficiently large n, may deviate considerably from the
calculated value if accumulated waves reflect from the boundary into the computational
domain. To avoid this, we define a random number RN produced by a random number
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generator (0 ≤ RN ≤ 1). We also define an intermediate acoustic pressure p∗n at time
tn by

p∗n =
[
1 − (RN)

]
p′(tn) + (RN) p′(tn+1) . (4.7)

We let ε be a very small positive number compared to unity. We can now introduce the
non-reflecting random boundary condition for the calculated value p′n+1 of the acoustic
pressure at tn+1 as

p′n+1 = p′(tn+1) + (−1)n ε p∗n . (4.8)

Similar non-reflecting boundary conditions apply to the acoustic density and to the acous-
tic flow speed.

4.3. Application to Transonic Nozzle Flow with Backward Acoustic Distur-
bance. As an application of the foregoing CAA schemes, we consider the problem of
superimposing a very small amplitude acoustic wave at the exit on the steady isentropic
flow of a perfect gas in a quasi-one-dimensional convergent-divergent nozzle and determine
its propagation. The governing equations for quasi-one-dimensional nozzle flows can be
written as

∂ρ

∂t
+

1
A

∂

∂x
(ρuA) = 0 , (4.9)

ρ
( ∂u

∂t
+ u

∂u

∂x

)
+

∂p

∂x
= 0 , (4.10)

A
∂p

∂t
+

∂(p u A)
∂x

+ (γ − 1) p
∂(uA)

∂x
= 0 (4.11)

where ρ, u and p are, respectively, the density, the flow speed and the pressure normalized
as

ρ =
ρdim

ρ∞
, u =

udim

a∞
, p =

pdim

ρ∞ a2∞
(4.12)

with ρ∞ and a∞ denoting, respectively, the density and the isentropic speed of sound in
the uniform incoming region of the nozzle and γ denoting the isentropic exponent. In the
governing flow equations (4.9)-(4.11), x, t and A, respectively, denote the normalized axial
coordinate, the normalized time and the normalized area, and are given by

x =
xdim

L
, t =

L

a∞
, A =

Adim

Ain
(4.13)

with L denoting the characteristic length (e.g., the nozzle entrance height) and Ain denot-
ing the nozzle entrance area. In the normalization eqs. (4.12) and (4.13), subscript dim

refers to dimensional variables. The system of eqs. (4.9)-(4.11) should be supplemented
by appropriate initial and boundary conditions for given nozzle area A(x). In this work
we use the following nozzle cross-section area suggested by NASA[50]:

A(x) = {
0.536572 − 0.198086 exp[−ln2

(
x

0.6

)2
] for x ≥ 0

1.0 − 0.661514 exp[−ln2
(

x
0.6

)2
] for x ≥ 0

(4.14)

We now consider transonic flow in the nozzle where the Mach number becomes close to
unity at the throat. We investigate the problem of determining the effect of upstream
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propagation of small amplitude acoustic waves in a steady-state transonic flow in the noz-
zle, whose geometric configuration is shown in Figure 6. We can then write the normalized
unsteady transonic nozzle flow solution in the form

ρ(x, t) = ρ̄(x) + ρ′(x, t) , (4.15)

u(x, t) = ū(x) + u′(x, t) , (4.16)

p(x, t) = p̄(x) + p′(x, t) (4.17)

where (̄ ) variables denote the classical steady-state isentropic transonic nozzle flow solu-
tion and the (′) variables denote the small acoustic perturbations (ρ′ ¿ ρ̄, u′ ¿ ū and
p′ ¿ p̄). Substituting from eqs. (4.15)-(4.17) into the normalized quasi-one-dimensional
transonic nozzle flow equations (4.9)-(4.11), we obtain the following linear system of equa-
tions for the acoustic field :

∂ρ′

∂t
+ ū

∂ρ′

∂x
+

∂ρ̄

∂x
u′ +

∂ū

∂x
ρ′ + ρ̄

∂u′

∂x
+

(
ρ̄ u′ + ū ρ′

) 1
A

dA

dx
= 0 , (4.18)

ρ̄
( ∂u′

∂t
+ ū

∂u′

∂x

)
+

(
ρ̄ u′ + ū ρ′

) ∂ū

∂x
+

∂p′

∂x
= 0 , (4.19)

∂p′

∂t
+ ū

∂p′

∂x
+

∂p̄

∂x
u′ + γ

∂ū

∂x
p′ + γ p̄

∂u′

∂x
+ γ

(
p̄ u′ + ū p′

) 1
A

dA

dx
= 0 (4.20)

where all (̄ ) variables denote the steady-state solution. We now let the acoustic field be
in the form ( ρ′

u′

p′

)
= Re

( ρ̂(x)
û(x)
p̂(x)

)
ei ω t (4.21)

where Re denotes the real part of the proceeding expression and ω is the normalized
angular frequency of the acoustic field. Substitution of eq. (4.21) into the above system
of eqs. (4.18)-(4.19) yield the following linear system of first order ordinary differential
equations for the local amplitudes (ρ̂, û, p̂).

i ω ρ̂ + ū
dρ̂

dx
+

dρ̄

dx
û +

dū

dx
ρ̂ + ρ̄

dû

dx
+

(
ρ̄ û + ū ρ̂

) 1
A

dA

dx
= 0 , (4.22)

i ω ρ̄ û + ρ̄ ū
dû

dx
+

(
ρ̄ û + ū ρ̂

) dū

dx
+

dp̂

dx
= 0 , (4.23)

Figure 6. The nozzle geometry for acoustic wave interactions in transonic flows.
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i ω p̂ + ū
dp̂

dx
+

dp̄

dx
û + γ

dū

dx
p̂ + γ p̄

dû

dx
+ γ

(
p̄ û + ū p̂

) 1
A

dA

dx
= 0 . (4.24)

For the classical steady-state solution, we specify the inlet conditions in such a way that
we have

ρ̄e = ρ̄(xe) = 1.0 , ūe = ū(xe) = 0.4 , ρ̄e = ρ̄(xe) = 1.0/γ (4.25)

at the exit where subscript e refers to nozzle exit conditions. The steady state solution
corresponding to the boundary conditions specified at the nozzle exit for the cross-sectional
area given by eq. (4.14) is obtained using 1600 point uniform mesh points. The normalized
density, normalized flow speed (Mach number) and the normalized pressure distributions
of such a steady-state isentropic transonic nozzle flow solution of air (γ = 1.4) are shown
in Figure 7. As can clearly be seen, the flow variables change drastically near the throat
region.
We now consider the boundary condition for the acoustic field at the nozzle exit. We let

the upstream propagating acoustic disturbance wave at the exit downstream of the nozzle
throat be represented by

( ρ′e(t)
u′e(t)
p′e(t)

)
= ε

( 1
−1
1

)
cos

[
ω

( xe

1 − Me
+ t

) ]
(4.26)

where xe is the location of the nozzle exit, Me is the nozzle exit Mach number, ε =
10−5 and ω = 0.6π. The propagation of the acoustic disturbance wave, expressed by
eq.(4.26), and its reflection at the nozzle throat can be computed within any desired
accuracy by solving the linear system of first order ordinary differential equations subject
to the boundary conditions. This solution will be called the exact solution. For uniform
region where there is no area change (dA/dx = 0), the exact solution reduces to an
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Figure 7. The steady-state density, Mach number and pressure distributions in
transonic nozzle flow of air for the boundary conditions specified by eq. (4.25).



C. F. DELALE, B. ZAFER, A. R. ASLAN: COMPUTATIONAL AND ASYMPTOTIC METHODS IN ... 19

upstream propagating acoustic wave written as

( ρ̂(x)
û(x)
p̂(x)

)
=

( 1
ā2

− 1
ρ̄ ā

1

)
exp

[ i x

(ū − ā)

]
, (4.27)

to a downstream propagating acoustic wave written as

( ρ̂(x)
û(x)
p̂(x)

)
=

( 1
ā2

1
ρ̄ ā

1

)
exp

[ −i x

(ū + ā)

]
(4.28)

and to an entropy wave written as

( ρ̂(x)
û(x)
p̂(x)

)
=

( 1
0
0

)
exp

(− i x

ū

)
(4.29)

where ā, defined by ā2 = γ p̄/ρ̄, is the local frozen isentropic speed of sound. The quasi-
one-dimensional transonic nozzle flow with acoustic disturbance discussed above using
semi-analytical methods can also be solved by the methods of CAA. For this reason the
quasi-one-dimensional transonic nozzle flow equations (4.9)-(4.11) can be expressed in
conservative form as

∂U

∂t
+

∂F

∂x
+

1
A

dA

dx
S = 0 (4.30)
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where the column vectors U , F and S are given by

U =

( ρ

ρ u

e

)
, F =

( ρ u

ρ u2 + p

u (e + p)

)
, S =

( ρ u

ρ u2

u (e + p)

)
. (4.31)

with e defined by e = p/(γ−1) + (1/2) ρ u2. For the initial field of the above conservation
equations, we use the above computed quasi-one-dimensional steady state nozzle flow so-
lution shown in Figure 7. The acoustic wave propagation is then simulated by implanting
the acoustic disturbance, given by eq.(4.26), downstream of nozzle. For the discretization
of the conservation equations, we use high order schemes, namely the Dispersion-Relation-
Preserving (DRP) scheme of Tam and Webb [30] and Optimized Compact (OC) scheme
of Kim and Lee [33], both discussed above in some detail. The upstream propagating
acoustic disturbances will partly be reflected from the area of the transonic nozzle throat
and partly transmitted to the upstream of the nozzle throat. At the nozzle throat, the
sound wave amplitude will be amplified. Therefore, to ensure that the computed solutions
are of high quality on the computational domain, non-reflecting boundary conditions has
to be imposed on both sides of the computation domain. Accurate boundary condition
implementations are important for successful simulations of flows with acoustic perturba-
tions. For transonic nozzle flow, the inflow boundary conditions should accurately specify
the inflow conditions and the outflow boundary conditions must allow the outgoing pertur-
bations to pass without introducing non-physical reflections back into the computational
domain. For this reason two different non-reflecting boundary conditions are used. One
of them is the well-known standard non-reflecting boundary condition of Thompson [51],
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axis in DRP and Optimized Compact (OC) schemes for standard and random
non-reflecting boundary conditions.
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which is based on the solution of the linearized Euler equations by the method of charac-
teristics. The second one is a novel non-reflecting boundary condition, herein called the
random non-reflecting boundary condition, which uses an intermediate value of the acous-
tic perturbations at the boundary weighted by a random number. Both non-reflecting
boundary conditions are discussed above in some detail and are implemented in the two
computational aeroacoustic schemes used ( DRP and OC). Another important issue is to
obtain an accurate solution by using as few grid points as possible. Therefore, a nonuni-
form grid must be taken into account. For this reason Erickson grid stretching function
[58] is used and optimized to transform the x-coordinate. The grid study optimization re-
duces the number of grid points to a minimum of 250 grid points for an accurate solution,
as compared to the exact solution obtained from the linearized perturbation equations.

Figure 8 shows the exact acoustic pressure distributions at two different times of the
period, corresponding to phase shifts of 3π/4 and 7π/4. Also plotted is their envelope,
hereafter called the maximum acoustic pressure. The results of the DRS-scheme and the
OC-scheme agree exceptionally well with the exact solution of the perturbation equations
no matter whether the standard non-reflecting boundary condition [51] or the present
random boundary condition is employed. The maximum acoustic pressure along the entire
computational domain and its detailed structure in the exit region are plotted in Figs. 9
and 10, respectively. The agreement seems excellent for both schemes using two different
non-reflecting boundary conditions, especially demonstrating the validity of the random
non-reflection introduced in this study.
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5. Conclusions

In this paper two different aeroacoustic problems are investigated. In the first problem,
propeller noise is investigated using the Green’s function solution of the FW-H equation.
This equation generalizes Lighthill’s acoustic analogy taking into account the contributions
from surface source distributions. In this case the source terms can be characterized as
monopole, dipole and quadrupole sources, which are, respectively, called thickness, loading
and volumetric noise. In this investigation we neglect the quadrupole term and use the
frequency domain solution given by Hanson[18] using helicoidal coordinates to represent
the thickness and loading source terms for subsonic flow. What results is an integral
formula which is applied to investigate helicopter blade noise by asymptotic methods
[45-47]. In particular, we investigate the first and second order asymptotic predictions of
Hanson’s integral formula, as well as the full numerical computations, for the thickness and
loading noise of a subsonic B-bladed helicopter rotor. We obtain the first and second order
asymptotic formulas using the Debye approximation for Bessel functions of high order and
evaluating the resulting integral by Laplace’s method [48,49]. In addition, full numerical
solution of Hanson’s integral is found by using fractional series for Bessel function in the
case of large argument and large order and numerical integrals are carried out by Gaussian
quadrature [53]. A 3D compressible CFD code is used to compute the aerodynamic loading
on the straight rectangular blade of a 4-bladed helicopter rotor in hover. For this case, the
blade tip Mach number is chosen in the range between 0.5 and 0.7 so that the flow field
remains subsonic. The aerodynamic loading data is fitted by a polynomial of second degree
to obtain the loading source term in Hanson’s integral. The SPL noise is then calculated
by the first and second order asymptotic formulas and by full numerical computations
taking into account the loading and thickness contributions. The differences in the SPL
noise seem to increase with increasing Mach number, with the second order asymptotics
being in much better agreement than the first order in comparison with the full numerical
computations. This investigation has demonstrated the advantages of using the second
order asymptotic expression for loading and thickness, at least for the prediction of the
SPL noise of a helicopter rotor in hover in the far field.

In the second problem, the capabilities of the implementation of high order compu-
tational aeroacoustic schemes are investigated for a NASA benchmark problem. In this
problem the effect of acoustic wave propagation in transonic nozzle flow is investigated
by solving the unsteady quasi-one-dimensional transonic nozzle equations in conservative
form, where high order computational accuracy is required. For the initial distribution
we use the classical quasi-one-dimensional steady-state nozzle flow solution. The acous-
tic disturbance is implemented at the nozzle exit and is reflected from the nozzle throat.
Therefore, for a valid solution, a high order computational scheme with acceptable res-
olution is required. For this reason we use high order finite difference computational
aeroacoustic schemes, namely the Dispersion Relation Preserving (DRP) scheme of Tam
and Webb [30] and the Optimized Compact scheme (OC) of Kim and Lee [33]. Both
schemes use central difference, but in the vicinity of the inflow and outflow boundaries,
they require non-centered difference scheme. In the latter case the coefficients of the non-
centered differences are optimized in the same way as for the interior points. In addition,
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the implemented boundary conditions must be avoid reflecting small acoustic perturba-
tions back into the computational domain. For this reason two different non-reflecting
boundary conditions are used. One of them is the well-known standard non-reflecting
boundary condition of Thompson [51], which is based on the solution of the linearized
Euler equations by the method of characteristics. The second one is a novel non-reflecting
boundary condition, herein called random non-reflecting boundary condition, which uses
an intermediate value of the acoustic perturbations at the boundary weighted by a random
number. Both non-reflecting boundary conditions are implemented in the two computa-
tional aeroacoustic schemes used ( DRP and OC). The numerical results obtained for each
scheme are then compared against those obtained by the exact solution of the unsteady
quasi-one-dimensional linearized nozzle flow equations. In particular, the exact and com-
puted maximum pressure envelope and time-dependent pressure distributions show very
good agreement.
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