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1. Introduction 
 

   Four specific G protein-coupled Prostaglandin E2 (PGE2) receptor subtypes (EP1-4) 

have been identified and are known to be differentially expressed across tissue types [1]. 

EP1 couples to Ca2+-dependent protein kinase C (PKC), and EP2 and EP4 share the 

adenylate cyclase-cAMP-PKA pathway, whereas EP3 antagonizes the EP2/EP4 pathway. 

These various PGE2 signaling pathways bring about a large number of physiological and 

pathophysiological processes [2]. PGE2 actions in bone are also complicated, but its 

anabolic effects in rats are obvious, when PGE2 is administered systemically or locally to 

the skeleton [3, 4]. Development of selective agonists for each EP receptor subtype 

agonists, EP1A-4A) [2, 5] and pharmacological [6, 7] and genetic [8] approaches led us 

conclude that both EP2 and EP4 play a crucial role in PGE2-mediated bone formation. 

mitogen-activated protein kinase (MAPK) pathways are considered to be involved in 

PGE2 actions in bone [9, 10]. Previously, we found that, of the three principal MAPK 

pathways, EP2 and EP4 activate the cAMP-p38 MAPK-c-fos/Runx2 pathways, while 

EP4 also mediates the ERK pathway, possibly via PKC, and c-Jun N-terminal kinase 

(JNK) in fetal rat calvaria (RC) cells [11]. 

 

   PGJ2 appears to be a natural ligand for peroxisome proliferator-activated receptor J 

(PPARJ) [12], a master transcription factor of adipogenesis [13], and cyclooxygenase 

(COX)-2 is necessary for PGJ2 production and/or adipogenesis in adipose tissue [2, 14, 

15]. On the other hand, COX-2 in bone is mostly involved in PGE2 production, which in 

turn increases bone morphogenetic protein 2-dependent bone formation [16]. Together 

with the involvement of EP2 and EP4 in osteogenesis, EP4 mediates the inhibitory effect 

of PGE2 on adipogenic differentiation of 3T3-L1 cells with a concomitant decrease in 
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PPARJ mRNA expression [17]. In aged ovariectomized (OVX) rats, EP4A stimulates 

bone formation at skeletal sites, while it decreases the number of adipocytes and fatty 

marrow area [4]. In contrast, when we treated fetal rat calvaria (RC) cells with PGE2 

under osteogenic conditions, we found an increase in adipocyte colonies together with 

increased bone nodule formation. Osteoblasts and adipocytes share a common 

mesenchymal progenitor cells, and not only bone marrow stromal cells (a mesenchymal 

stem cell model) but also RC cells (a committed osteoblast precursor pool) [18], can 

convert into adipocytes in particular situations, such as ectopic overexpression of PPARJ 

[12] and treatment with a synthetic PPARJ ligand [18, 19]. We thus explored in detail the 

role(s) of PGE2 in adipogenesis in RC cell cultures under osteogenic conditions. 

  

 
2. Materials and methods 

 

2.1. Reagents  

   Selective EP agonists (EP1A, ONO-DI-004; EP2A, ONO-AEI-259; EP3A, 

ONO-AE-248; EP4A, ONO-AE1-437; each product was guaranteed with >90% purity) 

were gifts from Ono Pharmaceutical Co. (Osaka, Japan). PGE2, MAPK inhibitors (for 

p38 MAPK, SB203580; for JNK, dicumarol; for ERK, U0126) and all other chemicals, 

unless otherwise specified, were purchased from Sigma-Aldrich Co (St Louis, MO). 

These reagents were dissolved in dimethylsulfoxide (DMSO) at a final concentration of < 

0.1%.  

 

2.2. Animals 

   Animal use and procedures were approved by the Committee of Research Facilities 
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for Laboratory Animal Science, Hiroshima. Rats were euthanized by cervical dislocation 

under deep anesthesia.   

 

2.3. Cell cultures 

    RC cells were routinely obtained from fetal rat calvaria (embryonic day 21) as 

described [20]. Briefly, calvariae were minced and digested with collagenase (type I) for 

10, 20, 30, 50 and 70 min at 37 qC. Cells retrieved from the last four of five digestion 

fractions were separately grown in DMEM containing 10% fetal bovine serum (FBS, 

HyClone, Logan, UT, USA) and antibiotics. After 24 h, cells were pooled and grown in 

multi-well plates in the same medium supplemented additionally with 50 Pg/ml of 

ascorbic acid (osteogenic medium). Cells were treated with or without reagents in regular 

or serum-deprived conditions (see below), as specified. Medium was changed every 2-3 

days, and cultures were maintained at 37 qC in a humidified atmosphere with 5% CO2. 

 

2.4. 5-bromo-2’-deoxyuridine(BrdU)-labeling index 

   Cells grown in osteogenic medium for 2 days were adapted to serum-deprived 

conditions (0.1% FCS) for 24 h and treated with or without EP agonists or PGE2 for an 

additional 24 h. BrdU-labeled cells were detected immunohistochemically, as described 

before [11]. Briefly, cells were labeled with BrdU (10 PM) for 3 h before culture 

termination, then fixed with 70% ethanol for 30 min, air dried and permeabilized with 2 

M HCl for 5 min. Anti-BrdU monoclonal antibody (1:1,000) and horseradish 

peroxidase-labeled secondary antibody (1:200, Vector Lab, Burlingame, CA) were used 

with the avidin-biotin complex (ABC) system (Vector Lab).  
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2.5. MTT assay 

   Cells were kept under serum-starved conditions (1% FCS) for 24 h and then treated 

with or without each EP agonist for 48 h, followed by treatment with MTT 

(3-[4,5-dimethylthiazoyl-2-yl]-2,5-diphenyltetrazolium bromide) for the last 4 h of 

cultures [11]. Cells were dried, assessed by microscopic examination, and MTT was 

quantified colorimetrically.  

 

2.6. RNA extraction and real-time RT-PCR 

   Total RNA was isolated from cells with TRIzol reagent (Invitrogen, Carlsbad, CA), 

accRUdiQg WR Whe PaQXfacWXUeU¶V diUecWiRQV. cDNA ZaV V\QWheVi]ed fURP �2 Pg of total 

RNA using ReverTra Ace (TOYOBO, Osaka, Japan) at 50 qC for 40 min. Primer sets for 

genes of interest were described elsewhere [11, 21]; ribosomal protein L32 (L32) was 

XVed aV iQWeUQaO cRQWURO, 5¶-CAT GGC TGC CCT TCG GCC TC-3¶ aQd 5¶-CAT TCT CTT 

CGC TGC GTA GCC-3¶; PPARJ2, 5¶-TGA CAG TGA CTT GGC CAT ATT T-3¶ aQd 

5¶-TTG TCT TGG ATG TCC TCG AT-3¶; CCAAT/eQhaQceU biQdiQg SURWeiQ (C/EBP)G, 

5¶-AGA CTC CGA ACG ACC GAT AC-3¶ aQd 5¶-GTG CCC AAG AAA CTG TAG 

CA-3¶; c-fRV, 5¶-AGA ATC CGA AGG GAA AGG AA-3¶ aQd 5¶-ATG ATG CCG GAA 

ACA AGA AG-3¶ [11, 18, 19]. Real-time RT-PCR was carried out by using the Light 

Cycler system (Light CyclerTM DNA Master SYBR� Green I; Roche Diagnostics, 

Indianapolis, IN), according WR Whe PaQXfacWXUeU¶V iQVWUXcWiRQV.  

 

2.7. Western blotting 

   Cells under serum-deprived conditions (0.1% FCS) were treated with or without 

EP4A for 30 min. Cell lysates were obtained and subjected to Western Blotting, as 
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described [11]. Briefly, cells were lysed in RIPA buffer containing Phosphatase Inhibitor 

Cocktail (Nacalai Tesque, Kyoto, Japan) and Complete Protease Inhibitor Cocktail 

(RRche DiagQRVWicV) aQd, aOiTXRWV Rf Whe O\VaWeV (� 5 Pg protein/lane) were subjected to 

SDS-PAGE (15% gels) and electroblotted onto nitrocellulose membranes (Millipore, 

Bedford, MA). The membranes were probed with antibody against phosphorylated 

ERK1/2 (p-ERK) (1:1000; Santa Cruz biotechnology), followed by incubation with 

HRP-conjugated secondary antibody (1:2000, Santa Cruz Biotechnology). Signals were 

detected by chemiluminescence (Lumi-LightPLUS, Roche Diagnostics). The membranes 

were reprobed with antibody against non-phosphorylated ERK (1:1000, Santa Cruz 

Biotechnology).  

 

2.8. Staining for alkaline phosphatase (ALP)/oil red O 

   Cells were fixed in neutral buffered formalin for 15 min, washed and incubated with 

AS MX-phosphate/blue LB in 0.1 M Tris-HCl (pH 8.3) to determine osteoid-like 

nodules. To confirm adipocyte colonies, cells were treated with freshly prepared oil red 

O for 30 min [19]. In some cases, cells were double stained with ALP and oil red O.  

 

2.9. Statistical analysis 

   Data from at least three independent experiments are expressed as the mean r SD. 

Statistical differences were evaluated by one-way factorial analysis of variance 

(ANOVA) aQd SRVW hRc TXke\¶V WeVW. A P YaOXe OeVV WhaQ 0.05 ZaV cRQVideUed WR iQdicaWe 

a significant difference. 
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3. Results 

3.1. PGE2 via EP4 acts on the proliferation of primitive osteoprogenitor cells and a 

consequent increase in adipocyte colonies  

  We initially examined the effect of chronic treatment of EP agonists including PGE2 on 

adipocyte colony formation during osteoblastogenesis in the RC cell model (14-15 days). 

Of these ligands, EP4A increased the number of adipocyte colonies (42.5 r 9.6, P<0.01), 

followed by PGE2 and EP2A (35.8 r 8.1, P<0.01, and 24.0 r 2.7, P<0.05, respectively), 

but not by EP1A and EP3A (10.3 r 3.3 and 10.0 r 1.6, respectively) (Figures 1A, B). In 

contrast, EP2A was the most effective compound in altering bone nodule formation (not 

shown), as we described before [11]. To elucidate target cells for PGE2 in adipogenesis 

versus osteoblastogenesis, we pulse-treated RC cells with PGE2 for 2 days during three 

typical osteogenic development stages (see below) as defined by osteoblast markers [11] 

and counted adipocyte colonies at day 14 (d14). PGE2 increased the number of adipocyte 

colonies, when treated during proliferation stages (d3-5) but not differentiation (d7-9) 

and maturation (d10-12) stages (Figure 2A). These findings differed from the effective 

time windows for the osteogenic effect of PGE2 (see ref. [11]). 

 

   To determine how PGE2 exerts adipogenic effect in RC cells, we compared the effect 

of PGE2, EP2A and EP4A on cell proliferation by using the MTT assay. As expected, 

when cells were treated during proliferation stages, EP4A, followed by PGE2, but not 

EP2A increased MTT activity (Figure 2B). The effect of EP4A was obvious in monolayer 

cells (Figure 2C) during proliferation stages but not in nodule-forming multilayer cells 

during differentiation stages (not shown). These results were confirmed by quantifying 

the BrdU labeling index during proliferation stages (Figure 2D). We also monitored the 
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formation of adipocyte colonies over time. By d9, adipocyte colonies were not detectable 

with or without PGE2. By d12, adipocyte colonies were seen in non-treatment groups 

(1.0 r 0.8 and 2.8 r 1.0, respectively) and PGE2 enhanced these phenomena (4.8 r 2.1, 

P<0.05, and 18.8 r 3.0, P<0.01, respectively) (Figure 2E), in parallel with an increase in 

the number of bone nodules (see ref. [11]). Taken together, these data indicate that an 

increase in the number of RC cells during proliferation stages is correlated with an 

increase in number of adipocyte colonies. 
   

 
3.2. The ERK pathway is involved in EP4-mdeiated adipogenesis 

   We described previously that the MAPK pathways mediate PGE2-dependent bone 

nodule formation in RC cells [11]. To determine whether MAPKs are also crucial for 

PGE2-dependent adipogenesis, we evaluated the effect of SB203580, an inhibitor of 

p38-MAPK, U0126, an inhibitor of ERK1/2 or dicumarol, an inhibitor of JNK. We 

treated cells with or without PGE2, in combination with or without MAPK inhibitors, 

throughout the culture period. In contrast to SB203580 and dicumarol that increased 

adipocyte colony formation with or without PGE2, U0126 decreased the number of 

adipocyte colonies only in the presence of PGE2 (Figure 3A). Likewise, the adipogenic 

effect of EP4A was eliminated by cotreatment with U0126 (Figure 3B). We then treated 

cells at d3 with or without EP4A under serum-deprived conditions (0.1% FBS) and found 

that EP4 increased ERK phosphporylation within 30 min (Figure 3C).  

  

   Whether EP4 affects gene expression levels of the transcription factors necessary for 

adipogenesis, such as PPARJ2, C/EBPD and C/EBPG, is of interest. To address this 
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question, we pretreated cells at d3 with or without U0126, followed by treatment with or 

without EP4A for 24 h. Using quantitative real-time RT-PCR, we demonstrated that 

EP4A increased C/EBPG but not PPARJ2 and D mRNA expression (Figures 4A-C). 

U0126 alone did not show any effect on these mRNA levels, while it blocked the 

increased levels of C/EBPG mRNA induced by EP4A (Figure 4A-C). We also found that 

EP4A increased mRNA expression of the protooncogene c-fos [22], consistent with our 

proliferation data; U0126 again attenuated the EP4A effect (Figure 4D). These results 

suggest that PGE2 may not be directly involved in adipocyte differentiation. Rather, the 

prostanoid may increase the proliferation of primitive osteo-adipogenic progenitor cells 

via the EP4-ERK pathway. 

 

 

 
4. Discussion 

 

    In addition to our previous report that PGE2 acts on osteoblastogenesis via both EP2 

and EP4 in RC cell cultures, we now provide evidence that PGE2 also increases 

adopogenesis in this model, possibly due to its ability to increase the proliferation of 

primitive osteo-adipogenic progenitor cells principally via the EP4-dependent ERK 

pathway.  

 

    It is worth noting that these results are different from previous studies on 3T3-L1 

preadipocytes [17] and aged OVX rats [23], where the EP4 pathway mediates the 
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anti-adipogenic effect of PGE2. The ability or not of PGE2/EP4A to alter the expression 

of PPARJ may underlie this discrepancy. We acknowledge that the large proportion of 

bone nodules versus adipocyte colonies may lead to a difficulty in our ability to detect a 

change in PPARJ mRNA expression. However, PPARJ is constitutively active in the two 

previous models [13, 24] but not in RC cells; this transcription factor is relatively highly 

expressed in RC cells during proliferation stages, but its nuclear translocation is not seen 

without the presence of its ligand [19]. The molecular mechanism(s) of the 

EP4-dependent downregulation of PPARJ has not been elucidated, but our findings 

suggest that EP4 is not directly involved in PPARJ transactivation at least in RC cells. 

Although we have not explored the reason why a small number of adipocyte colonies 

were seen in RC cell cultures without added PGE2, it seems likely that PGJ2, a natural 

ligand of PPARJ and/or other unknown factors in FBS are involved. 

 

     The difference in downstream signaling between EP2A (linked to ERK) and EP4A 

(linked to p38 MAPK) appears to account for the difference in the adipogenic potency 

between EP2 and EP4. The difference in target cells between EP2A and EP4A is also 

notable; EP2A acts mainly on osteogenic cells during differentiation stages, while EP4A 

acts on less committed primitive osteo-adipogenic progenitor cells with capacity for both 

osteoblast and adipocyte differentiation [11, 19]. The narrow window of PGE2 regulation 

of adipogenesis in RC cells may be the reason why, of four EPs, EP4 is primarily 

involved in adipogenesisin RC cells. For example, ERK is turned on during proliferation 

stages, while it is shut-off resulting in low PPARJ phosphorylation during more mature 

stages in 3T3-L1 [25]. Our data on the positive effect of p38 MAPK and JNK inhibitors 

on adipogenesis also support the unique activity of EP4A in adipogenesis. Thus, EP4A 

increases p38 MAPK and JNK phosphorylation during differentiation stages [11], which 

may downregulate C/EBPG J -response element-binding protein, 
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[26] and 

mesenchymal stem cells [27].  

 

   Even with the activation of PPARJ, a reciprocal relationship between osteogenesis 

and adipogenesis was not seen in RC cells [18, 19]. Amongst transcription factors 

directly involved in adipogenesis [28], C/EBPG is expressed not only in early 

preadipocytes to induce PPAR expression [29], but also in osteoblastic cells to regulate 

osteocalcin expression [30]. Our finding of the EP4A-dependent upregulation of C/EBPG 

during proliferation stages appears reasonable in this context. c-fos, a member of the 

intermediate early gene family, also known as a protooncogene, plays an important role 

in cell proliferation [31, 32] including rat preadipocytes [33]. In 3T3-L1 preadipocytes, a 

hormonal adipogenic stimulus triggers the sequential activation of C/EBPG, followed by 

C/EBP¢ and PPAR¤ [34, 35]. Together with evidence that C/EBPG is associated with 

Runx2, a master transcription factor for osteoblastogenesis [36], these results suggest 

that PGE2 may activate the EP4-c-fos-dependent pathway which promotes the 

proliferation of osteo-adipogenic progenitor cells and C/EBPG mRNA expression, 

resulting in increased adipocyte colonies without a reciprocal decrease in 

osteoblastogenesis in RC cells. 

 
 
   As summarized in Figure 5, we characterized PGE2-dependent adipogenic actions in 

RC cell cultures. Taken together with our previous observation that both EP2 and EP4 act 

on osteoblastogenesis principally through the MAPK pathways [11], we conclude that 

EP4 mediates the proliferation of osteo-adipogenic bipotential progenitor cells via the 

ERK pathway, resulting in adipocyte colony formation concomitant with a massive 
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increase in bone nodule formation. 
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Figure Legends 

Fig. 1. PGE2 increases the number of adipocyte colonies in RC cell cultures. Cells in 

24-well plates were chronically treated with PGE2, EP2A or EP4A (100 nM each) for 14 

days. (A) Representative macrographs of cultures in the presence or absence of PGE2. 

The lower right-hand panel is a higher magnification view of the enclosed area in the 

upper right-hand panel. ALP/oil red O staining. (B) Effect of PGE2 and EPAs on the 

number of adipocyte colonies. *P<0.05 and **P<0.01, compared to control (�).  

 

Fig. 2. PGE2 and EP4A but not EP2A increase proliferation of primitive osteoprogenitor 

cells. (A) Effect of PGE2 on the number of adipocyte colonies in three typical 

development time windows. Cells in 24-well plates were pulse-treated with or without 

100 nM PGE2 for 48 h as indicated and grown up to d14. (B and C) Effect of PGE2, 

EP2A and EP4A on cell proliferation. Cells in 96-well plates were treated with PGE2, 

EP2A or EP4A (100 nM each) from d3 for 48 h. 0.5% MTT was added for 4 h before 

culture termination. Panels in (C) show representative micrographs of MTT staining.  (D) 

Effect of PGE2, EP2A and EP4A on the number of BrdU-labeled cells. Cells in chamber 

slides under serum-deprived conditions were treated with PGE2, EP2A or EP4A (100 nM 

each) for 24 h from d3 to d5 and treated with BrdU for 4 h before culture termination. 

BrdU-positive cells were detected immunocytochemically. *P<0.05 and **P<0.01, 

compared to control (�). (E) Chronological changes in adipocyte colony formation. Cells 

in 24-well plates were treated with or without 100 nM PGE2 from d3 to d5, and fixed,and 

stained with oil red O at the days indicated. N.D., not detected.  

 

Fig. 3. The EP4-ERK pathway is involved in adipogenesis. (A) Effect of SB203580,  
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dicumarol or U0126 on the PGE2-dependent adipocyte colony formation. Cells were 

treated with 100 nM PGE2 in combination with or without 10 PM MAPK inhibitors 

throughout the culture period. Adipocyte colonies were counted at d14, as described. (B) 

U0126 inhibits the effect of pulse-treatment with EP4A on adipocyte colony formation. 

Cells at d3 in 24-well plates were pretreated with or without 10 PM U0126 for 2 h, 

followed by treatment with or without 100 nM EP4A for an additional 48 h. Adipocyte 

colonies were counted at d14, as described. (C) Effect of EP4A on ERK phosphorylation. 

Cells at d3 in 35 mm dishes were treated with or without EP4A for 30 min, and activation 

of ERK1/2 was determined by Western blot analysis. Left, representative images. Right, 

quantitative data. *P<0.05, **P<0.01, compared to control (�). #P<0.05, ##P<0.01, 

compared to EP4A alone. 

 
Fig. 4. The EP4A-ERK pathway is involved in C/EBPG and c-fos mRNA expression. 

Cells at d3 were handled as shown in Figure 3 (B). Total RNA was isolated, and mRNA 

expression of PPARJ  (A), C/EBPD�(B), C/EBPG (C) and c-

real-time RT-PCR. *P<0.05 and **P<0.01, compared to PGE2 alone. ##P<0.01, compared 

to EP4A alone.  

 

Fig. 5. A schematic diagram of deduced PGE2-MAPK-dependent osteo-adipogenesis in 

RC cell cultures. PGE2 appears to act on both primitive and more committed 

osteoprogenitor cells. Taken together with our previous study [11], the EP4-ERK and 

EP2-p38 MAPK pathways act mostly on the former and the latter, respectively. EP4 

mediates the proliferation of primitive osteprogenitor cells which have the potential to 

differentiate into both osteocytes and adipocytes. In consequence, EP4 may increase 
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adipocyte colonies, independent of its massive stimulatory effect on bone nodule 

formation. 
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