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16 

Abstract: 17 

Forest ecosystems face a range of challenges in the coming decades, of which climate change, pests 18 

and diseases are the most serious. These challenges will be overlaid on a background of historically 19 

modified and fragmented forests managed in a wide range of ways for different objectives. As 20 

northern temperate forests are species-poor in a global context, their resilience to these challenges 21 

is fundamentally dependent on the resilience of individual species. However, dealing with each new 22 

threat as it arises is unlikely to be cost effective and in any case, probably not practically feasible. A 23 

better strategy for establishing long term resilience would be to harness evolutionary processes, to 24 

maximise the capability of individual tree species to respond to new threats by the reorganisation of 25 

populations via natural selection; in other words, to be resilient. Such processes depend on the 26 

internal variability of species, their mechanisms of dispersal and their ability to recruit new 27 

genotypes to a population. In this paper we review the theoretical concept of resilience, examine 28 

how it might be applied to tree populations and assess the state of knowledge of Britain’s forests 29 

from this perspective.  30 

31 
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Introduction 32 

Britain’s forest genetic resources are currently facing an unprecedented period of uncertainty 33 

due to the effects of climate change and increased exposure to new pests and diseases from 34 

global trade. Rather than tackle each new threat as it arises, it would be much more cost 35 

effective to manage forests to promote their resilience, allowing them to change and adapt to 36 

new pressures. In this paper, we discuss the theory that underpins the concept of resilience in 37 

general and then focus on the implications for British forest ecosystems in particular. As 38 

individual forest ecosystems in Britain contain relatively few tree species, we outline the 39 

important role of intra-specific genetic diversity in conferring resilience via evolutionary 40 

processes and discuss the major drivers of these processes. Finally, we outline the current policy 41 

and practice for managing the British forest genetic resource and discuss the conflicts and 42 

tensions in developing appropriate policy in the face of an uncertain future. 43 

44 

 Major challenges facing British forests today 45 

The forest estate is a vital provider of ecosystem services in Britain (for details of its composition 46 

and management history see Text box 1). However it faces major challenges from climate 47 

change and various native and exotic pests and diseases. In particular, it is the uncertainty in 48 

predicting the nature and impacts of these threats that is hampering efforts to plan mitigation. 49 

The threats from climate change and new pests or diseases have important parallels in the 50 

policies needed to address them. Despite a huge amount of modeling aimed at predicting the 51 

likely pattern, speed and intensity of climate change, there is still great uncertainty in forecasts 52 

of the magnitude of change at specific locations and the ability of our forest resources to cope 53 

with them. Similarly, whilst many new pests and diseases have been identified as present in 54 

Britain, perhaps the greater threat lies in those that are present but have not yet been 55 

identified, and those that have yet to arrive. Worldwide, it is estimated that there are at least 28 56 

recognised pests and diseases that could cause substantial devastation to British trees if they 57 

gained entry to Britain (Tree Health and Plant Biosecurity Expert Taskforce, 2013). There are 58 

numerous examples where introduced pathogens have led to mass destruction of tree species 59 

elsewhere in the world, e.g. chestnut blight and white pine blister rust in North America. In 60 

addition, climate change may increase the threat from pest and diseases. This interaction could 61 

operate in several ways, including: 62 

i. increasing maladaptation. Trees which are stressed are more likely to succumb to both63 

native and introduced pests and diseases. 64 

ii. altered balance between tree host and existing pests and diseases. For example, rising65 

temperatures may affect the synchrony between herbivore emergence and bud burst; milder 66 

winters may increase the numbers of Elatobium on spruce crops (Broadmeadow et al., 2005). 67 

iii. novel climates cause species that were not previously damaging to develop into threats, or68 

facilitate the establishment of new species from warmer countries. For example, European 69 

Spruce Bark beetle is considered a high risk for arrival and establishment in Britain under 70 

warmer conditions. 71 

72 
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Multiple consequences of introduced pests and pathogens 73 

The British forest estate provides a wide range of ecological, economic, amenity and aesthetic 74 

benefits. Consequently, damage from introduced pathogens could have wide ranging 75 

consequences. In the case of the current high-profile threat from ash dieback, Worrell (2013) 76 

identified several likely  impacts, including: 77 

• loss of ash in woodland especially as a timber tree component of native woods, a specialist78 

species in gap replacement and in riparian woods. 79 

• reduction in biodiversity such as lichens, mosses/liverworts, fungi and invertebrates,80 

damage to designated sites, veteran trees and wood pastures. 81 

• economic costs incurred in felling and replacement of diseased trees, felling for safety82 

reasons and short term losses to nursery trade. 83 

• landscape and social impacts due to loss of individual trees along road sides and field84 

margins, in woods heavily used by the public and in urban situations. 85 

Similar consequences are likely to arise from introduction of pests and diseases with major 86 

impacts on any of the major tree species grown in Britain. In addition, longer term effects are 87 

also likely due to the alteration of forest ecosystems through changes in the keystone tree 88 

species and erosion of the size and diversity of standing tree populations. 89 

90 

A need for resilience 91 

Recently, attention has begun to focus on identifying and quantifying ways to bolster the 92 

resilience of ecosystems, in a move from prevention to mitigation of disturbances such as 93 

climate change. Now that both climate change and globalised trade are realities, there is a need 94 

to find ways to ensure the persistence of essential ecosystems in the face of new conditions, in 95 

other words to maximize their potential to adapt to a changed environment. This concept of 96 

resilience has been widely taken up by British policymakers as evidenced by use of the term in 97 

several high level policy documents, including the UK’s Tree Health Action Plan (DEFRA, 2011a) 98 

and Biodiversity 2020: A strategy for England’s wildlife and ecosystem services (DEFRA, 2011b) . 99 

The Report of the Independent Panel on Forestry (Independent Panel on Forestry, 2012), 100 

commissioned to advise government on the future direction of forestry and woodland policy in 101 

England, contains no fewer than 21 mentions of resilience. However, the general enthusiasm for 102 

the term masks considerable complexity; although its meaning is apparently easily grasped 103 

there are a number of difficulties in reaching precise, operational definitions, including 104 

quantifying when a system has resilience, to what pressures, and how success can be measured 105 

in efforts to achieve it. All of these aspects are difficult to measure and, even where clear 106 

negative effects are expected, results have, on occasions, been counterintuitive. For example, 107 

some systems have shown unexpected resilience even in the face of pressures that had been 108 

expected to cause ecosystem change (Bestelmeyer et al., 2013; Ponce Campos et al., 2013). The 109 

policy shift towards resilience appears to be emerging from a combination of increasingly visible 110 

change and the lack of progress in international efforts to address these issues. Therefore, to 111 

find ways to meet policy goals and to ensure the long-term persistence of the ecosystems we 112 
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value, it is essential to reach a working understanding of what resilience means and how it can 113 

be optimised via appropriate management. 114 

Resilience in theory 115 

Resilience is defined as the extent of perturbation that a system can experience before it 116 

undergoes a shift to an alternative state (Holling, 1973; Scheffer et al., 2001) or, more subtly, 117 

“the capacity of a system to reorganize whilst undergoing change so as to retain the same 118 

function, structure, identity and feedbacks” (Folke et al., 2004). In Biodiversity 2020, DEFRA 119 

chose to define resilience of an ecological network as its “capability to absorb, resist or recover 120 

from disturbances and damage…while continuing to meet its overall objectives of supporting 121 

biodiversity and providing ecosystem services“. These concepts of resilience developed 122 

(originally from engineering theory) for the purposes of predicting how and when systems shift 123 

from one stable state to another and are perhaps most advanced in the study of lakes, where 124 

the essentially closed nature of the system makes them more amenable to model development. 125 

In this context it has been possible to identify alternative possible stable states, tipping points 126 

(and the associated warning signals (Dai et al., 2012; Veraart et al., 2012)) beyond which 127 

capacity for resilience is exceeded, and consequently to develop strategies for restoring the 128 

original state (although this is often complicated by hysteresis, where forward and reverse 129 

tipping points occur at different levels of pressure, such that restoring the original state is not 130 

simply a case of reversing the initial disturbance (Cote and Darling, 2010)). 131 

A key element in resilience theory is the relationship between diversity and resilience. Although 132 

positive relationships have been shown between biodiversity and stability of ecosystem function 133 

(Laliberte et al., 2010), in theory it is the functional redundancy associated with higher diversity 134 

that confers stability. However, measuring the extent of functional redundancy is difficult and 135 

this becomes more complicated when applied to heterogeneous environments, where 136 

functional roles may alter with context (Wellnitz and LeRoy Poff, 2001). Furthermore, depending 137 

on whether ecosystem resilience (resilience of the ecosystem as a whole) or species resilience 138 

(the resilience of individual species) is being considered, stability may depend on either species 139 

diversity or intra-specific genetic diversity respectively, and the processes governing their 140 

maintenance (for definitions of genetic terms see Text box 2). This distinction is critical and 141 

encompasses a range of important questions that must be addressed if resilience as a quality is 142 

to be successfully targeted. For example, for a particular forest, if ecosystem resilience is the 143 

focus (preserving delivery of an ecosystem service such as watershed protection), then the 144 

species composition of that forest might be allowed to change, as the service provision would 145 

nevertheless be maintained. Then, if one tree species within that forest becomes the focus of a 146 

severe threat, it might best be managed by complete removal of that species and replacement 147 

with an alternative species or with natural recruitment. In contrast, if the forest type is 148 

important, for example if it is a UK BAP Priority Habitat, then the resilience of particular tree 149 

species within that woodland is essential. Exposure of that key species to severe threat risks the 150 

delivery of the ecosystem service, and the internal diversity of the species consequently 151 

becomes important. 152 

Direct evidence for the relationship between diversity and resilience is typically experimental, 153 

but has been shown – for ecosystem resilience - in many systems (Norden et al., 2009; Batt et 154 
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al., 2013; McGovern, 2013; Prober et al., 2013). However, in the case of single species resilience, 155 

the evidence base is much poorer, with well-cited studies of eelgrass (Reusch et al., 2005) and 156 

model organisms (yeast (Bell and Gonzalez, 2009); Drosophila (Bakker et al., 2010), Daphnia 157 

(Latta et al., 2010)) providing the best demonstrations. Such studies indicate that the level of 158 

intra-specific genetic diversity, the integrity of gene flow mechanisms and population size all 159 

play key roles in delivering the potential for ‘evolutionary rescue’. The mechanism of 160 

evolutionary rescue involves initial population decline followed by recovery as genotypes 161 

adapted to the new conditions prosper via natural selection. In this context, the integrity of 162 

demographic cycling is critical, with the gradual loss of standing generations and intact 163 

reproductive and recruitment processes allowing the establishment of new, better-adapted 164 

generations. The latter is likely to be a major factor in extending experimental work from model 165 

species to larger, longer-lived organisms. 166 

Resilience in British forest ecosystems 167 

In most forest ecosystems, tree species are likely to act as ‘drivers’ (Walker, 1992), as they have 168 

a role which is critical to the functioning of the ecosystem. This is especially true of northern 169 

temperate forests which are typically species-poor or dominated by one or a few species. In 170 

some cases, successional processes will play a role in response to pressure and a ‘forest’ 171 

ecosystem may be maintained whilst its character changes, e.g. where a mature tree species in 172 

a forest is eliminated by a species-specific pathogen, the gaps may be filled by early-successional 173 

species, maintaining the forest whilst its composition changes. In this case of apparent 174 

ecosystem resilience, significant rearrangement of community interactions will nevertheless 175 

take place and although a forest ecosystem is maintained, much of the associated biodiversity 176 

and ecosystem processes may not be. Whether this is an acceptable result will depend greatly 177 

on the management objectives of the forest concerned, and in any case represents a shift from 178 

one state to another and should properly be considered moving beyond resilience boundaries. 179 

Where successional change would result in an unacceptable loss of function in a forest 180 

ecosystem, resilience necessarily depends on the persistence of tree species. Therefore 181 

resilience of the ecosystem is unavoidably dependent on species resilience and on intra-specific 182 

genetic diversity, gene flow and generational turnover (Figure 1). 183 

Conservation of genetic diversity and the processes that maintain it have been considered to be 184 

a sensible insurance against future threats for almost as long as genetic diversity has been 185 

recognised (Ledig, 1986; Eriksson et al., 1993; Koskela et al., 2013; Lefevre et al., 2013a; Lefevre 186 

et al., 2013b). Trees generally maintain high levels of intra-specific genetic diversity and are 187 

usually effective at gene dispersal, especially the wind-pollinated species characteristic of 188 

northern temperate forests. Hence, studies that examine the partitioning of neutral genetic 189 

variation in tree species most often find the majority of variation is present within populations, 190 

with a much smaller component due to differences between them. At the same time, adaptive 191 

genetic variation occurs - adaptation to local environments has been demonstrated in many 192 

tree species (Savolainen et al., 2007) although the degree and geographic scale over  which it is 193 

distributed may vary depending on the heterogeneity of the landscape conditions, the character 194 

being measured and the species under investigation. In tree species, phenotypic traits often 195 

show high heritability, an indication that they have considerable evolutionary potential. In 196 
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combination these factors – high intra-specific genetic variation, effective gene dispersal and 197 

heritable adaptive traits indicate that trees should have considerable potential to evolve in 198 

response to new selective pressures (Alberto et al., 2013). Therefore, in practice, barriers to 199 

adaptive change in tree populations are likely to be due to disruptions of generational turnover 200 

(e.g. through overgrazing of seedlings, prevention of fires, loss of habitat), rather than to any 201 

inherent lack of evolutionary capacity. 202 

In consideration of adaptive processes in forest trees, much is typically made of their long 203 

generation times, yet in many forests generational turnover can be managed and recruitment 204 

promoted to ensure rapid immigration of best-adapted genotypes (Savolainen et al., 2007). The 205 

increased frequency of disturbance that is commonly forecast to be an outcome of climate 206 

change may in fact create opportunities for recruitment of new genotypes to populations and 207 

act to promote evolutionary change. However, it is likely that in most cases, some direct 208 

intervention to ensure that turnover is happening successfully, such as gap creation or 209 

management of local grazing, will also be necessary. 210 

In commercial situations, an analogy to the high diversity seen in natural forests could be 211 

achieved by designing forested landscapes in blocks that vary in their composition, of either 212 

species diversity or intra-specific genetic diversity, or both. Such an approach might attempt to 213 

take advantage of distinct genotypes that have different qualities or could seek to make a 214 

landscape less permeable to transmission of a threat by using variation in diversity as a barrier. 215 

The latter would have to take into account information on the mode and scale of dispersal 216 

mechanisms in the threat species. In commercial forestry, as in other agricultural markets, there 217 

is a pressure to minimize variation in the crop to facilitate processing. Whilst increased diversity 218 

may spread the risk and improve the probability of a crop reaching maturity without suffering 219 

negative impacts from threats, it also acts in direct opposition to the need to deliver a product 220 

of consistent quality. The optimal trade-off between homogeneity of product and diversity as a 221 

hedge against loss will depend strongly on the risk factors associated with the primary threats to 222 

a species and with the length of rotational cycle. If risk of loss is low enough over the period of 223 

the rotation to outweigh losses incurred through product quality reduction due to variability, 224 

then raised diversity may not be commercially attractive. However, the potential impacts on the 225 

wider landscape of facilitation of dispersal of a threat should also be taken into account in 226 

designing policy options to promote resilience. 227 

A further consideration for forest trees is how to assess when resilience has been achieved (and 228 

if it can be). In British forests, which have established post-glacially and have since experienced 229 

substantial change, it may be the case that a stable state as envisaged under resilience theory 230 

has never been reached. Instead, the ‘stable’ state as experienced by tree species may be one of 231 

constant environmental variability (considering, for example, that the comparison between the 232 

environment experienced at germination and that at full maturity may span 500 years in species 233 

such as oak). Therefore this stable state is underpinned by a large amount of individual plasticity 234 

and internal population variability. In Britain, human influence over centuries has eroded the 235 

size of national tree populations and some species probably face considerable risk of local 236 

extinctions. A realistic goal for giving tree species the best chance of longer term resilience is 237 

probably to seek to achieve a minimum threshold of diversity, maximize population sizes, 238 
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encourage the production of regular cohorts of natural regeneration, use locally-adapted seed 239 

sources and expose planting stock to natural selection wherever possible. To establish a 240 

knowledge base for making informed decisions, there are two clear priorities to lay a baseline 241 

for assessment. Firstly, experimental work must be undertaken to test the extent to which intra-242 

specific genetic diversity might underpin stability. This should encompass testing of multiple 243 

genotypes, but also multiple pressures, for example looking at pathogen tolerance under 244 

different environmental regimes. Secondly, an effort to standardize and synthesize knowledge 245 

on existing diversity in trees in the British landscape should be made, encompassing both 246 

molecular and phenotypic variation. Numerous studies have incorporated multiple populations 247 

from Britain and a few have sampled extensively within Britain, but so far the efforts have been 248 

independent and remain uncollated. 249 

When can managed evolution be effective? 250 

Assuming that tree species maintain significant capacity for evolutionary responses to new 251 

pressures and allowing that this may even be possible within reasonably short timescales, the 252 

action taken to counter any new threat will vary depending on, amongst other things, the 253 

severity of the threat and the speed with which that threat can spread. For example, a disease 254 

that quickly kills a high proportion of a tree population, and has the ability to disperse rapidly 255 

over considerable distances, would not be an appropriate candidate for the application of a 256 

managed evolutionary approach. Clearly in this case the high proportion of dead trees and their 257 

presence as a source for long distance spread of infection would be publicly unacceptable and 258 

therefore physical prevention and / or species replacement is likely to be necessary. In contrast, 259 

if the disease killed only a low proportion of trees leaving many affected but alive, and moved 260 

only short distances, or within a particular environmental niche, then managed evolution has 261 

time to be effective and should be considered. Between these extremes lie tipping points for 262 

choosing different actions that depend on factors including host ecology, density & rate of 263 

regeneration; characteristics of the threat organism; role of the tree species in the landscape 264 

and so on (Figure 2). Furthermore, the needs of forest stakeholders also have to be taken into 265 

account, for example to assess whether they might accept the temporary decline of a tree 266 

population, if there was a reasonable chance of subsequent recovery via regeneration of more 267 

resistant genotypes. 268 

To allow a decision making framework to be developed, which lets forest policymakers identify 269 

the most appropriate option for specific situations, a minimum set of parameters could be 270 

defined. These would characterize the host species, its ecology, distribution and diversity; those 271 

of the threat organism(s) and likely future environments. Model-based testing could then be 272 

used, firstly to evaluate potential evolutionary rates in tree populations, taking into account 273 

genetic diversity, adaptive potential and variations in demographic turnover and secondly, to 274 

explore and prioritise different management scenarios, using both idealized populations and 275 

spatially explicit simulations reflecting the known distribution of species in the British landscape. 276 

State of knowledge of genetic diversity in UK tree species 277 

A substantial amount of data already exists on intra-specific genetic variation in several 278 

important British trees (Text box 3, Table 1). This is true in particular for species important in 279 
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forestry or agriculture such as fruit trees, oak, Scots pine, ash and Sitka spruce. However in most 280 

cases, as most British tree species have distributions that extend to mainland Europe, studies of 281 

genetic variation have been carried out across a broad geographic scale such that resolution 282 

within the different regions of Britain is poor. Whilst it is important to have the wider context, 283 

the lack of fine-grained information for species in Britain is a clear knowledge gap. 284 

For the purposes of assessing potential evolutionary responses to emerging threats, it is also 285 

important to be clear about the distinction between different types of data on genetic variation. 286 

Genetic variation can either be assessed by measuring the phenotype (the set of observable 287 

characteristics that includes morphology, phenology and physiology) or by directly 288 

characterizing variation in DNA or closely associated molecules. 289 

As the phenotype is a product of both genes and the environment, the genetic component of 290 

phenotypic variation must be extracted by accounting for environmental variation either 291 

through experiments that control environmental variation or by statistical approaches using 292 

data on environmental differences among sites (e.g. Phillimore et al. (2013)). Phenotypic data, 293 

when obtained from controlled experiments or trials, in which plants originating from different 294 

geographic sources are grown together, provide information on the genetic component of 295 

variation in traits experiencing selection. Such experiments assume populations are adapted to 296 

the local environments in which they grow. Unfortunately, the majority of these trials were 297 

designed to examine the adaptive differences between provenances. Consequently, the identity 298 

of seed lots from different mother trees was not maintained which prevents the heritability of 299 

the recorded traits from being estimated. In addition, the extent to which the phenotype can be 300 

characterised in tree trials is limited due to the expensive and time-consuming nature of taking 301 

measurements on large numbers of individuals, and to the production-focused objectives of 302 

most trials. Height, form and diameter are often the only traits measured and other traits of 303 

importance in conferring resilience are not assessed. However the restricted number of well 304 

designed trials at the appropriate scale that exist offer an important resource for the future; 305 

more detailed  assessments of phenotype and the development of high-throughput methods 306 

(e.g. (Salmela et al., 2011))  for gathering such data from these trials should be a priority. 307 

A critical part of making new fast-phenotyping measures effective will be to determine what the 308 

significant selective forces are that drive local adaption and in identifying those traits that 309 

reflect the effects of these pressures. Furthermore, the situation is likely to be complex as suites 310 

of different pressures and traits may be involved in local adaptation. For example, a tree species 311 

might adapt to local climatic factors (such as temperature, rainfall, growing season length), or to 312 

local biotic factors (such as pathogen presence, beneficial symbionts, or competition from other 313 

tree species (Iason et al., In review)) and hence may show adaptive divergence in traits such as 314 

drought tolerance, pathogen resistance or timing of growth. For threats arising from new pests 315 

or pathogens, resilience is likely to derive from resistance traits. However, resistance may be 316 

inherent or may result from better adaptation to local growing conditions (lack of stress) 317 

(Telford et al., In review). Although resistance may be measured as a quantitative trait (Ennos, In 318 

review), understanding the basis of resistance is likely to be necessary to develop meaningful 319 

applications. Overall, the best approach is likely to involve characterization of the phenotype by 320 

measurement of as many traits as possible. 321 
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10 

Molecular or other marker data provide a different sort of information. Most mutations at the 322 

molecular level have little or no effect on the phenotype, so they are not subject to selection 323 

(are ‘selectively neutral’). As such they do not provide information about adaptive processes or 324 

that part of genetic diversity exposed to selection. However, they are useful in guiding the 325 

management and conservation of genetic resources as they can provide a measure of genetic 326 

diversity, can identify differentiated groups, and inform on prioritization of populations for 327 

protection. In addition, neutral data provide important information about historical and 328 

contemporary population processes, about migrations and population size changes, about how 329 

genes move in the landscape and over what spatial and temporal scales, and about how 330 

reproduction occurs. All of these are essential to understanding the rate at which species might 331 

be capable of responding to new pressures, and can be built into models to explore how 332 

populations are likely to respond. 333 

Ultimately, a key aim of evolutionary biology is to link molecular genetic data directly to 334 

phenotypic data in order to understand the genetic basis of adaptive variation. Rapid progress 335 

has been made in the rate at which genomic data can be gathered, to the extent that calls have 336 

been made to increase the collection of corresponding phenotypic datasets, to prevent this 337 

becoming a barrier to progress (Neale and Kremer, 2011). This is clearly an issue for pest or 338 

disease resistance in trees, where appropriately designed large scale trials do not exist to 339 

underpin and maximize the impact of advanced genomic approaches. Furthermore, even with 340 

next-generation sequencing technology, the capability to genotype large numbers of trees 341 

currently remains expensive and utilizing the data is heavily reliant on bioinformatic processing 342 

where lack of expertise can lead to slow and inefficient progress. Whilst the prospects are highly 343 

promising, for rapid progress it may be prudent to take advantage of existing resources to 344 

deliver early results. 345 

As an example, for the principal native species identified as suffering (or likely to suffer 346 

imminently) from new pests or diseases on DEFRA’s tree health action plan, a range of data or 347 

trial resources exist (Table 1). However, even for this limited set of important UK tree species, 348 

data are lacking on basic distribution of genetic diversity, genetic structure and gene flow. Lack 349 

of trials or inappropriate design or scale of trials prevents the acquisition of information on 350 

patterns of adaptive variation in even basic traits and more specifically, on key traits for 351 

resistance, their heritability, and variation in expression with environment. Coordinated 352 

collection of existing datasets should be a priority, particularly for those species as yet 353 

unaffected but with imminent serious threats. In the latter cases, sufficient time may still be 354 

available to adjust planting and management practice to minimize the impact of the arrival of 355 

new problems. 356 

357 

Current policy and practice for management of British forests 358 

British forests exist in a variety of forms ranging from woodlands where conservation is the 359 

major objective to single-species plantations managed almost exclusively for timber production. 360 

A sizeable proportion of our forests lie somewhere in between these two extremes and consist 361 

of a limited number of native species managed for a range of objectives. 362 

i.) Woodlands of high conservation importance 363 
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These woodlands include remnant Caledonian Scots pine forests, Atlantic hazel and oakwoods 364 

and montane willows which are all important in terms of conservation. The management 365 

objective here is to maintain their genetic integrity and to provide the opportunity for 366 

continuous dynamic evolution and adaptation and therefore natural regeneration is 367 

recommended in preference to planting wherever practicable (Anon, 2003). This provides a 368 

regular supply of new generations of trees, a process which can be encouraged by creation of 369 

clearings and control of herbivores. 370 

ii.) Existing and new native species woodlands with multiple objectives 371 

Both the Helsinki guidelines (MCPFE, 1993) and the UK Forestry Standard (Forestry Commission, 372 

2011)  recommend the use of local stock for planting of native species, especially in existing and 373 

new native woodlands. These guidelines take a precautionary approach and are based on the 374 

principle that locally sourced planting stock is likely to represent the best adapted material 375 

available for a site under current conditions. Despite these guidelines, surveys carried out within 376 

the last 10 years (Russell and Evans, 2003; Buckley and Blakesley, 2008) showed that of the 60 377 

million broadleaved plants sold in Britain in 1999, up to 50% came from abroad and 80-90% of 378 

the non-British material was sourced from non-maritime climates. The main sources of the 379 

imported plants were the Netherlands, Hungary and Germany but 27% of the imported plants 380 

came from Eastern Europe and were likely to be very poorly adapted to British conditions. 381 

Due to increasing labour costs and lack of investment in mechanization in nurseries in Britain, 382 

there has been a trend for nurseries to send British native seed to be raised on the continent 383 

where costs are lower and growing conditions are more favourable. Such practice increases the 384 

risk of introduction of pests and disease. 385 

In an attempt to guide the choice of appropriate planting stock and to provide an administrative 386 

structure on which to base recommendations for sourcing of planting stock, the Forestry 387 

Commission (FC) established a framework for tracking those sources of seed and planting 388 

material that are subject to the Forest Reproductive Material Regulations. This framework 389 

consists of four EU-recognised Regions of Provenance (RoP) which are further sub-divided into 390 

24 voluntary Native Seed Zones (NSZ) identified on the basis of information about their climatic 391 

and geological variation. The NSZs are further sub-divided into above and below 300 meters 392 

(Herbert et al., 1999). 393 

However, despite recommendations that integrated, pan-European approaches should be 394 

adopted for the management of forest genetic resources (Koskela et al., 2013), FC England and 395 

FC Scotland have diverged in the advice on the sourcing of planting stock since concerns about 396 

climate change have increased. 397 

England, which  is predicted to experience the most severe effects of climate change, advises 398 

that the option of matching a proportion of the planting stock to predicted future climate 399 

should be considered (Anon, 2010; Ray et al., 2010). Current advice from FC England for 400 

management of ancient and native woods recommends that at least one third of the planting 401 

stock should continue to be sourced locally but the inclusion of some planting stock from a 402 

more southerly provenance should be considered. They suggest that sourcing such material 403 

from 2-5 degrees of latitude further south than the site is a useful rule of thumb. Eastern 404 
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European sources should generally be avoided as they have proved unsuited to English 405 

conditions. 406 

This could result in the planting of material from as far south as Central France in England. Such 407 

a strategy assumes that sites in England lack the adaptive capacity to cope with climate change 408 

which is not necessarily the case when the high adaptive diversity of British populations and 409 

long distance gene flow are taken into account. Provenances from further south might well be 410 

adapted to the warmer conditions predicted under climate change but they are not necessarily 411 

well adapted to other conditions at the British sites and this might only result in exchanging one 412 

type of maladaptation risk for another. In addition, irrespective of future conditions at the 413 

English sites, the French material will not be adapted to the current British conditions and thus 414 

may be more at risk to succumbing to existing pests and pathogens with which they have not 415 

co-evolved, especially if they are maladapted to current English conditions. The associated risk 416 

of introducing novel pests and diseases should also be considering when adopting this strategy 417 

and seeds from these sources should be raised in local English nurseries. 418 

In contrast, FC Scotland, continues to recommend the use of locally sourced planting stock 419 

(Anon, 2006), on the assumption that populations contain sufficient adaptive capacity for them 420 

to evolve to cope with the effects of climate change in Scotland where the effects of climate 421 

change are predicted to be less severe than in England. However, in practice there have been 422 

problems associated with this approach in the form of low availability of locally sourced seed 423 

and planting stock. The reasons for this are attributable to poor availability of Scottish seed 424 

sources, lack of knowledge of where the seed sources occur, erratic seed cropping due to 425 

seasonality or low seed production in certain species, and seed predation by squirrels and birds. 426 

FC Scotland has appointed Seed Liaison Officers whose remit is to identify good seed sources, 427 

communicate with suppliers and planters, monitor populations for good mast years and advise 428 

on management for good seed production. Difficulties in obtaining locally sourced materials can 429 

delay planting schemes. 430 

The FC Woodland Grant Scheme is managed by FC Woodland Officers who practice discretion in 431 

their adherence to recommendations for local sourcing of planting material – an overly strict 432 

approach can lead to delays in planting whereas an overly relaxed attitude can lead to the use of 433 

maladapted material. Forest owners who elect not to source grant support for their planting are 434 

free to make their own decisions regarding source of planting material. 435 

 In Britain, forest nurseries are often small scale family run businesses and few of these, at the 436 

time of the (Russell and Evans, 2003) survey, operated at a national scale or were able to offer a 437 

wide range of origins for any particular tree or shrub species. However, the situation may have 438 

improved somewhat since then. FC Scotland is also improving its long term planning to provide 439 

nurseries with a better idea of future requirements. Strenuous efforts should be made to ensure 440 

that seed are raised in British nurseries and not sent to the more highly mechanized nurseries 441 

abroad (e.g. the Netherlands) to be raised as this increases the threat of pest and disease 442 

introduction. The Scottish Tree Health Advisory Group is currently in discussions with 443 

stakeholders and nurseries to identify sources of problems in the seed and plant supply chain. 444 

Good seed collection practice is important in ensuring that as much as possible of the genetic 445 

diversity available in a stand is captured in the seed collection. However, this is not always the 446 
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case in practice, e.g. (Kettle, 2001) found that locally sourced planting material used in a 447 

restoration site in the Scottish Borders had low genetic diversity and he attributed this to poor 448 

collection practices. Current FC advice for seed collection (Herbert et al., 1999) is as follows: 449 

• Collect from defined populations of  interbreeding individuals of the required 450 

species 451 

• Do not select trees with particular characteristics, and sample to reflect the range of 452 

growth and morphological diversity present in the population 453 

• If possible, collect from trees that are isolated from non-native sources of the same 454 

species 455 

• Collect from at least 20-30 individuals, harvesting a similar quantity of seed from 456 

each tree 457 

• Collect from trees that are at least 50 meters apart. 458 

• Following extraction ensure that the seedlot is thoroughly mixed, especially when 459 

the seedlot is divided and sent to several different growers. 460 

In order to assess the appropriateness of these different strategies a better understanding of 461 

the scale of adaptive capacity in British provenances is required. This demands the 462 

establishment of native species provenance trials based both at British sites and in sites which 463 

currently experience the climate that Britain is predicted to experience in the future. This would 464 

clarify whether British provenances have the adaptive capacity to cope with warmer conditions. 465 

iii.)  Commercial plantations for timber production. 466 

 As with natural woodlands, species diversity and within-species adaptive variation are 467 

important in conferring resilience on our plantation forests. However, this has to be balanced 468 

against the requirement for high yield and a uniform timber product for the saw mills. A 469 

common theme amongst processors is the need for uniformity and it is well known that clonal 470 

forestry can provide a dramatic increase in both forest productivity and product uniformity 471 

(Park (2002)and Table 2)). In Britain, our main timber species is Sitka spruce, an introduced 472 

species from the Pacific Northwest. It is usually grown in large, single age monoculture stands 473 

where the production of timber of construction strength is the primary objective. The breeding 474 

programme started in the early 1960s with the genetic testing of 1800 plus trees followed by 475 

the establishment of seed orchards consisting of 40 superior genotypes in intimate mixtures. 476 

The seed harvested from these seed orchards are raised entirely within Britain to provide bare 477 

rooted seedlings for planting.  However, since the early 1990s there has been a move to provide 478 

nurseries with seed produced via controlled pollination between highly selected parents. Until 479 

recently, most of the seed produced by this means was made available as a mix of seed 480 

collected from about 20 maternal trees which had been pollinated by a mixture of pollen from 481 

15-20 unrelated, but highly selected fathers (diverse family mixtures). Seed produced in this way 482 

was likely to have similar levels of diversity to that derived from the seed orchards which in turn, 483 

are likely to be at least as diverse as the unimproved material collected in Canada or USA.  This 484 

is because breeders ensure that the parents in a seed orchard or a family mixture are unrelated 485 

whereas the number of seed trees involved in a collection abroad is often unknown and there is 486 

a risk that it might be rather narrow. The seed derived from controlled pollination was 487 
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expensive to produce and was therefore grown into ‘donor’ stock plants from which large 488 

numbers of cuttings were raised.  More recently, the ‘diverse family mixture’ seed have been 489 

replaced by ‘full-sibling families’ which have a single known male and female tested parent. The 490 

advantages over the more genetically diverse family mixtures are the more uniform crop and 491 

superior timber yield. However, these advantages have to be considered against the increased 492 

risk associated with the reduction in diversity which is a consequence of this approach. 493 

Improvements in somatic embryogenesis and cryopreservation will soon offer the opportunity 494 

to produce vast numbers of individuals from a single seed and therefore, as we are at the 495 

threshold of clonal forestry becoming a realistic and practical option, more consideration needs 496 

to be given to the risks of adopting these strategies into commercial forestry. Currently, there 497 

are no rules regarding the size of plantation that can be established from this material of narrow 498 

genetic base. 499 

Much less breeding and selection has occurred in our native broadleaf species that are used to 500 

create commercial plantations and this is largely due to the poor economic returns on 501 

hardwood timber. Future Trees Trust (FTT) is the main organization responsible for British and 502 

Irish hardwood breeding and they are alert to the risks of basing their selections on an overly 503 

narrow range of genotypes. The FTT currently work on the following seven species:  ash, birch, 504 

cherry, sweet chestnut, sycamore and walnut. The production of forest reproductive material is 505 

regulated by the European Directive which has four seed categories based on different levels of 506 

genetic quality. The FTT is about to make available ‘tested’ ash seed, with small quantities of 507 

‘qualified’ birch and cherry to follow soon (Anon, 2012). Tested seed originates from individual 508 

trees or stands which have been evaluated for genetic quality or, in comparison to accepted 509 

standards, have been shown to be superior. Qualified seed originates from individual trees that 510 

are in the process of undergoing testing. 511 

Conclusions 512 

Forests in Britain exist in many forms which include native woodlands with very low levels of 513 

intervention, low impact silviculture plantations and woodlands of native and exotic species in a 514 

mixture of man-made plantations composed of fast-growing exotic conifer species. 515 

All are subject to biotic and abiotic change in the form of pests, diseases, climate change and 516 

increasing frequency of weather extremes.  Their ability to adapt to these challenges is 517 

dependent on a number of factors including inter- and intra-specific diversity.   The main factor 518 

influencing adaptedness is the balance between natural selection and geneflow and therefore 519 

consideration needs to be given to the best means of conserving the evolutionary process 520 

rather than the genetic structure present at a given point in time. The importance of integrating 521 

evolutionary considerations into adaptive forestry is being stressed in Southern Europe where 522 

compared to Britain, more extreme climate change is predicted (Lefevre et al., 2013a). 523 

Forest managers need to be aware of the risks associated with the influences they can have on 524 

this evolutionary, adaptive process including the balance between maximizing gain whilst 525 

reducing genetic diversity, assisted migration of planting stock from further south, and 526 

importation of seed and plants  of local provenance or otherwise  from non-UK  nurseries. At 527 

the same time, there should be awareness of the clear, practical actions that could be taken to 528 

bring evolutionary processes into management: in practice, barriers to adaptive change in tree 529 
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populations are likely to be due to disruptions of generational turnover (e.g. through 530 

overgrazing of seedlings, prevention of fires, loss of habitat), rather than to any inherent lack of 531 

evolutionary capacity. Strategies to minimise these impacts would make best use of the 532 

inherent adaptive potential in tree populations. 533 

In the contemporary British landscape, trees exist in many forms and under a range of 534 

ownership. As neither gene flow in trees nor dispersal of pests and diseases respect land 535 

ownership or national boundaries there is a need for more integrated management of British 536 

forest genetic resources to reduce the risk from an uncertain future. 537 

538 

Recommendations for future research 539 

• Experimental work is needed to test the extent to which intra-specific genetic diversity540 

underpins stability. This should encompass testing of multiple genotypes, but also multiple 541 

pressures. 542 

• A decision making framework should be developed, to let forest policymakers identify the543 

most appropriate action in specific pest / pathogen threat situations. This should define a 544 

minimum set of parameters for a host tree species, such as its ecology, distribution and 545 

diversity; those of the threat organism(s) and likely future environments. Model-based 546 

testing could then be used firstly to evaluate potential evolutionary rates in tree 547 

populations, taking into account genetic diversity, adaptive potential and variations in 548 

demographic turnover and secondly, to explore and prioritise different management 549 

scenarios using both idealized populations and spatially explicit simulations reflecting the 550 

known distribution of species in the British landscape. 551 

• New information on genetic and adaptive variation for British tree species should be552 

collected at a fine spatial scale. 553 

• Detailed assessments of phenotypic variation in existing trials should be made, including554 

development of high-throughput methods for gathering such data. 555 

• New, large scale trials should be established to test resistance-related trait variation and to556 

maximize the impact of advanced genomic approaches. 557 

• The coordination and collation of existing datasets on intraspecific variability diversity in558 

trees in the British landscape should be carried out as a priority, particularly for those 559 

species as yet unaffected but with imminent serious threats, and encompassing both 560 

molecular and phenotypic variation. 561 

562 
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571 

Text box 1:  The British forest estate 572 

The present day land-cover of woodlands and forests in Great Britain (13%) is low compared to some 573 

of our European partners (France 29%, Germany 32%, Finland 73%). However, it is considerably 574 

greater than at the end of the First World War in 1918, when it was only 5%. At that time it was 575 

recognized that there was a need to increase the forested area in Britain, resulting in the 576 

establishment of the Forestry Commission in 1919.  Its remit was to increase the forested land area 577 

in both public ownership and, via grant schemes, in the private sector.  The existing forests were a 578 

combination of native woodlands and commercial forests of predominantly native species. The new 579 

forests were created through afforestation of land previously used for sheep or deer grazing. These 580 

new forests were mostly intensively managed, even-aged, monoculture plantations, often involving 581 

an introduced exotic species. General practice involved clearfelling after an economic rotation of 582 

between 40 to 70 years, and then replanting with a similar exotic species. The seed for new planting 583 

stock was sourced from either a seemingly well adapted, vigorous, good quality stand of the exotic 584 

species, or early products from a domestic breeding programme.  Over the last 20 years woodland 585 

and forestry management in Britain has diversified such that the current national complement 586 

consists of native woodlands; woodlands managed under a less intensive silvicultural system of 587 

mixed ages and species, and highly intensive, monoculture plantations of even-aged, exotic crops 588 

with various levels of improved and selected stock. 589 

The British forest estate consists of 49% conifer, 32% broadleaf, 8% conifer/broadleaf mixtures. 590 

There are 66 native British trees and shrubs, only a small proportion of which are grown 591 

commercially for timber. Many of the native shrub species have scattered distributions and are 592 

rather rare. 593 

The principal conifers grown in Britain are Scots pine (native), Sitka spruce (ex USA/Canada), 594 

Lodgepole pine (USA/Canada), Larch (Central Europe or Japan), Norway spruce (North-Central 595 

Europe) Corsican pine (Southern Europe) and Douglas fir (USA/Canada). The main commercial 596 

conifer species is Sitka spruce which represents 50% of the area covered by conifers (Anon (a) In 597 

press). Our only native conifer timber species, Scots pine (ancient semi-natural remnants and 598 

plantations) represents 18% of the area occupied by conifers. The principal broadleaf species are 599 

oak, beech, sycamore, ash and birch. In terms of standing volume oak and ash represent 30% and 600 

14% respectively of the total broadleaf species in Britain (Anon, 2013). 601 

The Forestry Commission owns or leases 35% of all woodland over 2 ha and the remaining 65% is in 602 

other ownership. 603 

The process of breeding and selection is more advanced for the exotic conifer species. The country is 604 

largely self-sufficient in Sitka spruce and Scots pine planting stock, but native species are neglected 605 

in terms of domestic planting stock, leading to mass importation of trees from continental nurseries. 606 

607 

608 

609 
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610 

Text box 2: key terms 611 

Molecular markers – specific fragments of DNA that can be used as tools to measure genetic 612 

diversity, gene flow and migration history. 613 

Genetic diversity – the full complement of genotypes present; referred to as intra-specific genetic 614 

diversity for discussing within-species variation.  Determined by: 615 

Natural selection – process through which the individuals that are best adapted to current 616 

local conditions survive, reach maturity and produce offspring.  Generally most intense when trees 617 

are at the seedling/sapling stage, when mortality is highest. It causes traits that contribute to 618 

adaptedness to increase in frequency in a population and, over time, may cause populations to 619 

differentiate from each other. 620 

Geneflow - the dispersal of genes via seed, pollen or vegetative propagules. Tends to 621 

counteract the effects of natural selection and acts to homogenise intra-specific genetic diversity 622 

within and between populations. Pollen and seed migrating into a forest will be adapted to their site 623 

of origin rather than the site to which they have migrated. However, under changing conditions, this 624 

may introduce diversity that will help the local population to adapt. Geneflow is often extensive in 625 

tree populations and studies on a range of species have shown that around half of the paternal 626 

contribution to the seed originates from outside the stand and in wind pollinated trees can come 627 

from as far away as 100 km (Robledo-Arnuncio and Gil, 2005; Bacles and Ennos, 2008). 628 

Genetic drift – the loss of genetic diversity that occurs during random mating; occurs most 629 

strongly when populations are small and genetically isolated. 630 

Mutation – DNA copying errors that generate new intra-specific genetic diversity. A 631 

mutation may confer selective advantage, disadvantage or make no difference. It is a slow process 632 

and, as most of our tree species only reached Britain in the last 10,000 years, its impact since 633 

colonization is likely to be small. 634 

635 

Adaptive variation - the raw material on which selection (natural or human-mediated) acts. It is the 636 

basis for the evolutionary potential of a species or a population, allowing a response to 637 

environmental changes and provides the raw material for tree breeders to select for improved 638 

resistance to disease. 639 

Effective population size – the number of individuals in a population reproducing and contributing 640 

genetic material to the next generation 641 

Local adaptation – the result of natural selection acting on intra-specific genetic diversity. Influenced 642 

mainly by the balance between natural selection and geneflow. Under changing conditions, the 643 

composition of genotypes in a population may gradually alter, e.g. those that are more tolerant of 644 

drought may be favoured as conditions become drier. Local is not fixed but dynamic, resulting from 645 

a combination of chance events (mutation, genetic drift, geneflow) and natural selection, acting 646 

under a changing biotic and abiotic environment. 647 

648 

649 
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650 

Text box 3: Genetic characteristics of trees 651 

Trees differ from other plant species in that they are long lived, reach sexual maturity at a relatively 652 

late age and exist in populations in which the generations overlap. In contrast to many herbaceous 653 

species, they are usually outcrossing, a characteristic which promotes high genetic diversity. 654 

Compared to herbaceous plants, tree populations usually exhibit low differentiation at neutral 655 

markers due to extensive gene flow yet may be highly differentiated for adaptive traits. This is likely 656 

to be due to the combined effects of the enormous fecundity of trees and the strong selection 657 

pressures to which young tree seedlings are subjected (Petit and Hampe, 2006). Translocations of 658 

tree species have demonstrated that forest genetic resources have the capacity to adapt to 659 

conditions very different from those experienced in their native range. For example, the worldwide 660 

transfer of Pinus radiata (Yan et al., 2006) and the south to north translocation of Picea abies 661 

(Skroppa et al., 2010). 662 

663 

Large scale differences in adaptive variation of native tree species 664 

In terms of adaptive diversity, our native tree populations tend to show a degree of adaptation to 665 

environmental conditions in Britain such that native provenances outperform those from mainland 666 

Europe when grown in trials based in Britain (Gerber et al., In Press). For example, on the basis of 667 

provenance trials of Scots pine, silver birch, sessile oak and alder, British provenances showed 668 

superior growth and survival in 90% of cases compared with those from continental Europe (Fletcher 669 

and Samuel, 1997 ; Gerber et al., In Press). Even those continental provenances that came from 670 

similar latitudes to Britain e.g. Denmark, Germany, Latvia performed more poorly than British 671 

material and their survival on upland sites was poor (Ennos et al., 1998). British and continental 672 

Scots pines also differ in various phenological traits. For example, (Perks and McKay, 1997)showed 673 

that Scandinavian seedlings had greater frost resistance, earlier frost hardening and a longer period 674 

of frost hardiness than their British counterparts. These results demonstrate that British 675 

provenances are adapted to the current conditions in Britain and material introduced from 676 

continental Europe tends to suffer from the effects of late spring frosts which are typical of the 677 

British climate. 678 

679 

Differences in adaptive variation within Britain 680 

Less data are available at the British scale. However, Pelham et al. (1988) found differences in leaf 681 

length along a north-west to south-east transect in Scottish populations of Betula pubescens. Recent 682 

work demonstrated differences between Scottish provenances of Scots pine in phenology and levels 683 

of tolerance to drought and cold stress (Salmela et al., 2010; Salmela et al., 2011; Salmela et al., 684 

2013). In the case of cold stress, populations from lower altitudes performed more poorly when 685 

exposed to cold than those from higher altitude, drier sites. These findings provide evidence that 686 

despite the homogenizing effects of large scale gene flow in wind pollinated and wind dispersed 687 

Scots pine it is nevertheless possible to detect evidence of local adaptation on short geographic 688 

scales. However, due to the lack of suitable trials which include good representation of British 689 

provenances and species we do not yet have detailed data on which to base an understanding of the 690 

Page 19 of 30 Manuscripts submitted to Forestry:  An International Journal of Forest Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 

pattern, scale and environmental drivers of local adaptation in Britain. Very little is known about 691 

whether provenances differ in terms of their susceptibility to existing/novel pests and diseases. 692 

However, when examined it was discovered that Scots pine from provenances from the east and 693 

west coast of Scotland differed in their susceptibility to Peridermium pini (Lines and Mitchell, 1965). 694 

Studies are currently underway to explore the susceptibility of Scottish provenances of Scots pine to 695 

Dothistroma pini. Such information is urgently needed to allow the development of informed policy 696 

on planting sources. 697 

698 

Genetic diversity within populations 699 

Despite having found evidence for local adaptation it is also well recognized that genetic diversity in 700 

tree populations is high. Tree species tend to be outcrossing, often wind pollinated with large 701 

effective population sizes and these characters tend to maintain high levels of adaptive diversity. 702 

Prior to the advent of molecular markers, it was thought that tree populations in northern Europe 703 

might contain lower diversity than those further south due to their long distance from glacial refugia 704 

but this has not been found to be the case (e.g. (Wachowiak et al., 2011; Wachowiak et al., 2013)). 705 

This high diversity provides the basis for adaptation to novel challenges. Changing climate and new 706 

pests and diseases will present new challenges and through the process of natural selection, 707 

individuals with certain variants of genes or gene combinations will be favoured if they confer 708 

resistance. Consequently these will be the individuals which survive the challenge and produce the 709 

next generation. 710 

711 

712 
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Figure 1: Processes conferring species resilience for forest trees. The capability to adapt to new 713 

pressures depends on genetic diversity, gene flow, and rate at which new genotypes can be 714 

recruited to the population. 715 

716 

Figure 2: Tradeoffs in the decision making process for action against new pests / diseases. 717 

Tipping points may exist between extremes, beyond which resilience has been lost to such an 718 

extent that managed evolutionary processes cannot act fast enough to achieve recovery. 719 

720 
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Table 1: Knowledge of genetic diversity in UK native tree species with listed threats on DEFRA THAP (excludes longhorn beetles, which have wide host 721 

range). Publications cited where populations or provenances of UK origin have been included. Where known experimental resources are available but not 722 

necessarily published data, this is indicated with a � 723 

Genus Species Disease threat 

Neutral data Adaptive data 
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Alnus glutinosa Phytophthora, Rust, 

(Melampsoridium) 

14 11,35 

Fraxinus excelsior Chalara dieback 13 1, 

2, 

3 

13, 

30 

12 5, 27 47, � � 

Betula pendula / pubescens Birch borer 21 19, 21 4, 18, 

23, 31,  

35, 36 

� � 

Juniperus communis Phytophthora 26, 

32 

26, 

32 

Quercus robur / petraea Acute Oak decline, SOD, 

Proc. Moth 

7 47 6, 20, 

39 

6, 10, 

16, 17, 

24, 25 

8, 11, 

15, 38, 

39, 40 

35, 40 � 

Pinus sylvestris DNB, Lappet moth, pine 

weevil, PPM 

33, 

34, 

37 

28, 29 38 9, 41-

46 

� � 

724 
1 - Bacles et al. (2005), 2 - Bacles and Ennos (2008), 3 - Bacles et al. (2006), 4 - Billington and Pelham (1991), 5 - Boshier and Stewart (2005), 6 - Cottrell et al. (2002), 7 - Cottrell et al. (2003) 8 - Deans and Harvey 725 
(1996), 9 - Ennos and McConnell (2003), 10 - Ferris et al. (1998), 11 - Gosling et al. (2009), 12 - Heuertz et al. (2004), 13 - Anon (2013), 14 - King and Ferris (1998), 15 - Kremer et al. (2002b), 16 - Lowe et al. (2004) 17 - 726 
Lowe et al. (2005), 18 - Malcolm and Worrell (2001), 19 - Maliouchenko et al. (2007), 20 - Mariette et al. (2002), 21 - Anon ( 2012), 22 - Palme et al. (2003), 23 - Pelham et al. (1988), 24 - Petit et al. (2002a), 25 - Petit 727 
et al. (2002b), 26 - Provan et al. (2008), 27 - Savill et al. (1999), 28 - Sinclair et al. (1998), 29 - Sinclair et al. (1999), 30 - Sutherland et al. (2010), 31 - Thomas et al. (2007), 32 - Park (2002), 33 - Wachowiak et al. 728 
(2013), 34 - Wachowiak et al. (2011), 35 - Gerber et al. (In Press), 36 - Worrell et al. (2000), 37 - Ennos et al. (1997), 38 - Jensen and Hansen (2008), 39 - Kremer et al. (2002a), 40 - Pilcher and Gray (1982), 41 - Iason 729 
et al. (2011), 42 - O'Reilly-Wapstra et al. (2007), 43 - Pakeman et al. (2006), 44 - Perks and Ennos (1999), 45 - Salmela et al. (2011), 46 - Salmela et al. (2010), 47 - Rendell and Alstom (2004) 730 
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Table 2: The extra gain available to the forest manager as genetic diversity narrows. Figures are 731 

percentage gains over the unimproved and genetically diverse control for three traits, when 732 

different numbers of improved clones are deployed (S.J. Lee pers. comm.): 100 clones represents the 733 

highest diversity, 1 clone represents pure clonal forestry.  These improvements are associated with 734 

major economic benefits at the sawmill and to the value of the timber in the forest. Forest managers 735 

must weigh up these gains against the risk of losing the crop to pest or disease and any constraints 736 

through compliance with sustainability guidelines. 737 

738 

Number 

of 

 clones DIAMETER STRAIGHTNESS 

WOOD 

DENSITY 

100 24 25 13 

50 26 30 17 

40 27 31 18 

20 29 34 20 

10 31 37 23 

1 37 45 27 

739 

740 

741 
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 Figure 1: Processes conferring species resilience for forest trees. The capability to adapt to new 

pressures depends on genetic diversity, gene flow, and rate at which new genotypes can be 

recruited to the population.
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Figure 2: Tradeoffs in the decision making process for action against new pests / diseases. 

Tipping points may exist between extremes, beyond which resilience has been lost to such an 

extent that managed evolutionary processes cannot act fast enough to achieve recovery. 
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