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Chapter 1 

 

Introduction 
 

1.1 Background 

In September 2015, the United Nations adopted 17 Sustainable Development Goals 

with 169 targets. To achieve these goals, functional nanoparticle research requires further 

advances based on the material’s chemical and physical properties [1]. 

In working to achieve minimal energy consumption, Sumitomo Metal Mining Co., Ltd. 

(SMM) commercialized cesium tungsten bronze nanoparticles as an effective infrared 

absorption material [2,3]. This dissertation notably focused on developing cesium 

tungsten bronze nanoparticles using a spray pyrolysis method [4,5]. 

 

1.2 Methods for particle preparation 

In general, high purity, high crystallinity, uniform composition, and monodispersion 

are required for functional nanoparticles [5]; however, these properties are strongly 

related to the synthesis method. Thus, this section summarizes the gas-, liquid-, and solid-

phase characteristics of the synthesis process based on the appropriate use for each 

application. 

 

1.2.1 Gas-phase process 

In the gas-phase process, particles are built from atoms or molecules to obtain the 

desired size, which is called the vapor-phase [6] or aerosol process [5,7]. The primary 

advantages of the vapor-phase process are to obtain a small particle size (from a few 

nanometers to microns), narrow size distribution, high purity, and high crystallinity. This 
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process could achieve a reaction field with high energy over several hundred degrees or 

more. However, the disadvantage of the vapor-phase process is the formation of hard 

agglomerates, low productivity, and the high apparatus cost. 

The name of the vapor-phase process varies depending on the precursor phase and the 

heating energy source. In this doctoral dissertation, these names are classified (Table 1.1) 

and each method is summarized. Figure 1.1 shows typical particle images. 

 

Table 1.1 Classification of particle synthesis using the vapor-phase process. 

 

 

Heating Source 

Electric Furnace Flame Field Plasma Field 

Precursor 

Phase 

Vapor Phase 
Chemical Vapor 

Deposition (CVD) 

Vapor-fed Aerosol 

Flame (VFAF) 

Plasma-enhanced 

CVD (PECVD) 

Liquid Phase 

(Droplet) 
Spray Pyrolysis (SP) 

Flame-assisted 

Spray Pyrolysis 

(FASP) 

- 

Solid Phase 

(Powder) 

Physical Vapor 

Deposition (PVD) 

Solid-fed Flame 

Synthesis (SFFS) 

Thermal Plasma 

Synthesis (TPS) 
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Figure 1.1 Typical particle images using the gas-phase process: (a) chemical vapor 

deposition (CVD), (b) plasma-enhanced CVD, (c) conventional spray pyrolysis (CSP), 

(d) salt-assisted spray pyrolysis (SASP), (e) flame-assisted spray pyrolysis (FASP), and 

(f) thermal plasma synthesis (TPS). 

 

1.2.1.1 Chemical and physical vapor deposition 

Chemical vapor deposition (CVD) has been widely applied to prepare thin films, such 

as graphene [8], Molybdenum sulfide (MoS2) [9], and gallium nitride (GaN) [10]. In the 

CVD method, vapor-phase precursors are brought into a heated reactor. Products are then 

obtained by nucleation in the gas phase [11]. The principle of obtaining nanoparticles 



Chapter 1 Introduction  

  

4 
 

using the CVD method is to change the film conditions to low temperature and high 

supersaturation [12,13]. Electric furnaces are widely used as the heat source, but 

techniques using a laser [14] or plasma [15] have been developed to accelerate the 

precipitation reaction. The CVD method was recently applied to particle coatings, fine 

particle composites, and nanoparticle synthesis [16]. 

Physical vapor deposition is a technique in which a precursor material is heated to a 

melting point or higher to form a vapor phase [17]. It can then be cooled to promote the 

nucleation and precipitation of nanoparticles. In this method, particle sizes can be 

controlled by the heating temperature and cooling rate of the precursor. 

 

1.2.1.2 Spray pyrolysis 

Conventional spray pyrolysis (CSP) is a continuous method for producing spherical 

particles with adjustable sizes (controllable from submicron to micrometers), narrow size 

distribution, high crystallinity, and good stoichiometry (Figure 1.2(a)) [5]. In CSP, 

multicomponent materials, including oxide, sulfide, and carbide, are easily obtained to 

mix well all components in the solvent (e.g., water or alcohol [5]). 

To produce spherical particles using CSP, the droplets, which are atomized from a 

precursor solution, are introduced to an electric furnace. Evaporation of the solvent, 

precipitation, pyrolysis, or sintering in carrier gas may occur inside the furnace. The 

mechanism of particle formation is known that one droplet to one particle [4]. 

Submicrometer to micrometer-sized particles are typically formed in CSP. 

Although the CSP process has been widely used to synthesize multicomponent 

materials in a simple process, modifications of the CSP process for obtaining 

nanoparticles, such as low-pressure spray pyrolysis (LPSP), pulse combustion-spray 

pyrolysis (PCSP), salt-assisted spray pyrolysis (SASP), flame-assisted spray pyrolysis 
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(FASP), and spray drying were developed [1,4,5]. 

In LPSP, a two-step spray atomizer, e.g., a filter-expansion aerosol generator (FEAG) 

was used and a pyrolysis reaction proceeds in low pressures around 2–10 kPa to obtain 

nanoparticles (Figure 1.2(b)). Because the solvent evaporation of droplet in low pressure 

fields is promoted, the dispersed nanoparticles were obtained before agglomeration 

occurred. 

PCSP is a method integrating CSP and PCSP (Figure 1.2(c)). PCSP provides enhanced 

momentum and energy to the droplets by generation of high-intensity acoustic waves; 

therefore, solvent evaporation was promoted rapidly, and weakly agglomerated 

nanoparticles were obtained easily. 

SASP is a modified method of CSP, where a salt is introduced into a precursor solution 

to obtain dispersed nanoparticles [18]. Nanoparticles derived from SASP prevented 

agglomeration and promoted crystallinity because of the effect of the salt as a flux (Figure 

1.2(d)). During the SASP process, when the particle temperature exceeded the melting 

point of salts in the furnace, salts, such as chlorides or nitrates of Li, Na, and K, acted as 

high-temperature solvents (i.e., a molten state). Various materials such as NiO, Ag-Pd, 

ZnS, and CeO2 were synthesized using SASP [19–21]. The SASP method could be 

applicable in finding new materials. 

Nanostructured particles, which have controlled shapes and morphology at the 

nanoscale, have great potential for saving resources and improving handling properties 

[4,22,23]. Nano risk could be avoided by using nanostructured particles because the 

particle size is in the submicrons. However, the nanosized pore can exhibit the same 

performance as the nanoparticle. These particles can be synthesized using the spray-

drying method with template particles in a precursor solution, as shown in Figure 1.2 (e). 

In the spray-drying method, the precursor including the template particles is sprayed, 
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and then, solvent evaporation and self-assembly proceeds. Particles with several 

morphologies (e.g., sphere, doughnut, encapsulated, porous, multiporous, hollow, and 

hairy) could be synthesized. To reduce the cost of template particles, methods using 

recyclable or inexpensive available materials (e.g., polymethyl methacrylate resin) were 

developed recently [24]. 
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Figure 1.2 Precipitation mechanisms for (a) CSP, (b) LPSP, (c) PCSP, (d) SASP, and (e) 

nanostructured using a spray-drying method. 
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1.2.1.3 Vapor-fed aerosol flame and flame-assisted spray pyrolysis 

Vapor-fed aerosol flame (VFAF) where a vapor precursor is introduced into the flame 

has been practically used as a method for synthesizing SiO2 and Al2O3 particles [25]. 

However, vapor precursors in VFAF are mostly limited to low-cost precursors, such as 

chloride (e.g., SiCl4 and AlCl3), and chlorine gas-generated toxic products. 

Because of the availability of an inexpensive precursor solution, flame spray pyrolysis 

(FSP) has been developed, where the precursor is in liquid form with high combustion 

enthalpy (>50% of the total energy of combustion), such as organic solvents [26,27]. The 

use of exothermic liquid precursors produces self-sustaining flames. If a low-combustion 

enthalpy solution, such as an aqueous solution was used, this method was called FASP. 

Recently, single atoms or cluster-sized metal loaded onto support particles for catalysts 

was developed using FSP [28]. 

 

1.2.1.4 Thermal plasma synthesis 

Thermal plasma synthesis (TPS) is a high productivity method on a large scale, which 

has some advantages of thermal plasma, such as high enthalpy, high chemical reactivity, 

and a rapid quenching process. In TPS, solid precursors were vaporized in high 

temperatures over 10,000 degrees. This vapor was converted into several nanoparticles 

when the temperature of the vaporized precursor cooled [29]. However, the particle 

growth mechanism remains unclear because these nanoparticles were precipitated in a 

few tens of milliseconds even when using the gas-phase synthesis method. Furthermore, 

the energy use of this apparatus is inefficient. 
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1.2.2 Liquid-phase process 

The liquid-phase method was popular for the synthesis of various types of 

nanoparticles, such as particles with various structures (e.g., rods, cubic, and plate 

structures) obtained from liquid precursors [30]. The advantages of the liquid-phase 

process are that it is possible to apply in laboratory to industrial scales and it uses 

ultrasonic waves and microwaves to promote precipitation [31]. Furthermore, the control 

of nanoscale morphologies could be developed using sol–gel, solvothermal, and 

hydrothermal methods, among others. The drawback of this process is the extensive 

synthesis time or too many experimental steps. The typical particle images are shown in 

Figure 1.3. 

 

 

Figure 1.3 Typical particle images using the liquid-phase process: (a) reduction method, 

(b) hot-soap method, (c) continuous ultrasonic method, and (d) sol–gel method. 
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1.2.3 Solid-phase process 

Conventional solid-phase processes using a bead-milling apparatus requires high 

energy consumption to promote chemical reactions among the material ingredients. This 

method results in the active surface of particles, which causes mechanical high-energy 

reactions locally and instantaneously. This is called the mechanochemical effect [32]. 

Solid-phase synthesis could be classified into dry and wet processing. In the dry 

process, the apparatus is simple and it is easy to identify the mechanochemical effects. 

Recently, all solid-state secondary batteries, such as Na3PS4 [33], have been reported to 

use a dry milling process. However, the cost of the process is inefficient because a long 

operation time was needed and the limitation of particle size refinement is about 0.1 

micron. In the wet process, it is effective for dispersion and easily obtains nanoparticles. 

The disadvantage of solid-phase synthesis including dry and wet processes is the 

contamination from balls, inhomogeneity in samples, insertion of defects, and irregularly 

shaped particles. Recently, many reports have used numerical simulation, such as the 

discrete element method (DEM) and computational fluid dynamics (CFD), to understand 

the dynamic and breakage behaviors in the milling process [34,35]. 

 

1.3 Application of Nanoparticles for near-infrared shielding 

1.3.1 Near-infrared shielding materials 

Near-infrared (NIR) light comprises more than half of the energy of the sunlight 

arriving at the Earth’s surface. Thus, development of NIR-absorbing materials is required 

for efficient use and control of sunlight. NIR-shielding materials (e.g., tin-doped indium 

oxide (ITO), antimony tin oxide (ATO)) are well known [36]. Recently, lanthanum 

hexaboride (LaB6) [37] and cesium tungsten oxide (CWO®) [2,3] nanoparticles were 

commercialized by SMM because of the remarkable absorption property in the NIR 
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region with a high transmittance of the visible region. 

Based on the properties of selective NIR absorption, CWO® could be widely applied 

to solar control films on windows of automobiles and buildings by being embedded in 

binder resins (Figure 1.4(a)). To improve safety, CWO® film was sandwiched between 

two glass plates (i.e., interlayer glass) for hybrid (HV) and electric vehicles (EV) (Figure 

1.4(b)). Furthermore, the CWO® film was developed for optical filters (Figure 1.4(c)), 

digital printing (Figure 1.4(d)), and photothermal conversion (Figure 1.4(e)). 

To predict the trends in CWO® nanoparticles, Figure 1.5 shows that the number of 

cited papers in the Web of Science using keyword of cesium tungsten bronze and infrared 

absorption. CWO® research, such as the clarification of NIR absorption, developing new 

applications, and composite materials, will expand in future because of the excellent 

absorption property. 

 

 

Figure 1.4 Examples of CWO® applications: (a) window film, (b) interlayer glass, (c) 

IR cut filter, (d) digital printing, and (e) photothermal conversion. 
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Figure 1.5 The number of cited papers related to cesium tungsten bronze  

for near infrared absorption materials. 

 

 

1.3.2 Characteristics of Cs0.32WO3 

The space group of Cs0.32WO3 crystal is P63/mcm, and the International Centre for 

Diffraction Data (ICDD) number is 04-009-6455. Cs atoms are positioned in the center 

of the hexagonal cavities (Figure 1.6(a)). The Cs0.32WO3 crystal structure is constituted 

from the c planes including Cs atoms and W atoms alternatingly (Figure 1.6(b)). The 

oxygen atoms contained in the c planes including Cs atoms and W atoms are labeled O(1) 

and O(2), respectively. 
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Figure 1.6 Crystal structure of Cs0.32WO3 (a) projection from c axis,  

(b) projection from b axis. 

 

Cs0.32WO3 nanoparticles for NIR-absorbing materials can be synthesized by various 

methods (Table 1.2), i.e., solid-phase synthesis [2] and thermal decomposition [38]. 

These methods are then followed by liquid-phase synthesis [39,40], such as the hydro- 

[41,42] and solvothermal methods [43,44], and by vapor-phase synthesis, such as the 

electrospinning [45], FASP [46] and TPS methods [47]. 
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Table 1.2 Synthesis method and Cs0.32WO3 particle characteristics. 

Method Target 

materials 

Tungsten and cesium 

sources 

Experimental conditions Size and 

morphology 

References 

Solid-phase 

synthesis 

Cs0.33WO3 Tungstic acid (H2WO4), 

Cesium carbonate (Cs2CO3) 

Heated at 650 °C in H2/N2, 

and 800 °C in N2 

50–100 nm, 

Irregular 

[2] 

Thermal 

decomposition 

NaxCsyWO3 Ammonium metatungstate 

hydrate (AMT), Cesium 

hydroxide (CsOH·H2O) 

In N2 heated at 250 °C with 

oleylamine  

Average 32 

nm, irregular 

[38] 

Simple liquid-

phase synthesis 

Cs0.33WO3 Tungsten chloride (WCl4), 

Cesium chloride (CsCl) 

Heated at 300 °C 

with oleic acid 

10–30 nm, 

hexagonal 

prisms 

[39] 

Solution mixing 

method 

NaxCsyWO3 Cesium sulfate  

(Cs2SO4),  CsCl, 

CsOH·H2O, cesium acetate 

Heated at 260 °C 

with oleic acid   

5–20 nm, 

nanorods, 

truncated 

tetrahedron 

[40] 

Hydrothermal 

method 

CsxWO3 Sodium Tungstate 

(Na2WO4 ·2H2O), Cs2CO3 

Heated at 190 °C, 

 and 500 °C in N2 

>1 m [41] 

Hydrothermal 

method  

CsxWO3-xFx Na2WO4 ·2H2O, 

hydrofluoric acid (HF), 

Cs2CO3 

Heated at 190 °C, and 60 °C 

for drying 

20–300 nm, 

nanorods 

[42] 

Solvothermal 

process  

CsxWO3 WCl4, CsOH·H2O Heated at 200 °C 

with ethanol  

15–50 nm, 

nanorods 

[43] 

Solvothermal 

process  

Pt-doped 

CsxWO3 

Na2WO4 ·2H2O, Cs2SO4, 

and H2PtCl6 

Heated at 190 °C 

with citric acid 

10–80 nm, 

nanorods 

[44] 

Electrospinning 

method 

CsxWO3 H2WO4, Cs2CO3 The voltage was applied at 

20 kV 

Several m, 

nanofiber 

[45] 

Flame assisted 

Spray pyrolysis 

Cs0.33WO3 ATP, Cs2CO3 Flame field around 1000 °C 

and heated at 650 °C in 

H2/Ar 

80 nm, 

hexagonal 

prisms 

[46] 

Thermal plasma 

method 

Cs0.33WO3 ATP, Cesium formate 

(CsCOOH) 

Plasma field operating at 65 

kW 

50–500 nm [47] 

Spray pyrolysis Cs0.33WO3 ATP, Cs2CO3 Heated at 1200 °C, 

 and 650 °C in H2/Ar 

20–100 nm, 

hexagonal 

prisms 

This study 
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The NIR-absorption properties of Cs0.32WO3 nanoparticles are based on electrons 

supplied from Cs and oxygen deficiency (VO) to W-5d orbitals. Machida et al. [48,49] 

reported the peak separation of infrared absorption bands by Mie’s scattering analysis 

considering the anisotropic effect and ensemble inhomogeneity of the nanoparticles, 

which indicates that the free electrons supplied from Cs are mainly responsible for 

localized surface plasmon resonance (LSPR) absorption and localized electrons because 

of generation of VO are responsible for polaron absorption. Yoshio et al. [50,51] also 

clarified that polaronic absorption based on VO was derived from localized electrons in 

W-5d orbitals using first-principles calculations. 

 

1.3.3 Drawbacks of Cs0.32WO3 

Photochromic (PC) materials are defined by their ability to change optical properties 

by interaction with external light. Similarly, an electrochromic (EC) material [52] and a 

thermochromic (TC) material are known as chromatic materials that change color by 

electricity and heating, respectively. PC materials such as WO3, MoO3 [53], and V2O5 

[54] have been applied in the development of smart windows [55], colorimetric sensors 

[56], and PC eyewear [57] because of their reversible changes in color using only light. 

The color change in WO3 was attributed to the formation of a bronze structure (e.g., 

AxWO3, where A = H, Na). In particular, the PC mechanism of WO3 was revealed to be 

due to the injection of electrons through the intercalation of hydrogen atoms [58]. 

In the case of Cs0.32WO3 nanoparticles, which already formed a bronze structure with 

a slight bluish color, they changed to a further bluish coloration under UV irradiation 

(Figure 1.7). This change was caused by the diffusion of H+ ions from the resin matrix to 

amorphous or crystalline Cs-deficient sites [59] present in the particle surface at a depth 

of a few nm [60]. Because the HxWO3 phase on the surface of Cs0.32WO3 nanoparticles 
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strongly absorbs red light, the color of the particles turns to deep blue. 

 

Figure 1.7 The mechanism of deep blue coloration under UV irradiation. 

 

1.4 Objective and outline of the dissertation 

This dissertation aims to synthesize tungsten oxide nanoparticles and Cs0.32WO3 

nanoparticles using the spray pyrolysis method and evaluate their optical properties, such 

as NIR absorption and PC response. The presence of tungsten deficiency in Cs0.32WO3 

nanoparticles using the rapid quenching process of the spray pyrolysis method is 

demonstrated for the first time as a novel finding. Notably, the relation between tungsten 

deficiency in tungsten bronze crystals and NIR-absorption properties were clarified in 

detail. Finally, the PC properties of Cs0.32WO3 nanoparticles derived using the spray 

pyrolysis method were compared with that of the solid-phase method. 

The schematic diagram of the organization and structure of this dissertation in five 

chapters is shown below (Figure 1.8). 
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Figure 1.8 Chapter organization 

 

In Chapter 2, hexagonal tungsten oxide nanorods were synthesized using the spray 

pyrolysis method. The effects of the reaction time of spray pyrolysis on the size, 

morphology, and crystal phase of tungsten oxide nanoparticles were investigated. The 

extended residence time in the spray pyrolysis method enables the direct synthesis of 

single-phase hexagonal tungsten oxide nanorods. Furthermore, the N2 and CO2 absorption 

properties were evaluated to confirm the hexagonal channels in hexagonal tungsten oxide. 

In Chapter 3, Cs0.32WO3 nanoparticles including tungsten deficiency were produced 

using the spray pyrolysis method. We investigated the effect of tungsten deficiency on 

lattice constants and NIR-absorption properties in detail. 

In Chapter 4, the PC stability of Cs0.32WO3 nanoparticles was investigated because the 

critical issue for industrial applications is a blue coloration when UV light was irradiated. 

We demonstrated that the less Cs-deficient Cs0.32WO3 particles synthesized using the 

spray pyrolysis method exhibit improved PC stability compared with that of the solid-

phase method. 

A summary of this work and insights for future research are presented in Chapter 5. 
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Chapter 2 

 

Direct Synthesis of Highly Crystalline Single-

phase Hexagonal Tungsten Oxide Nanorods 

by Spray Pyrolysis* 

 

 

2.1   Introduction 

Tungsten oxide (WO3) is known as both a visible light-responsive photocatalytic and 

electrochromic material [1-10]. Various crystal phases of WO3 have been reported, 

including monoclinic, hexagonal, orthorhombic, tetragonal, and cubic. Among these 

crystal phases, monoclinic WO3 (m-WO3), as shown in Figure 2.1(a), is stable at room 

temperature. Currently, the development of WO3 particles has focused on increasing their 

reactivity. Formation of nanoparticles and nanostructures with well-ordered 

morphologies is one way to address this issue [11]. Introduction of hexagonal channels 

into the crystal structure of WO3 particles is another promising approach to increase their 

reactivity [12]. Hexagonal channels can be obtained in WO3 by controlling the atom 

coordination geometries (polyhedra) in the crystal structure, as illustrated in Figure 

2.1(b). The hexagonal channels promote intercalation reactions, leading to high reactivity. 

Hexagonal tungsten oxide (h-WO3) particles usually exhibit higher specific surface areas 

compared with those of m-WO3 particles of similar size because of the presence of 

hexagonal channels. Specific surface areas of h-WO3 particles of up to 47 m2/g have been 

reported [13]. The hexagonal channels in h-WO3 can react selectively with either 
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ammonia or lithium ions, meaning that h-WO3 has potential applications in selective gas 

sensing [14,15] and lithium-ion batteries [16,17], respectively. 

 

 

Figure 2.1 Crystal structures of (a) m-WO3 and (b) h-WO3. 

 

Figlarz’s group first synthesized h-WO3 in 1978 using a hydrothermal reaction 

method [18]. Thereafter, other methods to prepare h-WO3 were developed, such as 

thermal oxidation of ammonium tungsten bronze [19,20] or tungsten metal as the WO3 

source [21], spray pyrolysis [22,23], and another hydrothermal method [24]. In particular, 

spray pyrolysis is an efficient method for industrialization because particles can be 

synthesized continuously and rapidly [25,26]. For example, Ortega et al. [22] synthesized 

a WO3 membrane containing a mixture of h-WO3 and m-WO3 phases by pulsed spray 

pyrolysis. However, their research focused on the formation of WO3 membranes that 

contained the unreactive m-WO3 phase. 

Our group developed a spray pyrolysis process to synthesize WO3 particles using 

ammonium para-tungstate pentahydrate (ATP) as a precursor [23]. Fine m-WO3 particles 
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were obtained in the temperature range of 600–1000 °C. h-WO3 began to form when the 

maximum furnace temperature was increased to 1000–1300 °C. In this temperature range, 

the particle surface segregated and formed h-WO3 nanoparticles, as illustrated in the 

upper part of Figure. 2.2. However, the final particles still contained the m-WO3 phase 

because of the incomplete particle segregation even at a maximum furnace temperature 

of 1300 °C. These results led to a hypothesis that the synthesis conditions could not supply 

sufficient energy to completely segregate intermediate WO3 particles and promote the 

formation of h-WO3.  

 

 

Figure 2.2 Schematic diagram of the surface and complete segregation of WO3 

nanoparticles during spray pyrolysis. 

 

The present study improves on our previously developed spray pyrolysis process 

with the aim of producing single-phase h-WO3 nanoparticles. Simply raising the furnace 

temperature is not feasible from the viewpoints of energy consumption and furnace 

durability. Based on this consideration, we addressed the issue of the insufficient energy 

supply to produce pure h-WO3 by extending the segregation time. For this purpose, the 

effect of the carrier gas flow rate on the crystal phase produced is investigated. The gas 

adsorption ability of the synthesized nanoparticles is then examined to confirm the 
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advantageous adsorption behavior of h-WO3 over that of m-WO3. This study represents 

a promising step towards the scaled-up production of single-phase h-WO3 nanoparticles. 

 

2.2 Experimental 

2.2.1 Preparation of h-WO3 

A solution of ATP [(NH4)10(W12O41)•5H2O; purity 88%–90%; Kanto Chemical Co., 

Inc., Tokyo, Japan] in ultrapure water with a concentration of 10 mmol/L was used as the 

main precursor. The spray pyrolysis reactor system consisted of an ultrasonic nebulizer 

(NE-U17; Omron Healthcare Co., Ltd., Tokyo, Japan) operated at 1.7 MHz as the droplet 

generator, a ceramic tube with a length of 1.3 m and inner diameter of 28.5 mm as the 

reactor, and a glass microfiber filter as the particle collector.  

The precursor solution was pumped into the ultrasonic nebulizer at a flow rate of 1.5 

mL/min. The temperature of the nebulizer was kept at 40 °C using a circulating water 

cooling system. The generated droplets were fed into the tubular furnace using air as the 

carrier gas. The air was supplied from a gas bottle at room temperature and a flow rate of 

1–3 L/min. The air flow rate was controlled using a flow meter with a needle valve. At a 

carrier gas flow rate of 3 L/min, the atomization of 100 mL of precursor solution was 

completed after 1.1 h. For the same amount of precursor solution at a carrier gas flow rate 

of 1 L/min, it took 6 h to complete the atomization process. Based on the time required 

to complete the atomization, we estimated that the droplet generation rates were 1.5 and 

0.27 mL/min at carrier gas flow rates of 3 and 1 L/min, respectively. 

The tubular furnace was arranged horizontally and divided into five temperature 

zones; i.e., 200, 500, 700, 1200, and 1200 °C. The segregation time ts is given by: 

 𝑡s =
𝑉f

𝑄C
  (1) 
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where Vf is volume of the tube at synthesis temperatures over 1000 °C and QC is 

carrier gas flow rate. The ts values of particles in the furnace were 18.4, 9.2, and 6.1 s at 

QC of 1, 2, and 3 L/min, respectively. The change in QC slightly shifted the temperature 

profile towards the furnace end. This shift was considered in the calculation of ts. 

 

2.2.2 Characterization 

The size, morphology, and structure of the prepared particles were characterized 

using scanning electron microscopy (SEM; 5–20 kV, S-5200, Hitachi High-Tech. Corp., 

Tokyo, Japan) and transmission electron microscopy (TEM; 297 kV, JEM-3000F, JEOL, 

Tokyo, Japan). The lattice spacing was calculated as the average of ten lattice spacing 

values measured from high-resolution transmission electron microscopy (HR-TEM) 

images using Gatan Digital Micrograph software (Gatan, München, Germany). The 

crystal phase of WO3 particles was examined by X-ray diffraction (XRD; 40 kV and 30 

mA, D2 PHASER, Bruker AXS GmbH, Karlsruhe, USA). The weight percentages of h-

WO3 and m-WO3 phases were determined by Rietveld analysis using Total Pattern 

Analysis Solutions software (TOPAS; Bruker AXS GmbH, Karlsruhe, Germany) 

considering these crystal phases. To investigate the specific surface area and presence of 

hexagonal channels in h-WO3, nitrogen (N2) and carbon dioxide (CO2) adsorption 

analyses were conducted on a Belsorp 28SA analyzer (Bel Japan, Tokyo, Japan) at 77 K 

and 300 K, respectively. The surface areas of the particles were calculated using the 

Brunauer–Emmett–Teller (BET) method. 

 

2.3 Results and Discussion 

2.3.1 Synthesis of h-WO3 nanoparticles 

Qc controls the droplet generation rate (Qdroplet) and ts of particles in the furnace. Qdroplet 
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is an important factor in spray pyrolysis because it affects the frequency of collisions 

between the droplets [27]. The number of droplets per unit volume (nunit) was calculated 

using the following formula, 

 𝑛unit =
𝑄droplet

𝑄c

6

𝜋𝐷3
 (2) 

where D is the droplet diameter (4.5 μm [23]). When Qc was 3 L/min, nunit was 1.0 × 

1013/m3. The value of nunit decreased to 5.8 × 1012/m3 when Qc was 1 L/min. As nunit 

decreased, the frequency of collisions between the droplets lowered and the energy per 

unit volume of droplets from the furnace increased.  

The XRD patterns of h-WO3 and m-WO3 nanoparticles synthesized using Qc of 1–3 

L/min are presented in Figure. 2.3. A mixture of h-WO3 and m-WO3 phases was observed 

for Qc of 2 and 3 L/min. In contrast, only the h-WO3 phase formed at the lowest Qc of 1 

L/min. The Rietveld analysis (Figure 2.4) indicated that the weight percentage of the h-

WO3 phase reached nearly single-phase h-WO3 when Qc was 1 L/min and decreased to 

60.9 wt% and 32.5 wt% at higher Qc of 2 and 3 L/min, respectively. The decreasing weight 

percentage of h-WO3 was accompanied by an increasing fraction of m-WO3. The 

presence of m-WO3 indicates there was insufficient energy supply to completely 

segregate intermediate WO3 particles into h-WO3 nanoparticles at high Qc. This may be 

attributed to the high nunit (1.0 × 1013/m3) and short ts of 9.2 and 6.1 s at Qc of 2 and 3 

L/min, respectively. Decreasing Qc to 1 L/min increased ts to 18.4 s and decreased nunit to 

5.8 × 1012/m3. This long ts in the maximum temperature zone was found to provide 

sufficient energy to the intermediate WO3 particles to produce single-phase h-WO3.  
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Figure 2.3 XRD patterns of WO3 nanoparticles synthesized at various gas flow rates. 
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Figure 2.4 Weight percentages of h-WO3 and m-WO3 phases of WO3 nanoparticles 

synthesized at various gas flow rates. 

 

To investigate the atom coordination in the crystal structure and the morphology of the 

samples, SEM and TEM observations were conducted. Figure 2.5 shows SEM images 

and particle size distributions of the WO3 nanoparticles synthesized with Qc of 1–3 L/min. 

When Qc was 1 L/min, rod-like nanoparticles with lengths of about 100–200 nm and 

cuboid-shaped nanoparticles with a diameter of about 50 nm and various lengths were 

obtained (Fig. 3(a)). Square-shaped nanoparticles with lengths of 10–80 nm and rod-like 

nanoparticles with a length of about 80 nm were observed when Qc was 2 L/min (Fig. 

3(b)). Increasing Qc to 3 L/min resulted in polygonal nanoparticles with sizes of 50–400 

nm, as displayed in Figure 2.5(c).  
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Figure 2.5 SEM images of WO3 nanoparticles synthesized at carrier gas flow rates of 

(a) 1 L/min, (b) 2 L/min, and (c) 3 L/min. 

 

A Qc of 1 L/min gave rod-like nanoparticles with lengths of 100–200 nm and an aspect 

ratio of about ten (Figure 2.6). The corresponding HR-TEM image (Figure 2.6(b)) 

confirmed that the prepared nanoparticles had a uniform orientation with a lattice spacing 

of 0.67 nm. This is consistent with the d spacing of the (100) plane of h-WO3. However, 

some vertical lines were observed in the fast Fourier transform (FFT) image (inset of 

Figure 2.6(b)), which indicates that the h-WO3 nanoparticles contain stacking faults [5].  

 

Figure 2.6 (a) TEM and (b) HR-TEM images of WO3 nanoparticles prepared at carrier 

gas flow rates of 1 L/min. Insets of (b) display corresponding FFT images. 
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TEM images of the WO3 nanoparticles synthesized at a Qc of 3 L/min revealed the 

formation of polygonal nanoparticles with sizes of 50–200 nm, as presented in Figure 

2.7. The HR-TEM image in Figure 2.7(b) shows that the polygonal nanoparticles contain 

changing contrast with sharp gradation. This gradation indicates the generation of grain 

boundaries inside the m-WO3 nanoparticles. Both regions have the same lattice spacing 

of about 0.34 nm, but they have different directions. This shows that the synthesized m-

WO3 nanoparticles are not single crystals, which is caused by the insufficient energy 

present for single-crystal particle formation [23].    

 

 

Figure 2.7 (a) TEM and (b) HR-TEM images of WO3 nanoparticles prepared at carrier 

gas flow rates of 3 L/min. Insets of (b) display corresponding FFT images. 

 

Based on the results presented above, a mechanism of nanoparticle formation through 

spray pyrolysis was proposed, as illustrated in Figure 2.8. Droplets containing ATP are 

sprayed into the furnace and react to form intermediate WO3 particles after the solvent 

evaporates in the entrance of the furnace, which was set at a temperature of 200 °C. The 

crystallization process then occurs in the high temperature zone of the furnace, where the 
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temperature was set at 1200 °C. The reaction temperature in the high temperature zone 

affects the segregation behavior of intermediate WO3 particles. When the maximum 

furnace temperature is less than 1000 °C, spherical m-WO3 nanoparticles are obtained 

[23]. This particle formation mechanism was assumed to follow the one-droplet-to-one-

particle principle [11,25]. When the maximum furnace temperature was 1000 °C or higher, 

more than one particle was generated from each intermediate WO3 particle through 

segregation [23,28]. The ts and nunit values of intermediate WO3 particles strongly affected 

the morphology and crystal phase of the final nanoparticles. At a high Qc of 3 L/min, the 

precursor reacts immediately after being sprayed into the furnace. Because of the short ts, 

segregation only occurs on the surface of the intermediate WO3 particles; the inner part 

crystallizes as polygonal WO3 nanoparticles. These nanoparticles tend to crystallize as 

phase regions with anisotropy in multiple directions rather than as a single crystal. The 

segregation phenomenon nearly reaches the center of the intermediate WO3 particles 

when Qc is decreased to 2 L/min. Therefore, the sizes of the obtained nanoparticles 

decreased to several tens of nanometers (Fig. 3(e)). In this case, polygonal WO3 

nanoparticles were still observed in the SEM image, which are probably m-WO3 

nanoparticles, along with rod-like h-WO3 nanoparticles. At a low Qc of 1 L/min, complete 

segregation occurs to mainly produce rod-like nanoparticles with lengths of several 

hundred nanometers and an aspect ratio of about ten because of the low nunit and long ts 

(Fig. 3(d)). The rod-like h-WO3 nanoparticles contain stacking faults, suggesting that the 

crystal structure is greatly distorted from that of perfect h-WO3 [18].  
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Figure 2.8 Formation mechanisms of WO3 nanoparticles during spray pyrolysis. 

 

2.3.2 Gas adsorption of h-WO3 nanoparticles 

Figure 2.9 shows the N2 adsorption–desorption curves of WO3 nanoparticles prepared 

with Qc of 1 and 3 L/min. The obtained adsorption curves indicate that the WO3 

nanoparticles synthesized with a Qc of 1 L/min adsorbed less gas molecules than those 

synthesized at 3 L/min. The specific surface areas (SA) calculated using the BET method 

were about 12.8 and 17.2 m2/g for nanoparticles prepared with Qc of 1 and 3 L/min, 

respectively. SA of the WO3 nanoparticles synthesized at a Qc of 1 L/min was smaller than 

that of the nanoparticles synthesized at a Qc of 3 L/min. A possible reason for this result 

is sintering of the nanoparticles, as indicated by the white circle in Figure 2.5 (a). As 

shown in Fig. 3(a) and (c), the sintering degree of nanoparticles prepared at a Qc of 1 

L/min was greater than that of the sample produced at a Qc of 3 L/min because of the 

longer ts.  

 



Chapter 2 Direct Synthesis of Highly Crystalline Single-phase Hexagonal Tungsten Oxide Nanorods 

 by Spray Pyrolysis 

37 
 

 

Figure 2.9 N2 adsorption–desorption curves of WO3 nanoparticles prepared at carrier 

gas flow rates of 1 and 3 L/min. 

 

To confirm the presence of hexagonal channels in the h-WO3 nanoparticles synthesized 

at a Qc of 1 L/min, their CO2 adsorption performance was also evaluated. Figure 2.10 

depicts the CO2 adsorption of the sample, which displayed a CO2 capture capacity of up 

to 0.32 cm3/g at 25 °C and relative pressure of 0.01. This value is lower than the CO2 

capture capacity of h-WO3 of 3.2 cm3/g reported recently [13], even though these 

nanoparticles are highly crystalline h-WO3 according to the XRD analysis. There are two 

possible reasons for this result. The first is the crystal defects in h-WO3. The FFT image 

in the inset of Figure 2.6(b) contains vertical lines, which indicates that the prepared 

nanoparticles have stacking faults in their crystal structure. Thus, the hexagonal channels 
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have not formed completely, which is because the crystal growth period (cooling process) 

during spray pyrolysis was quite short [11]. The second reason is the effect of the 

ammonium ions (NH4
+) of ATP. Previously, Kudo’s group [29] reported that h-WO3 

nanoparticles prepared from ATP have WO6 octahedra with inclined plane geometries 

because of the effect of the remaining NH4
+. If NH4

+ are present in the crystal structure, 

the c-axis of the crystal structure could be shortened from 3.899 to 3.823 Å, and the size 

of hexagonal channels will shrink accordingly. This might lead to the formation of smaller 

hexagonal channels than in the absence of NH4
+. Although the pore size analysis and 

optimization of experimental conditions to maximize CO2 adsorption are required in the 

future, we succeeded in producing single-phase h-WO3 nanoparticles with a short ts. 
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Figure 2.10 CO2 adsorption curves of WO3 nanoparticles prepared  

at a carrier gas flow rate of 1 L/min at 25 °C. 
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2.4. Summary 

 A spray pyrolysis method was developed to synthesize single-phase h-WO3 

nanoparticles/nanorods. Qc was optimized to provide sufficient ts for the formation of h-

WO3. Rod-like nanoparticles composed of only the h-WO3 phase were obtained when a 

low Qc of 1 L/min was used, which is equivalent to a ts of 18.4 s. Gas adsorption analysis 

indicated that SA of the nanoparticles was about 12.8 m2/g, and less presence of hexagonal 

channels in the h-WO3 nanoparticles was estimated.  
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Chapter 3 

 

Cationic Defect engineering for controlling 

the infrared absorption of hexagonal 

tungsten bronze nanoparticles* 

 

 

3.1 Introduction 

Structural defects play an important role in regulating the properties of metal oxides. 

Controllably introduced defects alter the density of localized charges, which affect the 

charge mobility and the response to an incident electromagnetic field and other chemicals 

[1]. Based on this principle, structural defects have been engineered to control the 

electronic [2,3], optical [4], ionic transport [5], adsorption [6], and catalytic properties [7] 

of metal oxides. 

Controlling the stoichiometry of metal oxides by creating an oxygen vacancy (VO) 

has been popular in defect engineering [8]. For example, VO can be introduced to the 

structure of tungsten trioxide (WO3), which creates a suboxide WO3−x. A recent study 

reported that this structure has a high chemical adsorption ability owing to the formation 

of active sites by VOs [9]. Another study found that the electrons provided from VOs and 

interstitial dopants, such as Rb+ and Cs+, facilitated the absorption of near-infrared (NIR) 

light in hexagonal tungsten bronzes [10,11,12,13].  

Besides anionic defects (i.e., VO), Li et al. suggested that a cationic defect can also 

greatly influence the electrical conductivity and catalytic activity of metal oxides [14]. 
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Similarly, Zhao et al. synthesized the chalcogenide copper-deficient Cu2-xS
 for optical 

materials [15]. In titania, the incorporation of fluorine as an interstitial dopant determines 

the number of titanium vacancies, which suggests a correlation between cationic defects 

and an interstitial dopant [14].  

Among the tungsten bronzes, nanometer-sized cesium tungsten bronzes (Cs0.32WO3), 

in particular, have attracted much attention as a NIR shielding material owing to its 

excellent NIR absorption capability and high transmittance of visible light [10,16]. These 

properties are strongly correlated with the electrons in the hybridized orbitals of W 5d 

and O 2p in the conduction band, which are derived from VOs and alkali dopants [17,12,13. 

In a recent study, Okada et al. [18,12] observed a coordinated linear structural change in 

lattice dimensions, which were interpreted as arising from the relaxation of the pseudo–

Jahn–Teller (PJT) distortion by decreasing Cs defects and/or increasing VOs in Cs0.32WO3. 

However, the effect of cationic defects, which includes W deficiency in Cs0.32WO3, 

remains a concern that should be investigated. 

Based on the above background, the current study focuses on the nanoscale 

engineering of cationic defects in the Cs0.32WO3 crystal. Specifically, we focus on W 

deficiency and doping states of Cs ions with their effects on the NIR absorption properties. 

Cs0.32WO3 nanoparticles including cationic defects were synthesized using spray 

pyrolysis. This process has been proven to be effective for the synthesis of various 

nanostructured and heteroatom-doped particles[19-22]. It features a rapid quenching, 

which increases the possibility of defect formation. A control of the cationic defects is 

achieved by heat treatment in a mildly reducing atmosphere. Close attention is given to 

the spatial aspect of the crystal structure through observations of lattice constants, atomic 

arrangements, and interatomic distances, to construct a hypothesis for the relation 

between the cationic defects and the NIR absorption properties.  
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3.2 Experimental 

3.2.1 Preparation of Cs0.32WO3  

A solution containing ammonium para-tungstate pentahydrate (ATP; 

(NH4)10(W12O41)･5H2O; purity 88%–90%; Kanto Chemical Co., Inc., Tokyo, Japan), was 

dissolved in ultra-pure water with a concentration of 10 mmol/L, which was used as the 

main precursor. A solution containing cesium carbonate (Cs2CO3; purity 99.9% Sigma-

Aldrich Co., St Louis, Mo, USA), dissolved in ultra-pure water with a concentration of 

40 mmol/L, was used as the Cs precursor. The atomic ratio of Cs : W = 0.32 : 1, which is 

close to the typical hexagonal tungsten bronze structure. The spray pyrolysis reactor 

system consisted of an ultrasonic nebulizer (NE-U17; Omron Healthcare Co., Ltd., Tokyo, 

Japan; operated at 1.7 MHz) as a droplet generator, a tubular ceramic tube (length of 1.3 

m and inner diameter of 28.5 mm) as a reactor, and a glass microfiber filter as a particle 

collector. The tubular furnace was arranged horizontally and divided into five temperature 

zones, that is, 200, 500, 700, 1200, and 1200 °C. The generated droplets were fed into the 

tubular furnace using air as the carrier gas with a flow rate of 5 L/min. Temperatures at 

the end of the furnace, that is, in the last two zones, were varied from 1000 °C to 1400 °C. 

Control of the W defect was achieved by a heat treatment in 5% H2 with Ar balance at 

varied temperatures between 300 and 650 °C for 1 h.  

 

3.2.2 Characterization 

Size, morphology, and structure of prepared particles were characterized using scanning 

electron microscopy (SEM; S-5200, 5-20 kV, Hitachi High-Tech. Corp., Tokyo, Japan) 

and transmission electron microscopy (TEM; JEM-2010 and JEM-3000F, 200 and 297 

kV, JEOL Ltd., Tokyo, Japan). Elemental mapping of prepared particles was carried out 
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with a post-column 90 energy filter system (GIF-2000 Gatan Inc., Pleasanton, CA, USA). 

The W deficiency in Cs0.32WO3 was investigated by spherical aberration-corrected 

scanning TEM (STEM; JEM-ARM-200F, 200 kV, JEOL Ltd., Tokyo, Japan). Number-

averaged particle diameters were determined by direct measurements on more than 200 

randomly-selected particles. The crystalline phase of Cs0.32WO3 particles was examined 

by X-ray diffraction (XRD; Bruker D2 Phaser, Bruker AXS GmbH, Karlsruhe, Germany) 

using Cu K radiation ( = 1.54 Å), operated at30 kV and 10 mA with a scan step of 0.02 

deg. Rietveld analysis was performed using Total Pattern Analysis Solutions (TOPAS 

version 6; Bruker AXS GmbH, Karlsruhe, Germany) software [23,24]. Weight 

percentages, lattice constants and site occupancy of Cs, W, and O (SCs, SW, SO(1), and SO(2)) 

in Cs0.32WO3 crystal assuming the P63/mcm were determined. In this study, the fraction 

of Cs, W, and O deficiency (VCs, VW, VO(1), and VO(2)) were calculated based on the value 

of SCs, SW, SO(1), and SO(2). The oxidation states of W and Cs were examined using X-ray 

photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu, Kyoto, Japan) operated at 10 

kV and 20 mA. Uncleaned powders were used considering that the surface of samples is 

reduced by the irradiation of Ar+ beam. Energy dependence was calibrated using C1s 

spectrum. Shirley type baseline was applied. The mean distance between W and O atoms 

was determined by using X-ray Adsorption Fine Structure (XAFS; BL5S1, Aichi 

Synchrotron Radiation Center, Seto, Japan). To investigate the optical performance, 

Cs0.32WO3 nanoparticles were dispersed in methyl isobutyl ketone at a concentration of 

0.02 wt%. Optical measurements were conducted using a UV-Vis-NIR spectrophotometer 

(Model V-670, JASCO Corporation, Tokyo, Japan). 

 

3.3 Results and Discussion 

3.3.1 Synthesis and Characterization of Cs0.32WO3 Nanoparticles 
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Cs0.32WO3 particles were synthesized using spray pyrolysis at various temperatures that 

were determined in course of the preliminary experiments. The temperatures in the earlier 

zones of the furnace are designed to promote self-assembly of the precursor in the droplets 

and solvent evaporation. The critical zone where the precursor is converted into a particle 

is usually at the end of the furnace. Specifically, in the production of metals and metal 

oxides, the temperature of the end zone of the furnace determines the crystal structure of 

the final particle. On the basis of this background, the temperature of the last two zones 

of the furnace in this research was varied to evaluate its effect on the crystal structure. 

The temperature of these zones was then referred to as the synthesis temperature. Samples 

synthesized at 1200 °C were selected for further investigation because of the small 

particle size (~50 nm) and the relatively narrow size distribution, as shown in Figure 

3.1(c). The other samples exhibited an inhomogeneous size distribution with the 

observance of some large particles (Figures 3.1). 
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Figure 3.1 SEM images of particles prepared at (a) 1000 °C, (b) 1100 °C, (c) 1200 °C, 

(d) 1300 °C, and (e) 1400 °C, and (f) the temperature dependence of particle diameter. 

 

The XRD spectrum of particles prepared at 1200 °C in Figure 3.2 exhibits a mixed 

pattern of Cs0.32WO3 (ICDD No.04-009-6455), (Cs2O)0.44W2O6 (ICDD No.00-47-0566), 

W11O22(ICDD No.04-007-0719), (H2O)0.33WO3 (ICDD No.01-072-0199), ATP (ICDD 

No.00-040-1470), and WO2 (ICDD No.00-032-1393). The formation of (Cs2O)0.44W2O6 

and (H2O)0.33WO3 phases was realized by the presence of oxygen in the carrier gas (air) 

and water in the precursor solution. The formation of (Cs2O)0.44W2O6 phase implied 
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insufficient Cs doping in the Cs0.32WO3 particles. 

 

 

Figure 3.2 XRD spectrum of particles prepared at 1200 °C. 

 

Figures 3.3(a) show the STEM image of the obtained particle and the corresponding 

elemental mappings of Cs, W, and O atoms are indicated in Figures 3.3(b), (c), and (d), 

respectively. Cs atoms are uniformly distributed even in the small particles with a 

diameter of 10 nm. 
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Figure 3.3 STEM image and elemental mapping of Cs, W, and O atoms. 

 

Figure 3.4 shows the optical properties of the dispersed Cs0.32WO3 nanoparticles. 

According to previous reports [10,16], NIR absorption property is expected if the 

prepared nanoparticles have a hexagonal Cs0.32WO3 crystalline phase. However, NIR 

absorption properties were not observed in the present as-prepared samples even though 

a hexagonal structure was confirmed. Immaturity of the crystals and high oxidation states 

(+6) of tungsten were suggested as possibly causing the absence of NIR absorption. 

Therefore, the as-prepared sample was heat treated under a mildly reducing environment 

to rearrange the crystal structure. In attempt to control the oxidation states in the crystal 

structure, three different temperatures, namely, 300, 450, and 650 °C, were used for the 

heat treatment.  
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Figure 3.4 Transmittance profile of Cs0.32WO3 nanoparticles prepared by spray 

pyrolysis at 1200 °C. 

 

Figure 3.5 shows the decreasing of the (Cs2O)0.44W2O6, WO2, (H2O)0.33WO3, and 

ATP peaks with increasing temperature of the heat treatment. These peaks disappeared 

when a temperature of 650 °C was applied except for W11O22. A quantitative Rietveld 

analysis was conducted until the index of R-weighted pattern (Rwp) fell below 10 for a 

reliable refinement. Interestingly, the fraction of Cs0.32WO3 increased in parallel with the 

diminution of (Cs2O)0.44W2O6, WO2, (H2O)0.33WO3, and ATP phases, as shown in Figure 

3.6(a). This suggests that the heat treatment in a mildly reducing environment 

decomposed (Cs2O)0.44W2O6 and (H2O)0.33WO3, and then, urged crystallization of 

Cs0.32WO3 through the following reaction. 

0.75 (H2O)0.33WO3+(Cs2O)0.44W2O6+0.19 H2→2.75 Cs0.32WO3+0.69 H2O    (1) 

Along with the growth of Cs0.32WO3, the particle color changed from light green to 

blue, as shown in Figure 3.6(b). The heat treatment kept the particle size below 100 nm, 

as shown in the TEM image (Figure 3.7). The high resolution TEM image in Figure 
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3.7(b) showed lattices with a spacing of 3.2 Å, which corresponded to the (200) plane in 

Cs0.32WO3 (ICDD 04-009-6455). 

 

 

Figure 3.5 XRD patterns of samples before and after heat treatment at 300, 450, and 

650 °C in 5% H2/Ar atmosphere. 
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Figure 3.6 (a) Mass fractions of Cs0.32WO3, (Cs2O)0.44W2O6, W11O22, (H2O)0.33WO3, 

WO2, and ATP from Rietveld analysis, (b) optical micrographs of the sample powders 

before and after heat treatment. 

 

 

Figure 3.7 (a) TEM and (b) HRTEM images of particles after heat treatment at 

650 °C. 

 

The arrangements of W and Cs atoms before and after the heat treatment were 

analyzed using a high-resolution STEM in the high-angle annular dark field (HAADF) 

mode. Figure 3.8(a) notably shows a presence of linear defects aligned in the [100], [010], 

and [110] directions in the as-synthesized sample. The white squared area in Figure 3.8(a) 
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is magnified in Figure 3.8(b). Because the brightness of the spot contrast of atoms is 

proportional to the atomic number in the HAADF mode, the brightest spots represent W 

atoms, while the less bright spots represent Cs atoms. Viewing along [001], a plane 

consisting of Cs and W atoms (Cs/W planes) and a plane consisting of only W atoms 

(W/W planes) are alternately arranged, as illustrated in Figure 3.8(c). Linear defects were 

observed exclusively in the Cs/W plane, aligned in directions indicated by the white 

arrows, whereas no defects were observed in the W/W plane. The intensities of the atom 

spots scanned along the defect line between a and b are shown in Figure 3.8(d). In the 

defect region, W atom rows clearly exhibited low intensities that were comparable to 

those of Cs atoms. This indicates that W is partly deficient in the Cs/W plane in the as-

synthesized Cs0.32WO3. The linear W deficiency along the Cs/W plane was also observed 

along the [010] viewing direction (Figure 3.9(a)). Therefore, it was implied that the 

deficiency extended onto the prism planes, forming a planar deficiency. The intensity of 

Cs atoms shown in Figure 3.8(d) was predominantly stable, suggesting a uniform 

distribution of Cs atoms. 
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Figure 3.8 (a,b) STEM images in the HAADF mode, (c) illustrates the schematic 

atomic arrangements and (d) scanned spot intensity profiles along a−b in Figure 3.8(b). 
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Figure 3.9 (a,b) HAADF-STEM images of the samples (a) before and (b) after heat 

treatment at 650 °C in 5% H2/Ar atmosphere along the [010] viewing. Inset of (a) 

illustrates the atomic arrangement of the structure from the [010] direction. 

 

The STEM–HAADF images of the heat-treated particles in Figure 3.9(b) and 

Figures 3.10 show well-structured arrays of atoms with no appreciable W deficiencies. 

The faultless atomic arrays were also confirmed by the stable scanned intensity of W and 

Cs spots, as shown in Figure 3.10(c).  

Site occupancies of Cs, W, and O as analyzed by the Rietveld analysis are shown in 

Table 3.1 with deduced chemical formula for sampes before and after the heat treatment. 

From the values of SW (= 78.6 %) and SCs (= 60.7 %), the fraction of W planar deficiency 

and insufficient Cs doping for the as-synthesized sample were assessed to be 21.4 % and 

39.3 %, respectively. The SW increased gradually from 78.6 % to 100 % with increasing 

temperature of heat treatment, indicating that a rearrangement of W atoms took place 

vigorously during the heat treatment. In contrast, SCs changed moderately from 60.7 % to 

77.9 %, so that the insufficient Cs doping still remained after the heat treatment. The 

distribution of Cs vacancies is fairly random according to Figure 3.8(d). The presence of 



Chapter 3 Cationic Defect engineering for controlling the infrared absorption of  

hexagonal tungsten bronze nanoparticles 

 

59 
 

VO(1) is supposed to be related to the VW, whereas the VO(2) in the annealed sample are 

obviously introduced to O(2) site due to the reducing heat treatment. 

 

Table 3.1 Site occupancy and chemical formula in samples before and after heat 

treatment. Numbers in parentheses are uncertainties in the last digit. 

 

Site occupancy Chemical 

formula SCs SW SO(1) SO(2) 

Before heat treatment 

(As-synthesized) 

0.607(6) 0.786(3) 0.358(17) 1.00(2) Cs0.200W0.786O2.716 

After heat treatment at 

300 °C 

0.619(3) 0.8444(17) 0.348(11) 1.000(14) Cs0.204W0.844O2.696 

After heat treatment at 

450 °C 

0.635(3) 0.8737(18) 0.370(12) 1.000(14) Cs0.210W0.874O2.740 

After heat treatment at 

650 °C 

0.779(4) 1.0000(12) 0.380(11) 0.935(14) Cs0.257W1.000O2.630 
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Figure 3.10 (a–b) STEM images in the HAADF mode and (c) scanned spot intensity 

profiles along a−b and c−d, respectively, in samples after the heat treatment at 650 °C in 

5% H2/Ar atmosphere.  

 

In the as-synthesized sample, charge must be balanced to compensate for the observed 

W deficiency. Thus, to see the valence state of cations, XPS spectra of W 4f and Cs 3d 

were measured. As shown in Figure 3.11(a), the W 4f spectrum of samples before the 

heat treatment showed only W6+ peaks at 35.5 eV (4f7/2) and 37.6 eV (4f5/2). All the W 

atoms bond O atoms with a valency of +6 in the WO6 octahedra. The Cs 3d spectrum of 

samples before the heat treatment (Figure 3.11(b)) showed a peak at 723.9 eV, which 
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corresponds to the monovalent oxidation state. Thus, the lack of charge in the W-defected 

sample is considered to be compensated by the formation of (Cs2O)0.44W2O6, as 

evidenced by XRD in Figure 3.2, and the possible incorporation of H at the time of spray 

pyrolysis. 

 

Figure 3.11 XPS spectrum of (a) W 4f and (b) Cs 3d before heat treatment  

in 5% H2/Ar at 650 °C. 

 

The reduction heat treatment brought a new peak at 33.8 eV which corresponds to W5+ 

for a 7/2 spin orbital as shown in Figure 3.12(a). The low-intensity W5+4f5/2 interfered 

with the W6+4f7/2 at 35.5 eV. Peak deconvolution determined the area ratio of 

W5+/(W6++W5+) to be 26.9%. Cs 3d showed the same monovalent peak at 724.0 eV as 

shown in Figure 3.12(b). These observations are in agreement with the recent series of 

reports on CsxWO3-y fabricated by solid state reaction method[18,26]. On increasing 

reduction time during crystallization, the amount of VO and the XPS W5+/W6+ ratio 

increased according to Okada et al.[18] Machida et al. [25] analyzed the optical 

absorption of CsxWO3-y nanoparticles using the Drude–Lorentz theory and the Mie 

scattering integration method to observe that the VOs initiated and increased the polaron 
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absorption in the NIR absorption band. Yoshio et al.[12,13] calculated using the DFT+U 

method to show that the VO-derived electrons are localized in W–5dxy and W−5dx
2

−y
2 

orbitals to be excited to generate a polaron absorption.   

 

 

Figure 3.12 XPS spectrum of (a) W 4f and (b) Cs 3d after heat treatment  

in 5% H2/Ar at 650 °C. 

 

As summarized in Table 3.1, the as-synthesized sample of Cs0.200W0.786O2.716 

including the W planer deficiencies and insufficient Cs doping recovered the W 

stoichiometry through atomic rearrangements upon reduction heating, but left many Cs 

deficiencies toward the composition of Cs0.257W1.000O2.630 after 1 hour at 650 C. 

Decompositions of (Cs2O)0.44W2O6 and (H2O)0.33WO3 occurred in parallel as seen above 

with the evaporations of H2O. 

Lattice constants of the Cs032WO3 phase before and after the heat treatment are plotted 

in Figure 3.13. Those of the as-synthesized sample were measured as 7.3756(5) and 

7.7147(8) Å for the a-axis and c-axis, respectively. They are deviated from 7.4049(1) and 

7.6098(1) Å, respectively[26], for Cs030WO3 synthesized by solid state reaction methods 
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(ICDD 81-1244). After the heat treatment, the lattice expanded along the a-axis and 

shrank along the c-axis, in the direction towards the reference values[26].  

In alkali-doped tungsten bronzes[27,28], lattice constants are reported to increase with 

increasing amount of alkali dopant. According to Hussain et al.[29], the values of a and 

c–axes in the hexagonal tungsten bronzes, MxWO3 (M= Rb and Cs), decrease and increase, 

respectively, with increasing amount of the alkali ions. For reduced hexagonal CsxWO3-y, 

the recent study by Okada et al[18]. shows that the a–axis shrinks and c–axis elongates 

with increasing Cs and/or VO content in the composition range 0.20  x  0.32 and 0 < y 

 0.46. The dimensional change occurs due to Cs- and VO-derived electrons injected to 

W−5d orbitals causing a destabilization of the pseudo–Jahn–Teller distortion, and its 

effect on the dimensional change is greater than the ionic size effect[18]. In our study, the 

a–axis elongated with increasing Cs content and decreasing W deficiencies. Thus the 

direction of the a–axis modification is opposite to Hussain et al[30]. and Okada et al[18]. 

The magnitude of the present a–axis elongation is significantly larger than that in Okada 

et al. since the greater elongation increment (0.042 Å) occurred in a much narrower 

composition range, 0.200  x  0.257 and 0.260 < y  0.370 in the present study, as 

compared with the smaller increment (0.012 Å) occurred in a much broader range 0.20  

x  0.32 and 0 < y  0.46 in Okada et al[18]. Thus, the present elongation in the a-axis is 

considered to be dominantly caused by the rearrangement of W atoms. The filling of W 

atoms to the vacant sites in the linear and/or planar W defects is supposed to be highly 

effective to dominate the dimensional change of lattice. Each of these W atoms shared 

one O atom with another W atom, causing the O–W–O bond to stretch along the a-axis. 

At the same time, the O–W–O bond in the c-axis direction contracted to maintain the 

equilibrium.   
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Figure 3.13 Lattice constants of Cs0.32WO3 particles before and after the heat 

treatment at various temperatures referenced with hexagonal WO3 (ICDD No. 75-2187) 

and Cs0.32WO3 (ICDD No. 04-009-6455). 

 

This dimensional change was consistent with the change in the W-L3 edge XAFS 

spectra shown in Figure 3.14. The heat treatment shifted the peak in the spectrum from 

1.35 Å to 1.41 Å, which indicated an increase in the average nearest-neighbor W–O 

distance. This was contributed by more W–O bonds in the a- and b-axis directions than 
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in the c-axis direction. Hypothetical atomic arrangements before and after the heat 

treatment are illustrated in Figures 3.15(a) and (b), respectively. These results infer that 

the W planar deficiencies in Cs0.32WO3 should be playing a critical role in controlling the 

lattice constants over the wide range, 7.3756(5) Å  a  7.4180(4) Å.  

 

Figure 3.14 XAFS spectra showing the frequency of radial distance between W 

atom and the nearest neighbor atom. 
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Figure 3.15 Illustrations of atomic arrangements  

(a) before and (b) after the heat treatment. 

 

3.3.2 NIR absorption Capability 

By modifying the W deficiencies, the NIR absorption capability of the Cs0.32WO3 

particles could be altered. The as-prepared Cs0.32WO3 particles exhibited no symptom of 

NIR absorption, as shown by the gray spectrum in Figure 3.16. The absence of NIR 

absorption was common with samples prepared by different synthesis temperatures.  

The reductive heat treatment applied on the as-prepared samples progressively developed 

the absorption in the infrared region.  

According to the previous work [10,13], the NIR absorption property is caused by free 

and localized electrons in the W 5d orbital, which are donated from Cs and VOs. The VOs 

provide localized electrons through W5+. Based on this principle, the possible reasons for 

the absence of NIR absorption in the present as-prepared samples could be attributed to 

either or all of the following 3 factors: i) insufficient Cs doping, ii) high oxidation state 
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of W6+, and iii) presence of the linear/planar W defects.  

As for the factor i), the chemical formula, Cs0.200W0.786O2.716, as deduced from the site 

occupancies of Cs, W, and O for the synthesis temperature 1200 °C indicates the amount 

of 5.40 at% Cs in crystal. As well, the specimens of chemical formulae, Cs0.159W0.703O2.566 

and Cs0.160W0.680O2.534, respectively, for the synthesis temperatures of 1000 and 1100 °C 

hold the amounts of 4.65 and 4.74 at% Cs in crystal. These quantities of Cs in crystal 

should provide a sufficient number of electrons, because the previous report[30] by 

Hussain et al. observed typical Drude-type free electron reflections in CsxWO3 hexagonal 

tungsten bronzes with nominal Cs/W as low as 0.2, that corresponding to 4.76 at% Cs. 

Another recent report by Machida et al[25]. indicates that a strong NIR absorption 

occurred for a series of samples with Cs content as low as 5.06 at%. However, NIR 

absorption was not exhibited (Figure 3.4 and Figure 3.16). Therefore, the present 

samples have an adequate quantity of Cs and hence the factor i) was excluded.  

The factor ii) contributes to the absence of NIR absorption because the maximum 

valency of W was confirmed by XPS as shown in Figure 3.11(a). We do not expect any 

W5+ or polaronic absorptions taking place in the as-synthesized samples, nor expect the 

W6+ in crystal invalidating electrons from Cs.  
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Thus, we consider that the factor iii) should be responsible for the absence of NIR 

absorption. It was considered that the generation of the linear/planar W defect suspended 

a sufficient number of electrons to be donated to the W 5d orbitals to activate the NIR 

absorption. Therefore, the state of the W deficiency was found as one of the key 

conditions to obtain the high NIR absorption properties. 

Figure 3.16 Transmittance spectra of Cs0.32 WO3 nanoparticles. Disturbances at 

1450, 1730, and 1900 nm are caused by methyl isobutyl ketone. 

 

These results demonstrate the possibility to control the NIR absorption of Cs0.32WO3 

through cationic defect engineering. Our facile method proposed in this paper can control 

the W linear/planar deficiencies and lattice constants of Cs0.32WO3 nanoparticles. The 

consistent interrelationships between the NIR absorption, W linear/planar deficiencies 

and the dimensional changes of lattice emphasize the importance of considering the 
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cationic defects in the control of the optical properties of Cs0.32WO3 through 

crystallographic design. 

 

3.4 Summary 

 In this paper, the influence of cationic defects, specifically, W deficiency and 

insufficient Cs doping in Cs0.32WO3 nanoparticles, on lattice constants and the NIR 

absorption properties were reported. The results showed that the W linear/planar 

deficiency in Cs0.32WO3 could be controlled by spray pyrolysis combined with heat 

treatments. We demonstrated that spray pyrolysis-prepared Cs0.32WO3 particles offered 

no NIR absorption that could be restored by the successive heat treatment. The main 

reason for the absence of NIR absorption is considered to arise from the linear/planar W 

defect causing the shortage of W 5d electrons. Thus, W deficiencies are shown as one of 

the key factors among the cationic defects for obtaining high NIR absorption properties. 

Results of this study are expected to provide an understanding on defect engineering of 

Cs0.32WO3 from the viewpoint of cationic defects. This will be beneficial for the further 

advancement of this material. 
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Chapter 4 

 

Improved Photochromic Stability in Less 

Deficient Cesium Tungsten Bronze 

Nanoparticles* 

 

 

4.1   Introduction 

In recent years, solar heat shielding materials have been applied to reduce the energy 

consumption of air conditioning. They have been shown to suppress the increase in 

ambient temperature inside houses, commercial buildings, and automobiles. 

Nanoparticles of alkali-doped hexagonal tungsten bronzes, MxWO3 (M = K, Rb, Cs), 

possess a remarkable high capacity for solar shielding owing to their strong near-infrared 

(NIR) absorption coupled with a high transmission of visible light [1,2]. Specifically, Cs-

doped hexagonal tungsten bronze (Cs0.32WO3) nanoparticles exhibit excellent NIR light 

absorption that allows for their applications to solar control films of smart windows, NIR 

cut filters for CCD cameras and heating centers for laser welding and cancer therapies 

[3,4]. However, Cs0.32WO3 nanoparticles are known to manifest a set of weathering-

related instabilities: a blue coloration under strong ultraviolet (UV) irradiation (i.e. 

photochromic instability) and a decolorization under high temperature and high humidity. 

Both color changes pose critical problems for commercial applications [5].  

Recently, the decolorization process in a high-moisture environment has been 

investigated by Yoshio et al. using first-principles molecular dynamics calculations, and 
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with a constructed potential-pH diagram was clarified as composed of a two-step reaction: 

an ion dissolution of Cs+ and an oxidation of (WO3)− [6]. This mechanism explains the 

essential role of H2O and O in the decolorization process, to which a steric barrier such 

as hydrogen sulfide (SH) in place of hydroxide (OH) was proposed to suppress the 

deterioration. 

On the other hand, the photochromic instability in Cs0.32WO3 nanoparticles was 

reported by Adachi et al. to be due to the formation of a HxWO3 phase on the surface [5]. 

In general, photochromic materials such as WO3 [7-10], MoO3 [10,11], TiO2 [12], and 

V2O5 [13], have been applied in the development of smart windows [7,10,12,14], 

colorimetric sensors [11,15], etc. owing to their spontaneous reversible change in color 

by external light. The color change observed in general photochromism is contrasted with 

that of Cs0.32WO3, in that the former is quite marked whereas the latter [5] is considerably 

weak in magnitude. The color change of WO3 and MoO3 has been attributed to the 

formation of a bronze structure (AxWO3, A= H, Li, Na, etc.) [10,11,16]. In particular, the 

photochromic mechanism of WO3 is well understood as due to the injection of electrons 

in the conduction band by intercalation of hydrogen to form a HxWO3 phase [16-19]. In 

the case of Cs0.32WO3 nanoparticles, which already form the bronze structure with a slight 

bluish color with ample electrons in the conduction band, they undergo a further bluish 

color change upon UV irradiation. This is brought by the diffusion of H+ ions from the 

resin matrix to amorphous or crystalline Cs-deficient sites [20] present in the particle skin 

over a depth of a few nm from the surface [5]. Because the HxWO3 phase on the surface 

of Cs0.32WO3 nanoparticles strongly absorbs red light (i.e., the longer wavelengths of 

visible light), the relative intensity of transmitted shorter-wavelength visible light 

increases and the color of the particles turns to deep blue.  

To resolve the photochromic instability of Cs0.32WO3 nanoparticles, Zeng et al. 
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coated Cs0.32WO3 nanoparticles with an amorphous SiO2 including the UV-absorbing 

agent (UVA) [21]. Their study indicated an effectiveness of UVA in decreasing the color 

change, as UVA naturally reduces the applied UV strength. Zhou et al. fabricated an inert 

polyethylene terephthalate (PET) composite film with Cs0.32WO3 nanoparticles by the 

melt blending process [22]. They argued that the inert polymer is sufficiently effective in 

preventing the generation of H+. Although these methods are impressive approaches to 

solving the photochromic instability of Cs0.32WO3 nanoparticles, they need additional 

improved materials for coating or special polymers that suppress the H+ diffusion. 

 Herein, we focus the effect of the less defective surface of Cs0.32WO3 nanoparticles 

to prevent the injection of H+ ions. Recently, the authors succeeded in producing 

Cs0.32WO3 nanoparticles by using spray pyrolysis and mild reduction treatment [23,24]. 

This process is proven to be effective in the direct synthesis of homogeneous nanometer-

sized particles having a sharp particle size distribution and high crystallinity with very 

short reaction time [25-29]. Because of less damaged on the surface of Cs0.32WO3 

nanoparticles, we can expect few Cs-deficient sites on Cs0.32WO3 nanoparticles of spray 

pyrolysis. 

Base on the above background, we evaluated in detail the optical properties, e.g., 

transmittance profile, haze value, and photochromic stability under UV irradiation for the 

Cs0.32WO3 nanoparticles synthesized through spray pyrolysis method. The evaluated 

optical performance was also compared with that of Cs0.32WO3 nanoparticles synthesized 

by a conventional solid-state reaction method. Furthermore, the Cs-deficient sites on the 

surface of Cs0.32WO3 nanoparticles were observed directly using a spherical aberration-

corrected scanning TEM. The Cs0.32WO3 nanoparticles through spray pyrolysis exhibited 

the high photochromic stability compared with that of solid-state reaction method due to 

less Cs-deficient sites on the surface of nanoparticles. 
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4.2 Experimental 

4.2.1 Synthesis of Cs0.32WO3 Nanoparticles 

To produce Cs0.32WO3 nanoparticles via spray pyrolysis, ammonium para-tungstate 

pentahydrate (ATP; (NH4)10(W12O41)･5H2O; purity 88%–90%; Kanto Chemical Co., Inc., 

Tokyo, Japan) and cesium carbonate (Cs2CO3; purity 99.9% Sigma-Aldrich Co., St Louis, 

Mo, USA) with concentrations of 1.25 and 0.40 mmol/L, respectively, were dissolved in 

ultra-pure water. The diluted ATP and Cs2CO3 were placed into an ultrasonic nebulizer 

(NE-U17; Omron Healthcare Co., Ltd., Tokyo, Japan, operated at 1.7 MHz) to generate 

droplets. To introduce the droplets into a tubular ceramic reactor (1.3 m long with inner 

diameter of 28.5 mm), carrier air gas was used at a flow rate of 4 L/min. The reactor was 

divided into five zones, with each zone kept at a different temperature, i.e., 200, 500, 700, 

1200, and 1200°C from the entrance to the exit sides. A paper filter (No.3, Advantec Toyo 

Kaisha, Ltd., Tokyo, Japan) heated at a temperature of 120°C was used to collect the 

particles (called “As-produced samples”). The obtained particles were heated in a quartz 

tubular furnace at a temperature of 600°C for 1 hr under a 5% H2/Ar gas flow. Then the 

samples were blended with methyl isobutyl ketone (MIBK) and a trace dispersant agent 

at a powder-to-MIBK weight ratio of 1 : 50, and were properly stirred by a paint shaker 

for 10 min using ZrO2 beads of 50 m to obtain a dispersed Cs0.32WO3 suspension. The 

milled samples derived from spray pyrolysis route are called as SP-Cs0.32WO3. A 

reference standard Cs0.32WO3 powder was prepared by a solid-state reaction route (called 

“SS-Cs0.32WO3”). The precursor of SS-Cs0.32WO3 prepared by mixing with solution of 

tungstic acid and cesium carbonate at Cs/W = 0.33, kneaded, and dried at 100°C for 12 

hr in air [30]. This precursor was heated under a reducing gas flow (H2/N2 = 3/97 by 
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volume) at 800°C for 1 hr. The obtained powder was blended with MIBK (at 1 : 10 in 

weight) and a trace dispersant agent, and was strongly stirred by a paint shaker for 6 hr 

using ZrO2 beads of 0.3 mm. 

 

4.2.2 Characterization 

The crystalline phases of the samples were identified using X-ray diffraction (XRD; 

Bruker D2 Phaser, Bruker AXS GmbH, Karlsruhe, Germany) using Cu-K radiation (= 

1.54 Å) and operated at 30 kV and 10 mA. The morphology of the particles was 

characterized using transmission electron microscopy (TEM; JEM-3000F, 297 kV, JEOL 

Ltd., Tokyo, Japan). The average particle diameter was determined by direct measurement 

of more than 200 randomly-selected particles. Cs-deficient sites on the surface of 

Cs0.32WO3 nanoparticles were investigated by an atomic resolution in a spherical 

aberration-corrected scanning TEM (STEM; JEM-ARM-200F, 200 kV, JEOL Ltd., Tokyo, 

Japan) operated in the high-angle annular dark field (HAADF) mode. Optical 

measurements were performed in a UV-Vis-NIR spectrophotometer (Model V-670, 

JASCO Corporation, Tokyo, Japan) for Cs0.32WO3 suspensions (particles concentration: 

0.02 wt%) using a quartz cell with a 10 mm optical path length. To evaluate the 

photochromic instability of the nanoparticles, a Cs0.32WO3 suspension was obtained by 

blending the nanoparticles with an acrylic UV-setting resin UV-3701 (Toagosei Co., Ltd., 

Tokyo, Japan) at a Cs0.32WO3 powder:UV-3701 weight ratio of 1 : 5. The dispersed 

Cs0.32WO3 suspension was coated with a wire bar (#49 and #6 for the SP-Cs0.32WO3 and 

SS-Cs0.32WO3 samples, respectively) onto a soda-lime glass plate (3 mm-t×10 mm×10 

mm) that was fixed on a bar coater (TC-3, Mitsui Electric Co., Ltd, Chiba, Japan). The 

coated Cs0.32WO3 suspension was then dried at 100 °C for 10 min to remove the organic 

solvent in resin. The resin on glass plate was cured in a belt UV illuminator (ECS-401GX, 
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Eye Graphics Co., Ltd, Tokyo, Japan) for 1 min with a mercury lamp (H04-L41, Eye 

Graphics Co., Ltd, Tokyo, Japan) powered at 80 W/cm2 to ensure polymerization. The 

primary wavelength of the mercury lamp was 365 nm. Through these steps a Cs0.32WO3 

nanoparticles-polymer composite film was formed on glass plates. The composite film 

was irradiated by UV light from one side for 5, 10, and 20 min. The total transmittance 

(T.T.) and haze value (Haze) were measured using a haze meter (NDH 5000, Nippon 

Denshoku Industries Co., Ltd., Tokyo, Japan) complying to ISO 13468-1:1996 and ISO 

14782:1999, respectively. Visible light transmittance (VLT) was measured in compliance 

with ISO 9050:2003. Absorbance (ABS) was calculated from the transmittance (T) 

measured by the UV-Vis-NIR spectrophotometer. The values of T at 550 nm and 1300 nm 

are represented as T550 nm and T1300 nm, respectively. Furthermore, the ABS at 0.95 eV 

(converted from the wavelength of 1300 nm) and 2.26 eV (converted from the wavelength 

of 550 nm) are denoted as ABS0.95 eV and ABS2.26 eV, respectively. The ratio of ABS0.95 eV 

to ABS2.26 eV is denoted as R = ABS0.95 eV/ABS2.26 eV, where a greater R value corresponds 

to a stronger NIR absorption with respect to visible transmission. Variation in ABS due 

to UV irradiation for 20 min is defined as VUV = (ABSafter UV irradiation−ABSinitial)  ABSinitial. 

 

4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of SP-Cs0.32WO3 Nanoparticles 

Figure 4.1(a) shows XRD spectra of as-produced and heat-treated samples using spray 

pyrolysis. Although a mixed pattern of Cs0.32WO3 (ICDD No.04-009-6455) and CsW1.6O6 

(ICDD No. 00-81-0012) was obtained for the as-produced samples, a heat treatment at 

600 °C for 1 hr under 5% H2/Ar gas flow dissolved the CsW1.6O6 phase, which then 

merged into the Cs0.32WO3 phase. In this treatment, the color of the particles was changed 

from light green (Figure 4.1(b)) to deep blue (Figure 4.1(c)).  
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Figure 4.1 (a) XRD spectra and (b,c) optical micrographs of as-produced and heat-

treated samples. 
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Figure 4.2(a) and (b) show TEM images at low and high magnification of the SP-

Cs0.32WO3 particles, and Figure 4.2(c) shows their particle size distribution. It is seen that 

the SP-Cs0.32WO3 particles are nanometer-sized and well dispersed, like the as-produced 

samples (Figure 4.2(d), (e) and (f)). The geometric mean diameter, dp, and geometric 

standard deviation, , of the particles were determined as 28.6 nm and 0.62 nm, 

respectively, i.e., they were slightly larger in size and narrower in size distribution 

compared with the SS-Cs0.32WO3 nanoparticles, whose dp and  were 16.05 nm and 5.4 

nm, respectively (Figure 4.3(a) and (b)). The shape of the SP-Cs0.32WO3 nanoparticles 

is approximated as a rounded hexagonal cylinder in contrast to the irregular and angular 

shape of SS-Cs0.32WO3 nanoparticles that were subjected to strong milling [30].  

 

 

Figure 4.2 TEM images at (a,d) low and (b,d) high magnification, and (c,f) particle 

size distribution of lightly-milled samples and as-produced samples (SP-Cs0.32WO3). 
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Figure 4.3 (a) TEM images and (b) particle size distribution of SS-Cs0.32WO3. 

 

Figure 4.4 shows the transmittance spectra of the products. The as-produced sample 

exhibits low transmittance in the visible region and high transmittance in the NIR region. 

According to previous research [23], the absence of NIR absorption is due to the 

generation of planar W defects that suspend excess electrons to be provided to the 

conduction band. On the other hand, the transmittance spectrum of the heat-treated 

samples indicates a broad absorption in the NIR range between 800 and 2100 nm. 

Furthermore, the milled sample (SP-Cs0.32WO3) presents a further improved NIR 

absorption property with an increased transmission in the visible range. Thus, these 

results indicate a successful fabrication of Cs0.32WO3 nanoparticles with an intense NIR 

absorption capability using spray pyrolysis route that is comparable to those fabricated 

by the solid-state reaction route. Herein, the estimated R (= 5.8) of SP-Cs0.32WO3 was 

found to be lower than the R (= approximately 13) of the reference samples [1,30,31]. 

The NIR absorption property is strongly correlated with the electrons in the hybridized 

orbitals of W 5d and O 2p in the bottom of the conduction band, which are derived from 
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Cs dopant and oxygen vacancy (VO) [30-34]. A possible reason for the low R of SP-

Cs0.32WO3 is a lower number of electrons is provided from Cs and Vo than in the reference 

samples [23].  

 

 

Figure 4.4 Transmittance spectra of as-produced, heat-treated, and milled (SP-

Cs0.32WO3) samples. 

 

4.3.2 Optical Stability of Cs0.32WO3 Nanoparticles  

The optical properties of the samples before and after the UV irradiation for 20 min 

are shown in Table 4.1. Haze values of the milled SP-Cs0.32WO3 and SS-Cs0.32WO3 

samples are 0.76% and 0.47%, respectively. Both haze values are below 1.0%, indicating 

a sufficiently low scattering in the visible region. The slightly larger haze value of SP-

Cs0.32WO3 is attributed to the marginal presence of coarse particles exceeding 50 nm in 

size. The initial VLT values, 77.9% and 77.3% for SP-Cs0.32WO3 and SS-Cs0.32WO3, 
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respectively, decreased to 74.0% and 71.6%, respectively, after application of the UV 

irradiation for 20 min. This result indicates that the color change of Cs0.32WO3 samples 

occurred in both cases, showing a presence of the photochromic instability. A similar 

change was observed in the values of T.T. and T550 nm, as shown in Table 4.1.  

 

Table. 4.1 Haze, VLT, Transmittance, and ABS of SP-Cs0.32WO3 and SS-Cs0.32WO3. 

The error range represents the standard deviation. 

 
 Haze VLT T.T. 

Transmittance at 

550 and 1300 nm 

ABS at 

0.95 and 2.26 eV 

  % % % T 550 nm  T 1300 nm  ABS0.95 eV ABS2.26 eV 

SP-Cs0.32WO3 

Before UV 

(Error range) 

0.76 

(0.23) 

77.9 

(1.6) 

81.1 

(0.6) 

78.8 

(1.6) 

26.6 

(2.3) 

0.58 

(0.04) 

0.10 

(0.01) 

After UV 

(Error range) 

0.74 

(0.17) 

74.0 

(2.2) 

75.7 

(2.7) 

74.3 

(2.4) 

24.0 

(2.8) 

0.62 

(0.05) 

0.13 

(0.01) 

SS-Cs0.32WO3 

Before UV 

(Error range) 

0.47 

(0.02) 

77.3 

(1.2) 

79.9 

(0.9) 

78.3 

(1.1) 

9.5 

(2.3) 

1.03 

(0.11) 

0.11 

(0.01) 

After UV 

(Error range) 

0.43 

(0.05) 

71.6 

(2.1) 

73.6 

(1.4) 

72.7 

(1.9) 

6.4 

(2.2) 

1.21 

(0.17) 

0.14 

(0.01) 

 

The corresponding change in transmittance profiles are shown in Figures. 4.5(a) 

and (b). Dependence of T.T. on the UV irradiation time, i.e., the photochromic stability, 

is shown in Figure 4.6. In the initial 5 min, both samples show a rapid decrease in T.T. 

by about 4 points, whereas after 20 min SS-Cs0.32WO3 continued to decrease rapidly while 

SP-Cs0.32WO3 slowed down and moderated. This difference suggests that SP-Cs0.32WO3 

has a higher stability against UV irradiation than conventional SS-Cs0.32WO3. Similarly 
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in 20 min, ABS0.95eV increased by only 8% (= (0.62−0.58)/0.58) in SP-Cs0.32WO3 against 

16% (= (1.21-1.03)/1.03) in SS-Cs0.32WO3, as shown in Table. 4.1. After the UV 

irradiation was stopped, bleaching occurred slowly when the specimen was placed in a 

dark place to recover more than 95 % transmission after several days, in agreement with 

the previous report [5].  

 

Figure 4.5 Transmittance profiles before and after the 20-min UV irradiation for  

(a) SP-Cs0.32WO3 and (b) SS-Cs0.32WO3. 
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Figure 4.6 Dependence of T.T. on the UV irradiation time  

for (a) SP-Cs0.32WO3 and (b) SS-Cs0.32WO3. 

 

The variation in ABS due to UV irradiation, VUV, is known to produce double peaks 

[5] as indicated in Figure 4.7. The peaks are located at 0.98 eV and 1.51 eV, and are 

designated as the absorbance peaks by HxWO3 [5]. The magnitude of VUV for SP-

Cs0.32WO3 is about 1/5 that for SS-Cs0.32WO3 in the wide range between 0.5 and 2.3 eV. 

These observations indicate an improved optical stability against external UV irradiation 

for particles synthesized by spray pyrolysis route compared with those by the solid-state 

reaction route.  

 According to the previous analysis on Cs0.32WO3 [5], the origin of the color change 

upon UV irradiation is attributed to the formation of HxWO3 by the insertion of H+ ions 

in the Cs-deficient sites of Cs0.32WO3 nanoparticles. The present result of the decreased 

effect of UV irradiation in SP-Cs0.32WO3 is consistent with the decreased Cs-deficient 

sites assumed in SP-Cs0.32WO3. No shift in the band gap was observed in Figures 4.5(a) 
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and (b) because the increased fraction of electron carrier in HxWO3 is quite small besides 

that the energy band itself should be modified. 

 

 

Figure 4.7 VUV with respect to photon energy for  

(a) SP-Cs0.32WO3 and (b) SS-Cs0.32WO3. 

 

Figure 4.8(a) shows a STEM-HAADF image of SP-Cs0.32WO3 projected on (010). In 

STEM-HAADF images, the brightness of the spot contrast is proportional to an atomic 

number and a projected density of atoms. The brightest and second brightest spots in 

Figure 4.8(a) are the projections of W atoms, while the weakest spots correspond to Cs 

atoms. Figure 4.8(b) shows a schematic atomic structure projected on (010) that is 

compared with the observed image in Figure 4.8(a). A plane consisting of W and O atoms 

(W plane) and a plane consisting of Cs and O atoms (Cs plane) are alternately arranged. 

Cs atoms find a diffusion path along the c-axis through the hexagonal tunnels in 

Cs0.32WO3 [6], as shown in Figure 4.8(c). To evaluate the removal of Cs atoms, spot 
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intensity was scanned along lines a−b, c−d, and e−f in Figure 4.8(a) and the resulting 

profiles are shown in Figure 4.8(d). The Cs peaks are observed as regularly arranged 

along lines a−b and c−d, whereas they appear to be partially depleted along e−f in the 

outermost layer. Thus, Cs atoms are fully arranged in the interior up to the second layer 

from the surface and are partly deficient only in the outermost layer at less than 1 nm 

from the surface. 

 

Figure 4.8 (a) Direct observation of Cs atoms on (010) in SP-Cs0.32WO3 in the STEM-

HAADF image. (b, c) illustrate the schematic atomic arrangements of Cs0.32WO3, (d) 

shows scanned spot intensity profiles along lines a−b, c−d, and e−f in Figure 4.8(a). 
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A similar analysis was conducted for STEM-HAADF images of (001) as shown in 

Figure 4.9. Cs deficient regions are confirmed on the outermost surface on Cs0.32WO3 

particles as shown by the yellow arrows in Figure 4.9, whereas the second Cs/W plane 

from the surface (c−d) does not involve the Cs deficiency. Thus, the full occupancy of Cs 

atoms is preserved up to the second outermost surface; this is consistent with the results 

of the observation from (010). This analysis reveals that the SP-Cs0.32WO3 is fully doped 

with Cs atoms except for the outermost surface, which contributed to the few variations 

in the ABS change (i.e. VUV). On the other hand, SS-Cs0.32WO3 has Cs-deficient sites to 

the depth of a few nm from the surface [5,20] that caused a large variation in VUV. Thus, 

SP-Cs0.32WO3 suppressed the H+ doping of Cs sites on the surface and retained its high 

photochromic stability compared with SS-Cs0.32WO3. These results are consistent with 

the mechanism reported in a previous study [5]; therefore, we conclude that spray 

pyrolysis can effectively improve the photochromic instability of Cs0.32WO3 

nanoparticles. 

 



 Ph. D. Dissertation, by S. Nakakura 

  

90 
 

 

Figure 4.9 Direct observation of Cs atom rows in SP-Cs0.32WO3 observed along [001]. 

(a) STEM image in the HAADF mode, (b) schematic atomic arrangement, and (c) 

scanned spot intensity profiles along a–b, c–d, and e–f, respectively, in Figure 4.9(a). 

 

4.4 Summary 

 The present study revealed that the less Cs-deficient Cs0.32WO3 nanoparticles 

synthesized through spray pyrolysis route exhibit an improved photochromic stability, i.e., 

they prevent color change due to UV irradiation. We demonstrated that less Cs-deficient 

Cs0.32WO3 nanoparticles could be successfully synthesized via spray pyrolysis route than 

via the solid-state reaction route. The variation in the ABS of SP-Cs0.32WO3 upon UV 
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irradiation was shown to be 1/5 that of SS-Cs0.32WO3 in the wide range between 0.5 and 

2.3 eV. The STEM-HAADF analysis revealed that the Cs-deficient sites were limited to 

the outermost layer in SP-Cs0.32WO3, which contribute to the excellent photochromic 

stability of SP-Cs0.32WO3. These observations indicate that the color change upon UV 

irradiation originates from the Cs-deficient sites on the surface of Cs0.32WO3. The results 

obtained in this study are expected to contribute to further understanding of the 

photochromic behaviors in inorganic materials in general.  
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Chapter 5 

 

Conclusion 

 

Various kinds of tungsten oxide particles, such as hexagonal tungsten oxide nanorods 

and cesium doped tungsten oxide nanoparticles that include a tungsten deficiency, were 

successfully synthesized by the spray pyrolysis (SP) method.  

The relationship between a tungsten deficiency and near infrared absorption 

properties were clarified, and the photochromic properties of cesium doped tungsten 

oxide nanoparticles were improved.  

The major highlights of this dissertation are follows: 

1. Single phase hexagonal tungsten oxide nanorods were synthesized by extending the 

residence time with the SP method. However, gas absorption analysis indicated that 

the performance based on the hexagonal channels was subpar, and this is thought to 

be because these nanorods were sintered and had stacking faults. 

2. Cs0.32WO3 nanoparticles that include a tungsten deficiency were synthesized by the 

SP method. Detail analyses disclosed the presence of cationic defects; that is, a 

tungsten deficiency and insufficient Cs doping of the Cs0.32WO3 nanoparticles. We 

clarified that a tungsten deficiency is a key factor in obtaining near-infrared (NIR) 

absorption properties, and the combination of SP and heat treatment is effective in 

controlling the tungsten deficiency, lattice constants and NIR absorption properties. 

3. The less Cs-deficient Cs0.32WO3 nanoparticles synthesized through the spray 

pyrolysis route exhibited improved photochromic stability, i.e., they were immune 

to color changes caused by UV irradiation. The STEM-HAADF analysis revealed 
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that the Cs-deficient sites were limited to the outermost layers in the SP-Cs0.32WO3, 

which contributed to its excellent photochromic stability. Thus, we conclude that 

spray pyrolysis is an effective method of improving the photochromic instability of 

Cs0.32WO3 nanoparticles.     

Based on these highlights, Cs0.32WO3 nanoparticles synthesized by spray pyrolysis 

have many advantages, including the presence of a tungsten deficiency and fewer Cs-

deficient sites on the surface. This method and its concepts are expected to contribute to 

further advances in inorganic materials. 
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