広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Effects of water temperature on feeding and growth of juvenile marbled flounder Pseudopleuronectes yokohamae under laboratory conditions: evaluation by group- and individual-based methods	
Author(s)	Kusakabe, Kazushi; Hata, Masaki; Shoji, Jun; Hori, Masakazu; Tomiyama, Takeshi	
Citation	Fisheries Science , 83 : 215 - 219	
Issue Date	2016-12-16	
DOI	10.1007/s12562-016-1053-1	
Self DOI		
URL	https://ir.lib.hiroshima-u.ac.jp/00049222	
Right	© Japanese Society of Fisheries Science 2016 This is a post-peer-review, pre-copyedit version of an article published in Fisheries Science. The final authenticated version is available online at: https:// doi.org/10.1007/s12562-016-1053-1 This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の 際には出版社版をご確認、ご利用ください。	
Relation		

1	Effects of water temperature on feeding and growth of juvenile marbled flounder
2	Pseudopleuronectes yokohamae under laboratory conditions: evaluation by group- and
3	individual-based methods
4	
5	Kazushi Kusakabe ¹ , Masaki Hata ^{1,3} , Jun Shoji ¹ , Masakazu Hori ² , Takeshi Tomiyama ^{1*}
6	
7	¹ Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima
8	739-8528, Japan
9	² National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries
10	Research and Education Agency, Hatsukaichi, Hiroshima 739-1452, Japan
11	³ Present address: Fisheries Division, Kagawa Prefectural Government, Takamatsu, Kagawa
12	760-8570, Japan
13	
14	
15	*Corresponding author: T. Tomiyama

16 Tel.: +81 82 4247941; email: tomiyama@hiroshima-u.ac.jp

17	Abstract To determine the optimal temperature for juvenile (0 year old) marbled flounder
18	Pseudopleuronectes yokohamae, juveniles of 40-54 mm standard length were reared under
19	six temperature conditions in the range 8 to 26 °C, using group-based and individual-based
20	methods. Growth of juveniles increased from 8 to 20 °C and decreased from 20 to 26 °C,
21	irrespective of the rearing method used. Food intake was greatest at 20 and 24 °C than other
22	temperatures, while feed conversion efficiency was greater at 20 °C than 24 °C in individual
23	rearing. Individual rearing provided more information such as individual variations in growth
24	and food consumption, suggesting the importance of individual-based experiments for
25	exploring the optimal temperature for fish.

27 Keywords flatfish; food intake; laboratory experiment; thermal response

29 Introduction

31	Water temperature is an important factor affecting fish feeding and growth and is recognized
32	as a controlling factor [1]. Thermal effects for a number of species have been investigated
33	under laboratory conditions [2-4]. For European plaice Pleuronectes platessa and European
34	flounder Platichthys flesus, growth rates and food intake are greatest at 18-20 °C [5]. For
35	Japanese flounder Paralichthys olivaceus, growth rates and food intake increase from 20 to
36	25 °C and decrease from 25 to 30 °C [6]. Such responses to temperature are species specific,
37	and are important for predicting the impact of climate change on vital rates (e.g. growth,
38	feeding and metabolism) of the fish species.
39	The optimal temperature for fish has been examined in laboratory experiments in which
40	multiple juveniles were kept in temperature-conditioned aquaria [5, 7]. Growth was evaluated
41	by changes in the average size of fish, but not by changes in individual size. Food intake has
42	also been evaluated based on the total amount consumed by multiple individuals [5-7]. Ideally,
43	feeding and growth should be examined individually, because variability among individuals is
44	masked under group-based estimation.
45	The marbled flounder Pseudopleuronectes yokohamae, an important pleuronectid flatfish
46	for coastal fisheries in Japan, was used as the study organism. This species spawns around
47	winter and juveniles occur in shallow coastal waters from March [8, 9]. Although it has been

55	Materials and Methods
54	
53	of the optimal temperature for juvenile flatfish.
52	compare the use of group-based and individual-based experimental protocols for assessment
51	the effects of water temperature on feeding and growth of marbled flounder, and (2) to
50	growth response of juvenile marbled flounder to temperature. This study aimed (1) to reveal
49	the range of 10 to 18 °C [10], to the best of our knowledge, few studies have revealed the
48	reported that larval growth of this species is faster under higher temperature conditions within

57 A laboratory experiment was conducted using hatchery-reared juvenile marbled flounder 58 produced from wild parental fish collected in the Seto Inland Sea, western Japan. In May 2015, 96 cultured juveniles of 40-54 mm standard length (SL) at age 127 days were 59 accommodated in a 500-1 tank in Setouchi Field Science Center Takehara Station (Fisheries 60 Research Station), Hiroshima University. After acclimation for 2 weeks, juveniles were 61 62 transferred to six 100-1 aquaria (16 individuals in each) filled with aerated natural seawater (salinity = 32.6) and were maintained without feeding for 24 h. The water temperature in the 63 respective aquaria was adjusted to 8, 12, 16, 20, 24, and 26 °C by temperature controllers. The 64 65 highest temperature was set at 26 °C because even though the temperature threshold of adult marbled flounder is considered to be 28 °C [11], some juveniles died at 27 °C in a preliminary 66

experiment. A closed circulation system was used for each aquarium and no sand was used.
Light intensities at the seawater surface in aquaria were 180–2135 lx during the daytime and
approximately 0 lx at night. Water was added to aquaria when the water level decreased due
to evaporation.

Two rearing systems, i.e. group-based and individual-based methods (ESM Fig. S1), 71 were adopted. In the group-based method, 10 fish were kept in each aquarium. In the 72 individual-based method, fish were isolated individually by using floating plastic cages (27 73 74 cm long, 16 cm wide, 11 cm high; top and bottom were flat without mesh, and sides were 75 covered with 0.85-mm nylon mesh; Fig. S1). Each cage was partitioned into two 76 compartments using a plastic board. Three cages were floated in each aquarium and six 77 individuals were kept in the six compartments per aquarium. Prior to accommodation of juveniles, each juvenile was measured (SL [mm] and wet weight [g]). 78

For both group and individual rearing, excess amounts of commercial pellets (mean \pm SD = 10.1 \pm 1.4 mg, N = 10, Otohime S2; Marubeni Nisshin Feed, Tokyo, Japan) were fed to fish three times per day during the daytime (08:00, 12:00, and 18:00 hours). This procedure was continued for 7 days. The water temperature of each aquarium was measured at the time of feeding (N = 21, Table 1). For the individual-based method, both the number of pellets given to fish and those remaining in each compartment after 1 h were recorded, so that the food intake (the number of consumed pellets × average weight of pellets) could be assessed. For the group-based method, neither the number of pellets given to fish nor the number of remained pellets remaining were recorded, because the relationship between food consumption and growth of juveniles cannot be assessed individually and because it was extremely difficult to count remaining pellets owing to giving numerous amount of pellets. The remaining pellets and feces were removed from the aquaria once per day (around 19:00) in order to minimize handling effects.

92 After 24 h from the last feeding on the 7th day, all individuals were measured again. 93 Three group-reared fish and six individually reared fish died at 26 °C during the time from the 94 last feeding on the 7th day to the final measurement, possibly due to an unexpected rise in 95 temperature to 27 °C. These individuals were also included in the analyses after correcting for shrinkage in SL associated with rigor mortis $(3.9 \pm 1.3\%, N = 30)$, although the correction 96 may become the error source of the data. No other fish died during the experiment. For the 97 individually reared fish, feed conversion efficiency (increment in body weight divided by the 98 weight of consumed pellets) was determined. Growth in SL and body weight, food 99 100 consumption, and feed conversion efficiency were compared between temperatures using the 101 Steel-Dwass test. To assess the individual variation under each temperature, the coefficient of 102 variation (CV, %) was also determined for growth in SL and body weight, food intake, and 103 feed conversion efficiency of individually-reared juveniles.

Results

In the group-reared fish, the largest increments in average SL and average body weight were
4.7 mm and 0.8 g at 20 °C, respectively (Fig. 1). Increments in average SL and body weight
were greater at 24 °C than at 16 °C.

110	In the individually reared fish, increments in average SL and body weight were also
111	greatest at 20 °C (mean \pm SD: 6.7 \pm 1.5 mm in SL and 1.1 \pm 0.2 g in body weight; Fig. 2,
112	ESM Table S1). Food intake was significantly higher at ≥ 20 °C than at ≤ 16 °C. No significant
113	difference was observed between 20 and 24 °C, but feed conversion efficiency was
114	significantly greater at 20 °C than 24 °C (Fig. 2d). Feed conversion efficiency was also high
115	at 16 °C, but food intake and growth were low at this temperature. Individual variation in the
116	feed conversion efficiency appeared to be large at 12 °C; however, this might be attributable
117	to the inclusion of data from one individual in which body weight decreased during the
118	experiment and from one individual with exceptionally high feed conversion efficiency of
119	3.24 (Table S1). Feed conversion efficiency was lowest at 26 °C. The CV for growth, food
120	intake, and feed conversion efficiency was consistently lowest at 20 °C in the individual
121	reared fish (Table S2).

Discussion

125 The present study clearly showed that juvenile marbled flounder exhibit the highest growth performance around 20 °C, as revealed by both group- and individual-based methods. Food 126 intake was also high at 24 °C, but the increment in body weight was less than 20 °C possibly 127 128 due to the higher metabolic costs at higher temperatures. Although only one aquarium was used for each temperature, the optimal temperature around 20 °C would be robust. Tsuchida 129 130 [12] explored the temperature preference for many marine fish species in the laboratory, using 131 a temperature gradient tanks. Although marbled flounder did not aggregate to a certain 132 temperature position, the preferred temperature for marbled flounder of 54 mm SL was 133 estimated to be 20.5 °C, which is similar to the optimal temperature estimated for marbled 134 flounder in the present study. Water temperature usually exceeds 20 °C from June, while juvenile marbled flounder 135 appear in an estuary in the Seto Inland Sea from March [9]. In another estuary in the Seto 136 137 Inland Sea (34°14' N, 132° 33' E), juveniles around 45 mm SL were observed from middle 138 April with the temperature around 15 °C (Otsuki et al., unpubl. data 2015). These results indicate that the temperature juveniles experience is generally lower than the optimal 139 140 temperature. Moreover, the result of individually-reared experiment showed the growth

141 potential of juvenile marbled flounder. The highest growth rate was 1.08 mm SL d⁻¹, which

142 has never been observed in the field [13, 14]. Growth rate is regulated by various factors such

143	as temperature and food [1]. Thus, the growth rate of juveniles in the field should be
144	investigated further with taking effects of temperature and food into account.
145	Feed conversion efficiency often exceeded 1, possibly because dry pellets were used as
146	food for juveniles. Similar pattern was also observed for Japanese flounder [7]. To assess
147	daily food intake of juveniles in the field from the feed conversion efficiency, dry weight in
148	both food and body weight increment of juveniles should be used for calculating feed
149	conversion efficiency.
150	Although the optimal temperature for growth of juvenile marbled flounder was common
151	in group- and individual-based methods, average increment in body weight was higher in
152	group-reared fish than individually-reared fish at 8–16 °C and 26 °C. Although the reason is
153	unclear, a possible explanation for the greater growth of group-reared fish is that some fish
154	foraging food might facilitate other individuals' feeding (social learning [15]) in the
155	group-based method. On the contrary, the increment in body weight was higher in the
156	individually reared fish than group-reared fish at 20 °C and 24 °C. The mechanism causing
157	this difference is also unclear, but the individually-reared fish were not exposed to the
158	interaction with other individuals by biting caudal fin each other [16, 17] or by competing for
159	food. Additionally, the consistently lowest CV at 20 °C for growth, food intake, and feed
160	conversion efficiency may suggest that individual variation becomes small under the optimal
161	temperature condition. Another possible explanation is that CV becomes small when average

162	value is high even if SD is the same: SD of growth and food intake were similar between
163	temperatures but average values were greatest under 20 °C (Table S2). The individual-based
164	method is useful for revealing thermal responses in the feeding and growth of juvenile flatfish,
165	at least for marbled flounder. This experimental protocol can be applied to future studies
166	investigating the effects of body size on thermal responses, since the optimal temperature
167	generally decreases as fish grow [18-20]. Clarifying the ontogenetic changes in the optimal
168	temperature will cue to understand the habitat shift of fish in relation to the ambient water
169	temperature.
170	
171	Acknowledgements Thanks are due to members of the Setouchi Field Science Center
172	Takehara Station, Hiroshima University, for their assistance in laboratory experiments. We
173	also thank Kudamatsu Sea Farming Center for providing the cultured juveniles, and two
174	anonymous reviewers for helpful comments to the manuscript. This study was partly
175	supported by the Ministry of Agriculture, Forestry and Fisheries of Japan.
176	
177	References
178	

Yamashita Y, Tanaka M, Miller JM (2001) Ecophysiology of juvenile flatfish in nursery
 grounds. J Sea Res 45: 205–218

181 2. Aritaki M, Seikai T (2004) Temperature effects on early development and occurrence of

metamorphosis-related morphological abnormalities in hatchery-reared brown sole

- 183 *Pseudopleuronectes herzensteini*. Aquaculture 240: 517–530
- 184 3. Schram E, Bierman S, Teal LR, Haenen O, van de Vis H, Rijnsdorp AD (2013) Thermal
- 185 preference of juvenile Dover sole (Solea solea) in relation to thermal acclimation and
- 186 optimal growth temperature. PLoS ONE 8: e61357
- 187 4. Laurel BJ, Danley C, Haines S (2014) The effects of temperature on growth, development
- and settlement of northern rock sole larvae (*Lepidopsetta polyxystra*). Fish Oceanogr 23:
- 189 495–505
- 190 5. Fonds M, Cronie R, Vethaak AD, Van der Puyl P (1992) Metabolism, food consumption
- and growth of plaice (*Pleuronectes platessa*) and flounder (*Platichthys flesus*) in relation to
- 192 fish size and temperature. Neth J Sea Res 29: 127–143
- 193 6. Iwata N, Kikuchi K, Honda H, Kiyono M, Kurokura H (1994) Effects of temperature on the
- 194 growth of Japanese flounder. Fish Sci 60: 527–531
- 195 7. Seikai T, Takeuchi T, Park GS (1997) Comparison of growth, feed efficiency, and chemical
- 196 composition of juvenile flounder fed live mysids and formula feed under laboratory
- 197 conditions. Fish Sci 63: 520–526
- 198 8. Joh M, Nakaya M, Yoshida N, Takatsu T (2013) Interannual growth differences and
- 199 growth-selective survival in larvae and juveniles of marbled sole *Pseudopleuronectes*
- 200 yokohamae. Mar Ecol Prog Ser 494: 267–279

201	9. Hata M, Sugimoto R, Hori M, Tomiyama T, Shoji J (2016) Occurrence, distribution and
202	prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine
203	groundwater seepage on a tidal flat in southwestern Japan. J Sea Res 111: 47-53
204	10. Mutsutani K (1988) Growth and metamorphosis of the marbled sole larvae Limanda
205	yohohamae (Günter) in culture. Suisanzoshoku 36: 27–32 (in Japanese)
206	11. Takahashi T, Tominaga O, Maeda T (1987) Effects of water temperature on feeding and
207	survival of righteye flounders Limanda herzensteini and Limanda yokohamae. Nippon
208	Suisan Gakkaishi 53: 1905–1911 (in Japanese with English abstract)
209	12. Tsuchida S (2002) Experimental study on temperature preference of Japanese marine fish.
210	Rep Mar Ecol Res Inst 4: 11-66 (in Japanese with English abstract)
211	13. Uehara S (1995) Studies on fishery ecology of coastal pleuronectid fishes. PhD thesis,
212	University of Tokyo, Tokyo (in Japanese)
213	14. Iida M (2000) Studies on early life history of two pleuronectid fishes in a semi-closed bay.
214	PhD thesis, University of Tokyo, Tokyo (in Japanese)
215	15. Swaney W, Kendal J, Capon H, Brown C, Laland KN (2001) Familiarity facilitates social
216	learning of foraging behaviour in the guppy. Anim Behav 62: 591–598
217	16. Sugimoto K, Suzuki K, Kumagai A (2007) Influence of rearing density of juvenile
218	marbled sole Pleuronectes yokohamae on fin lack caused by biting. Miyagi Pref Rep Fish
219	Sci 7: 13–15 (in Japanese)

220	17. Akaba Y, Komiya T (2010) Efficiency and practicality of marking method using
221	deformities of caudal fin in hatchery-reared marbled sole, Pseudopleuronectes yokohamae.
222	Bull Chiba Pref Fish Res Ctr 5: 61–67 (in Japanese)
223	18. Imsland AK, Sunde LM, Folkvord A, Stefansson SO (1996) The interaction of
224	temperature and fish size on growth of juvenile turbot. J Fish Biol 49: 926–940
225	19. Jonassen TM, Imsland AK, Stefansson SO (1999) The interaction of temperature and fish
226	size on growth of juvenile halibut. J Fish Biol 54: 556–572
227	20. Björnsson B, Steinarsson A, Oddgeirsson M (2001) Optimal temperature for growth and
228	feed conversion of immature cod (Gadus morhua L.). ICES J Mar Sci 58: 29-38
229	

230	Figure	captions
250	Inguit	captions

Fig. 1. Growth of juvenile marbled flounder in group-based rearing. (a) Increments in average

standard length (SL), and (b) increments in average body weight.

235	Fig. 2. Growth and feeding of juvenile marbled flounder in individual-based rearing. (a)
236	Increments in standard length (SL), (b) increments in body weight, (c) food intake, and
237	(d) feed conversion efficiency. Data are shown as the mean + SD. $N = 6$ for each group.
238	Different letters in italics indicate significant differences between groups (Steel-Dwass
239	test, $P < 0.05$).
240	

Fig. 1.

Fig. 2.

Aquarium	Water - temperature (°C)	Group-based				Individual-based			
		Initial SL	Initial BW (g)	SL at the end	BW at the end	Initial SL	Initial BW (g)	SL at the end	BW at the end
		(mm)		(mm)	(g)	(mm)		(mm)	(g)
8	8.06 ± 0.17	47.20 ± 3.88	1.62 ± 0.40	48.39 ± 3.73	1.90 ± 0.41	48.42 ± 3.34	1.88 ± 0.46	49.24 ± 3.35	2.04 ± 0.48
12	11.94 ± 0.15	47.45 ± 3.62	1.74 ± 0.37	49.08 ± 3.43	1.99 ± 0.47	47.28 ± 2.48	1.65 ± 0.28	48.36 ± 2.22	1.87 ± 0.28
16	15.80 ± 0.20	47.10 ± 3.57	1.46 ± 0.37	49.84 ± 3.51	2.08 ± 0.47	45.12 ± 2.54	1.43 ± 0.26	47.41 ± 2.33	1.77 ± 0.29
20	20.00 ± 0.73	46.97 ± 3.10	1.56 ± 0.29	51.69 ± 2.83	2.37 ± 0.40	44.88 ± 2.25	1.41 ± 0.22	51.63 ± 2.03	2.46 ± 0.42
24	23.64 ± 0.30	46.42 ± 3.30	1.46 ± 0.30	50.08 ± 3.17	2.22 ± 0.43	45.46 ± 3.06	1.49 ± 0.29	49.81 ± 3.62	2.17 ± 0.44
26	26.09 ± 0.43	48.02 ± 2.76	1.72 ± 0.26	48.80 ± 3.12	2.12 ± 0.30	47.68 ± 2.55	1.74 ± 0.28	48.42 ± 2.57	2.16 ± 0.36

Table 1 Experimental condition for feeding and growth of juvenile marbled flounder

Data are shown as the mean \pm SD. SL and BW indicate standard length and body wet weight, respectively. Water temperature was measured three times per day during the feeding period (7 days). Ten and six individuals were maintained in each aquarium used for group-based and individual-based rearing, respectively. Mean standard length (SL) is shown; raw data for individual-based method are presented in Table S1. No significant difference in initial SL was observed between aquaria (Kruskal-Wallis test; group-based: P = 0.88; individual-based: P = 0.17)