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Abstract 

Embryonic development is a complex multi-stage process, which at the gene expression level 
requires precise control by gene regulatory networks (GRNs). At each stage of pattern 
formation and organogenesis, during the transition of precursor cells to their descendants, 
various sets of signaling molecules and transcription factors (TFs) activate or repress their 
target genes to determine distinct cell fates. Misregulation of developmental pathways may 
cause severe diseases or lethality, while their ectopic activation in the adult organism often 
results in oncogenic transformation. It is therefore of great importance to decode the 
transcription factors and understand how they interact and form GRNs controlling 
developmental processes.  

Mesoderm formation is vital for embryo development. It occurs during gastrulation and 
depends on the process of epithelial-mesenchymal transition (EMT). In vertebrates, 
mesoderm gives rise to various tissues, such as axial skeleton, skeletal muscle, heart, kidney, 
smooth muscles, blood vessels and blood. A plethora of studies has been focused on 
characterizing the genes that regulate the development of mesoderm. Signaling pathways 
including WNT, BMP and FGF, along with transcription factors such as Smads, Eomes and 
T have been reported to play fundamental roles in this process. However, the comprehensive 
mechanistic characterization of the mesodermal GRNs is still lacking. 

This study aims at constructing a global gene regulatory network, which describes 
transcriptional regulatory events occurring dynamically during the course of mesoderm 
formation in the mouse. We demonstrated that in vitro mesodermal differentiation of mouse 
embryonic stem cells mimics mesoderm formation in vivo, and therefore chose it as a model 
system. Firstly, by combining ChIP-seq and RNA-seq techniques, I reconstructed GRNs 
mediated by the essential mesodermal TFs Smads, Eomes and T. Next, to build global 
dynamic GRN orchestrating EMT and mesoderm formation, time-series gene expression 
and TF-target datasets were integrated. The latter was obtained by an original method of 
discovering functionally active TFs from ATAC-seq data, followed by their association with 
putative target genes. Combing this method with a bioinformatical tool based on hidden 
Markov model allowed me to identify groups of co-expressed genes from time-series 
transcriptome data and predict TFs that regulate their expression.  

The predictive power of this approach was validated by comparing its output with the Smads, 
Eomes and T datasets, demonstrating that it correctly assigned these TFs to their targets. 
Using this unbiased approach, novel candidate mesodermal TFs and target genes of 
previously known TFs were identified. This study expands our understanding of genetic 
regulation mechanisms underlying EMT and mesoderm formation in the mouse and 
provides a list of novel potential mesoderm regulators for future in-depth characterization. 
This bioinformatical approach thus is promising in future studies designed to characterize 
the molecular mechanism underlying specific developmental processes. 
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1 Introduction 

1.1 Transcription Factors and Transcriptional Regulation 

Transcription factors (TFs) are proteins which can bind specific DNA sequences and 

regulate the process of gene transcription. By determining when and where to switch specific 

genes on and off, TFs control the differentiation of cells and the formation of tissues1,2. 

Mutations in TFs or TF-binding sequences may lead to dysregulation of gene expression and 

are related to a diverse set of diseases. 

TFs have caught the interest of researchers for more than three decades3. As more TFs are 

identified, their structures and the mechanisms underlying their functions get better 

understood. Typically, a TF contains a DNA-binding domain and multiple effector domains. 

The DNA-binding domain is necessary for a TF to recognize and bind to a specific DNA 

sequence. This binding sequence, in eukaryotic cells, is usually located at the promoter or 

enhancer regions.  An effector domain can either bind ligands to regulate TF activity via 

external signals or mediate protein-protein interactions to recruit cofactors (Figure 1.1)2.  

Upon binding to the DNA, TFs can directly recruit RNA polymerase II (Pol II). However, 

in eukaryotic cells, most of the TFs are shown to function by firstly recruiting cofactors2,4 

and influence the activity of Pol II indirectly. The DNA sequences bound by distinct TFs 

are specified by their corresponding motifs. A motif of a given TF is the sequence pattern 

determined based on the binding sites which this TF prefers to occupy. Motifs can be used 

to scan the genomic regions to search for the candidate binding sites for specific TFs. A 

number of  tools for motif discovery and analysis have been developed, including MEME, 

Homer, etc.5 

TFs regulate transcription by either activating or repressing gene expression, and therefore 

they are defined as transcriptional activators or repressors. As mentioned above, TFs can 

directly or indirectly recruit Pol II to activate transcription.  To repress transcription, a TF 

can block the DNA binding sites of Pol II or other activators. Furthermore, depending on 

the cell type and environmental cues, a given TF can either be an activator or a repressor of 

the same gene. Unlike in prokaryotic cells where transcription is usually regulated by single 

proteins, eukaryotic transcriptional regulation is performed by the combination of multiple 

proteins. TFs can bind to multiple cofactors in different ways. The multitude of the TFs’ 
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combinations enriches the diversity of gene expression, thus fulfilling the higher demand of 

gene regulation in eukaryotic cells6.  

Studies have shown that many diseases are linked to mutations in transcription factor binding 

sites, TFs and cofactors. These diseases range from developmental disorders, diabetes, 

cardiovascular disease to cancer. It is therefore very important to annotate all of the TFs and 

investigate how they function in different cell types7. 

1.2 Chromatin Structure and Transcription 

In eukaryotic cells, DNA is packed by histones into repeating structural units called 

nucleosomes. Each nucleosome contains 147 bp of DNA wrapped ~1.7 turns around an 

octamer of the histone proteins H2A, H2B, H3 and H48. Those proteins can be replaced by 

histone variants or modified by enzymes to add or remove post-translational modifications, 

through which the architecture of nucleosome changes to open or close the chromatin9. 

Open chromatin is the prerequisite for RNA polymerase binding to DNA. Likewise, most 

of the TFs, with the exception of pioneer factors, can only bind to open DNA regions10. 

The accessibility of chromatin can be detected by different assays. DNase-seq (DNase I 

hypersensitive sites sequencing)11, FAIRE-seq (Formaldehyde assisted isolation of regulatory 

elements sequencing)12 and ATAC-seq (Assay for transposase-accessible chromatin using 

sequencing)13 can directly isolate open genomic regions, while MNase-seq (Direct sequencing 

following MNase digestion)14 locates nucleosomes and thereby indirectly assesses the DNA 

accessibility. Among these methods, ATAC-seq is the most recently established one. The 

 Figure 1.1 The typical structure of a TF 
Typically, a TF contains a DNA-binding domain, which is needed to recognize a specific 
DNA sequence and then bind to it, and multiple effector domains. Figure taken from 
Lambert et al. (2018)2. 
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open regions detected by it can be used for motif analysis to find enriched motifs and 

corresponding TFs15.  

1.3 Mesoderm Formation in Vivo 

1.3.1 Mouse Embryogenesis 

Embryogenesis refers to the process of embryo formation. In mouse it can be generally 

divided into successive stages including: blastulation, implantation, axis formation and 

gastrulation.  Mesoderm formation happens during gastrulation. 

1.3.2 Blastulation 

Embryo formation starts from the process of fertilization when the male and female gametes 

fuse into one cell called zygote (E0.0). Then the zygote starts to undergo consecutive cell 

divisions.  The divisions up to eight cells are symmetric and the cells show no morphological 

difference. From the eight to sixteen cells stage, a process called compaction (E2.25) takes 

place. During compaction, the cells start to bind tightly and establish the communication 

with each other, resulting in the formation of morula at the sixteen cells stage. Compaction 

is the first step where the blastomeres show morphological differences. From fertilization to 

morula formation, the cell division increases the number of cells without increasing the size 

of the embryo. This special cell division stage is defined as cleavage. Subsequently, the morula 

develops into a blastocyst containing two cell lineages: outer cell layer trophectoderm (TE) 

and the inner cells called inner cell mass (ICM).  The ICM differentiates into epiblast (EPI) 

and primitive endoderm (PE) at E4.5 (Figure 1.2)16.  

Molecular Mechanisms of Cell Lineage Commitment during Blastulation  

Segregation of different cell fates is specified by transcriptional regulation. During 

embryogenesis, the cells are totipotent until the process of compaction. Then the 

transcription factors Pou5f1 (also known as Oct3/4) and Cdx2 take the key roles to mediate 

the differentiation from the compacted morula to the early stage of blastocyst with two cell 

layers TE and ICM. Pou5f1 and Cdx2 are co-expressed in all cells of morula. Later in some 

cells the expression of Cdx2 increases, which inhibits the expression of Pou5f1. On the 

contrary, in the inner cells Pou5f1 represses Cdx2. The reciprocal exclusive expression of 

Pou5f1 and Cdx2 leads to the formation of TE (larger outer cells) and ICM (smaller inner 
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cells). Subsequently, at around E3.5 the transcription factors Gata6 and Nanog start to be 

expressed in the ICM cells. The Gata6-positive cells develop into the primitive endoderm 

(PE) at the surface of ICM, while the Nanog-positive cells form the epiblast (EPI) (Figure 

1.3)17. The EPI later generates the embryonic body. 

 

 
Figure 1.2 The process of mouse embryogenesis 
After fertilization, cells are totipotent until embryo compaction. Then, the blastocyst with 
two cell lineages forms: the outer cell layer trophectoderm (TE, in grey) and the inner cells 
called inner cell mass (ICM, in beige).  Later ICM is differentiated into epiblast (EPI, in 
red) and primitive endoderm (PE, in purple) which gives rise to the parietal endoderm (in 
dark blue) and the visceral endoderm (in blue). Visceral endoderm is the progenitor of 
anterior visceral endoderm (AVE, in light blue). At around E6.5, gastrulation occurs and 
three germ layers, ectoderm, mesoderm and endoderm, are formed. Figure taken from 
Nahaboo & Migeotte (2018)16. 
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Figure 1.3  Cell lineage commitment during blastulation  
Pou5f1 (shown in the figure as Oct3/4, in red) and Cdx2 (in blue) are co-expressed in all 
cells of the morula. Later the increasing expression of Cdx2 inhibits the expression of 
Pou5f1 in some cells.  On the contrary, in the inner cells Pou5f1 represses Cdx2. The 
reciprocal exclusive expression of these two TFs leads to the result that the outer larger 
cells form TE and the inner smaller cells form ICM. Subsequently at around E3.5, TFs 
Gata6 and Nanog start to express in the ICM cells. The Gata6-positive cells develop into 
the primitive endoderm (PE) at the surface of ICM, while the Nanog-positive cells form 
the epiblast (EPI). Figure taken from Arnold & Robertson (2009)17. 
 



 

 

6 

1.3.3 Implantation and Axis Formation 

After the late blastocyst with three cell lineages is established, the TE attaches to the uterine 

epithelium. The success of implantation is required for the embryo to receive nutrients from 

the mother. Around the time of implantation, the conceptus elongates along its proximal-

distal (P-D) axis to form the “egg cylinder” embryo. This morphological change defines the 

embryonic pattern formation and is required for further establishment of different cell 

lineages. The extraembryonic ectoderm (ExE) derived from TE forms a layer of epithelial 

cells at the proximal site of the conceptus and combines with the distal epithelialized EPI. 

The PE differentiates into the parietal endoderm and the visceral endoderm, which belong 

to extraembryonic tissues. The parietal endoderm in the end develops into part of the parietal 

yolk sac, while the visceral endoderm is the progenitor of anterior visceral endoderm (AVE).  

Following the establishment of P-D axis, the anterior-posterior (A-P) axis is established 

along the process of AVE migration from distal embryo to the side of the prospective 

anterior (Figure 1.2).  

1.3.4 Gastrulation 

During gastrulation, three germ layers differentiate from one single cell layer of the epiblast 

(Figure 1.2). Those three germ layers—ectoderm, mesoderm and definitive endoderm—are 

the progenitors of all embryonic body structures. The ectoderm forms the nervous system 

(brain, spinal cord and peripheral nervous system), epidermis and many sensory organs. The 

mesoderm gives rise to muscles, bones, connective tissues, blood, heart, kidney and 

reproductive system. The definitive endoderm produces the gastrointestinal tract and its 

future derivatives. 

1.3.5 Mesoderm Formation through EMT during Gastrulation  

During gastrulation, mesoderm and definitive endoderm are formed through the process of 

epithelial-mesenchymal transition (EMT)17. Epithelial cells are tightly connected and 

polarized. EMT is the biological process characterized by the loss of the epithelial cells' 

connections and polarity and their subsequent ability to migrate as mesenchymal cells. This 

process is involved in cell differentiation, tissue formation, wound healing and cancer18. 
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As shown in Figure 1.4, tight junctions, adherens junctions, desmosomes and gap junctions 

keep the epithelial cells adhere to each other. The Crumbs, partitioning defective (PAR) and 

Scribble (SCRIB) complexes are involved in maintaining cell polarity. EMT is accompanied 

by the disruption of those complexes and junctions and the rearrangement of the original 

cytoskeleton. This results in the formation of mesenchymal cells, which upon maturation 

acquire migration ability. 

EMT is a complex process, which involves many TFs and signaling pathways. During EMT, 

the epithelial markers (Claudins, Occludin, E-cadherin, Desmoplakin, ZO1) get repressed 

while the expression of mesenchymal markers (Fibronectin, Vitronectin, N-cadherin) is up-

regulated. The main EMT TFs include the SNAIL and ZEB families. SNAIL directly inhibits 

the expression of Claudin, Occludin and E-cadherin thereby destroying cell-cell connection. 

On the other hand, it activates the expression of mesenchymal marker N-cadherin. ZEB 

factors also repress E-cadherin and activate N-cadherin, as well as up-regulate matrix 

metalloproteinases (MMPs) which help to enable cell invasion. The signaling pathways 

involved in EMT include TGFβ, FGF, HGF, EGF, WNT and NOTCH18.  

At around E6.0, the epiblast cells converge at the proximal junction of ExE and EPI to form 

the primitive streak (PS), which can be identified as the first sign of gastrulation.  

As shown in Figure 1.2 and Figure 1.5, mesoderm and definitive endoderm are formed 

through the process of EMT from epithelial cells of the primitive streak17. Depending on the 

time and site of the cells migrating from the primitive streak, different cell fates are initiated. 

Several essential mesodermal TFs (e.g., Smads, Eomes, T, and Mesp1/2) and signaling 

pathways (e.g., FGF and WNT) have been identified19,20. 
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Figure 1.4 Cellular mechanism of EMT 
Epithelial cells are attached to each other via tight junctions, adherens 
junctions, desmosomes and gap junctions. The Crumbs, partitioning defective 
(PAR) and Scribble (SCRIB) complexes maintain their polarity. Upon EMT, 
these complexes and junctions are disrupted, followed by the rearrangement 
of the cytoskeleton. Upon maturation, the newly formed mesenchymal cells 
acquire motility. Figure taken from Lamouille et al. (2014)18. 
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Figure 1.5 Mesoderm formation through EMT during gastrulation 
Mesoderm formation is a result of EMT. When epiblast cells move towards primitive 
streak, the increasing WNT, Nodal and FGF signals change the cell behaviour. Cells 
in the primitive streak lose apical-basal polarity and obtain the ability to migrate. The 
whole process involves many regulators. E-cadherin is downregulated via a FGF 
signaling cascade, allowing cells to migrate. Eomes has been shown to be a Nodal 
target to influence EMT. Mesp1/2 are also required for EMT. Figure taken from 
Arnold & Robertson (2009)17. 
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1.4 Master Regulators of Mesoderm Formation 

Smads 

Smads are the main intracellular mediators of TGFb family signaling and are required for 

mesoderm formation21–23. The SMAD signaling cascade is initiated by binding of a ligand to 

the transmembrane receptor, which phosphorylates receptor-mediated Smads (R-Smads), 

namely Smad 1, 2, 3, 5, 8. Then the phosphorylated R-Smads combine with Smad4 to form 

a complex which is transported to the nucleus to regulate the expression of the downstream 

target genes24–26 (Figure 1.6). Smad2/3 mediate TGFb and Nodal signaling, while Smad1/5/8 

mediate BMP signaling. 

Smad2 and Smad3, which can be activated by the receptors of TGFb ligands, are expressed 

from the blastocyst stage in early mouse embryo. Their common and distinct functions have 

been widely studied. The phenotypes of Smad2 mutant mice are very different from Smad3 

mutant mice. Smad2 mutant embryos exhibit early patterning abnormalities27, while Smad3 

mutant embryos are viable28. Double homozygous mutation of Smad2 and Smad3 results in 

failure of mesoderm formation21. The high expression level of Nodal/Smad2/3 is required 

for the specification of definitive endoderm, node and notochord21. In a study of human 

embryonic stem (ES) cells differentiation, Smad2/3 and b-catenin were shown to bind to 

the same regions in PS genes, and their direct interaction mediated PS gene activation29. A 

global identification of Smad2 targets via ChIP-seq in zebrafish showed that the Smad2-

mediated transcriptional network is conserved in vertebrate mesoderm and endoderm30. 

Mullen et al. suggested that the differential Smad2/3 binding sites are determined by cell-

type-specific master TFs31. 

Smad1 and Smad5 were reported to exhibit genetic interaction and to function cooperatively 

to control the expression of BMP target genes in the early mouse embryo32. Genome-wide 

binding sites of Smad1/5 were detected by ChIP-seq in human endothelia cells, followed by 

the discovery of a GC-rich motif33. In a separate study, Smad1 was shown to share the same 

motif as Pou5f1/Sox2, which reflects the frequent co-binding of Smad1 with Pou5f1/Sox234. 

It was also shown that in the context of human ES cell differentiation, interaction of Smad1 

with T promotes mesoderm formation, while repressing endodermal differentiation35.  



 

 

11 

 

Eomes 

Eomes is a member of the T-box TF family and plays important roles during gastrulation 

and trophoblast development in vertebrate embryos36,37. Eomes-null mouse embryos arrest at 

the stage of blastocyst. The functions of Eomes in cell lineage differentiation are strongly 

conserved in vertebrate systems38. In the mouse, Eomes has been shown to be essential for 

EMT, mesoderm formation and DE specification19. In the early zebrafish embryo, Eomes 

was shown to regulate all three germ layers30. 

During mouse embryogenesis, Eomes expression in the embryo proper starts in the posterior 

part of the epiblast at embryonic day 5.75 (E5.75)36. During gastrulation, Eomes is expressed 

in the distal PS and Eomes expressing cells generate two distinct progenitor cells: the cranial 

and cardiac mesodermal progenitors and the progenitor cells of anterior primitive streak 

(APS) derivatives (definitive endoderm, node and notochord)37. Eomes-deficient mouse 

embryos fail to downregulate E-cadherin, blocking EMT and hence mesoderm formation19. 

Eomes cooperates with the Nodal/Smad2/3 pathway, promoting delamination of nascent 

mesoderm19. Eomes is a marker gene of the earliest cardiac mesoderm. The master regulator 

of multipotent cardiovascular progenitor specification Mesp1 can be directly activated by 

Eomes37,39,40. In addition to Mesp1, the other cardiac-specific markers including Myl7, Myl2, 

Figure 1.6 Smads function as intracellular signaling mediators 
Smad2/3 mediate TGFb signaling pathway. Smad1/5/8 mediate BMP signaling pathway. 
Smad4, which is involved in both pathways, binds to phosphorylated Smad2/3 in TGFb 
pathway and to phosphorylated Smad1/5/8 in BMP pathway. Figure taken from Malkoski 
& Wang (2012)24. 
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Nkx2.5, Myocardin and Mef2c are also not expressed in Eomes null embryos37. Notably, the 

expression of T is not altered while Eomes is absent37. 

T 

As the founder member of the T-box TF family, which play a central role in mesoderm 

formation41, the gene Brachyury (T)  was identified by Dobrovolskaïa-Zavadskaïa in 1927 with 

the discovery that T mutation caused truncated tails in mice42,43. It was shown that mouse 

embryos with a homozygous T mutation die at about E10, lacking the allantois and failing 

to form a proper notochord, neural tube and somites44,45. The cloning of the T gene in 1990 

was a big breakthrough after decades of classical experimental analysis, which has promoted 

the functional analysis of T on a molecular level46. T is expressed in nascent mesoderm, its 

progenitors and in the notochord47. T expression in neuro-mesodermal progenitors and the 

T mutant phenotype showed that T is essential for mesoderm formation in the trunk48. 

Studies performed on Xenopus and chick embryos showed that the expression patterns of T 

are conserved in vertebrates49,50. Studies by Smith et al. show that in Xenopus the mis-

expression of T homologue can induce mesoderm formation at ectopic locations49,51. 

The role of T as a TF was shown by Kispert and Herrmann52. They demonstrated that T 

protein binds to a consensus palindromic sequence and a monomer of T is sufficient for 

binding. Casey et al. showed that in Xenopus T can regulate expression of eFGF by binding to 

a half-site of the palindromic sequence53. A systematic study of T function in the Ciona 

notochord, where T is notochord-specific, shows that T regulates most of its target genes 

via non-palindromic binding sites54. 

The gene regulatory functions of T in embryonic development have been extensively studied. 

T is a direct target of Wnt3a, a signal expressed in the PS and required for paraxial mesoderm 

formation in mouse. It was suggested that Wnt3a modulates the determination of 

mesodermal and neural cell fates via T55. The study by Schulte-Merker and Smith suggests 

that T and FGF form a regulatory loop, in which T activates a member of FGF while FGF 

maintains T’s expression56. The following studies showed that loss of Fgf4 and Fgf8 in 

presomitic mesoderm progenitors results in severe down-regulation of T57. In addition, Fgfr1 

functions in mesoderm cell fate specification by positively regulating T and Tbx6 expression58, 

suggesting that T is an important downstream gene of the FGF signaling pathway. The 

modern experimental techniques, like ChIP-chip (Chromatin immunoprecipitation 
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combined with microarray), ChIP-seq (Chromatin immunoprecipitation followed by 

sequencing) and RNA-seq (RNA sequencing), facilitated the prediction of genome-wide 

direct targets of T. Morley et al. performed ChIP-chip and identified targets of T ortholog 

No tail (Ntl) in zebrafish. They showed that Ntl directly regulates the notochord-expressed 

gene flh and other TFs. A gene regulatory network describing mesoderm formation in 

zebrafish was assembled by using this ChIP-chip data59. In Xenopus, T was shown by ChIP-

seq to have around 5500 binding sites. Comparison of T and Eomes binding revealed that 

the T-box proteins are recruited to the same genomic sites and their collaboration ensures 

the correct determination of mesoderm and neural tissues60. T targets were identified in 

differentiating human ES cells and it was discovered that the expression of T target genes 

depended on the cellular environment and differential interaction of T with Smad1 or 

Smad2/3 signaling35,61. Lolas et al. showed that T forms a feedback loop with Foxa2 and 

Sox17 to direct cell lineage commitment during streak formation62. A recent study of our 

group demonstrated that in differentiated mouse ES cells T directly targets many key 

regulators, including Wnt3a, Fgf8, Tbx6, Msgn1 and Sox248. 

1.5 Studies of in Vitro Mesoderm Formation 

The studies of in vitro ES cell differentiation help to understand the mechanisms of 

embryogenesis and to exploit the therapeutic potential of ES cells. Advantages of in vitro 

differentiation studies include the ability to produce enough material for large scale 

experimental studies and to precisely score developmental stages. 

ES cells are pluripotent and can be used to generate all embryonic tissues. The initiation of 

primitive streak (PS) is essential for mesoderm formation. Modelling of the PS development 

showed that WNT and TGFb signaling are required in vitro for the induction of PS from 

mouse ES cells63. It was reported that Nodal/Activin A can initiate TGFb signaling and 

induce PS-like cells. In addition, for mesoderm induction in vitro, Nodal/Activin A direct the 

nascent mesoderm toward axial mesoderm and mesendoderm.64. It was shown that short-

term BMP4 treatment initiates mesoderm formation in human ES cells65. In this study we 

generated mesodermal cells by growing mouse ES cells on fibronectin in medium containing 

Bmp4. 
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1.6 Gene Regulatory Networks 

Gene regulatory networks (GRNs), which can involve signaling pathways, gene regulators 

and target genes, are built to understand and visualize how a cell responds to internal or 

external stimuli66. Schilitt and Brazma suggested to categorize GRNs by increasing details 

and complexities into the following four classes67(Figure 1.7, a-d). The first class, parts lists, 

comprises a collection, organization and description of the associated elements involved in 

the networks, e.g., TFs, promoters and TF binding sites. Such lists can be represented as a 

table or database.  The second class, topology models, connects the different elements to 

show their interactions and relationships as wiring diagrams. The third class, control logic 

models, on top of the topology models explains the rules/logic of interactions between all 

elements, e.g., how the regulators collaborate when they regulate the same gene. The fourth 

class, dynamic models, captures the dynamic changes of gene regulatory events over time. 

These four categories describe a gene regulatory event from different perspectives. For a 

fixed number of elements in a network, each category can explain the regulatory program in 

more detail than the previous one67. In 2007, Ernst et al. presented a new type of GRN model 

called “global temporal map”66. This model is dynamic over time. As opposed to the  

dynamic model of the previous approach (class four), it globally describes the transcriptional 

regulatory events causing the observed time-series gene expression patterns and the TFs 

controlling these events66 (Figure 1.7, e).  
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Figure 1.7 Different types of gene regulatory network (GRN) models 
(a). Example of a small parts list, which collects, organizes and describes the elements of 
a network. (b). A graph based on the known elements of a network, where nodes represent 
genes and edges denote the relationships between genes. A, B and C can all bind to D. 
The relationships are as follows: A and B activate D, C inhibits D, E activates C. (c). 
Example of network logics. Gene D is activated if A and B are both bound, but not C. (d). 
Example of a dynamic model. A transcriptional regulatory network over the time of the 
yeast cell cycle (stages G1, S, G2, M). (e). Example of the “global temporal map”, 
describing globally the transcriptional regulatory events causing the observed time-series 
gene expression patterns and the TFs controlling these events. The split at the time point 
2h is induced by TF A and B. Figures d and e are taken from Lee et al. (2002)68 and Ernst 
et al. (2007)66. 
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The desired complexity of a GRN is based on the purpose of the study. If the goal is to 

explain how one specific TF regulates the downstream genes at one specific time point, a 

static GRN model is generally sufficient. Technologies such as ChIP-seq and RNA-seq 

followed by the appropriate bioinformatic analysis can define the downstream genes of one 

specific TF. When many TFs are involved in the studied process and the datasets are limited, 

the static GRNs can be constructed using computational predictions. To evaluate the 

relevance of two variables in a network, the pairwise association methods, e.g., Pearson 

correlation69, mutual information70 and partial correlation71, can be used. Given a threshold 

of the association score, the logic behind the pairwise association methods is that variables 

with high association scores are relevant as edges in the network. In addition, Bayesian 

networks have also been suggested as an effective method to construct GRNs72,73. 

To model dynamic time-series GRNs as shown in Figure 1.7 d, previous studies used 

methods including Boolean network model74, Petri nets75,76 and difference equation model77. 

For the modelling of GRNs such as the one depicted in Figure 1.7 e, which integrate time-

series gene expression data and TF-gene interactions, the computational method developed 

by Ernst et al. can be used66. 
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2 Experimental Material and Methods 

All wet lab experiments were performed by Dr. Pavel Tsaytler. 

2.1 Mesodermal Differentiation In Vitro 

For mesoderm differentiation, mouse embryonic stem cells (mESCs) were firstly separated 

from feeders. Then the single cell suspension of feeder-free mESCs was plated on square 

plates in 5 µl drops using multichannel pipette. The square plates were kept upside down in 

the incubator for 12 hours to allow single cells to form aggregates. The aggregates were then 

transferred to fibronectin-coated plates and treated with Bmp4. The Bmp4 containing 

medium was refreshed daily. For each experiment, the cells were collected at the appropriate 

time points.  

2.2 Chromatin Immunoprecipitation (ChIP) 

Chromatin immunoprecipitation is an experimental method to study the interactions of 

DNA and proteins in the cell. It aims to determine the DNA binding sites of a specific 

protein (e.g., whether a TF binds to the gene of interest). In addition, ChIP can also be used 

to identify the locations of histone modifications. Figure 2.1 shows the steps of a ChIP 

experiment. Firstly, genomic DNA and DNA-binding proteins are cross-linked usually by 

using formaldehyde. Then the cells are lysed, and the DNA is sheared to small fragments 

with desired length by sonication. With the antibody specific to the protein of interest, the 

DNA fragments bound by this protein are enriched by immunoprecipitation. The DNA 

fragments which are not bound to this specific protein are washed away. The final step is to 

purify isolated DNA fragments by reversing cross-links and removing the proteins. 

Polymerase chain reaction (PCR) is usually used afterwards to determine the enrichment of 

specific DNA fragments. 

For the ChIP experiment, a control sample which is called “Input” is usually generated. The 

preparation of “Input” follows the same procedure without the immunoprecipitation step, 

thus representing the whole genome. 

The purified DNA fragments can be identified on a larger scale by combining ChIP with 

other techniques. ChIP-chip combines ChIP with microarray hybridization, where the target 
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genes are detected by enrichment on the microarray78. ChIP-seq combines ChIP with high-

throughput sequencing, by which all of the target DNA fragments get sequenced and 

determined on a genome-wide scale. 

 

 

Figure 2.1 Overview of the chromatin immunoprecipitation (ChIP) experiment 
(1) Formaldehyde cross-linking. (2) Chromatin sonication. (3) Adding protein-specific 
antibody. (4) Immunoprecipitation of chromatin. (5) Purifying DNA fragments. Figure 
taken from Hoffman et al. (2009)183. 
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2.3 Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq) 

The ChIP-seq method, first reported in 2007, combines ChIP with high-throughput 

sequencing79. High-throughput sequencing is also known as next-generation sequencing 

(NGS) to make a distinction from previously existing methods, such as Sanger sequencing. 

The significant improvement of NGS technologies is that they allow for massively parallel 

reactions, with millions sequencing reactions that can be performed at the same time80. NGS 

technologies include Illumina sequencing, Roche 454 sequencing, SOLiD sequencing and 

Ion Torrent: Proton/PGM sequencing. For different technologies, the experimental steps 

are common, including library preparation, sequencing reactions and data output. The 

difference lies in the details of sequencing approaches. Illumina sequencing, which is the 

dominant method currently, takes the approach of “sequencing-by-synthesis”. There are 

billions of fragments attached to a solid surface. For each of them, the polymerase enzyme 

can add only one single base to the growing complementary strand because each base is 

modified with a terminator which will block further polymerization. The terminator has a 

fluorescent label (four colors or two colors chemistry) which can be detected. All templates 

are detected simultaneously for each cycle of sequencing reactions and then the terminators 

are removed to continue the polymerization. The reversible terminators are the key for this 

method since they allow the reactions to synchronize. In the end, all of the images combined 

show the A, T, G, C order for each sequence. NGS is quicker than the old methods. For 

example, Sanger sequencing separates the processes of chemical reaction and signal detection 

while NGS usually combines them. In addition, Sanger sequencing takes only one read each 

time while NGS is massively parallel.  

ChIP-seq has many advantages, including high genome coverage, high throughput and 

decreasing cost of sequencing, so it has become an important tool to study gene regulation. 

Figure 2.2 illustrates the sequencing strategies for a ChIP-seq experiment81. Following the 

purification of DNA fragments, they are assayed for NGS to identify the sequences 

associated with the TF. Further analysis of these fragments will reveal the genomic locations 

and potential target genes of this TF across the entire genome. 
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Figure 2.2 Overview of the ChIP-seq process 
DNA and DNA-binding proteins are cross-linked and enriched by ChIP. Purified DNA 
can be sequenced with NGS technique by different platforms. ChIP-seq can be used for 
either histones or TFs. Figure taken from Park (2009)81.  

 

2.4 RNA Sequencing (RNA-seq) 

RNA-seq aims to obtain the transcriptome information using NGS.  The transcriptome is 

the complete set of RNA molecules and their relative quantities in a sample. Knowing the 

transcriptome is important to understand the functional elements in cells at a given condition. 

It is an effective way to analyze the molecular mechanisms of development and disease82. 
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The most common method to perform RNA-seq is Ilumina NGS and the steps are as 

mentioned in section 2.2: (A) library preparation, (B) sequencing, and (C) data output. The 

library for RNA-seq can be the cDNA fragments converted from total RNA or selected 

population, like poly(A)+, depending on the research purpose. 

Compared to DNA microarray83, which is a hybridization-based approach for studying 

transcriptome, RNA-seq has significant advantages. Firstly, the sequences detected by 

microarrays are based on the probes for hybridization, so microarrays cannot detect novel 

genes, which is not a limitation in RNA-seq. Secondly, RNA-seq allows to determine 

expression levels of all detected transcripts, while microarrays are not sensitive to genes very 

lowly or highly expressed82.  

2.5 Assay for Transposase-accessible Chromatin using Sequencing (ATAC-seq) 

The ATAC-seq procedure was published in 2013 by Buenrostro et al.13. It combines the usage 

of Tn5 transposase and NGS, aiming to assess chromatin accessibility.  

Eukaryotic DNA is hierarchically compacted into chromatin to fit in the nucleus. However, 

for transcriptional machinery to function, certain chromatin regions should be accessible84. 

Since information about the chromatin structure can shed light on the mechanisms of gene 

regulation, chromatin accessibility data is a valuable asset to study GRNs.  The published 

methods to determine chromatin accessibility include DNase-seq85, FAIRE-seq86 and 

ATAC-seq. ATAC-seq has two main benefits as compared to other methods. Firstly, it needs 

less cells (from 1 to 50000) than DNase-seq (50 million) and FAIRE-seq (1-50 million). 

Secondly, it requires fewer steps than the other two methods to perform, which is less time-

consuming (Figure 2.3 b)13. 

ATAC-seq takes advantage of a mutated hyperactive Tn5 transposase which effectively cuts 

exposed DNA regions and simultaneously integrates adapters into those regions87. The 

adapter-ligated fragments are then amplified by PCR for NGS (Figure 2.3 a). The NGS 

profile provides us insights into the structure of chromatin, such as chromatin accessibility 

and nucleosome positioning. 
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Figure 2.3 ATAC-seq process and advantages 
(a) Tn5 transposase (green) with adapters (red and blue) interacts with open chromatin 
regions, cuts exposed DNA fragments and integrates adapters to these fragments.  (b) 
ATAC-seq needs less cells and time to perform, compared to the methods FAIRE-seq 
and DNase-seq. Figure taken from Buenrostro et al. (2013)13. 
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2.6 Datasets for Analysis 

As shown in Table 2-1, the data generated by Dr. Pavel Tsaytler in this study include: time-

series transcriptome RNA-seq for 10 time points (index: 1 to 10), Smads ChIP-seq and RNA-

seq (wild-type (WT) vs. knockout (KO)) at day 2 (index: 11 to 14), Eomes ChIP-seq and 

RNA-seq at day 2 (index: 15, 16), T ChIP-seq and RNA-seq at day 3 (index: 17, 18), 

T/Eomes double knockout RNA-seq at day 3 (index: 19), and time-series ATAC-seq for 6 

time points (index: 20 to 25).    

Table 2-1. Datasets from experiments  

Index Library Type ES Cell Type  Treatment 
1 RNA-seq wild-type ES (2 replicates) 
2 RNA-seq wild-type Mesoderm differentiation 1 h (2 replicates) 
3 RNA-seq wild-type Mesoderm differentiation 6 h (2 replicates) 
4 RNA-seq wild-type Mesoderm differentiation 12 h (2 replicates) 
5 RNA-seq wild-type Mesoderm differentiation 1 d (2 replicates) 
6 RNA-seq wild-type Mesoderm differentiation 2 d (2 replicates) 
7 RNA-seq wild-type Mesoderm differentiation 3 d (2 replicates) 
8 RNA-seq wild-type Mesoderm differentiation 4 d (2 replicates) 
9 RNA-seq wild-type Mesoderm differentiation 5 d (2 replicates) 
10 RNA-seq wild-type Mesoderm differentiation 6 d (2 replicates) 
11 ChIP-seq/P-Smad1 wild-type Mesoderm differentiation 2 d  
12 ChIP-seq/Smad2/3 wild-type Mesoderm differentiation 2 d 
13 RNA-seq wild-type (Smad4 control) Mesoderm differentiation 2 d 
14 RNA-seq Smad4 knockout Mesoderm differentiation 2 d 
15 ChIP-seq/Eomes wild-type Mesoderm differentiation 2 d 
16 RNA-seq Eomes knockout Mesoderm differentiation 2 d 
17 ChIP-seq/T wild-type Mesoderm differentiation 3 d 
18 RNA-seq T knockout Mesoderm differentiation 3 d 
19 RNA-seq T/Eomes knockout Mesoderm differentiation 3 d 
20 ATAC-seq wild-type ES (2 replicates) 
21 ATAC-seq wild-type Mesoderm differentiation 1 d (2 replicates) 
22 ATAC-seq wild-type Mesoderm differentiation 2 d (2 replicates) 
23 ATAC-seq wild-type Mesoderm differentiation 3 d (2 replicates) 
24 ATAC-seq wild-type Mesoderm differentiation 4 d (2 replicates) 
25 ATAC-seq wild-type Mesoderm differentiation 5 d (2 replicates) 
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3 Computational Methods 

3.1 Correlations: Pearson vs. Spearman 

Correlations are commonly used to measure the association between two variables. For 

example, correlations were used in this study for estimating the reproducibility of replicates 

and for clustering. The correlation coefficient, ranging from -1 to 1, indicates the strength 

and the direction of the relationship. The most common method, Pearson correlation69, 

measures linear relationships, while the distribution-free method Spearman’s rank 

correlation88 measures monotonic relationships.  

Pearson correlation coefficient 

The Pearson correlation coefficient is calculated as the quotient of the covariance of two 

variables divided by the product of their standard deviations: 

 𝜌",$ =
cov(𝑋, 𝑌)
𝜎"𝜎$

 (1) 

This formula is used for a population to get the population correlation coefficient 

represented by 𝜌. When applied to a sample to calculate the sample correlation coefficient 

represented by 𝛾, the covariances and variances are estimated based on a sample, in which 

case the formula for 𝛾 is 

 𝛾 =
∑ (𝑥1 − 𝑥)(𝑦1 − 𝑦)4
1

5∑ (𝑥1 − 𝑥)64
178 5∑ (𝑦1 − 𝑦)64

178
 (2) 

where n is the sample size of {𝑥1, … 𝑥𝑛}and {𝑦1, … 𝑦𝑛}, 𝑖 ∈ 𝑛, 𝑥 =
1

𝑛
∑ 𝑥𝑖𝑛
𝑖=1 . 

Spearman’s rank correlation coefficient 

The Spearman’s rank correlation coefficient is the Pearson correlation coefficient of the 

ranked variables. At the first step all the variables are ranked, and then the Pearson 

correlation coefficient is calculated with the ranked variables. 
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Comparison of the Pearson and Spearman correlation methods 

The correlation coefficient of both methods ranges from -1 to 1. A positive value means the 

correlation between two variables is positive, otherwise it is negative (anti-correlated). The 

absolute value of the correlation coefficient shows how strong the tendency is. 

The difference between the two is that the Spearman correlation cannot be used to estimate 

whether two variables change at a constant rate. If one variable increases as the other 

increases, the Spearman correlation coefficient equals 1, but the Pearson correlation can be 

less than 1 as long as the increase rate of two variables is different. In practice, the Pearson 

correlation is used to answer whether the correlation is linear while the Spearman correlation 

is used only for the estimation of the monotonicity. 

3.2 Fisher’s Exact Test for Enrichment Analysis 

High-throughput sequencing data analysis usually outputs large gene lists, which are hard to 

be functionally interpreted. Enrichment analysis is a traditional way to mine big data, with 

the idea to compare the genes of interest with the background to see whether a specific 

feature is enriched. For example, if 10% of the background genes and 50% of the selected 

genes share the same feature, this feature is very likely associated with the selected genes. 

Enrichment analysis allows to treat large gene lists with gene group-based view, rather than 

individual gene-based view89. It makes the process of biological interpretation for large gene 

lists more effective and convenient. The well-known statistical methods for enrichment 

analysis include Chi-square test, hypergeometric test and Fisher’s exact test. Hypergeometric 

test is identical to one-tailed Fisher’s exact test. Chi-square is not appropriate when the values 

are very small (any value in a contingency table less than 5), making Fisher’s exact test the 

preferred choice in this case90. 

Fisher’s exact test is mainly used to examine the significance of the association between two 

categories within a 2 × 2 contingency table (Table 3-1)91. In this table, the marginal totals 

(row and column totals) are assumed to be fixed. The cells are filled with observed values of 

different features. The question here is “how likely it is to obtain the observed contingency 

table, given the null hypothesis that there is no association between two categories”. The 

significance (p-value) can be exactly calculated by summing up the probabilities of observing 

“𝑎” and more extreme cases given the null hypothesis were true. To calculate the probability 
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of observing “𝑎”, since it is actually a repeated drawing event without replacement, the 

hypergeometric distribution is used to get the exact probability: 

 𝑝 =
@ABCA D@

EBF
E D

@ 4
ABED

=
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!  (3) 

Table 3-1. 2 × 2 contingency table 
The value “𝑎” is the count of the intersection of category 1 and 2. “𝑏” or “𝑐” refers to the 
count of the elements belonging to only one of the two categories.  “𝑑” is for the rest which 
are not in both. The totals of rows and columns are called marginal totals. 
 

 Category 2 (Yes) Category 2 (No) Row Total 
Category 1 (Yes) 𝑎 𝑏 𝑎 + 𝑏 
Category 1 (No) 𝑐 𝑑 𝑐 + 𝑑 
Column Total 𝑎 + 𝑐 𝑏 + 𝑑 a+𝑏 + 𝑐 + 𝑑	(= 𝑛) 

In practice, one-tailed Fisher’s exact test (equivalent of hypergeometric test) is usually 

performed to predict whether there is a positive or negative association between two 

categories. In this case, the same or more extreme situations compared to the observed data 

needed to be considered from only one direction to calculate the significance of the observed 

data. 

In sections 4.2 and 4.3, the one-tailed Fisher’s exact test with “alternative hypothesis: true 

odds ratio is greater than 1” was used. 

3.3 Correcting for Multiple Testing 

Given a threshold of p-value 0.05 for a hypothesis test, there is 5% chance to obtain a false 

significant result which fits the null hypothesis. If the same test is run for thousands of 

hypotheses, the chance of getting false positive results will be highly increased. For NGS 

data analysis, the data size usually is large and multiple tests are inevitable. Adding up all false 

positives results in a high number, which produces the so-called multiple testing problem or 

multiple comparisons problem92.  
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To control the number of false positives, an approach developed by Benjamini and 

Hochberg in 1995 is mainly used. It is a method aiming to control the expected proportion 

of falsely rejected hypotheses, namely the false discovery rate (FDR)93.  In a multiple 

comparisons test, if 𝑉 and 𝑆 indicate the values of false and true positives separately, the 

ratio of 𝑉/(𝑉 + 𝑆) is defined as the proportion of false discoveries represented by 𝑄. The 

FDR is the expectation of 𝑄: 

 𝐹𝐷𝑅	 = 	𝐸(𝑄) 	= 	𝐸	{𝑉/(𝑉 + 𝑆)} 	= 	𝐸(𝑉/𝑅) (4) 

The Benjamini-Hochberg procedure can be divided in two steps. Firstly, the p-values of all 

of the 𝑚 hypotheses tested are ranked from the smallest 𝑝8 to the largest 𝑝X. Secondly, to 

control FDR at level 𝑞, the largest i ∈ 𝑚	is determined such that 

 𝑝1 ≤
𝑖
𝑚 𝑞 (5) 

The discoveries with p-values ranking from 𝑝8  to 𝑝1  can be finally selected, which will 

statistically assure that FDR is controlled not higher than 𝑞. 

3.4 Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a method used in the situation when the statistical 

model is given while the parameters are unknown. MLE tries to obtain the parameters 𝜃 that 

maximize the likelihood function ℒ(𝜃; 𝑥) = 𝑝(𝑥; 𝜃), given the observations 𝑥. The logic 

behind this method is to find the parameter values that make the observations most 

probable94. 

This method defines 𝜃 which maximizes the likelihood function ℒ(𝜃; 𝑥) as the maximum 

likelihood estimate: 

 𝜃̂ = argmax
d

ℒ(𝜃; 𝑥) (6) 
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In practice, log-likelihood 𝑙𝑜𝑔ℒ(𝜃; 𝑥) is usually used instead of ℒ(𝜃; 𝑥), which produces the 

same maximum likelihood estimate. 

The general process of obtaining 𝜃 includes: (1) generate the likelihood function, (2) take the 

derivative of the likelihood function and set it equal to 0: Fhijℒ(d;k)
Fd

= 0, given continuous 

parameter space. 

3.5 Expectation Maximization Algorithm 

The expectation maximization (EM) algorithm is used to extend the usage of maximum 

likelihood estimation (MLE) to the cases where there are hidden variables95. Given the 

observed data set 𝑥 and the hidden data set 𝑧, EM algorithm aims to obtain the parameters 

𝜃  that maximize the likelihood function 𝑙𝑜𝑔ℒ(𝜃; 𝑥) = ∑ 𝑙𝑜𝑔𝑃(𝑥; 𝜃)k =

∑ 𝑙𝑜𝑔∑ 𝑃(𝑥, 𝑧; 𝜃)ok . 

The EM algorithm is based on Jensen’s inequality for concave function (e.g.,𝑙𝑜𝑔(∗)), which 

states 𝑙𝑜𝑔(𝐸[𝑦]) ≥ 𝐸[𝑙𝑜𝑔(𝑦)] (Equality holds if and only if 𝑦 is constant), where 𝑦 is a 

random variable and 𝐸[𝑦] is the expectation of it95. Thus, for any probability distribution 

𝑄(𝑧), using the random variable 𝑦 = t(k,o;d)
u(o)

: 

 𝑙𝑜𝑔 vw𝑃(𝑥, 𝑧; 𝜃)
o

x = 𝑙𝑜𝑔vw𝑄(𝑧)
𝑃(𝑥, 𝑧; 𝜃)
𝑄(𝑧)

o

x ≥w𝑄(𝑧)
o

𝑙𝑜𝑔 y
𝑃(𝑥, 𝑧; 𝜃)
𝑄(𝑧) z (7) 

where 𝑄(𝑧) = 𝑃(𝑧|𝑥; 𝜃) makes the equality hold. 

The EM algorithm is as follows: (1) initiate the parameters 𝜃|, (2) the expectation step (E-

step): construct a function 𝑔|, 𝑔|(𝜃) = ∑ 𝑃@𝑧|𝑥; 𝜃̂|Do 𝑙𝑜𝑔 } t(k,o;d)
t(o|k;d~�)

�, which lower-bounds 

𝑙𝑜𝑔𝑃(𝑥; 𝜃) [Eq. (7)], (3) the maximization step (M-step): determine new parameters 𝜃|B8 

which is calculated as the maximum of 𝑔|, (4) repeat E-step and M-step until the algorithm 

converges at the final optimized parameters95. In general, the idea behind EM algorithm is 

to assume the missing data, then the problem with incomplete data turns to using MLE to 

estimate parameters based on imputed complete data.   
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3.6 Hidden Markov Model (HMM) and Corresponding Algorithms 

Hidden Markov model (HMM) is a statistical model, which with respect to time series data 

analysis describes the relationships of the observed events and the causal hidden states. 

Referred to the book written by Jurafskey and Martin96, this part introduces the algorithms 

for HMM.   

Parameters of Hidden Markov Model 

The hidden Markov model was developed in 1996 by Baum et al.97 based on Markov chains98. 

A Markov chain describes a sequence of states and the corresponding transitions between 

different states, as shown in Figure 3.1. In a Markov chain, the initial probability distribution, 

which specifies the probabilities of the starting states, and the transition probabilities are 

required.  

 

Figure 3.1 A Markov chain for three different weather conditions 
The transition probabilities are shown. For example, the transition probabilities of “Hot” 
to “Hot”, “Warm” and “Cold” are 0.6, 0.3 and 0.1, respectively. 

 

In a hidden Markov model, the states of interest are hidden. Rather, we observe a sequence 

of events caused by the states. When we have a set of 𝑁 states 𝑄 = {𝑞8, 𝑞6, … , 𝑞�} and a 

sequence of T observations 𝑂 = (𝑜8, 𝑜6, … , 𝑜�), a hidden Markov model is defined by three 

parameters which can be represented as 𝜆 = (𝜋, 𝐴, 𝐵) . 𝜋 = {𝜋8, 𝜋6, … , 𝜋�}  defines the 

initial probability distribution over all states, whereof 𝜋1 is the probability of the Markov 

chain starting in state 𝑖 . 𝐴 = [𝑎1�]�×�  is the transition probability matrix, with 𝑎1� 

representing the probability of changing from state 𝑖 to 𝑗.  𝐵 = 𝑏1(𝑜|) is the sequence of 

observation likelihoods (emission probability matrix), representing the probability of 
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observing 𝑜| from state 𝑖. Table 3-2 shows the components of HMM. Figure 3.2 shows a 

hidden Markov model96,99. In this example, there are two hidden states of weather conditions 

“HOT” and “COLD”. The observations are the numbers of ice creams to eat in either 

weather condition. 𝜋, 𝐴 and 𝐵 are shown in the figure. 

Table 3-2. Components of a Hidden Markov model 
Table edited according to Daniel et al.96 

Components Property 
State space: 𝑄 = {𝑞8, 𝑞6, … , 𝑞�} Set of 𝑁states 
Observation sequence: 𝑂 = (𝑜8, 𝑜6, … , 𝑜�) Sequence of 𝑇 observations. 𝑜1  is from all possible 

observations 
Transition probabilities: 𝐴 = [𝑎1�]�×� 𝑎𝑖𝑗 is the probability of changing from state 𝑖 to 𝑗. 

∑ 𝑎1� = 1�
�78  

Emission probabilities: 𝐵 = 𝑏1(𝑜|) 𝑏1(𝑜|) is the probability of observing 𝑜| from state 𝑖 
Initial probability distribution: 𝜋 = {𝜋8, 𝜋6, … , 𝜋�} πi is the probability of starting in state 𝑖. ∑ 𝜋1 = 1�

178  

  

 

Figure 3.2 An example of hidden Markov model 
A hidden Markov model representing the association of weather with the numbers of ice 
creams eaten in either weather. Figure taken from Jurafskey and Martin (2018)96,99. 

Two assumptions of HMM 

HMM makes two important assumptions about the data while modeling (HMM in this thesis 

refers to first-order HMM). First, the probability for one specific state depends only on its 

previous state, which is called Markov assumption: 

 𝑃(𝑞1|𝑞8, … , 𝑞1�8) = 𝑃(𝑞1|𝑞1�8) (8) 

Second, each observation 𝑜1  depends only on the direct hidden state 𝑞1 , which is called 

independence assumption: 
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 𝑃(𝑜1|𝑞8, … , 𝑞1, … , 𝑞�, 𝑜8, … , 𝑜1, … , 𝑜�) = 𝑃(𝑜1|𝑞1) (9) 

Three fundamental questions regarding HMM 

HMM is featured with three important questions to answer. Firstly, HMM can be used for 

evaluation. Given 𝜆 = (𝜋, 𝐴, 𝐵) and an observation sequence of 𝑂 = (𝑜8, 𝑜6, … , 𝑜�), the 

likelihood of 𝑃(𝑂|𝜆) can be determined. Secondly, given 𝜆 = (𝜋, 𝐴, 𝐵) and an observation 

sequence of 𝑂 = (𝑜8, 𝑜6, … , 𝑜�), we can use HMM to find the most likely hidden sequence 

underlying the obversions. Lastly, given an observation sequence of 𝑂 = (𝑜8, 𝑜6, … , 𝑜�) and 

a set of states, the parameters  𝜆 = (𝜋, 𝐴, 𝐵) can be predicted via machine learning. There 

are corresponding algorithms to address those questions in the following sections. 

Evaluation: The Forward Algorithm 

Given a sequence of observations 𝑂 = (𝑜8, 𝑜6, … , 𝑜�) and parameters 𝜆 = (𝜋, 𝐴, 𝐵) of an 

HMM, to calculate the likelihood of observing 𝑂 from a particular sequence of states 𝑄, we 

can calculate the joint probability: 

 𝑃(𝑂, 𝑄) = 𝑃(𝑂|𝑄) × 𝑃(𝑄) =�𝑃(𝑜1|𝑞1)
�

178

×�𝑃(𝑞1|𝑞1�8)
�

178

 (10) 

Then, to get the likelihood of observing 𝑂 from all possible hidden states, we just need to 

sum up all joint probability results from all possible hidden state sequences: 

 𝑃(𝑂) =w𝑃(𝑂, 𝑄)
u

=w𝑃(𝑂|𝑄)𝑃(𝑄)
u

 (11) 

There is an obvious problem with the above method. It works well when the sample is small. 

If the state space 𝑁 is big, the 𝑁� possible hidden state sequences make it hard to compute. 

Instead, we use a dynamic programming algorithm, which is called the forward algorithm. 

The forward algorithm calculates the final result in a recursive manner by utilizing a forward 

trellis. As shown in Figure 3.3, which is an example of forward algorithm for calculating the 
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likelihood of observing 𝑂 = (3, 1, 3) given the hidden states H (hot) and C (cold),  the 

forward algorithm recursively calculates the probability of each cell in the forward trellis 

𝛼|(𝑗) , representing the probability of being in state 𝑗  after passing through the first 𝑡 

observations, by 

 𝛼|(𝑗) =w𝛼|�8(𝑖)𝑎1�𝑏�(𝑜|)
�

178

 (12) 

Here, 𝛼|�8(𝑖) is the previous forward path probability from the beginning to step t-1. 𝑎1� is 

the transition probability of moving from previous state i at step t-1 to current state 𝑗 at step 

𝑡. 𝑏�(𝑜|) is the probability of observing 𝑜| in the current state 𝑗. In the example, 𝛼6(1) is 

computed as the sum of 𝛼8(1) × 𝑃(𝐶|𝐶) × 𝑃(1|𝐶)  and 𝛼8(2) × 𝑃(𝐶|𝐻) × 𝑃(1|𝐶). 

 

Figure 3.3 An illustration of forward algorithm 
The forward algorithm using forward trellis to compute the likelihood of observing ice-
cream events 𝑂 = (3, 1, 3), given the hidden states of weather H (Hot) and C (Cold). 
States are in circles, while observations are in squares. 𝛼|(𝑗) at each cell represents the 
sum of probabilities of all paths reaching this cell. Figure taken from Jurafskey and Martin  
(2018)96.	
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Putting together the initialization and termination step, the forward algorithm to obtain the 

likelihood of observations in an HMM is summarized below. 

(1) Initialization: 

For each hidden state 𝑗: 

 𝛼8(𝑗) = 𝜋�𝑏�(𝑜8) (13) 

(2) Recursion: 

For 𝑡 = 2 to 𝑇: 

      For each hidden state 𝑗: 

 
𝛼|(𝑗) =w𝛼|�8(𝑖)𝑎1�𝑏�(𝑜|)

�

178

 
(14) 

(3) Termination: 

 𝑃(𝑂|𝜆) =w𝛼�(𝑖)
�

178

	 (15) 

 

 

Decoding the hidden states: Viterbi Algorithm 

Given an observation sequence 𝑂 = (𝑜8, 𝑜6, … , 𝑜�)  and an HMM 𝜆 = (𝜋, 𝐴, 𝐵) , using 

Viterbi algorithm100, we can find the most possible hidden state sequence. 

The logic of Viterbi algorithm is almost the same as the forward algorithm. The difference 

is that at the recursion step, we take the max of the previous path probabilities instead of 

summation. As shown in Figure 3.4, which is the same example as for forward algorithm, 

each cell of the forward trellis, 𝑣|(𝑗), is calculated by taking the most probable path heading 

to this cell, 
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Here, 𝑣|�8(𝑖) is the pervious Viterbi path probability from the start to step 𝑡 − 1. 𝑎1� is the 

transition probability from previous state 𝑖 to current state 𝑗. 𝑏�(𝑜|) is the probability of 

seeing 𝑜| in the current state 𝑗. In the example, 𝑣6(1) is computed by taking the max of 

𝑣8(1) × 𝑃(𝐶|𝐶) × 𝑃(1|𝐶)  and 𝑣8(2) × 𝑃(𝐶|𝐻) × 𝑃(1|𝐶). 

 

 
Figure 3.4 An example of calculating Viterbi path probability 
Given the observation sequence (in squares) of the numbers of ice-creams taken for three 
days 𝑂 = (3, 1, 3) and two hidden states of weather H (Hot) and C (Cold) (in circles), the 
best path heading to the cell 𝑣6(1) is the path with bold arrows and the value of 𝑣6(1)	is 
calculated as the max of 𝑣8(1) × 𝑃(𝐶|𝐶) × 𝑃(1|𝐶)   and 𝑣8(2) × 𝑃(𝐶|𝐻) × 𝑃(1|𝐶). 
Figure taken from Jurafskey and Martin  (2018)96. 

In the end, we want to get the most probable hidden state sequence underlying the 

observation sequence. The idea is to create a trace-back array at each step of getting 𝑣|(𝑗). 

In Equation 16, we store the state 𝑖  at 𝑡 − 1  which leads to the largest value for 

𝑣|�8(𝑖)𝑎1�𝑏�(𝑜|), namely argmax
8�1��

𝑣|�8(𝑖)𝑎1�𝑏�(𝑜|), in an array. After reaching the final 

step of getting the best score of max
8�1��

𝑣�(𝑖), we can trace back step by step and obtain the 

corresponding hidden state sequence which leads to this best score. Putting all steps together, 

the Viterbi algorithm is performed as below. 

 𝑣|(𝑗) = max
8�1��

𝑣|�8(𝑖)𝑎1�𝑏�(𝑜|) 

 

(16) 
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(1) Initialization: 

For each hidden state 𝑗: 

 𝑣8(𝑗) = 𝜋�𝑏�(𝑜8) (17) 

 𝑏𝑡8(𝑗) = 0 (18) 

(2) Recursion: 

For 𝑡 = 2 to 𝑇: 

      For each hidden state 𝑗: 

 𝑣|(𝑗) = max
8�1��

𝑣|�8(𝑖)𝑎1�𝑏�(𝑜|) (19) 

 𝑏𝑡|(𝑗) = argmax
8�1��

𝑣|�8(𝑖)𝑎1�𝑏�(𝑜|) (20) 

(3) Termination: 

 𝑇ℎ𝑒	𝑏𝑒𝑠𝑡	𝑠𝑐𝑜𝑟𝑒:	 𝑃∗ 	= max
8�1��

𝑣�(𝑖) (21) 

 𝑇ℎ𝑒	𝑠𝑡𝑎𝑟𝑡	𝑜𝑓	𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑒:	𝑞�∗ 	= argmax
8�1��

𝑣�(𝑖) (22) 

 

 

Learning the parameters: Baum-Welch Algorithm 

Given an observation sequence 𝑂 = (𝑜8, 𝑜6, … , 𝑜�), the HMM parameters 𝜆 = (𝜋, 𝐴, 𝐵) 

can be learned by using Baum-Welch algorithm, which is an instance of EM algorithm 

(section 3.5)101. 
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In Baum-Welch algorithm, the values for 𝜆 = (𝜋, 𝐴, 𝐵) are randomly initialized firstly, then 

they are repeatedly updated until convergence. Each updating iteration has two steps: E-step 

and M- step (www.cs.cmu.edu/~tbergkir/11711fa17/recitation4_notes.pdf).  

E-step: Assume 𝜆 = (𝜋, 𝐴, 𝐵) are known and compute 𝛾|(𝑖)	(the probability of being in 

state 𝑖 at time 𝑡) and 𝜉|(𝑖, 𝑗) (the probability of being in state 𝑖 at time 𝑡 and 𝑗 at time 𝑡 + 1): 

 𝛾|(𝑖) = 𝑃(𝑞| = 𝑖|𝑂, 𝜆) 
      

(23) 

 𝜉|(𝑖, 𝑗) = 𝑃(𝑞| = 𝑖, 𝑞|B8 = 𝑗|𝑂, 𝜆) 
      

(24) 

To compute 𝛾|(𝑖)  and 𝜉|(𝑖, 𝑗) , we firstly define the backward probability 𝛽|(𝑖) =

𝑃(𝑜|B8, 𝑜|B6, … , 𝑜�|𝑞| = 𝑖, 𝜆)  which is the probability of seeing 𝑜|B8, 𝑜|B6, … , 𝑜�  given 

starting state 𝑖 at time 𝑡. 𝛽|(𝑖) is calculated as:  

 𝛽|(𝑖) =w𝛼1�𝑏�

�

�78

(𝑜|B8)𝛽|B8(𝑗), 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 < 𝑇 (25) 

 

Now, knowing the forward probability 𝛼|(𝑖)  and the backward probability 𝛽|(𝑖) , we 

calculate  

 𝛾|(𝑖) = 𝑃(𝑞| = 𝑖|𝑂, 𝜆) =
𝑃(𝑞| = 𝑖, 𝑂|𝜆)

𝑃(𝑂|𝜆) =
𝛼|(𝑖)𝛽|(𝑖)

∑ 𝛼|(𝑗)�
�78 𝛽|(𝑗)

 (26) 

 

 
𝜉|(𝑖, 𝑗) = 𝑃(𝑞| = 𝑖, 𝑞|B8 = 𝑗|𝑂, 𝜆) 

												=
𝑃(𝑞| = 𝑖, 𝑞|B8 = 𝑗, 𝑂|𝜆)

𝑃(𝑂|𝜆)  
(27) 
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					=
𝛼|(𝑖)𝑎1�𝑏�(𝑜|B8)𝛽|B8(𝑗)

∑ 𝛼|(𝑗)�
�78 𝛽|(𝑗)

 

The denominators of 𝛾|(𝑖) and 𝜉|(𝑖, 𝑗) are the same, which is the probability of seeing the 

observation 𝑂 given the parameters 𝜆. 

M-step: When 𝛾 and 𝜉 are known, we use MLE to estimate the updated 𝜆: 

 𝜋𝑖¤ = 𝛾8(𝑖) (28) 

 𝑎𝑖𝑗¥ =
#𝑡𝑖𝑚𝑒𝑠	𝑗	𝑓𝑜𝑙𝑙𝑜𝑤𝑠	𝑖

#𝑡𝑖𝑚𝑒𝑠	𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔	𝑓𝑜𝑙𝑙𝑜𝑤𝑠	𝑖 =
∑ 𝜉|(𝑖, 𝑗)��8
|78

∑ 𝛾|(𝑖)��8
|78

 
      

(29) 

 
𝑏𝑖(𝑣¨)© =

#𝑡𝑖𝑚𝑒𝑠	𝑜	𝑖𝑠	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑔𝑖𝑣𝑒𝑛	𝑖
#𝑡𝑖𝑚𝑒𝑠	𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔	𝑖𝑠	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑔𝑖𝑣𝑒𝑛	𝑖 =

∑ 𝛿(i�,«¬)𝛾|(𝑖)
�
|78

∑ 𝛾|(𝑖)�
|78

	, 

 where 𝛿(𝑜|, 𝑣¨) = ­
1, 𝑖𝑓	𝑜| = 𝑣¨	
0, 𝑖𝑓	𝑜| ≠ 𝑣¨

 

(30) 

   

3.7 “Dynamic Regulatory Events Miner (DREM)” Based on Input-Output 

Hidden Markov Model (IOHMM) 

DREM is a software developed to integrate the time-series gene expression data and motif 

information (e.g., TF-targets information from ChIP-seq) to infer an annotated global 

temporal gene regulatory map66. In this map, the gene expression patterns are explained by 

transcriptional regulatory events and the corresponding transcription factors (Figure 3.5).  
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Figure 3.5 An illustration of a DREM (version 2.0) analysis 
Left: Input data for DREM, including the time-series gene expression data and the motif 
information (TF-gene interactions). Right: The model acquired for the given 6 time points. 
TFs (in boxes) are predicted to annotate the map, showing when and at which paths the 
specific TFs are functioning. The colors blue and red indicate up- and down-regulated TFs 
as compared to time point 0, respectively. Figure taken from Schulz et al. (2012)102. 

 

This method is based on input-output hidden Markov model (IOHMM)103, an extension of 

HMM. Analogous to HMM, IOHMM uses hidden states to cluster genes. Each hidden state 

is associated with a Gaussian output distribution of the gene expression values for one time 

point. IOHMM extends HMM by allowing for an additional input dataset, which is the motif 

information offered by users, to control the transition probabilities of genes from one hidden 

state to another66. In the first version of DREM, this input is the same for all time points. 

With the second version, the dynamic input can be used, meaning the input can be different 

for different time points. For calculating DREM models, this additional input of motif 

information is an optional feature. In this study, the second version of DREM was used and 

the use of the motif information was disabled in the model calculation. 
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Details of the DREM algorithm are shown below66: 

Parameters 

Given the motif information is used for the training of the model 𝑀, the parameters include: 

𝑛 is the number of time points of the time-series expression data. 

𝐻 is a set of hidden states. Each hidden state ℎ, ℎ ∈ 𝐻, is associated with one time point and 

a Gaussian output distribution 𝑓°. 

Θ is for the Gaussian output distributions. For each hidden state ℎ, there is an element 

(𝜇°, 𝜎°) ∈ Θ corresponding to the Gaussian distribution 𝑓°, where 𝜇° and 𝜎° refer to the 

mean and standard deviation respectively. 

𝐸 is the set of directed edges connecting hidden states 𝐻 and are constrained to enforce a 

tree structure. Each hidden state is constrained to have a maximum of 𝛾 children. The root 

of a tree is formed by the state at the first time point. For any hidden state except for the 

ones at the last time point, there must be at least one following state transitioning from it. 

For any hidden state except for the state at the first time point, there must be exactly one 

state at the previous time point. 

Ψ controls transition probabilities between hidden states, given the motif information is used 

to train the model. If a state ℎ  (ℎ ∈ 𝐻 ) has two children 𝑎  and 𝑏 , meaning (ℎ, 𝑎) ∈

𝐸, (ℎ, 𝑏) ∈ 𝐸, 𝑎 ≠ 𝑏 , there is 𝜓°  (𝜓° ∈ Ψ  ) which defines a logistic function104 to 

calculate the transition probability of a gene from one state to another. For a gene 𝑔 targeted 

by TFs 𝑥, the transition probability from state ℎ to 𝑎 is: 

 1
1 + 𝑒�µ¶(·��)�∑ µ¶(k)×·¸(k)¹

 (31) 
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where 𝜓°(𝐼𝑁𝑇)  is the intercept parameter of the logistic function and 𝜓°(𝑥)  is the 

corresponding element of 𝜓 for each TF. 𝐼j(𝑥1) (𝑥1 ∈ 	𝑥, 𝐼j(𝑥1) 	= {0, 1}) equals 1 if gene 

𝑔 is regulated by TF 𝑥1 and 0 otherwise. 

Likelihood Function 

𝑜j = }𝑜j(1), … , 𝑜j(𝑛 − 1)� indicates the log ratio expression values of gene 𝑔  at time 

points 1 to 𝑛 − 1, with the value at time point 0 as control. 𝑃(𝐻| = ℎC|𝐻|�8 = ℎA, 𝐼j), 

where 𝐻|  refers to the hidden state variable at time 𝑡 and 𝐼j  is the static input vector, is 

calculated as the transition probability of a gene 𝑔 transitioning from state ℎA at time 𝑡 − 1 

to ℎC at time 𝑡. This probability is 1 when ℎC is the only child of ℎA and 0 when ℎC is not a 

child of ℎA. If ℎA has more children, the transitions are depending on 𝐼j. 𝐼j is mapped to  

transition probabilities by a logistic function as described in previous part. The likelihood 

density 𝛾 for a gene set 𝐺 with the model 𝑀 is: 

 𝑟(𝐺|𝑀) = w𝑙𝑜𝑔w�𝑓¼(|) }𝑜j(𝑡)�
4�8

|78

�𝑃@𝐻| = 𝑞(𝑡)½𝐻|�8 = 𝑞(𝑡 − 1), 𝐼jD
4�8

|78¼∈uj∈¾

 (32) 

In the above equation, 𝑄  is the set of all paths of the constructed tree and each path 

connecting hidden states is with the length of  𝑛 starting from the root. In a path 𝑞 ∈ 𝑄, 

𝑞(𝑖) is the hidden state of this path at time point 𝑖. The product ∏ 𝑓¼(|)(𝑜j(𝑡))4�8
|78  is the 

product of the output densities of the expression values with given hidden states. The other 

product ∏ 𝑃@𝐻| = 𝑞(𝑡)½𝐻|�8 = 𝑞(𝑡 − 1), 𝐼jD4�8
|78  is the product of transition probabilities 

of given hidden states. Here this equation considers 𝐼j, but it will not be related to 	𝐼j when 

the motif information is not used for model training.  
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Model Learning 

The model learning process has the following steps:  

Pseudocode*: 
1. Separate the gene set into a train set 𝐺𝑡𝑟𝑎𝑖𝑛	and a test set 𝐺𝑡𝑒𝑠𝑡. 
2. Initiate the tree structure (𝐻, 𝐸) to be a single chain. Then perform parameter training and calculate 
the test score. The training is aimed to find the settings for Ψ and Θ which maximize 𝑟(𝐺|ÀA14|𝑀). The 
test score is 𝑟(𝐺|ÁÂ||𝑀). 
3. If the test score improves do  
    a. (𝐻Ã, 𝐸Ã) ← (𝐻, 𝐸) 

b. For each hidden state, ℎ, which can have another child 
    i. Temporarily add a single chain of hidden states from ℎ to  (𝐻Ã, 𝐸Ã) 
    ii. Train the temporary model from step 3.b.i 
    iii. let (𝐻, 𝐸) be the model structure from step 3.b.i, if the score of 𝑟(𝐺|ÁÂ||𝑀) is best found so far 
c. (𝐻Ã, 𝐸Ã) ← (𝐻, 𝐸) 
d. For each hidden state, ℎ in 𝐻′, which has a sibling in 𝐻′ 
    i. Temporarily remove ℎ and all descendants from (𝐻Ã, 𝐸Ã) 
    ii. Train the temporary model from step 3.d.i 
    iii. let (𝐻, 𝐸) be the model structure from step 3.d.i, if the score of 𝑟(𝐺|ÁÂ||𝑀) is at least as good       
         as the best so far 
    If (𝐻, 𝐸) was updated during 3.d.iii, repeat step 3.d 

4. Randomly resplit train and test data. 
5. Delete weakly supported paths, delay appropriate splits. 
6. Train parameters of model using all genes. 
7. Assign genes to paths using the Viterbi algorithm. 
8. Remove any path with fewer than 5 genes. 

 
* edited based on the pseudocode published by Ernst et al.66 

Transcription Factor Scoring 

After the tree structure is determined and the genes are assigned to the tree, TFs are assigned 

to the paths out of the splits to explain the bifurcation events in the time course. Given a TF 

𝑓, a split 𝑆 and a path 𝐴 out of this split, the score of TF 𝑓 for split 𝑆 on path 𝐴 is computed 

using the hypergeometric distribution: 

 w
@EÆ1 D }

4Æ�EÆ
4Ç�1

�

}4Æ4Ç�

ÈÉÊ	(EÆ,	4Ç)

17EÇ

 (33) 

where 𝑛Ë is the total number of genes for split 𝑆, of which 𝑛Ì genes are on path 𝐴, and 𝑐Ë 

is the number of genes into the split regulated by TF 𝑓, of which 𝑐Ì genes are on path 𝐴. 
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3.8 Read Mapping: Hash Table or Burrows-Wheeler Transform 

Mapping reads to the reference genome as accurate as possible is a crucial step for the NGS 

data analysis. The process follows the sub-processes: building index of the reference genome, 

obtaining seeds from a query sequence, performing pairwise alignment (seeds vs. reference 

genome). Several mapping tools have been developed, including BWA105, Bowtie106, 

SOAP2107 and SSAHA2108. The algorithms of index building tools can be grouped in two 

categories: hash table and Burrows-Wheeler Transform (BWT). One example of using hash 

table is shown in Figure 3.6. The disadvantage of this algorithm for read mapping is that it 

is time and internal memory consuming during computation. 

BWT is shown in Figure 3.7. It was originally developed for data compression, so BWT-

based indexing uses less memory than hashing algorithm. As shown in Figure 3.7 a, firstly, 

the reference sequence is transformed by adding a suffix $ which is lexicographically less 

than A, C, G from the sequence. Then, the raw Burrows-Wheeler matrix “M” is constructed 

by taking turns to move one base from the last column to the first column each time for 

each row. The rows are further sorted lexicographically according to the columns to generate 

the transformed matrix “Mt”. The matrix “Mt” has three features: first, ordering the last (L) 

column lexicographically outputs the first (F) column; second, for each row, the base in 

column L is the one before the base in column F in the original sequence; third, for each 

base, the relative location in column L and F does not change, which means the first “a” in 

column L corresponds to the first “a” in column F. All of those features make it sufficient 

to keep only the last column of “Mt” as the index.  

Knowing the last column of “Mt”, the first column can be inferred. Since the relative location 

of each base does not change from L to F, we can get the original sequence by doing “last 

first (LF) mapping” as shown in Figure 3.7 b. Similarly, when read mapping for a query 

sequence is performed by using the “LF mapping” algorithm, we will know whether the 

query sequence is matched (depending on how many mismatches are allowed) and its 

matching locations. Bowtie, which was used in this project, is based on BWT. It has the 

option -v to set the maximum number of mismatches for each query sequence. A maximum 

of two mismatches is allowed in this study. Another concern for read mapping is whether to 

consider the reads which are not uniquely mapped to the reference genome. Keeping 

uniquely mapped reads only may lead to the loss of some true binding sites, while keeping 
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multiple mapped reads may generate false-positives. In this study, the option -m in Bowtie 

(version 1.0.0) was used to keep only the reads uniquely mapped to the reference genome. 

 

 

 

 

Figure 3.6 Hashing algorithm 
(A) The genome is cut into overlapping 3-mers and their positions are stored in a hash table. 
(B) The query read is cut into 3-mers and compared to 3-mers from the reference genome. 
(C) Positions of each seed are sorted and compared to the other seeds. (D) The compatible 
positions are kept. Figure taken from Schbath et al. (2012)184. 
 
 
 
 

Figure 3.7 Burrows-Wheeler transform 
(a) The Burrows-Wheeler matrix and its transformation. (b) “last first (LF) mapping”. 
Figure modified from Langmead et al. (2009)106. 
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3.9 ChIP-seq Analysis 

In this study, to characterize the gene regulatory networks mediated by Smads, Eomes and 

T, ChIP-seq experiments were performed for each of these TFs. By analyzing ChIP-seq data, 

the potential target genes across the entire genome for the corresponding TFs could be 

identified. Generally, the process for ChIP-seq data analysis can be divided into four steps: 

read mapping (section 3.8), peak calling, motif analysis and peak annotation including 

genomic distribution and GO enrichment analysis. 

3.9.1 Peak Calling 

After the reads are mapped to the reference genome, the next step is to detect genome 

regions with significant enrichment of aligned reads. Those regions represent the DNA 

binding sites of a studied TF and will be associated with the genes that are potentially 

regulated by this factor. This step is performed using computational methods of peak calling. 

The commonly used tool for ChIP-seq peak calling is MACS2, which is the latest version of 

MACS109. MACS2 has some improvements, but the underlying algorithm for peak calling is 

the same as in MACS. The workflow (Figure 3.8) and the related algorithms of MACS are 

described below110. The terms “tags” and “reads” are interchangeable in this session.  

Removing Redundancy 

To reduce the effects of the biases from PCR amplification and sequencing library 

preparation, MACS removes redundant reads and retains non-duplicated mapped reads. 

Modeling the Shift Size of ChIP-seq Tags 

Theoretically, the ChIP DNA fragments have the same chances to get sequenced from both 

ends, so the Watson strand tags and the Crick stand tags around a true binding site should 

form a bimodal enrichment pattern (Figure 3.9 a). MACS uses this feature to model the shift 

size to locate the real binding sites. 

MACS defines the sonication size as bandwidth and slides 2*bandwidth windows across the 

reference genome to find regions which have tags more than m fold (a high-confidence fold-

enrichment) enriched compared to a random tag distribution across the genome. 1000 of the 

resulting high-quality regions are randomly sampled by MACS. Their Watson and Crick tags 
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are then separated and aligned by the center of their Watson and Crick peaks (Figure 3.9 b). 

The distance between the modes of the Watson and Crick peaks is defined as “d”. MACS 

then shifts all the reads by d/2 in the 5’ to 3’ direction to locate the most probable true 

binding sites. 

 

 

 

Figure 3.8 Workflow of MACS 
The steps shown in white boxes are skipped when there is no control sample. Figure 
taken from Feng et al. (2012)110. 
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Peak Detection: Poisson Distribution 

ChIP-seq experiments usually generate millions of reads. With this high genome coverage, 

read distribution across the genome can be modeled by Poisson distribution (Eq 34). l is the 

only parameter for Poisson distribution, which is here determined by total read number (𝑛), 

read length (𝑙) and effective genome size (𝑠):  

 𝑃(𝑘	𝑒𝑣𝑒𝑛𝑡𝑠) = 𝑒�l
l¨

𝑘!  
(34) 

Figure 3.9 Modeling the shift size of ChIP-seq tags 
(a). Forward/Watson and reverse/Crick read density profiles. (b). The 5’ ends of 
strand-separated tags from 1000 high-quality peak are aligned by the center of their 
Watson and Crick peaks. Figure taken from Valouev et al. (2008)185 and Zhang et al. 
(2008)109. 
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l =
𝑛𝑙
𝑠 	 

(𝑛: Total	read	number; 𝑙: Read	length; 𝑠: Effective	genome	length)	 

After 𝑑 is defined, MACS shifts every tag by 𝑑/2 distance and slides 2𝑑 windows across the 

genome to find the regions which are significantly enriched in the ChIP sample (default p < 

10e-5). Instead of a global 𝜆Ù¾  determined by the whole genome, a dynamic parameter 𝜆hiEAh , 

defined for each candidate peak, is utilized by MACS: 

 𝜆hiEAh = max	(𝜆Ù¾, [𝜆8¨], 𝜆Ú¨, 𝜆8Û¨) (35) 

𝜆hiEAh  takes the maximum value of 𝜆Ù¾ , [𝜆8¨], 𝜆Ú¨  and 𝜆8Û¨ , where 𝜆8¨ , 𝜆Ú¨  and 𝜆8Û¨are 

estimated from window sizes of 1 kb, 5 kb or 10 kb around the center of the peak location 

in the control sample. If there is no control sample, then the ChIP-seq sample itself is used 

for estimation (in this case 𝜆8¨ is not used). The advantage of using 𝜆hiEAh is that it captures 

the effect of local biases at least from DNA amplification and local chromatin structure. In 

addition, it is capable to deal with the situation of low read counts at small local regions109. 

By defining a threshold p-value, candidate peaks with a p-value lower than this threshold are 

called and the overlapping peaks are merged.  

Estimate False Discovery Rate (FDR) 

When a control sample is available, MACS can estimate an empirical FDR for each peak by 

swapping the ChIP and control samples. At each p-value, the same parameters are used to 

detect ChIP peaks over control and control peaks over ChIP. The FDR is defined as 

“Number of control peaks /Number of ChIP peaks”109.  

3.9.2 Association of Peaks to Genes 

The obtained ChIP-seq peaks were then assigned to genomic regions (promoter, genic and 

intergenic) and potential target genes which are annotated in the RefSeq database. The peaks 

that overlap with -5kb/+2kb of the TSS (transcription start site) regions were categorized as 
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promoter-associated and assigned to the corresponding genes. The peaks that overlap with 

+2kb from the TSS to +5kb after the TES (transcription end site) regions were categorized 

as genic-associated and assigned to the corresponding genes. The remaining peaks were 

defined to be intergenic and were associated with the closest up- and down-stream genes. 

3.10 RNA-seq Analysis 

For each RNA-seq sample, all of the sequencing reads were mapped to the mouse genome 

(mm10) using TopHat (version 2.0.11), a program built on Bowtie to align RNA-seq reads 

to a genome, with settings -M -g 1 to exclude the multi-mapped reads, thus keeping only the 

uniquely mapped reads111. Cuffdiff was then used to calculate the normalized FPKM 

(fragments per kilobase of transcript per million fragments mapped) which is a way to 

estimate gene expression levels. In this study, the default normalization method “geometric” 

was used for Cuffdiff112. For the detection of differential genes from RNA-seq data, the 

cutoff of log2 fold change 1 or 0.8 was used for distinct datasets. 

The programming language perl (https://www.perl.org/), R statistical program (R 3.1.2; 

https://www.r-project.org/), R packages “venneuler” (http://www.rforge.net/venneuler/)   

and “gplots” (http://CRAN.R-project.org/package=gplots) were used for hierarchical 

clustering, generation of venn diagrams and heatmaps related to RNA-seq data analysis in 

this project.      

3.11 ATAC-seq Analysis 

ATAC-seq Read Mapping 

Based on the procedure published by Koch et al.48, ATAC-seq data was firstly treated by 

using fastq-mcf of ea-utils (http://expressionanalysis.github.io/ea-utils/, version 1.04.807) 

to remove sequencing adapters (Supplementary Note 1) with the parameters  -0 -S -K -C 

1000000.  

Because of a bug in earlier versions of bowtie, due to which a pair of identical forward and 

reverse reads fail to map, the forward and reverse reads in which the adapters were found 

and removed were mapped separately using bowtie (version 1.0.0)113 with the options -y -m 1 

-S.  The fixmate function from samtools (v 0.1.19) was used to mate the related reads after 

merging the results from bowtie. The mapped mates with a maximum fragment size of 2000 
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bp were kept and the possible PCR duplicates were further removed using Picard 

(https://broadinstitute.github.io/picard, version 1.103).  

The reads in which no adapters could be found were trimmed by 5 bp to remove potential 

short adapter sequences which were not detected. The trimming was performed by using 

fastx_trimmer which is part of FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/, 

version 0.0.13). Bowtie was then used for paired-end mapping with the options -y -m 1 -S -X 

2000, followed by PCR duplicates removal with Picard. 

All of the resulting paired-end reads were combined in the final alignment file.  Reads located 

in artefact regions (Supplementary Note 2)48 were removed by samtools and reads mapped 

to the Y and M chromosomes were filtered out. 

For each sample, the macs2 callpeak function was used for peak calling to get broad peaks. 

The broad peaks from all samples were combined to generate a consensus peak set using the 

bedtools merge function. This bedtools merge function was further used for each sample to 

count the number of reads that overlap with each peak in the consensus peak set. The 

resulting read numbers were used to calculate pairwise spearman’s rank correlation 

coefficients for all samples and assess the reproducibility of the replicates (results in section 

4.3.1). 

Identification of Differential Dips 

To detect regions potentially occupied by TFs, the replicates for each condition were merged 

and pair-end fragments longer than 120 bp were filtered out. The remaining fragments were 

identified as nucleosome-free regions, which are potentially bound by TFs. In order to 

specify the TF binding sites, these remaining fragments were trimmed to keep only the first 

10 bp from 5’ to 3’ direction of each read (after shifting 3 bp right for the positive strand 

and 1 bp left for the negative strand). These modified reads, namely the Tn5 binding sites, 

were used to call peak summits by macs2 with the option call-summits. And then pairs of 

adjacent summits separated by less than 150 bp were retained. The insert regions between 

these summit pairs were defined as “dips” and are considered to be the TF binding sites. The 

R packages GenomicRanges and rtracklayer were used at this step for the calculation. 
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To identify the regions with differential chromatin accessibility between different time points, 

the pair-end fragments were analyzed by diffreps114. Differential dips between corresponding 

time points were then detected by overlapping the dips with the differential chromatin 

accessibility regions. To validate the discovered dips, the profile plot was made to show the 

distributions of merged ATAC-seq signals in d1 to d3 and d2 to d4 samples around Eomes 

and T motifs in differential dips using deepTools115 (section 4.3.1, Figure 4.17). 

3.12 Motif Analysis 

Discovering TF binding sites from a set of DNA sequences during ChIP-seq and ATAC-

seq analysis is important for decoding gene regulatory networks. A TF binding site can be 

represented by a motif, which is a sequence pattern repeatedly occurring in a group of 

sequences. The computational methods for motif discovery include AlignACE116, 

MotifSampler117, Homer118, MEME119, etc. AlignACE and MotifSampler are based on Gibbs 

sampling120, which was shown to be ineffective with long sequences121.  MEME (Multiple 

Expectation Maximization Estimation) is based on EM algorithm described in section 3.5. 

It takes a group of sequences as input and discovers as many motifs as requested 

(http://meme-suite.org/doc/meme.html). Homer is a differential motif discovery algorithm, 

which aims to find motifs enriched in one group of sequences relative to the other group. 

The motif enrichment with Homer is determined using hypergeometric enrichment or 

binomial calculations118. 

3.13 Gene Ontology (GO) Term Enrichment Analysis 

After obtaining the target genes of a TF of interest from ChIP-seq, differentially expressed 

(DE) genes from RNA-seq or genes associated with regions of differential chromatin 

accessibility from ATAC-seq, we would like to functionally profile those genes, such as to 

determine the enriched biological processes of those genes. The Gene Ontology Consortium 

was formed with the purpose of constructing Gene Ontology (GO) terms to annotate genes. 

The GO terms describe gene function from three aspects: cellular component (the locations 

in the cell where a gene works, e.g., “nuclear membrane”), biological process (the biological 

processes a gene is involved, e.g., “mesoderm formation”) and molecular function (the 

function of a gene at the molecular level, e.g., “enzyme” and “transporter”)122. GO not only 

defines terms with respect to gene functions, but also comprises well-defined relationships 

between the terms, which helps to get better knowledge about the genes of interest. 
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GO enrichment analysis aims to find the overrepresented GO terms in a gene set of interest. 

There are several tools available, such as DAVID123 and BiNGO124, which differ in the 

underlying algorithms125. The most common algorithm for GO enrichment analysis is 

hypergeometric distribution (Eq. 36).  

 𝑃	(𝑋 = 𝑥) =
@ÜkD@

��Ü
4�kD

@�4D
 (36) 

In this equation, 𝑁 is the total number of genes (background genes/population genes), of 

which 𝑛 genes are of interest (e.g., differentially expressed genes from RNA-seq). 𝐾, a subset 

of 𝑁, is the total number of genes with the tested GO term, of which 𝑥 genes belong to 

those 𝑛 genes. The hypergeometric test uses the hypergeometric distribution to determine 

how significant the tested GO term is. To measure whether a GO term is overrepresented 

in these 𝑛 genes, the p-value of the hypergeometric test is calculated as the probability or 

chance of seeing at least 𝑥 genes out of all 𝑛 genes in the list of the tested GO term. The 

smaller the p-value is, the more significant this tested GO term is. The hypergeometric test 

is the same as the one-tailed Fisher’s exact test.  

DAVID, the tool used in this study, is built with a modified hypergeometric test (one-tailed 

Fisher’s exact test). To make the result more conservative, it modified the number of 𝑥 in 

Equation 36 as 𝑥 − 1 and then calculated the p-value for each term. This p-value indicates 

whether (𝑥 − 1)/𝑛 is more likely than by random chance as compared to the background 

of 𝐾/𝑁126. The enrichment p-values can be corrected to control false discovery rate by 

multiple testing correction methods Bonferroni, Benjamini or FDR provided by DAVID127.  
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3.14 Software 

Table 3-3 Tools used in this study 

Software Publication Weblink 

BEDTools 
(v 2.27.1) 

Quinlan and 
Hall, 2010 

http://bedtools.readthedocs.io/ 

Bowtie 
(v 1.0.0) 

Langmead 
et al., 2009 

http://bowtie-bio.sourceforge.net/index.shtml 

Cluster 3.0 de Hoon et al., 
2004 

http://bonsai.hgc.jp/~mdehoon/software/cluster/ 

Cufflinks 
(v 2.1.1) 

Trapnell et al., 
2010; Trapnell 
et al., 2012 

http://cole-trapnell-lab.github.io/cufflinks/ 
 

CummeRbund 
(2.24.0) 

Goff et al., 
2018 

https://bioconductor.org/packages/release/bioc/html/cum
meRbund.html 

DAVID 
(v 6.8) 

Dennis et al., 
2003 

https://david.ncifcrf.gov/ 

deepTools 
(v 2.5.3) 

Ramírez et al., 
2016 

https://deeptools.readthedocs.io/en/develop/ 

diffreps 
(v 1.55.6) 

Shen et al., 
2013 

https://github.com/shenlab-sinai/diffreps 

DREM 2.0 Schulz et al., 
2012 

http://www.sb.cs.cmu.edu/drem/ 

Ea-utils 
 

/ https://expressionanalysis.github.io/ea-utils/ 

Homer 
(v 4.8.2) 

Heinz et al., 
2010 

http://homer.ucsd.edu/homer/motif/ 

Java TreeView 
(v 1.1.6r4) 

Saldanha, 2004 https://sourceforge.net/projects/jtreeview 

MACS 
(v 2.1.0) 

  

MEME 
(v 2.1.0) 

Bailey and 
Elkan, 1994 

http://meme-suite.org/ 

Meme-ChIP 
(v 4.11.1) 

Machanick 
and Bailey, 
2011 

http://meme-suite.org/ 

mergeShuffledFastqS
eqs.pl 

/ https://github.com/broadinstitute/viral-
ngs/blob/master/tools/scripts/mergeShuffledFastqSeqs.pl 

Picard 
(v 2.18.27) 

/ https://broadinstitute.github.io/picard/ 

R 
(v 3.5.1) 

/ https://www.r-project.org/ 

SAMtools 
(v 0.1.19) 

Li et al., 2009 http://www.htslib.org/ 

TopHat 
(v 2.0.11) 

Kim et al., 
2013 

https://ccb.jhu.edu/software/tophat/index.shtml 
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4 Results 

4.1 Time-series Transcriptome Analysis of Mesoderm Formation in Vitro 

To determine the genome-wide transcriptome changes during the transition of stem cells to 

mesoderm and to assess the success of in vitro differentiation procedure, we performed time-

series RNA-seq using the in vitro system of the mouse embryonic stem cells (mESCs) 

differentiated to mesoderm. We decided to monitor the transcriptome at 10 stages of 

differentiation, including undifferentiated (ES), early hourly stages (1h, 6h, 12h) and later 

daily stages (d1-d6). Our experimental results showed that the differentiated cells at day 6 

were fully committed to cardiac mesodermal fate and at day 8 they became functional 

contracting cardiomyocytes (data not shown). 

The analysis workflow for the time-series RNA-seq included: (1) read mapping, (2) read 

counting, (3) differential gene expression analysis, (4) clustering and (5) functional 

enrichment analysis128. From the analysis, the in vitro mesoderm formation system was 

assessed by observing whether the temporal aspect of gene expression mimics that of 

mesoderm formation in vivo (i.e., down-regulation of pluripotency genes, up-regulation of 

mesodermal genes, expression of the EMT genes, and high expression of the cardiovascular 

system associated genes at day 6). After the in vitro differentiation approach was validated, it 

was used as the foundation in order to characterize the regulators involved in this process 

and develop a method which allows us to use an unbiased approach for a global analysis of 

the molecular mechanisms underlying EMT and the formation of mesoderm. 

4.1.1 Differential Gene Expression Analysis and Clustering 

All of the RNA-seq reads for 10 samples with 2 replicates each were treated as described in 

section 3.10 and the percentages of aligned reads for each sample were ranging from 53% to 

62% (Supplementary Table 1). Cuffdiff was used to calculate the FPKM values, which were 

scaled via the median of the geometric means of fragment counts across all sample libraries. 

The Pearson’s correlations between replicates show high reproducibility of the data 

(Supplementary Table 2). 

To determine the differentially expressed genes across the time course, the normalized 

FPKM values of 10 samples were used. The genes with FPKM values lower than 1 in all 
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samples (defined as “not expressed”) and the genes which are not annotated in RefSeq were 

firstly removed. Then, log2 fold change (log2FC) of the maximal FPKM against the minimal 

FPKM among the 10 samples was calculated for each of the genes. Application of the cutoff 

value of log2FC ≥ 1 resulted in a total of 9888 differentially expressed genes. 

To define the stages of in vitro differentiation equivalent to in vivo development, the 

expression patterns of marker genes were observed, including markers of pluripotency, PS-

like/nascent mesoderm, early cardiac mesoderm, committed cardiac cells and EMT (Figure 

4.1; Supplementary Table 3). 

Pou5f1, Sox2 and Nanog are pluripotency markers that define ES cells identity129, while 

Nodal is also involved in the development of all three germ layers130. Our data showed that 

the expression of pluripotency genes was relatively high at very early stages and dramatically 

decreased at later stages (Figure 4.1), roughly defining the time interval from ES to d1 as 

pluripotency/exit from pluripotency stage. d2 to d3 was defined as PS-like/nascent 

mesoderm stage, because PS and mesodermal marker genes, including Bmp4, Eomes, T, Fgf5, 

Wnt3/3a and Msgn1 became highly up-regulated at d2 or d3 (Figure 4.1). It has been shown 

that Bmp4 homozygous mutant mouse embryos die between E6.5 to E9.5 and show little or 

no sign of mesoderm development131. Wnt3a directly targets T and the mutation of Wnt3a 

leads to failure of the formation of paraxial mesoderm progenitors55. Then, d4 was defined 

as the stage of early cardiac mesoderm, based on the high expression of Mesp1, Foxf1 and 

Kdr (Figure 4.1). Mesp1 is essential for early cardiac mesoderm formation, because it initiates 

its generation by controlling the expression of downstream TFs, including Gata4 and 

Hand239,132. Foxf1-deficient mice embryos show cardiac ventricular hypoplasia133. Studies in 

mice have shown that Kdr is expressed in cardiovascular progenitors which are multipotent 

and give rise to the three lineages of a functional heart134,135. Genes of committed cardiac 

cells, including Tbx20, Hand2, Gata4, Gata5, Gata6, Myh6 and Tnnt2, were not expressed at 

the early stages but became highly expressed at d5 or d6 (Figure 4.1). Absence of Gata4 and 

Gata6 prevents cardiac myocyte differentiation and leads to acardia in mice136. Myh6 is a 

subunit of type II myosin which is needed for cardiac muscle contraction137. Tnnt2 is also 

related to cardiac muscle contraction, because homozygous knockout of Tnnt2 produces 

disorganized sarcomeres and noncontractile hearts138. EMT marker genes, including Cdh2, 

Cdh11, Snai1, Snai2, Zeb1, Zeb2 and Prrx1, get highly expressed during the differentiation 

starting at around d3 (Figure 4.1). Cdh1 and Cdh2 are related to cell-cell adhesion. The 
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epithelial marker Cdh1 (E-Cadherin) gets downregulated while the mesenchymal maker Cdh2 

(N-Cadherin) gets up-regulated. Prrx1 is involved in EMT induction and its expression is 

restricted in mesodermal cell types during embryonic development139,140. Snai1, Snai2, Zeb1 

and Zeb2 are transcriptional repressors triggering EMT by down-regulating Cdh1141,142. In 

total 711 differentially expressed TFs were detected during the process of mesoderm 

formation. A number of those TFs have been studied previously. The mechanisms of 

transcriptional regulation by the essential mesodermal TFs Smads, Eomes and T were 

characterized in detail (section 4.2). This data not only sheds new light on the function of 

these TFs, but also allows us to evaluate the success of our global unbiased approach to 

building mesodermal GRNs (section 4.3). 

Genes sharing the same expression pattern are often involved in the related functions by 

forming gene regulatory networks. After the differentially expressed genes were obtained, 

they were clustered using the normalized FPKM values produced by Cuffdiff. The distance 

matrix was calculated by Pearson’s correlation between genes. Figure 4.2 shows the clustering 

result. During clustering, the bigger the correlation coefficient is, the closer the genes are 

(Figure 4.2). 
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Figure 4.1 Heatmap showing differential expression of marker genes during the 
time course of mesoderm formation 
The expression of marker genes serves as basis for defining the stages of in vitro 
differentiation. Pluripotency genes are highly expressed at early stages and drop 
significantly at later stages, defining ES to d1 as pluripotency/exit from pluripotency stage. 
The expression of PS-like/nascent mesoderm markers peaks at d3 and roughly defined d2 
to d3 as PS-like/nascent mesoderm stage. Early cardiac mesoderm markers are highly 
expressed at d4. Starting at d5, cardiac mesodermal precursors and committed cardiac cells 
are formed. EMT starts from around d3 with the reduction of epithelial marker Cdh1 
expression levels and increased expression of mesenchymal maker genes. 
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Figure 4.2 Hierarchical clustering of 9888 differentially expressed genes 
Pearson’s correlation was used as the distance for clustering. The bigger the correlation 
coefficient is, the closer the genes are. The numbers (in red) marked on the left show the 
seven sub-clusters (section 4.1.2). On the right are selected marker genes for each sub-
cluster (section 4.1.2). 
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4.1.2 Sub-Cluster Analysis 

To gain more insight about what types of genes are expressed in a similar fashion during the 

in vitro mesoderm formation process, the hierarchical clustering tree was divided into seven 

sub-clusters as marked in Figure 4.2 and functional enrichment analysis was then performed 

for genes of each sub-cluster. 

Functional enrichment analysis is a common way to study big datasets, by which we can 

identify candidate genes or proteins sharing biological functions that are over-represented in 

a specific dataset. DAVID (https://david.ncifcrf.gov/) was used in this study to obtain 

enriched Gene Ontology (GO) terms122 for each cluster.  

Table 4-1 shows the gene expression patterns and the enriched GO terms for each of the 

seven clusters. In order to get the more specific GO terms for each cluster, all of the 9888 

DE genes rather than all mouse genes were used as the background.  

Cluster 1 included genes highly expressed at early stages which decreased quickly after d1. 

Those genes were related to GO terms “inner cell mass cell proliferation” (including genes 

Setdb1, Brca2 and Sall4) and “stem cell population maintenance” (including genes Pou5f1, Sox2, 

Dppa2, Fgf4 and Sall4). Setdb1 is a histone lysine methyltransferase. Setdb1-null blastocysts 

exhibit defective ICM, from which mouse ES cells cannot develop143. Sall4 is a TF expressed 

in early embryo and germ cells, with the expression pattern similar to Pou5f1 and Sox2144. 

Sall4 is required for early embryonic development and ES cells pluripotency by forming an 

interconnected autoregulatory network with Pou5f1, Sox2 and Nanog in ES cells145. 

Cluster 2 included genes peaking at 1h and dropping sharply afterwards, which associated 

with the GO term “cell adhesion” and “stem cell population maintenance”. Genes annotated 

with “cell adhesion” included Jup, Itga1 and Itga6. The well-known pluripotency marker genes 

Nanog, Tbx3, Esrrb, Klf4 and Stat3 were also in this cluster associated with the GO term “stem 

cell population maintenance”. 

Genes in cluster 3 on average were highly expressed at d1 and then dropped continuously. 

Pola2, Pold1, Dscc1, Mcm7 and Mcm8 were related to the enriched GO term “DNA replication”, 

while many histone-related genes, such as Hist1h4b, Hist1h4f, Hist1h4h, Hist1h4i and Hist2h4, 
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were annotated with “DNA methylation on cytosine”, “nucleosome assembly” and “protein 

heterotetramerization”, indicating reduced cell proliferation. 

Genes in cluster 4 were highly expressed at d1 and d2. They were mainly related to “brain 

development” which included genes Id1, Pitx2 and Pou3f1, indicating transient expression of 

neural marker genes, some of which are also important for mesoderm development. 

Genes in cluster 5 include those that reach maximum expression levels at d3 and d4. Manual 

inspection revealed that many mesodermal marker genes, including Eomes, T, Mesp1, Tbx6, 

Fgf5, Wnt3a, Wnt5a, belonged to this cluster. DAVID produced mesoderm-related GO terms 

such as "somitogenesis" or “lung development” as well as "Wnt signaling pathway", which 

plays important roles in mesoderm formation. 

Genes in cluster 6 were highly expressed starting at d3 and d4, reaching maximum expression 

levels at d5 and d6. They were related to “heart development”, which fit the development 

process correctly. Cluster 6 also contained EMT marker genes, including Cdh2, Chd11, Snai1, 

Snai2, Zeb1, Zeb2 and Prrx1, and well-known makers associated with cardiac cells, including 

Gata4, Gata5 and Tnnt2.  

Genes in cluster 7 were highly expressed starting at d5, and included genes associated with 

“angiogenesis” (e.g., Ephb2, Smad5, Xbp1, Ccbe1 and Shb) and genes associated with 

“sarcomere organization” (e.g., Myh6, Srf and Mybpc3). 

The stages of in vitro differentiation was previously roughly defined by manually looking at 

the expression patterns of marker genes: pluripotency (ES ~ d1), PS-like/nascent mesoderm 

(d2 ~ d3), early cardiac mesoderm (d4), committed cardiac cells (d5 ~ d6). Unbiased 

clustering based on expression patterns grouped functionally related marker genes. Thus, the 

in vitro differentiation system was shown to recapitulate the in vivo process. Moreover, the 

genes in the same cluster are likely to be regulated by the same mechanism and are potentially 

involved in the same biological processes, collaborating by forming gene regulatory networks. 
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Table 4-1. GO term analysis for seven sub-clusters 
 
Clusters Associated 

Genes 
(examples) 

GO terms 

Cluster 1: 2788 genes 

 

 

 
Pou5f1 
Sox2 
Mtf2 
Dppa2 
Fgf4 

 

Term P-Value 
-inner cell mass cell 
proliferation 4.2E-4 

-stem cell population 
maintenance 6.7E-3 

 

Cluster 2: 579 genes 

 

 

 
Nanog 
Tbx3 
Esrrb 
Stat3 
Tet1 
Klf4 
Prdm14 
Tcl1 
Jup 
Gbx2 
Gli2 
Pou4f2 
 

 

Term P-Value 
-Cell adhesion 2.6E-3 
-stem cell population 
maintenance 1.6E-2 

-germ cell development 2.0E-2 
-axon guidance 3.0E-2 

 

Cluster 3: 383 genes 

 

 

 
Pola2 
Pold1 
Dscc1 
Pten 
Tert 
Hdac11 
Prmt7 
Mcm7 
Mcm8 
 
 

 

 

Term P-Value 
-nucleosome assembly 4.7E-10 
-DNA methylation on 
cytosine 5.7E-8 
-protein 
heterotetramerization 6.9E-6 
-cell division 5.3E-4 
-DNA replication 2.9E-3 
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Cluster 4: 760 genes 

 

 

 

 
Pou3f1 
Gabra5 
Id1 
Pitx2 
Cxcl12 
Arnt2 
Oxct1 

 

Term P-Value 
-brain development 5.5E-3 
-neuromuscular process 
controlling balance 6.6E-3 
-synapse organization 1.7E-2 

 

Cluster 5: 638 genes 

 

 

 
Eomes 
T 
Mesp1 
Tbx6 
Fgf5 
Wnt3a 
Wnt5a 

 
Term P-Value 
-lung development 1.7E-5 
-somitogenesis 7.2E-5 
-anterior/posterior pattern 
specification 1.3E-4 
-canonical Wnt signaling 
pathway 5.8E-4 
-compartment pattern 
specification 1.1E-3 

 

Cluster 6: 3983 genes 

 

 

 
Cdh2 
Cdh11 
Snai1 
Snai2 
Zeb1 
Zeb2 
Prrx1 
 
Gata4 
Gata6 
Tnnt2 

 

Term P-Value 
-cartilage development 6.5E-6 
-heart development 1.9E-4 
-smooth muscle cell 
differentiation 1.4E-4 
-epithelial to mesenchymal 
transition 2.9E-4 
-cell migration 9.0E-4 
-BMP signaling pathway 2.3E-3 
-blood vessel development 2.3E-3 
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Cluster 7: 757 genes 

 

 

 
Myh6 
Myl2 
Myh7b 
Myom3 
Myo1d 
Mybpc1 
Mybpc3 
Srf 
Ets1 
Etv3 
Elk4 
Rnnx1 
 

 

Term P-Value 
-angiogenesis 3.3E-4 
-immune system process 2.3E-3 
-sarcomere organization 3.2E-3 

 

 

4.2 Gene Regulation by Transcription Factors Smads, Eomes and T during 

Mesoderm Formation 

Our time course transcriptome analysis showed that the marker genes of different 

developmental stages followed the expected order of in vivo mesoderm development, 

suggesting that this transcriptome dataset can be used as the foundation to study the 

regulators involved in mesoderm formation and EMT.  

Mesodermal differentiation time course transcriptome (RNA-seq) and chromatin 

accessibility (ATAC-seq) data were used in combination to build global gene regulatory 

networks in an unbiased way (section 4.3). For validation of the constructed global gene 

regulatory networks, we decided to build detailed GRNs centralized on the established 

essential mesodermal TFs Smads, Eomes and T. In addition to validating the global GRN, 

identification of downstream targets of Smads, Eomes and T in the same model system 

allowed to directly assess the extent of their cooperation and characterize the mode of 

regulation of their common and unique target genes. To achieve these purposes, we 

performed ChIP-seq and RNA-seq using wild-type and mutant cells for each TF. While the 

ChIP-seq data uncovers the DNA binding sites of a TF, RNA-seq from wild-type and mutant 

samples would show the genes up- or down-regulated by a TF. For a specific TF, by 

combining the results of ChIP-seq and RNA-seq, the regulated genes with TF binding sites, 

i.e. direct target genes, can be discovered. 
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4.2.1 Smads 

R-Smads transduce the signals initiated by ligands of the TGF-b family. In particular, Smad2 

and Smad3 are activated in response to TGFb, Activin and Nodal, while Smad1, Smad5 and 

Smad8 mediate BMP signaling. Smad4, which binds to phosphorylated Smad2/3 and to 

phosphorylated Smad1/5/8 is a common partner involved in both pathways (Figure 1.6).  

We set out to monitor the time-dependent strength of Smad-signaling by detecting the levels 

of phosphorylated Smad1/5/8 and Smad2/3 during the course of mesoderm differentiation. 

Both pathways were activated as early as 12h after Bmp4 treatment, and the levels of 

phosphorylated Smads reached the maximum on d1 and d2 (Figure 4.3). Therefore, we 

decided to perform ChIP-seq and RNA-seq using samples collected on d2 of differentiation. 

Using this time point allows us to study Smad signaling at the peak of its activity and obtain 

enough material for ChIP experiment. 

 

Figure 4.3 Phosphorylation levels of Smad1/5/8 and Smad2/3 proteins detected 
by Western blotting (Figure provided by Dr. Pavel Tsaytler) 
 

To identify downstream genes of Smad signaling pathways, we performed RNA-Seq for 

Smad4 wild-type and knockout cells. Using the cutoff log2FC ≥ 0.8, 1062 differentially 

expressed genes, including 550 up- and 512 down-regulated genes, were obtained (Figure 

4.4). The genes up-regulated by Smad4 included Id1, Id2, Id3, Tdgf1, Wnt (Wnt3, Wnt4, Wnt5b, 

Wnt6, Wnt7b, Wnt8a), FGF (Fgf8, Fgf17), Notch3, Nodal, Nanog, Axin2, Mixl1, Eomes and T. 

Id1 and Id3 have been shown to play major roles during cardiac development146. In the mouse, 

loss of Axin1 leads to embryonic lethality, accompanied by many malformations147. Strikingly, 

expression of mesodermal genes Wnt3, Eomes, T, Fgf8 and Pitx2 shows very strong 

dependency on Smad signaling. The genes down-regulated by Smad4 included Pax6, a key 
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TF regulating eye and brain development. Mutation of Pax6 is associated with aniridia148. 

Functional enrichment analysis, which used all the expressed genes in wild-type or knockout 

samples as the background, showed that genes up-regulated by Smad4 were related to BMP 

and WNT signaling pathways, while genes down-regulated by Smad4 were highly related to 

nervous system development (Figure 4.4).  

 

GO Terms of the up-regulated genes P-Value 
-multicellular organism development 3.0E-16 
-BMP signaling pathway 5.9E-7 
-cell fate commitment 9.3E-7 
-immune system process 3.6E-6 
-mammary gland epithelium development 4.5E-6 
-angiogenesis 9.2E-6 
-positive regulation of cell proliferation 1.3E-5 
-Wnt signaling pathway 2.3E-5 
 
 
  
GO Terms of the down-regulated genes P-Value 
-inner ear morphogenesis 1.1E-6 
- multicellular organism development 1.1E-6 
-chemical synaptic transmission 1.6E-5 
-nervous system development 2.2E-5 
-G-protein coupled receptor signaling 
pathway 4.9E-5 
-central nervous system development 6.0E-4 
-angiogenesis 9.7E-4 
-signal transduction 1.0E-3 
  
  

 

Figure 4.4 Genes up- or down-regulated by Smad4 KO 
Top 8 GO terms for genes up- or down-regulated by Smad4 KO are shown.  

To identify direct targets of Smad1/5/8 and Smad2/3 pathways, we performed ChIP-seq 

assays on Smad1 and Smad2/3 separately. Smad1/5/8 were shown to bind to overlapping 

regions, and so Smad1 binding sites represent those of Smad1/5/824. The ChIP-seq data 

analysis of Smad1 by macs2 (q value 0.05) yielded 6870 high confidence peaks. The same 

method yielded 3666 peaks for Smad2/3 (p value 0.0002). The de novo motifs found using 

MEME are shown in Figure 4.5. The Smad1 motif resembles that of Pou5f1/Sox2 and was 

also shown to be the most significant Smad1 motif by Chen et al.34. The Smad2/3 motif is 

the same as Smad3 motif identified by Badis et al.149. The detected motifs of Smad1 and 

Smad2/3 validated our experiments and indicated functional binding sites. 
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42, 27 and 31% of Smad1 peaks were located at the promoter, genic and intergenic regions 

respectively. 5976 genes were associated with the 6870 Smad1 peaks (Figure 4.5 A). The 

results of the similar analysis of Smad2/3 ChIP-seq data are shown in Figure 4.5 B. In total, 

3894 target genes associated with 3666 Smad2/3 peaks were obtained. 35, 30 and 35% of 

those peaks were located at the promoter, genic and intergenic regions respectively. Notably, 

the actual number of true target genes associated with intergenic peaks is likely to be less 

than predicted by our approach, since each intergenic peak was associated with both up- and 

down-stream closest genes. 

 

Figure 4.5 ChIP-seq analysis of Smads 
(A) and (B) show ChIP-seq results of Smad1 and Smad2/3 respectively: (1) top binding 
motif; (2) peak distribution; (3) illustration of ChIP-seq binding sites on a selected target 
gene (Wnt3/Axin2). 
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By overlapping the genes associated with Smad1 and Smad2/3 DNA binding sites with the 

genes differentially expressed in Smad4 WT/KO cells, 539 direct targets of Smad4 were 

obtained (Figure 4.6).  Among those 539 genes, 236 genes bound by Smad1 are unique for 

BMP pathway while 64 genes bound by Smad2/3 are unique for TGFb/Nodal pathway. In 

addition, 239 genes are shared by both pathways. The direct target genes of both pathways 

include Id2, Tdgf1, Wnt3, Wnt8a, Fgf8, Nodal, Nanog, Notch3, Axin2, Mixl1, Eomes and T. In 

mice, the gene Mixl1, expressed in the PS and nascent mesoderm at the beginning of 

gastrulation and involved in the formation of heart and gut, is reported to be bound by Foxh1 

in complex with Smad2/4 or Smad3/4150,151. Gain-of-function transgenic reporter assays 

showed that Eomes is regulated by Smad2/3 in the early mouse embryo152. T was also shown 

to be activated by Smad2/3, which recruit Jmjd3 to chromatin in response to Nodal 

signaling153. 

 

Figure 4.6 Venn diagram showing direct target genes of Smad1 and Smad2/3 
Direct targets of Smad1 (475 genes) and Smad2/3 (303 genes) were identified by 
overlapping genes related to Smads ChIP-seq peaks with DE genes from Smad4 WT/KO 
RNA-seq. 

 

To determine the position of Smad targets in the context of global transcriptome changes 

during the differentiation, I checked the distribution of 475 Smad1 target genes and 303 

Smad2/3 target genes in the seven sub-clusters from the transcriptome analysis (Table 4-1; 

Figure 4.2). It showed that Smad1 and Smad2/3 targets were significantly enriched in clusters 

4 and 5 (section 3.2) (Table 4-2).  
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Table 4-2. Enrichment analysis for target genes of Smad1 and Smad2/3 
"Cluster 1 (2788)” indicates that there are 2788 genes in cluster 1. “75 (2.7%)” indicates that 
75 (or 2.7%) of the 2788 genes from cluster 1 are among the 475 Smad1 target genes. 
Significant p values (< 0.0001) from Fisher’s exact test are marked in bold. 
 

 Cluster 1 
(2788) 

Cluster 2 
(579) 

Cluster 3 
(383) 

Cluster 4 
(760) 

Cluster 5 
(638) 

Cluster 6 
(3983) 

Cluster 7 
(757) 

Smad1 

475 
(direct targets) 

75 (2.7%) 41 (7.1%) 7 (1.8%) 68 (8.9%) 67 (9.8%) 148 (3.7%) 34 (4.5%) 

Fisher’s test 
(p value) 1 0.002 0.999 1.469e-08 2.112e-11 0.999 0.504 

Smad2/3 

303 
(direct targets) 

42 (1.5%) 28 (4.8%) 3 (0.8%) 43 (5.7%) 38 (6.0%) 101 (2.5%) 23 (3.0%) 

Fisher’s test 
(p value) 1 0.004 0.999 7.721e-06 8.741e-06 0.930 0.386 

 

Genes in clusters 4 and 5 become up-regulated very early during differentiation – 12h and 

d1, respectively. As SMAD signaling is the earliest response to differentiation cues, it is 

unsurprising to detect enrichment of Smad targets in these clusters. Notably, the majority of 

genes in clusters 4 and 5 are not direct Smad targets, so other regulators controlling 

expression of those genes must exist.  

4.2.2 Eomes 

Eomes is required for mouse mesoderm formation by influencing the movement of cells 

from the epiblast to the future mesoderm36. In the time course of the mouse ES cells 

differentiated to mesoderm, on the protein level, Eomes was highly expressed at d2 (Figure 

4.7). We therefore performed ChIP-seq and RNA-seq using samples collected on day 2 of 

differentiation. To build Eomes-mediated GRN, the same approach as for Smad-mediated 

GRN was used. Namely, ChIP-seq was performed to identify the binding sites of Eomes 

and then the RNA-seq in Eomes WT vs. KO cells was used to uncover the downstream 

target genes of Eomes. By combining ChIP-seq and RNA-seq results, direct targets of 

Eomes were identified. 
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10070 Eomes peaks were obtained from the ChIP-seq analysis, among which 45, 28 and 27% 

of peaks were located at the promoter, genic and intergenic regions respectively. Compared 

to Smads and T (next section), a greater ratio of Eomes binding sites was found at promoters 

rather than in genic or intergenic regions (Figure 4.5, Figure 4.8, Figure 4.11). The de novo 

motif analysis with MEME for all of the peaks detected Eomes motif as the most 

significant149. These Eomes peaks were associated with a total of 7346 genes (Figure 4.8).  

 
Figure 4.8 ChIP-seq analysis of Eomes 
(A) Distribution of 10070 Eomes peaks. (B) The most significant motif from de novo motif 
analysis. (C) Illustration of ChIP-seq binding sites on a selected target gene of Eomes 
(Sp5).  

 

Figure 4.7 Expression levels of Eomes during the differentiation time course 
detected by Western blotting (Figure provided by Dr. Pavel Tsaytler) 

                        ES     d1      d2      d3      d4     d5 
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By comparing the transcriptomes of Eomes WT and KO cells, 1443 differentially expressed 

genes were obtained. Overlapping these 1443 genes with the 7346 genes from ChIP-seq led 

to the identification of 622 direct target genes of Eomes (Figure 4.9). The up-regulated 

targets, in total 371 genes, included mesodermal markers T and Fgf5, while down-regulated 

targets, in total 251 genes, included Sox2 (a marker gene of neuroectoderm), Lef1 (a mediator 

of Wnt signaling), Id1/3 (inhibitors of bHLH TFs), Cdx1/2, Nkx1-2 and Stat4. 

 

Figure 4.9 Venn diagram showing direct target genes of Eomes 
622 direct target genes of Eomes were identified by overlapping genes related to Eomes 
ChIP-seq peaks with DE genes from Eomes WT/KO RNA-seq. 

 

Target genes of Eomes were combined with the time-series transcriptome analysis in order 

to test whether Eomes targets are enriched in any specific sub-clusters (Table 4-1; Figure 

4.2). The resulting overlaps are shown in Table 4-3. The target genes of Eomes are 

significantly enriched in cluster 4 and 5.  

Table 4-3. Enrichment analysis for target genes of Eomes 
"Cluster 1 (2788)” indicates that there are 2788 genes in cluster 1. “93 (3.3%)” indicates that 
93 (or 3.3%) of the 2788 genes from cluster 1 are among the 622 Eomes target genes. 
Significant p values (< 0.0001) are marked in bold. 
 

 Cluster 1 
(2788) 

Cluster 2 
(579) 

Cluster 3 
(383) 

Cluster 4 
(760) 

Cluster 5 
(638) 

Cluster 6 
(3983) 

Cluster 7 
(757) 

622 Eomes 
Targets  93(3.3%) 36 (6.2%) 21 (5.5%) 76 (10%) 72 (11.3%) 242 (6.1%) 28 (3.7%) 

Fisher’s Test 
(p value) 1 0.333 0.621 9.346e-07 1.572e-08 0.132 0.997 
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Eomes itself belongs to cluster 5, where the expression levels of genes peak at d3 and d4. 

Cluster 5 contains many mesoderm-related genes, which apart from Eomes include T, Mesp1, 

Tbx6 and Wnt3a. The enrichment of direct Eomes targets in cluster 5 points at its role as one 

of the master regulators for mesoderm formation. Among the 72 Eomes target genes in 

cluster 5, 60 and 12 genes are up- and down-regulated by Eomes respectively. The genes in 

cluster 4, with expression levels peaking at d1 and d2 and then declining dramatically, are 

also mostly up-regulated by Eomes. Among the 76 Eomes targets in cluster 4, 51 genes are 

up-regulated by Eomes while 25 genes are down-regulated by Eomes.   

4.2.3 T 

Previous studies have shown that T plays an important role in mesoderm formation. 

Homozygous mutations of T in mice result in incomplete mesoderm and the dysfunction of 

mesoderm-derived tissues154,155. To identify targets of T in our in vitro differentiation system, 

ChIP-seq for T and RNA-seq for T WT/KO were performed on differentiated ES cells at 

d3 when the expression of T reached its peak (Figure 4.10). 

 

 

For T ChIP-seq, 23714 peaks (q value: 0.00001) called by macs2 were obtained and 

associated with 13089 genes (Figure 4.11). T is known to bind as a homodimer to an 18 bp 

palindromic motif or to a T-box motif, which comprises a half of the long palindromic 

motif52,53. The de novo motif analysis with MEME of T peaks revealed binding motifs of T on 

top of the list: the palindromic motif (depicted in the motif database as T_full motif )156, and 

T-box motif, which is the DNA consensus sequence that can be bound by all members of 

T-box family. Figure 4.11 B shows the distribution of T peaks (26, 36 and 38% peaks were 

located at the promoter, genic and intergenic regions respectively), suggesting that T peaks 

are mainly enhancer associated. Figure 4.11 C shows two T targets Msgn1 and Tbx6 which 

were already shown to be regulated by T48,157.  

Figure 4.10 Expression levels of T during the differentiation time course 
detected by Western blotting (Figure provided by Dr. Pavel Tsaytler) 
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By comparing the transcriptomes of T WT and KO cells, 1149 differentially expressed genes 

were found. By overlapping those 1149 genes with the 13089 genes from ChIP-seq, 811 

direct target genes of T were obtained, including 536 up- and 275 down-regulated genes 

(Figure 4.12). Mesodermal markers Fgf8, Eomes, Mesp1 and Lef1 were directly up-regulated by 

T, while Fos, Id3, Igf2, Ascl2, Acer2, Heg1, Gata3, Fgf4 and Sox2 were inhibited by T. 

 

Figure 4.12 Venn diagram showing direct target genes of T 
811 direct target genes of T were identified by overlapping genes related to T ChIP-seq 
peaks with DE genes from T WT/KO RNA-seq. 

 

Figure 4.11 ChIP-seq analysis of T 
(A) Both binding motifs of T are on top of the de novo motif analysis result: T_full motif and 
T-box motif. (B) Most of peaks are located at the intergenic regions. (C) llustration of ChIP-
seq binding sites on two selected target genes of T (Msgn1 and Tbx6).  
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Similarly to Smads and Eomes, the distribution of T direct targets in the 7 clusters of the 

global time course transcriptome was determined (Table 4-1; Figure 4.2). Table 4-4 shows 

that they are highly enriched in cluster 5. It was shown in previous section that cluster 5 

contains a significant number of Eomes target genes (11.3%) and most of the known 

mesodermal marker genes, including Wnt3a, Eomes, T, Mesp1 and Tbx6. The results here show 

that over 25% of the genes in cluster 5 are directly controlled by T.  

Table 4-4. Enrichment analysis for target genes of T 
"Cluster 1 (2788)” indicates that there are 2788 genes in cluster 1. “102 (3.7%)” indicates that 
102 (or 3.7%) of the 2788 genes from cluster 1 are among the 811 T target genes. Significant 
p values (< 0.0001) are marked in bold. 
 

 Cluster 1 
(2788) 

Cluster 2 
(579) 

Cluster 3 
(383) 

Cluster 4 
(760) 

Cluster 5 
(638) 

Cluster 6 
(3983) 

Cluster 7 
(757) 

811 T Targets 102  
(3.7%) 

49  
(8.5%) 

16  
(4.2%) 

76  
(10%) 

160  
(25.1%) 

304  
(7.6%) 

60  
(7.9%) 

Fisher’s Test (p 
value) 

 
1 
 

0.278 0.999 0.012 <2.2e-16 0.662 0.450 

 

T and Eomes are both T-box TFs. Our results showed that the direct targets of Eomes and 

T are both enriched in cluster 5 of the time-series transcriptome data (Table 4-3 and 4-4), 

including 189 genes, of which 29 are targets of Eomes, 117 are targets of T, and 43 are targets 

of both. Furthermore, 44% (4480 out of 10070) Eomes ChIP-seq peak summits were within 

500 bp distance from T summits (Supplementary Figure 2 A), and Eomes and T share many 

downstream genes (Supplementary Figure 2 B). Previous studies have shown that Eomes 

and T bind to the same genome regions during gastrulation in Xenopus60 and that the genomic 

binding sites of T are in close proximity to those of Eomes in differentiating human ES 

cells35. These observations suggested that Eomes and T might have overlapping activities. 

To study the combinatorial functions of Eomes and T, we performed RNA-seq for Eomes 

knockout, T knockout and Eomes/T double knockout cells at d3 of differentiation. The k-

means clustering of DE genes produced different categories with distinct gene expression 

patterns (Supplementary Figure 3)158,159. It clearly showed that a great portion of DE genes 

were regulated by the combination of Eomes and T (such as genes in cluster 1 to 4), while 

others depended on only one of these TFs (such as genes in cluster 5 to 7) (Supplementary 

Figure 3). Our preliminary basic analysis of Eomes and T peaks associated with genes in the 

k-means clusters did not show any significantly enriched peak patterns for any of the clusters 
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(data not shown). In the future, more tests should be conducted to decipher the mechanisms 

of combinatorial Eomes and T interactions.  

4.3 Reconstruction of the Dynamic Regulatory Network Underlying Mesoderm 

Formation 

Combining ChIP-seq and RNA-seq for specific TFs to study the GRNs is limited to TFs for 

which KO cell lines and good quality antibodies are available. Otherwise, they have to be 

produced first, which is costly and time consuming. To overcome this limitation, we decided 

to use the following approach for global characterization of the molecular mechanisms of 

mesoderm formation process. 

The dynamic regulatory network of the whole mesoderm differentiation process was built 

by combining the time-series RNA-seq transcriptome dataset with the time-series ATAC-

seq dataset. In general, this approach consists of three major steps. In the first step, the time-

series RNA-seq data was used to cluster genes into paths that exhibit defined unique 

expression patterns based on Hidden Markov Model (Figure 4.13 A). In the second step, the 

ATAC-seq data was used to generate a TF-target relationship table (Figure 4.13 B). In the 

third step, the TFs were assigned to the paths based on the enrichment analysis of TF targets 

among the genes in the paths. This approach results in building the global gene regulatory 

network (Figure 4.13 C) underlying the process of mesoderm formation. This network allows 

us to predict TFs responsible for regulation of a subset of genes at every point of 

differentiation. Combining this method with GO term analysis reveals TFs associated with 

the determination of various cell fates (Figure 4.13 C).  

   

 
Figure 4.13 Three major steps to build the dynamic gene regulatory network/tree 
(A) Clustered time-series expression data. (B) TF-gene interactions. In this example, genes 
are clustered into 3 groups. Most of the genes in pink, blue and red paths are regulated by 
TF A, TF B, TF C/D, respectively. (C) The model structure generated from data (A) and 
(B). Figure taken and edited from Ernst et al. (2007)66. 



 

 

74 

 

The first and third steps of this approach were performed with DREM as described in 

section 3.7102,160. The advantages of this approach rely on integrating ATAC-seq and motif 

discovery analyses, which allows us to locate the potential binding sites of any TF with known 

motif. The chromatin regions that open or close differentially over time usually reflect that 

certain TFs exert their function there. I detected differentially open regions, discovered TFs 

that could potentially occupy those regions and associated them to the neighboring genes 

thus building the TF-target interaction table. This table was then used to calculate the 

enriched TFs for each path in the global gene regulatory network. 

In the end, the final global network was validated by comparing it to the detailed GRNs of 

Smads, Eomes and T. 

4.3.1 Inferring TF targets from ATAC-seq Data 

ATAC-seq was performed for 6 time points (ES, d1 to d5) with 2 replicates for each 

condition. All of the reads were treated as described in section 3.11 and the percentages of 

aligned reads for each sample are shown in Supplementary Table 4. The Spearman’s 

correlations between different samples show that the replicates are reproducible (Figure 4.14). 
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To find TFs binding to differentially accessible chromatin regions between two samples, for 

example d2 and d3, the ATAC-seq “dips” of sample 1 and sample 2 were defined separately, 

as depicted in the scheme of ATAC-seq analysis procedure (Figure 4.17).  The “dips” are the 

chromosome locations potentially bound by TFs (section 3.11). 

The size distribution of mapped ATAC-seq fragments shows that fragments longer than 120 

bp represent DNA regions occupied by nucleosomes13. Since we were interested in 

nucleosome-free TFs binding regions, fragments with a length of less than 120 bp, which 

correspond to regions devoid of nucleosomes, were only kept (Supplementary Figure 1). 

Then, to detect transposase insertion sites, the remaining reads were modified as described 

in section 3.11. Peak calling was performed after combining the modified reads of both 

Figure 4.14 Spearman's rank correlation coefficients between samples 
The heatmap of clustering based on the Spearman’s correlations (listed in the cells) 
between different samples shows that the replicates are reproducible. r1 and r2 
indicate replicates 1 and 2 respectively. 
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replicates. I then only kept the peak pairs with a distance of less than 150 bp between two 

peak summits and defined the insert regions between those peak pairs as dips (Figure 4.15). 

The dips represent genomic regions protected from Tn5 binding and transposition, and since 

these regions are nucleosome-free, they likely represent binding sites of TFs. 

 

Figure 4.15 An example of the identified dips 

The next step was to detect dips located at regions that undergo changes in chromatin 

accessibility during the time course. For that differential regions were firstly detected with 

"diffreps"114 using mapped ATAC reads (Figure 4.16). Then, by overlapping all of the dips 

of sample 1 and 2 with the differential regions between those two samples, the differential 

dips were defined. The same procedure was applied to find the differential dips between all 

adjacent time points and the results are summarized in Table 4-5. 

 

Figure 4.16 An example of the identified differential regions 
 
 
Table 4-5. Differential regions and differential dips between samples 
 ES vs. D1 D1 vs. D2 D2 vs. D3 D3 vs. D4 D4 vs. D5 

Differential 

regions 
16090 19854 16558 4377 3367 

Differential 

dips 
34321 32166 42013 10272 8008 
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Figure 4.17 Schematic procedure of ATAC-seq analysis to build TF-target gene 
interactions 
The steps in the dotted circles are from a parallel RNA-seq data analysis. 
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To assess the validity of the (differential) dips, I made use of the Eomes and T ChIP-seq 

datasets. In particular, I detected the precise locations of Eomes motif in 1799 sequences 

and T motif in 4787 sequences and overlapped them with the differential dips. Then, the 

profile plot was created to show the distributions of merged d1, d2, d3 ATAC-seq signals 

around Eomes motifs and d2, d3, d4 ATAC-seq signals around T motifs. The results show 

that the motifs of Eomes and T are on average located within the dips (Figure 4.18). 

 

 

Figure 4.18 The distributions of merged d1, d2, d3 ATAC-seq signals around 
Eomes motifs and d2, d3, d4 ATAC-seq signals around T motifs 
*M.C. indicates “Motif Center” (e.g., The motif center for Eomes is calculated as 10/2, 
since Eomes motif is 10 bp long). 

 

The differential dips were then associated with four closest genes, including two upstream 

and two downstream genes. Those genes can potentially be regulated by the TFs located at 

the differential dips. Then only genes that are differentially expressed between two 

consecutive time points were kept. For example, for d2 vs. d3, the genes associated with the 

differential dips of d2 vs. d3 were overlapped with the differentially expressed genes of the 

same two days from the transcriptome RNA-seq analysis (Figure 4.17). To determine which 

TF binding motifs were enriched at the differential dips associated with differentially 

expressed genes, motif analysis tool Homer was used. At this step, the enriched motifs were 

obtained, but Homer did not output their genomic locations. Thus, as a separate step, their 

exact locations within differential dips were then identified by a trace-back analysis with 

Homer to build their connections with their target genes. Using the resulting datasets, the 

list of TF-target gene interactions were built for every time point in the form represented in 

Table 4-6. The final list of TF-target gene interactions is the combination of all time points. 

For each specific TF-target interaction, it is kept in the final list only if this TF is expressed 

(“FPKM ≥	1” and “FPKM ≥	0.2 × max (FPKM of any time point)”) at either the current 
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or the next time point (Table 4-6).  Notably, during the motif analysis, for a TF which belongs 

to a TF group (where all TFs have the similar motif) (Supplementary Table 5), all members 

in this group share all of the target genes associated with this group. 

Table 4-6. Final list of TF-gene interactions 
The columns are TFs, target genes, input value (1: the TF-target gene pair is present; 0: the 
TF-target gene pair is not present) and time points. Part of the results are shown in this table. 
 

TF Gene Input Timepoint 
ATF1 AACS 1 ES 
ATF1 ABCA1 1 ES 
…. … … … 
ELF1 MEP1B 1 d1 
ELF1 METRNL 1 d1 
… … … … 
EOMES IGFBP3 1 d2 
EOMES IL33 1 d2 
… … … … 
T SAMD3 1 d3 
T SCARA3 1 d3 
… … … … 
FOXA2 CCDC162 1 d4 
FOXA2 CCDC40 1 d4 
… … … … 
NANOG BLNK 1 d5 
NANOG BMF 1 d5 
… … … … 

 

4.3.2 Reconstructing the Dynamic Regulatory Network Controlling Mesoderm 

Formation 

The dynamic TF-target gene interaction table created as described in section 4.3.1 contains 

TFs that can either induce opening of the chromatin or bind to open chromatin regions. 

This TF-targets dataset was integrated with our gene expression data from the time-series 

RNA-seq assay (ES and samples from d1 to d6) and used as the input for DREM to identify 

major regulators underlying the process of mesoderm formation. 

The gene pattern clustering was calculated using the time-series RNA-seq gene expression 

values. The FPKM values were firstly adjusted by adding 1 to avoid VES = 0, where VES 

indicates the gene expression value at the time point ES, and then normalized to 

log2(Vx/VES), where Vx indicates the gene expression value for the time point x, i.e., d1 to 
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d6. The genes with normalized FPKM values lower than 1 for all time points, considered 

not expressed during the time course, were then removed from the list. 

For the parameters to build the clustered gene expression tree, all input genes were used to 

evaluate and select the model, which corresponded to the “Penalized likelihood” framework 

in DREM. The maximum number of paths out of a split was set to two and the paths were 

not allowed to merge again after splitting. The parameters of convergence likelihood and 

minimum standard deviation were set to 0.01 and 0.2 respectively (section 3.7). At this step, 

the TF-target gene interactions were not allowed to influence the bifurcation of paths, i.e., 

the clustering was only based on the gene expression values. Using these parameters, the 

global GRN in a tree structure was constructed, which at the final time point consisted of 18 

paths (which we also refer to as branches) (Figure 4.19 A). To assess whether this tree 

generated on the basis of gene expression values is suitable for further analysis, I checked 

how well each path represents the actual trajectories of genes it contains. An example of 

trajectories of genes comprising path 3 is shown in Figure 4.19 B. Manual inspection of gene 

trajectories of each of the 18 paths indicated that the generated tree accurately detects and 

combines genes with common expression patterns and can be used for discovering TFs that 

regulate transcription during the formation of mesoderm (section 3.7). The GO term analysis 

(with all genes at the time point ES used as the background) was performed for the 18 final 

time point paths to show the gene functions related to each path and to further assess the 

validity of the tree structure. Biologically meaningful GO terms were enriched for most of 

the paths (Supplementary Table 6). For instance, the genes in path 9, highly expressed at d3 

and d4, include those related to gastrulation (Eomes, Mesp1 and Mixl1), somitogenesis (T, 

Msgn1 and Axin2) and mesodermal cell migration (Fgf8 and Mesp1). The genes in path 18, 

with the expression level steadily decreasing from the beginning of differentiation, include 

those related to stem cell population maintenance (Pou5f1, Esrrb, and Sox2). 
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A. 

 
B. 

     
 
Figure 4.19 The tree structure constructed using the time-series expression data 
A. The horizontal axis indicates time points and the vertical axis indicates log2(Vx/VES), 
where Vx is the expression value for each corresponding time point. The numbers indicate 
the paths from 1 to 18 and the corresponding GO terms for each path are listed in 
Supplementary Table 6. B. An example of trajectories of genes comprising path 3. 
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As is evident from the gene regulatory tree, during the differentiation time course, groups of 

genes that exhibited similar expression pattern until a particular time point, start to separate 

and form smaller gene groups of divergent fates. The ultimate goal of our approach is to 

identify TFs that selectively control these bifurcation events. We instruct DREM, using our 

TF-target gene interaction dataset, to identify target genes enriched in every branch of a 

bifurcation event and to assign corresponding TFs to these branches.  Since the TF-target 

gene interactions used for the computation of the TF assignment are time-point specific and 

the number of genes per path as well as the corresponding background are different, 

enrichment cutoff X (corresponding to p value 𝑝 = 10�") of various stringencies was used 

to assign TFs for every time point to keep the most significant and biologically meaningful 

TFs (ES to d1: X=4; d1 to d2: X=12; d2 to d3: X=4; d3 to d4: X=1.5; d4 to d5: X=12 and 

X=3). Separate figures of the regulatory trees were therefore generated to show for each time 

point the enriched TFs assigned to the corresponding paths (Supplementary Figure 4). 

Although our approach predicts TFs that regulate the bifurcation events at all time points of 

the differentiation time-series, we are mainly interested in the process of mesoderm 

formation and EMT. Therefore, the paths which are more relevant to these processes were 

analyzed in more detail. The GO term analysis indicated that the genes in path 1, which 

undergo the strongest up-regulation during the mesoderm formation, contained 

cardiovascular-related terms, such as "cardiac muscle contraction" and "angiogenesis" 

(Supplementary Table 5). Similar terms were enriched for the genes of the up-regulated path 

3. Path 4 had a clear enrichment of EMT-related terms, while the genes in path 18, which 

undergo the strongest downregulation, contained terms related to pluripotency maintenance. 

In line with this observation, we closely followed the bifurcation events leading to paths 18 

(in comparison to path 10; Figure 4.20), 1 (in comparison to paths 2 and 9; Figure 4.21), 3 

and 4 (in comparison to path 11; Figure 4.22) (Supplementary Table 6). We did not put 

emphasis on the other paths (such as 12 to 17), because, either the gene expression levels are 

not changing significantly during differentiation, or the GO terms are mainly metabolic-

associated, indicating those genes are mainly housekeeping genes with general cellular 

functions.  
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Bifurcation events in the dynamic regulatory network controlling stem cell 

population maintenance genes 

The genes in the path 18 (Figure 4.20) were continuously repressed during the time course. 

The GO term analysis of the genes comprising this path revealed enrichment of the term 

“stem cell population maintenance” (Supplementary Table 6). Indeed, this path included 78 

genes such as the pluripotency-related factors Pou5f1, Esrrb, Sox2, Nanog and Tet1. Down-

regulation of pluripotency genes is essential for the ES cell differentiation. And while TFs 

that repress pluripotency factors are not likely to be the main effectors of mesoderm 

formation, we decided to treat path 18 as a control group and observed the bifurcation events 

leading to its formation starting from ES cells (Figure 4.20).  

From the time point ES to d1, the genes comprising the tree are split in 4319 up- and 2658 

down-regulated genes (path A). To determine if genes responsible for any biological 

processes or cell fates are enriched among the up- and down-regulated pathways, GO term 

analysis was performed. The upward path genes were associated, albeit with low significance, 

to terms “signal transduction”, “cell migration” and “cell adhesion”, while the most 

significant terms associated to path A were  metabolism-related (Supplementary Figure 4 A).  

At the ES to d1 stage, the genes are associated to up- or downward branches mainly based 

on their expression at later time points. Thus, Figure 4.19 B indicates that about half of the 

genes from path 3, which stems from the upward branch of ES to d1 stage, are in fact not 

affected or even down-regulated at this stage. Moreover, the absolute average values of 

log2(Vd1/VES) for both up- and downward branches are lower than 1, raising the question 

how many of the 6977 genes in the tree are in fact differentially expressed from time point 

ES to d1. To evaluate this, I compared our ES and d1 transcriptome data. It yielded 1707 

DE genes (based on the cutoff: log2FC ≥ 1). Although 1408 out of 1707 DE genes are in 

the up- or downward branches of ES to d1, the majority of genes comprising these two 

branches are not differentially expressed. It suggests that this tree is suboptimal to study the 

TF regulators of early transcriptional events. The better approach would be to build a 

different tree using our transcriptome data for ES, 1, 6, 12 and 24h. Despite this limitation, 

our method predicts that TFs such as Smad2/3, Nanog, Esrrb and Stat3 are involved in the 

repression of genes in the path A. 
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As the pluripotency genes in path 18 stem from the 2658 genes of the path A, we next looked 

at the fate of these genes at the stage d1 to d2. 1887 genes remained unchanged and 771 

genes, including the future path 18, became further down-regulated and were segregated into 

a new branch, path B (Figure 4.20). The TFs responsible for the down-regulation of this 

branch include Foxh1, Tcfs, Lef1, Nanog, Pou5f1, Otx2 and Klf6. In addition, the GO term 

“stem cell population maintenance” is very significantly enriched in this path (Supplementary 

Figure 4 B). 

From d2 to d3, the 771 genes in path B were separated in two groups. 216 genes, containing 

the future path 18, were further down-regulated and formed path C, which was controlled 

by the TFs including Nanog, Pou5f1, Klf6, Smad3 and Zeb1. The corresponding GO terms 

enriched in this path contain “stem cell population maintenance”, “stem cell differentiation” 

and “endodermal cell fate specification” (Supplementary Figure 4 C). The remaining 555 

genes in the adjacent path D remained unchanged and there were no enriched TFs assigned 

to this path. The GO terms enriched in path D include “neural tube closure” and “negative 

regulation of apoptotic process”. Notably, at d3 to d4, path 10 segregates from path D. 188 

genes of path 10 are enriched in GO terms “cell adhesion” and “negative regulation of cell 

division” and are regulated by mesodermal factor TFs Eomes and T (Figure 4.20). 

From d3 to d4, the path 18 is finally segregated from path C.  It is separated from 138 genes 

of path 17, that contain Nodal, FoxD3, Jarid2 and other genes associated with GO terms 

"embryonic placenta development" and "negative regulation of transcription". Our method 

predicts that the separation of path 18 from path 17 is controlled by TFs such as Snai2, 

Smad2, Zfp263, Nanog, and Sp1/2/5. 

Overall, our results show that Nanog and Smads are required for regulation of path 18 genes 

throughout the differentiation time course, as they are assigned to paths A, B, C and 18. In 

contrast, the mediators of Wnt signaling (Tcfs and Lef1) are acting transiently between d1 

and d2.  
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Figure 4.20 Bifurcation events in the dynamic regulatory network controlling stem 
cell population maintenance genes 
For the assigned TFs, the colors blue, black and red indicate “up-regulation”, “not changing” and 
“down-regulation” of current gene expression levels compared to ES separately. 
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Bifurcation events in the dynamic regulatory network controlling cardiovascular 

system development 

In contrast to path 18 with genes constantly down-regulated, the genes up-regulated during 

the time course, namely path 1, including genes Hand1, Tgfbi, Actc1, Tnnt3, Tnnc1 and Tnni1, 

are highly related to “actin-mediated cell contraction”, “angiogenesis” and “cardiac muscle 

contraction” (Figure 4.21; Supplementary Table 6). The up-regulation of genes associated 

with cardiovascular system development is consistent with the differentiation process in vivo 

and is an important feature along the timeline of mesodermal development. Thus, we 

observed closely the bifurcation events leading to the formation of path 1 starting from ES 

cells (Figure 4.21).    

As mentioned previously, the split at the time point ES is biased to the gene expression 

patterns at later time points.  Genes in path 1 are originally grouped in the upward path from 

ES to d1 (path A, Figure 4.21), which include 4319 genes. These genes are associated with 

enriched GO terms “signal transduction”, “cell migration” and “cell adhesion” 

(Supplementary Figure 4 A). TFs such as Olig2 and Six1/4 were predicted to regulate their 

expression. 

As the cardiovascular genes in path 1 stem from the 4319 genes of the path A, we next 

studied the fate of these genes at the stage d1 to d2. 2746 genes remained unchanged and 

1573 genes, including the future path 1, became further up-regulated and were separated into 

a new branch, path B (Figure 4.21). Genes in path B are associated with enriched GO terms 

“positive regulation of cell migration”, “multicellular organism development” and “Wnt 

signaling pathway” (Supplementary Figure 4 B). TFs such as Klfs, Sox3/4, Tcfs, Lef1, Eomes 

and Foxh1 were predicted to be responsible for the up-regulation of this path. The enriched 

TFs Tcfs and Lef1 mediate Wnt signaling, which is required for mesoderm formation161. The 

combinatorial activities of Foxh1 and Eomes are required for vertebrate mesendoderm 

specification via Nodal signaling pathway162.  

From d2 to d3, the 1573 genes in path B were separated in two groups. 1135 genes kept 

unchanged and 438 genes, containing the future path 1, were further up-regulated and 

formed path C. This upward path C was associated with GO terms “heart morphogenesis”, 

“blood vessel remodeling” and “positive regulation of angiogenesis” (Supplementary Figure 

4 C). Accordingly, the previously studied “heart morphogenesis” associated TFs, including 
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Tead1/2163, Foxh1164, Sox4165, Jun166, Smad3167, Gata4168, Atf2169, Tbx3170, Zic3171 and Six1172, 

and “positive regulation of angiogenesis” associated TFs, including Stat3173, Ets1 and 

Gata2/4168, are predicted to regulate the genes in this path (Figure 4.21).  

From d3 to d4, the 438 genes in path C were further separated in two groups and the path 1 

was finally formed by segregating from path C. The 90 genes in path 1 are separated from 

348 genes of path D, which remained unchanged and are associated with GO terms 

“multicellular organism development” and “heart morphogenesis”. There are no TFs 

assigned to path D, while our method predicts that the divergence of path 1 is controlled by 

TFs such as Teads, Atfs, Tcfs and T-box TFs (Eomes, T and Tbx3/6/20). 

Notably, from d4 to d5, the 348 genes in path D were separated in two paths: path 2 and 9. 

In comparison to the continuously upward path 1, the expression levels of genes in path 2 

and 9 do not show significant change from d3 to d4. At the time point d4, 81 genes of path 

9 showing dramatical down-regulation are segregated from 267 genes of path 2 which are 

not changing significantly. The GO term analysis has shown that path 2 is related to “positive 

regulation of cell migration”, “outflow tract morphogenesis”, “positive regulation of smooth 

muscle cell proliferation” and “blood vessel development”, and path 9 is highly associated 

with “gastrulation” and “WNT signaling pathway”, which are required processes for the early 

differentiation and needed to be repressed at later time points  (Supplementary Table 6). The 

T-box TFs Eomes, Tbx20, Tbx6, Tbx3 are predicted to regulate gene expression of  path 9, 

even with a very stringent p value (Supplementary Figure 4 E). Since path 9 genes are down-

regulated, these T-box factors are predicted to act as repressors.  Many early mesodermal 

genes are co-expressed in this path, including Eomes, Mesp1, Mixl1, T, Msgn1 and Wnts, which 

are only transiently active. 

Similar to path 1, in the time period between d2 and d6, path 3 is steadily rising (Figure 4.21). 

The differences between path 3 and path 1 are that the expression levels of genes in path 3 

do not shown significant change from d1 to d2 and that the degrees of their up-regulation 

from d2 to d6 are varying. Path 3 shares the main enriched GO terms with path 1, which are 

“angiogenesis” and cardiac muscle related terms with “cardiac muscle tissue development” 

for path 3 and “cardiac muscle contraction” for path 1. The TFs assigned to path 3 are mostly 

common with the TFs assigned to path 1, indicating that starting from d3, these TFs activate 

cardiac muscle tissue development genes in path 1 and 3.  
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Overall, the results show that T-box TFs (such as Eomes), Teads, Tcfs and Foxh1 are 

required for regulation of path 1 genes starting from the differentiation time point d1, as 

they are assigned to paths B, C and 1 (Figure 4.21). Some of the enriched TFs such as 

Tead1/2 and Foxh1 have been shown to be related to “heart morphogenesis” in previous 

studies, a validation of this method. Starting from d4, as genes (in path 1, 2 and 3) associated 

with cardiovascular system development are constantly up-regulated, genes (in path 9) 

associated with “gastrulation” and “WNT signaling pathway” are significantly down-

regulated, since these genes are required for the early differentiation, but needed to be 

repressed at later time points. In general, the bifurcation events and associated TFs along 

paths 1, 2, 9 and 3 in the dynamic regulatory network well recapitulated the process of 

cardiovascular system development. 
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Figure 4.21 Bifurcation events in the dynamic regulatory network controlling 
cardiovascular system development 
For the assigned TFs, the colors blue, black and red indicate “up-regulation”, “not changing” and 
“down-regulation” of current gene expression levels compared to ES separately. 
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Bifurcation events in the dynamic regulatory network controlling EMT process 

Mesoderm formation is dependent on EMT. Among the 18 paths at the final time point, 

path 4, which has 497 genes, is highly related to GO term “positive regulation of epithelial 

to mesenchymal transition”, with corresponding genes Tgfb1i1, Crb2, Glipr2, Bmp2, Tgfbr2 

and Smad3 grouped in this path (Figure 4.22; Supplementary Table 6). Thus, we observed 

the bifurcation events leading to the formation of path 4 closely. 

Starting from the time point ES, the bifurcation events leading to path A and path B (Figure 

4.22) are common between path 4 and path 1. At the time point d2, the 1573 genes in path 

B were separated in two groups, which are the 1135 genes in path C, containing the future 

path 4, and the 438 genes which included the final path 1. The genes in path C were generally 

unchanged, having no enriched TFs with the selected cutoff. The GO terms “signal 

transduction” and “negative regulation of canonical Wnt signaling pathway” are highly 

enriched in path C, with the corresponding genes Bmp2, Notch1, and Wnt11, Wnt5a, Wnt9a 

grouped in this path. 

From d3 to d4, the 1135 genes in path C were further separated in two groups: the upward 

path D and the downward path 11. The 343 genes in path 11 were associated with “regulation 

of somitogenesis” and “Notch signaling pathway”. TFs such as Lef1, Nanog, Eomes and T 

were predicted to regulate the genes in this path. The 792 genes in path D are highly related 

to GO terms “positive regulation of epithelial to mesenchymal transition” and “negative 

regulation of canonical Wnt signaling pathway”. The GATA family was specifically assigned 

to path D and predicted to regulate this path.  

From d4 to d5, the path 4 is finally segregated from path D. It is separated from 296 genes 

of path 6, which are associated with GO terms “fatty acid metabolic process” and 

“establishment of epithelial cell apical/basal polarity”, containing genes such as Scd1, Foxf1, 

Wnt5a and Myo6 (Supplementary Table 6). There are no TFs assigned to path 4 and 6 with 

the selected cutoff. With a less stringent cutoff (X=1.3), TFs Smad3, Plagl1, Zfp711, Zeb1 

were assigned to path 4, while Ewsr1 was assigned to path 6 (data not shown). Zeb1 is EMT-

associated and probably up-regulate genes in path 4. 

Overall, the GATA TFs were shown to be important along the timeline of forming path 4. 

From d3 to d4, they were uniquely assigned to the path containing the future path 4 
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(Supplementary Figure 4 D), which is path D (Figure 4.22) annotated with the GO term 

“positive regulation of epithelial to mesenchymal transition”. Meanwhile, path 11, separated 

from path D at d3, is down-regulated and associated with GO terms “regulation of 

somitogenesis” and “Notch signaling pathway”, indicating genes in path 11 are required for 

early differentiation stages, rather than the later stages. 

In summary, through the bifurcation events in the gene regulatory network related to “stem 

cell population maintenance and differentiation”, “cardiovascular system development” and 

“EMT” (Figures 4.17 to 4.19), we demonstrated that the co-expressed genes were grouped 

into proper paths and the GO terms, together with the assigned TFs, were able to explain 

the bifurcation events properly. Since the TFs were predicted computationally, the validation 

was next performed by integrating our experimental data.  
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Figure 4.22 Bifurcation events in the dynamic regulatory network controlling EMT 
process 
For the assigned TFs, the colors blue, black and red indicate “up-regulation”, “not changing” and 
“down-regulation” of current gene expression levels compared to ES separately. 
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4.3.3 Validation of the Gene Regulatory Network  

The global gene regulatory network constructed in this study shows the bifurcation events 

(where a set of genes with a similar expression pattern diverge) in the time course of 

mesoderm formation. TFs that potentially regulate a certain set of genes grouped in a path 

were assigned to this path to explain the corresponding bifurcation events. For instance, in 

Figure 4.21, showing the bifurcation events controlling cardiovascular system development, 

Smad3 is assigned to path B, while Eomes and T are both assigned to path C and path 1. To 

assess whether the assigned TFs are biologically meaningful, the global network was validated 

by overlapping the target genes of Smads, Eomes and T with genes in specific paths of the 

network. The target genes used here included the DE genes from RNA-seq (WT/KO) and 

the direct targets from RNA-seq (WT/KO) combined with ChIP-seq binding sites. 

The target genes of Smads were obtained using ChIP-seq and RNA-seq (WT/KO) assays 

performed at d2. Therefore, the assignment of Smads on the paths between d1 and d2 was 

observed. The paths from d1 to d2 were ordered alphabetically from top to bottom as from 

path “A” to “D” (Figure 4.23). In the global GRN, Smads were assigned to “d1-d2” paths 

A and D, rather than paths B and C (Supplementary Figure 4 B). By overlapping target genes 

of Smads with genes in these four paths, it shows that Smads target genes are specifically 

highly enriched in paths “A” and “D”, rather than paths “B” and “C” (Table 4-7), which is 

consistent with the global GRN.  
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Figure 4.23 Paths from “A” to “D” marked for the enrichment analysis showing in  
Table 4-7 

 
 
Table 4-7. Overlap Smad targets with “d1-d2” paths (Figure 4.23) 
“DE genes” means downstream genes from RNA-seq WT/KO comparison analysis. “direct 
targets” are from overlapping that with ChIP-seq results. For instance, "A (1573)” indicates 
that there are 1573 genes in path A. “249 (16% of the path)” indicates that 249 (or 16%) of 
the 1573 genes from path A are among the 1093 Smad4 DE genes. (Fisher’s exact test: * p 
< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
 

 A 
(1573) 

B 
(2746) 

C 
(1887) 

D 
(771) 

Smad4 
(d1) 

1093 
(DE genes) 

249 **** 
(16%) 

240 
(9%) 

80  
(4%) 

124 **** 
(16%) 

288 
(direct targets) 

89 **** 
(6%) 

58 
(2%) 

20  
(1%) 

35 **** 
(5%) 

Smad4 
(d2) 

1062 
(DE genes) 

302 **** 
(19%) 

226 
(8%) 

76  
(4%) 

182 **** 
(24%) 

331 
(direct targets) 

112 **** 
(7%) 

70 
(3%) 

18  
(1%) 

54 **** 
(12%) 
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Our ChIP-seq and RNA-seq (WT/KO) assays of Eomes and T were performed at d2 and 

d3, we therefore observed the assignments of Eomes and T on the paths between d2 and d3. 

The paths from d2 to d3 were ordered alphabetically from top to bottom as from path “a” 

to “h” (Figure 4.24). From d2 to d3, the global GRN assigns Eomes and T to only path “a”, 

rather than any of the other paths (Supplementary Figure 4 C). By overlapping target genes 

of Eomes or T with genes in all 8 paths from d2 to d3, it shows that Eomes and T are 

specifically highly enriched in path “a”, rather than the other ones (Table 4-8), which is 

consistent with the global GRN. Moreover, the results above were compared with Eomes 

or T targets in our TF-target interaction dataset built as the input to DREM (Table 4-6), 

which generated a large number of common targets (Table 4-8). In conclusion, the 

assignment of TFs in the global GRN was shown to be valid according to the Smads, Eomes 

and T target data.  
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Figure 4.24 Paths from “a” to “h” marked for the enrichment analysis showing in  
Table 4-8 
 
Table 4-8. Overlap Eomes and T targets with “d2-d3” paths (Figure 4.24) 
“DE genes” means downstream genes from RNA-seq WT/KO comparison analysis. “direct 
targets” are from overlapping that with ChIP-seq results. The numbers in black are the 
results of common genes. Those overlapped genes were then further overlapped with targets 
of T or Eomes from our TF-targets dataset in each path, which generated the results marked 
in blue in this table. For instance, "a (438)” indicates that there are 438 genes in path a. “137 
(31% of the path)” indicates that 137 (or 31%) of the 438 genes from path a are among the 
1149 T DE genes. “(74; 54% of 137)” indicates that 54% of the 137 genes are further 
overlapped with targets of T from our TF-targets dataset. (Fisher’s exact test: * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001). 
 

 a  
(438) 

b  
(1135) 

c 
(1949) 

d 
(797) 

e 
(1352) 

f 
(535) 

g  
(555) 

h 
(216) 

T 

1149 
(DE 

genes) 

137 **** 
(31% of the path)  
(74;54% of 137) 

246  
(22%) 
(91;37%) 

181 
(9%)  
(46;25%) 

83 
(10%)  
(25;30%) 

60 
(4%)  
(8;13%) 

27 
(5%)  
(1;4%) 

92 (17%)  
(18;20%) 

41 
(19%)  
(15;37%) 

811 
(direct 

targets) 

112 **** 
(26% of the path) 
(66;59% of 112) 

189  
(17%)  
(77;41%) 

134 
(7%)  
(43;32%) 

52 
(7%)  
(20;38%) 

42 
(3%)  
(6;14%) 

17 
(3%)  
(1;6%) 

57 (10%)  
(15;26%) 

30 
(14%)  
(9;30%) 

Eomes 

1443 
(DE 

genes) 

157 **** 
(36% of the path)  
(88;56% of 157) 

234 
(21%)  
(93;40%) 

213 
(11%)  
(56;26%) 

105 
(13%)  
(24;23%) 

72 
(5%)  
(13;18%) 

46 ** 
(9%)  
(5;11%) 

125 
(23%)  
(32;26%) 

58  
(27%)  
(25;43%) 

622 
(direct 

targets) 

85 **** 
(19% of the path)  
(52;61% of 85) 

128  
(11%)  
(65;51%) 

83 
(4%)  
(29;35%) 

42 
(5%)  
(15;36%) 

31 
(2%)  
(8;26%) 

14 
(3%)  
(2;14%) 

40 
(7%)  
(16;40%) 

32 ** 
(15%)  
(15;47%) 
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5 Discussion 

Mesoderm formation happens early and is essential in embryogenesis. It involves complex 

mechanisms and tightly regulated gene expression. This study aimed to construct a global 

gene regulatory network (GRN) describing transcriptional regulatory events occurring 

dynamically during the course of mesoderm formation in the mouse. We employed an in vitro 

system using mouse ES cells differentiated to mesoderm in order to mimic the process of 

mesoderm formation in vivo. After the in vitro differentiation system was validated, it was used 

as the foundation for deciphering the GRNs mediated by the master mesodermal regulators 

Smads, Eomes and T. Furthermore, a global GRN was reconstructed, which reflects the 

whole gene regulatory process of mesoderm formation (Figure 4.13). This global network 

was validated by comparing its output with Smads, Eomes and T datasets, showing that these 

TFs are correctly assigned to their targets.  

Analysis and Validation of Mesoderm Formation in vitro 

To study developmental processes, it is essential to select a model system that allows to 

produce enough material for high-throughput experiments and to precisely score 

developmental stages. To fulfill these criteria, we chose to use in vitro mesodermal 

differentiation of mESCs. Applying this procedure to the mESCs resulted in formation of 

beating cardiomyocytes on differentiation day 8. To validate this in vitro system, time-series 

RNA-seq was performed for 10 stages of differentiation, including undifferentiated (ES), 

early hourly stages (1h, 6h, 12h) and later daily stages (d1 to d6).  By monitoring the 

expression patterns of known gene markers of ES cells, PS, EMT, mesoderm precursor, and 

cardiac mesodermal cells, it was investigated whether the temporal aspect of gene expression 

mimics that of mesoderm formation in vivo. The results showed that the in vitro system 

recapitulated in vivo mesoderm formation process and roughly defined the developmental 

stages during the time course. These included pluripotency stage (ES to d1) with markers 

Pou5f1 and Sox2 highly expressed at very early stages and decreased at later stages; PS-

like/nascent mesoderm stage (d2 to d3) with expression of markers Eomes, T, Fgf5, 

Wnt3/3a and Msgn1 peaking at d3; early cardiac mesoderm (d4) with high expression of 

markers Mesp1, Foxf1 and Kdr at d4; and committed cardiac cells (d5 to d6) with markers 

Tbx20, Hand2, Gata4, Gata5, Gata6 and Tnnt2 which were not expressed at the early stages 

while highly expressed at d5 or d6 (Figure 4.1). In addition, EMT started at around d3 with 
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the reduced expression of epithelial marker Cdh1 and increased expression of mesenchymal 

makers including Cdh2, Cdh11, Snai1, Snai2, Zeb1, Zeb2 and Prrx1, which is consistent with 

the differentiation process in vivo. 

Checking the expression patterns of well-known markers for various developmental stages 

is a very straightforward way to validate the in vitro differentiation system. Furthermore, since 

co-expressed genes tend to form gene regulatory networks and share the same functions, the 

time-series data was observed closer by clustering the DE genes during the time course. This 

cluster analysis was performed to further validate our in vitro system by observing the gene 

expression patterns of each cluster, including marker genes of various differentiation stages, 

and to explore the elements and functions of each cluster. The hierarchical clustering was 

used to cluster the time-series DE genes, because it allows us to use Pearson’s correlation to 

define the distance between genes and it does not require the prior knowledge of the number 

of clusters before clustering (i.e., one of the most common cluster method k-means 

algorithm)174.  

The hierarchical clustering tree was divided into seven sub-clusters and observed that the 

markers of distinct differentiation stages were clustered in the same group, for instance, 

pluripotency markers Pou5f1 and Sox2, mesodermal markers Eomes, T, Mesp1 and Wnt3a, 

EMT markers Cdh2, Snai1, Snai2 and Zeb1, which further validated the in vitro system 

(Figure 4.1; Table 4-1).  

Apart from observing the expression patterns of marker genes, the sub-clusters were utilized 

in order to functionally profile the co-expressed genes in each cluster. Since each cluster 

contains a lot of genes and it is not practical to explore each gene separately, GO term 

enrichment analysis was therefore employed. GO term analysis translates a gene list into a 

functional profile which offers insight of the underlying biological mechanisms associated 

with this gene list, including biological process, molecular function and cellular component. 

Although the current tools for GO term analysis are different in the aspects of data 

visualization, reference data source and analysis speed, their principle is to create a list of 

functional categories using annotation databases and to find the over-represented function 

categories for the input gene list175. Thus, the limitations are present in all tools based on this 

approach, including the tool DAVID123 used in this study. Firstly, the annotation databases 

to generate function categories are incomplete and so previously unknown functions for 
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known genes cannot be discovered, which can lead to incomplete or biased enriched GO 

terms. Secondly, a number of annotations are often high-level GO terms which are too 

general to be practically useful. Thirdly, there are small chances that some inferences are 

incorrect. Fourthly, the gene expression levels are not considered during the GO enrichment 

analysis, while the various expression levels can be useful to assign different weights to the 

corresponding biological functions175. Despite the limitations, GO term analysis is still a 

useful and popular method. 

Biologically meaningful GO terms were found for each cluster. Cluster 1 with genes highly 

expressed at early stages and started to decrease dramatically from 12h is related to “inner 

cell mass proliferation” and “stem cell population maintenance”. Cluster 2 with genes 

peaking at 1h and dropping sharply afterwards is related to “cell adhesion” and “stem cell 

population maintenance”. Cluster 3 with genes on average highly expressed at the start of 

differentiation and then dropped from d1 is related to “DNA methylation on cytosine”; 

“nucleosome assembly” and “protein heterotetramerization”, indicating reduced cell 

proliferation. Cluster 4 with genes peaking at d1 and d2 is related to “brain development”, 

indicating transient expression of neural genes, some of which are also important for 

mesoderm formation. Cluster 5 with transiently expressed genes peaking at d3 and d4 is 

related to “lung development” and “somitogenesis”, which are mesoderm-related terms. 

Cluster 6 with genes highly expressed starting at d3 and d4, reaching maximum at d5 and d6, 

is related to “heart development”. Cluster 7 with genes only highly expressed starting at d5 

is related to “angiogenesis” and “sarcomere organization” (Table 4-1).  

Since co-expressed genes are likely to be regulated by the same mechanism and are potentially 

involved in the same biological processes, the sub-cluster analysis provided candidates of co-

regulators for the TFs in the same cluster. For example, Sall4 is in the same cluster as Pou5f1 

and Sox2 and it has been shown to be required for ES cells pluripotency and early embryo 

development by forming an interconnected autoregulatory network with Pou5f1, Sox2 and 

Nanog in ES cells (Table 4-1). To find potential key TFs and co-regulators of known key 

TFs in each cluster, gene regulatory networks can be built for co-expressed genes in each 

cluster to infer TF-target gene interactions, by using methods such as Bayesian networks or 

motif analysis72,176. However, this analysis was not performed in this study, since the primary 

focus here was the validation of the in vitro system, rather than the details of gene regulation 

in each cluster.  
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In conclusion, the unbiased clustering analysis showed that the known marker genes for 

distinct differentiation stages were clustered together and that the GO terms were consistent 

with in vivo developmental procedure, demonstrating that the in vitro differentiation system 

recapitulated the in vivo process. Moreover, the co-expressed genes in each cluster can be 

used to explore the co-regulators of known TFs. 

Gene Regulation by TFs Smads, Eomes and T during Mesoderm Formation 

The validation of the in vitro differentiation system suggested that it could be used as the 

foundation to study the regulators underlying EMT and mesoderm formation. ChIP-seq and 

RNA-seq (WT/KO) for master regulators of mesoderm formation such as Smads, Eomes 

and T were carried out utilizing this system. While the ChIP-seq data uncovers the DNA 

binding sites of a TF, RNA-seq (WT/KO) data shows the DE genes (up- or down-regulated 

upon TF removal). For a specific TF, by combining the results of ChIP-seq and RNA-seq 

(WT/KO), the regulated genes with TF binding sites, i.e. direct target genes, can be 

discovered. With this analysis, I aimed to detect novel target genes of Smads, Eomes and T 

to extend our knowledge of the GRNs mediated by them. Moreover, the results were used 

for the validation of our reconstructed global GRN (section 4.3.2).  

It has been shown that DNA binding regions of Smad1, 5 and 8 display a significant overlap, 

so Smad1 binding sites represent those of Smad1/5/824. To identify direct target genes of 

Smad1/5/8 and Smad2/3 respectively, ChIP-seq assays on Smad1 and Smad2/3 were 

performed to detect their binding sites. RNA-seq (WT/KO) assay of Smad4 was performed 

to find DE genes. The reason for using Smad4 instead of Smad1/5/8 and Smad2/3 WT/KO 

cells for RNA-seq assay is that the phosphorylated Smad1/5/8 or Smad2/3 need to form a 

complex with Smad4 to function. The Smad4 knockout assay alone is sufficient to investigate 

the respective target genes of Smad1/5/8 and Smad2/3 by overlapping their respect ChIP-

seq associated genes with Smad4 WT/KO DE genes26. To select a time point for high-

throughput assays, the levels of phosphorylated Smad1/5/8 and Smad2/3 were detected 

using western blot, which showed that they reached the maximum at d1 and d2 (Figure 4.3). 

Thus, d2 samples were chosen to perform assays for Smads.  

The ChIP-seq peaks of Smad1 and Smad2/3 preferentially bind to enhancer-associated 

regions (genic and intergenic) compared to promoters. My analysis showed that the binding 



 

 

101 

motif of Smad1 is a Pou5f1/Sox2 binding site34, while Smad2/3 motif is the same as Smad3 

motif identified by Badis et al.149, which is a validation of our experiments and an indication 

of functional binding sites. 1062 DE genes were identified by Smad4 RNA-seq (WT/KO). 

The up-regulated genes by Smad4, including Id1, Id2, Id3, Tdgf1, Wnt (Wnt3, Wnt4, Wnt5b, 

Wnt6, Wnt7b, Wnt8a), FGF (Fgf8, Fgf17), Notch3, Nodal, Nanog, Axin2, Mixl1, Eomes and T, 

were annotated with GO terms “BMP/WNT signaling pathway”, while down-regulated 

genes by Smad4, including Pax6, were highly related to “nervous system development”. 

Many factors of signaling pathways such as WNT, FGF, Nodal and NOTCH that are 

regulated by Smads were detected. In particular, genes Wnt3, Wnt8a, Fgf8, Nodal and Notch3 

are direct targets of both Smad1 and Smad2/3. Besides these signaling molecules, genes Id2, 

Tdgf1, Nanog, Axin2, Mixl1, Eomes and T are directly regulated by Smad1 and Smad2/3 as 

well, of which Eomes and T have been shown to be targets of Smad2/3 in pervious 

studies152,153. 

The same approach was used to identify Eomes direct targets. In the time course of mESCs 

differentiated to mesoderm, Eomes was highly expressed on the protein level on d2. 

Therefore, d2 samples were chosen to perform assays for Eomes. 10070 Eomes peaks were 

obtained from the ChIP-seq analysis, which were associated with 7346 genes. Compared to 

Smads and T (Figure 4.5, Figure 4.8, Figure 4.11), a larger proportion of Eomes binding sites 

was found in promoter regions rather than in genic or intergenic regions. The de novo motif 

analysis using all Eomes peaks detected Eomes motif as the most significant149, an indication 

of functional binding sites. 1443 DE genes discovered by RNA-seq (WT/KO) analysis were 

overlapped with ChIP-seq associated genes, resulting in 622 direct target genes of Eomes. 

The 371 target genes up-regulated by Eomes included T and Fgf5, while the 251 target genes 

down-regulated by Eomes included Sox2, Lef1, Id1/3, Cdx1/2, Nkx1-2 and Stat4. 

To identify direct target genes of T, d3 samples were employed for ChIP-seq and RNA-seq 

(WT/KO) because of the highest expression of T at this time point. 23714 peaks were 

associated with a total of 13089 genes. The de novo motif analysis of T peaks revealed both 

binding motifs of T on top of the list: the palindromic motif (depicted in the motif database 

as T_full motif )156, and T-box motif, which is the DNA consensus sequence that can be 

bound by all members of T-box family. Overlapping ChIP-seq associated genes with 1149 

DE genes from T RNA-seq (WT/KO) assays, 811 direct target genes of T were obtained 
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(Figure 4.12). The 536 target genes up-regulated by T included mesodermal marker genes 

Fgf8, Eomes, Mesp1 and Lef1, while the 275 down-regulated target genes included Fos, Id3, Igf2, 

Ascl2, Acer2, Heg1, Gata3, Fgf4 and Sox2. 

In order to locate the target genes of Smads, Eomes and T during the differentiation time 

course, I checked the distribution of the direct target genes of Smad1 (475 genes), Smad2/3 

(303 genes), Eomes (622 genes) and T (811 genes) in the seven sub-clusters of the 

transcriptome analysis (Table 4-1; Figure 4.2). It showed that Smad1, Smad2/3 and Eomes 

targets were significantly enriched in clusters 4 and 5 and that T targets were highly enriched 

in cluster 5 (Table 4-2; Table 4-3; Table 4-4). As SMAD signaling is the earliest response to 

differentiation cues, it makes sense that Smad targets get enriched in very early up-regulated 

genes in cluster 4 and 5. Cluster 5 contains many mesoderm-associated genes, which, apart 

from Eomes and T, include Mesp1 and Wnt3a. The enrichment of direct target genes of Eomes 

and T in cluster 5 points at their roles as the master regulators for mesoderm formation. 

The T-box TFs Eomes and T were shown to bind to the same genome regions during 

gastrulation in Xenopus60. In addition, the genomic binding sites of Eomes and T were shown 

to be very close in differentiating human ES cells35. In our study, 44% (4480 out of 10070) 

Eomes ChIP-seq peak summits are within 500 bp distance from T summits (Supplementary 

Figure 2 A) and Eomes and T share many downstream genes, such as Cdx1/2, Lef1, Sall2, 

Zeb2, Stat1, Mixl1 and Fgf8 (Supplementary Figure 2 B). Moreover, our results (section 4.2.2 

and 4.2.3) show that the direct targets of Eomes and T are both enriched in cluster 5 of the 

time-series RNA-seq data (Table 4-3; Table 4-4). To study the combinatorial function of 

these TFs, we carried out RNA-seq assays for Eomes KO, T KO and Eomes/T double KO 

at d3. Different categories with various gene expression patterns were generated using k-

means clustering of DE genes (Supplementary Figure 3)158,159, which showed that a great 

number of DE genes were regulated by the combination of Eomes and T (such as genes in 

cluster 1 to 4), while others depended on only one of these TFs (such as genes in cluster 5 

to 7) (Supplementary Figure 3). Our preliminary basic analysis of Eomes and T peaks 

associated with genes in the k-means clusters did not show any significantly enriched peak 

patterns for any of the clusters (data not shown). More tests should be conducted in the 

future to characterize the mechanisms of combinatorial Eomes and T interactions. Notably, 

it can be insightful to perform cross comparison analysis for Smads, Eomes and T (i.e., 
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common targets) to interpret how they cooperate and influence each other, which we did 

not carry out since this is not the focus of this study. 

ChIP-seq binding peaks were associated with genes to identify the genomic binding locations 

and targeted genes of Smads, Eomes and T. The ChIP-seq peaks were assigned to genomic 

regions, such as promoter, genic and intergenic regions, as to putative target genes (RefSeq 

annotated genes). The peaks within -5kb/+2kb of the TSS regions were assigned to be 

promoter associated. The peaks within +2kb from the TSS to +5kb after the TES regions 

were assigned to be genic associated. The remaining peaks were defined to be intergenic. 

Genic and intergenic peaks are likely enhancer-related. When a ChIP-seq peak is intergenic, 

it is hard to define its real target genes. In this study, since the putative ChIP-seq target genes 

would be filtered by overlapping with DE genes from RNA-seq (WT/KO) assays, the 

intergenic peaks were associated with both of the closest up- and down-stream genes. 

Notably, ChIP-seq assays output more TF binding sites than the direct target genes identified 

by overlapping TF ChIP-seq target genes with DE genes from RNA-seq WT/KO assays, 

suggesting that not all observed TF bindings are functional. One possibility is that the 

binding is not acting on transcriptional regulation, but on other processes such as 

chromosome structure regulation. It is also possible that TFs happen to bind to randomly 

occurring target sequences which are not selected against, because those binding events do 

not significantly affect gene expression177.  In this study, most of the nonfunctional ChIP-

seq binding sites were filtered by comparing with DE genes from RNA-seq (WT/KO), while 

keeping biologically meaningful peaks associated with transcription regulation.    

The Global Dynamic GRN Orchestrating EMT and Mesoderm Formation 

To construct GRNs from time-series data, most of the available bioinformatical methods 

consider only the gene expression patterns in the time course and infer the static gene-target 

relationships either based on correlations between genes, such as relevance networks, or 

dependency between genes, such as Bayesian networks178. The method DREM utilized in 

this study offers the option to combine the time-series gene expression data with the dynamic 

regulatory data (TF-target gene interactions) to construct a global gene regulatory network 

in a tree structure (Figure 4.13), where the TFs responsible for the bifurcation events are 

assigned to the paths of the tree. 



 

 

104 

In this study, the global dynamic regulatory network underlying mesoderm formation was 

built by combining the time-series RNA-seq transcriptome dataset with the time-series 

ATAC-seq dataset. In general, this approach consists of three major steps. Firstly, the time-

series RNA-seq transcriptome data was used to train the parameters associated with the tree 

structure and group the co-expressed genes into paths based on hidden Markov model 

(Figure 4.13 A). Secondly, the ATAC-seq data was used to generate a TF-target relationship 

table for each time point (Figure 4.13 B). Finally, the predicted TFs were assigned to the 

paths based on the enrichment analysis of TF targets among the genes in the paths (Figure 

4.13 C). This global network allows us to predict TFs responsible for regulation of a subset 

of genes at every point of differentiation.  

The first and third steps of this approach were performed with DREM102,160. The authors of 

DREM highly recommend to integrate the TF-target interactions while performing the first 

step to train the parameters associated with the tree structure. We did not do this because 

then the tree structure is highly biased to the TF-target interactions. Concerning DREM, 

which offers putative mouse TF-target interactions to train the parameters, it is notable that 

the putative TF-target data can be very noisy, especially when it is prediction-based. A better 

approach is to use the experimentally validated TF-target interaction data. However, this data 

is only available for limited number of TFs. 

In this approach, only the time-series RNA-seq transcriptome data was used to train the 

parameters associated with the tree structure in the first step. For the second step, the time-

series ATAC-seq data was used to calculate the TF-target gene interactions for each time 

point. The TF-target interactions were used as the input for the third step to carry out the 

TF enrichment analysis for genes in each path of the tree. 

The first advantage of this approach is that ATAC-seq analysis was used to precisely locate 

the open chromatin regions potentially bound by TFs. The chromatin regions that open or 

close over time can be correlated to binding of certain TFs. By connecting differentially open 

chromatin regions, the genes associated with those regions and the potential binding TFs of 

those regions, the TF-target interactions were built to calculate the enriched TFs for each 

path of the global gene regulatory network. The second advantage of this approach is that it 

can be used to predict the potential binding genes for TFs with known motifs in one step, 

instead of performing ChIP experiments. Meanwhile, there are disadvantages of this 
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approach. Firstly, it is not applicable to TFs with no known motifs. In addition, TFs with 

similar motifs are hard to distinguish. 

Time-series ATAC-seq data were used to build TF-target interactions. ATAC-seq uses a 

mutated hyperactive Tn5 transposase which can cut exposed DNA regions and 

simultaneously adapter-ligate those regions which then get amplified by PCR for NGS. The 

chromatin accessible open regions are potential regions where TFs can bind and exert their 

functions to regulate gene expression. However, it is challenging to identify the precise TF 

binding sites from ATAC-seq sequencing data, because the fragments might not be 

nucleosome-free and the Tn5 transposase insertion can cover part of the TF binding sites. 

Since TFs generally cannot bind to nucleosome-occupied regions, I firstly filtered out the 

mapped ATAC-seq fragments longer than 120 bp, because they represent DNA regions 

occupied by nucleosomes according to the size distribution of all mapped ATAC-seq 

fragments (Supplementary Figure 1). Then, since the kept nucleosome-free regions can be 

broad and have no binding TFs, I focused on identifying the “dips” of ATAC-seq signaling 

profile, which represent genomic regions protected from Tn5 binding and transposition, and 

since these regions are nucleosome-free, they likely represent binding sites of TFs. To detect 

Tn5 transposase insertion sites with a better resolution, I modified the reads by only keeping 

the first 10 bp from the 5’ to 3’ direction of each read (after shifting 3 bp right for the positive 

strand and 1 bp left for the negative strand, according to the binding architecture of Tn5 

transposase87). Peak calling was performed after combining the modified reads of both 

replicates. Then only the peak pairs with a distance of less than 150 bp between two peak 

summits were kept and the insert regions between those peak pairs were defined as dips 

(section 3.11). The reason 150 bp was selected as a cutoff to define the dips was that most 

of the DNA regions potentially occupied by TFs are shorter than 150 bp, mostly around 60 

bp, according to the global distribution of distances between peak summits (Supplementary 

Figure 5). Then, the “differential dips” were defined by overlapping the dips identified from 

two samples with their respective “differential regions”, which were identified in parallel. 

The advantage of integrating “differential regions” to the determination of “differential dips” 

is that the “differential regions” were calculated using elongated reads which are relatively 

broader regions and contain more signals. The TF-target interactions were built on 

“differential dips”.   
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In order to identify TF binding sites from ATAC-seq data, the published methods generally 

fall into two categories: computational footprinting179 and peak calling followed by motif 

discovery. Instead of using computational footprinting, which usually requires a very high 

read coverage, peak calling followed by motif discovery was used after this method was 

improved. The difference and advantage of the improved method lies in the utilization of 

“dips” (section 3.11), which best suits this study. Another relatively different strategy to 

identify TF binding sites I have tried was using Homer with the parameter -nfr. This resulted 

in genomic regions that contain both high signal and a gap in between. The resulting regions 

were generally too broad and did not pass my further validation, so this method was not 

employed in the study.  

Since the identified dips are the potential TF binding sites, to assess the validity of them, I 

utilized our Eomes and T ChIP-seq data. A dip contains ATAC-seq signals at the sides and 

a gap in between, so it was assumed that the TF binding motifs generally locate at the center 

of dips. The validation here was divided into two steps. Firstly, the precise locations of 

Eomes and T motifs, which were top motifs from the de novo motif analysis of Eomes and T 

ChIP-seq assays, were obtained. Then, the profile plot was generated to show the 

distributions of merged d1, d2, d3 ATAC-seq signals around Eomes motifs and d2, d3, d4 

ATAC-seq signals around T motifs. The result demonstrated that the motifs were on average 

located within the dips and indicated that the dips were well defined (Figure 4.18).  

In this study, only the differential open chromatin regions from ATAC-seq was used. In 

principle, all open regions, combined with either motif analysis or ChIP-seq data analysis, 

are useful to predict which TFs are involved in transcriptional regulation or which TFs are 

regulating the genes of interest. In this study, considering only the differential open regions 

helped us to narrow down the candidates of TFs which play more important roles in the 

differentiation process. 

The parameters to enforce the tree structure of the global GRN were trained by only the 

time-series transcriptome data. The final tree structure includes 18 branches at the final time 

point, which was supported by appropriate groups of co-expressed genes and biologically 

meaningful GO terms enriched for most of the paths (Supplementary Table 6). For example, 

the genes in path 9 are highly expressed at d3/4 and annotated with GO terms gastrulation 

(Eomes, Mesp1 and Mixl1), somitogenesis (T and Msgn1) and mesodermal cell migration (Fgf8 
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and Mesp1). Compared to the seven sub-clusters from our transcriptome analysis (Table 4-1), 

this path fits the pattern of sub-cluster 5 and all the genes above are in this sub-cluster. 

Notably, while determining the tree structure, there is a tradeoff between the number of 

paths (variety of gene expression patterns) and the number of genes in each path. As shown 

in Figure 4.19 B, illustrating the trajectories of genes comprising path 3, there are some 

outliers which do not follow the pattern of this path. They can be assigned to a more 

appropriate path if there are more paths allowed during data training, but this will cause a 

problem that some paths contain too few genes to carry out further analysis.  

After the tree structure of the global GRN was determined, enrichment analysis was used to 

assign the TFs to the paths out of the splits to interpret how genes of each path were 

regulated by specific TFs. We are mainly interested in the process of mesoderm formation 

and EMT. Thus, according to the GO terms enriched in the paths at the final time point, I 

followed the timeline of differentiation and analyzed the bifurcation events related to the 

processes of stem cell maintenance (Figure 4.20), cardiovascular system development (Figure 

4.21) and EMT (Figure 4.22).  

At the final time point, path 18 with genes continuously repressed during the time course is 

highly related to the GO term “stem cell population maintenance” (Figure 4.20). As a control 

group, the bifurcation events resulting in the formation of path 18 were firstly studied. My 

results show that Nanog and Smads are assigned to all paths leading to the future path 18, 

indicating they are required for regulation of path 18 throughout the differentiation time 

course. In addition, the TFs Klfs are shown to be very important for regulation of path 18 

from d1 to d3 (Figure 4.20).  

In contrast to path 18, the continuously rising path 1 is related to cardiovascular system 

development (Figure 4.21). The results show that T-box TFs (such as Eomes), Teads, Tcfs 

and Foxh1 are required for regulation of path 1 during the differentiation time course starting 

from d1. Starting from d4, genes (in path 9) associated with “gastrulation” and “WNT 

signaling pathway” are significantly down-regulated, since they are required for the early 

differentiation, but need to be repressed at later time points (Figure 4.21). Genes in path 9 

contained many early mesodermal genes, such as Eomes, Mesp1, Mixl1, T, Msgn1 and Wnts. 

T-box TFs Eomes and Tbx3 are predicted to regulate gene expression of this path, even with 

a very stringent p value. With a less stringent p value, the mediators of Wnt signaling (Tcfs 
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and Lef1) and EMT-associated TF Snai2 are also enriched in this path (Supplementary Figure 

4 E). 

The bifurcation events that resulted in the formation of path 4 (Figure 4.22) were then 

observed, since it is related to the GO term “positive regulation of epithelial to mesenchymal 

transition”. The main finding is that the GATA TFs are predicted to be important for 

regulation of path 4, because, among all paths from d3 to d4, they are uniquely assigned to 

the path containing the future path 4 (Supplementary Figure 4 D). 

Among the enriched TFs assigned to the global network, many of them have been validated 

in previous studies. For instance, among the TFs assigned to path C (in Figure 4.21), which 

is associated with the GO term “heart morphogenesis” and contains the future path 1, the 

involvement of TFs such as Tead1/2, Gata4, Foxh1, Sox4, Jun, Smad3, Atf2, Tbx3, Zic3 

and Tbx3 in the process of heart development was reported in early studies163–172, while the 

relations of some other TFs, such as Etv1180,181 and TCF family TF Tcf7l1182, to heart 

development were established only in recent studies. These promising results indicate that 

the enriched TFs which have not yet been experimentally validated are good candidates to 

test in future studies. For most of the splits of the global network, a relatively stringent p 

value cutoff was used to identify the enriched TFs, less stringent cutoffs can be selected if 

more TF candidates are required. Apart from comparing the enriched TFs with published 

studies, I assessed the validity of the global network by overlapping the target genes of Smads, 

Eomes and T with genes in specific paths, d1 to d2 paths for Smads and d2 to d3 paths for 

Eomes and T, of the network. The results show that their target genes are enriched in the 

paths where they were assigned, rather than the other paths where they were not assigned 

(Table 4-7; Table 4-8). Overall, it was demonstrated that, in the global network, the co-

expressed genes were grouped into biologically meaningful paths and that the enriched GO 

terms, combined with the enriched TFs, can well explain the bifurcation events. Furthermore, 

this global network was validated using the target genes of Smads, Eomes and T. The 

findings in general indicate that the global dynamic regulatory network recapitulates the 

regulatory process of mesoderm formation. 

In this study, I have developed a bioinformatical approach that combines time-series RNA-

seq transcriptome data and time-series ATAC-seq data to investigate gene regulation during 

mesoderm formation and EMT in the mouse. The in vitro system of the mESCs differentiated 
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to mesoderm was used. The computational and experimental validation of this system 

allowed me to use it as the foundation to identify target genes of crucial mesodermal TFs, 

such as Smads, Eomes and T, and to reconstruct a global gene regulatory network in a tree 

structure. This global network shows the bifurcation events (where a set of genes with a 

similar expression pattern diverge) in the time course of mesoderm formation. With 

enrichment analysis, TFs potentially controlling the bifurcation events can be assigned to the 

network, which requires the construction of a TF-target genes database in advance. I propose 

an original approach to build this database using the time-series ATAC-seq data, which can 

identify TF binding sites with greater accuracy than other methods. The assigned TFs shown 

in published studies and the further validation using our Smads, Eomes and T data support 

the predictive power of our global regulatory network. In this study, we introduced a 

bioinformatical approach of utilizing time-series transcriptome data combined with time-

series ATAC-seq data to construct a global gene regulatory network. This method can be 

applied to future studies designed to characterize molecular mechanisms underlying specific 

developmental processes.  
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7 Appendices 

A. Supplementary Figures 

 

 

 

 

Supplementary Figure 1 Size distribution of the mapped pair-end fragments 
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Supplementary Figure 2 Combinatorial function of Eomes and T 
A. Histogram showing the distance between Eomes and T ChIP peaks. B. Venn diagram 
showing the overlap of differential genes from Eomes and T WT/KO RNA-seq. Selected 
common downstream genes of Eomes and T are shown in the table. 
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Supplementary Figure 3 Heatmap of differentially expressed genes (k-means 
clustering) 
2145 DE genes obtained by pairwise comparisons of WT, T knockout, Eomes/T double 
knockout RNA-seq transcriptome data at d3 and grouped into 9 clusters by k-means 
clustering. 
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Supplementary Figure 4 Enriched TFs assigned to the corresponding paths for each 
time point  
For the assigned TFs, the colors blue, black and red indicate “up-regulation”, “not changing” and 
“down-regulation” of current gene expression levels compared to ES separately. The horizontal axis 
indicates time points and the vertical axis indicates log2(Vx/VES), where Vx is the expression value 
for each corresponding time point. 
(A) Stage: ES to d1. Assigned TFs (cutoff: X=4) and top 10 GO terms corresponding to 
the two paths diverging at the time point ES. 

 

Path no. GO terms P-Value Benjamini 
i lipid metabolic process 3.20E-06 2.30E-02 

signal transduction 1.80E-05 6.10E-02 
inflammatory response 1.90E-05 4.50E-02 
positive regulation of cell migration 2.50E-05 4.40E-02 
positive regulation of osteoblast differentiation 2.80E-05 3.90E-02 
cell migration 5.40E-05 6.20E-02 
cell adhesion 5.80E-05 5.70E-02 
cell-cell signaling 5.90E-05 5.10E-02 
ossification 6.10E-05 4.70E-02 
palate development 6.50E-05 4.50E-02 

ii mRNA processing 7.10E-26 3.80E-22 
translation 1.00E-21 2.80E-18 
RNA splicing 1.20E-20 2.10E-17 
rRNA processing 3.50E-20 4.60E-17 
ribosome biogenesis 4.80E-20 5.10E-17 
DNA repair 8.20E-17 9.80E-14 
cellular response to DNA damage stimulus 2.80E-14 2.20E-11 
mRNA splicing, via spliceosome 3.70E-13 2.40E-10 
transcription, DNA-templated 1.30E-12 7.60E-10 
regulation of transcription, DNA-templated 1.80E-12 9.60E-10 

i 

ii 
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(B) Stage: d1 to d2. Assigned TFs (cutoff: X=12) and top 10 GO terms corresponding to 
the paths diverging at the time point d1. 

 

 

 

i 

ii 
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Path no. GO terms P-Value Benjamini 
i positive regulation of cell migration 1.70E-07 7.80E-04 

multicellular organism development 7.30E-06 1.70E-02 
signal transduction 7.60E-06 1.20E-02 
positive regulation of MAPK cascade 1.30E-05 1.50E-02 
outflow tract morphogenesis 4.70E-05 4.30E-02 
negative regulation of canonical Wnt signaling pathway 4.80E-05 3.70E-02 
positive regulation of cell proliferation 6.90E-05 4.50E-02 
signal transduction involved in regulation of gene expression 1.10E-04 6.30E-02 
Wnt signaling pathway 1.60E-04 8.10E-02 
cell differentiation 1.90E-04 8.40E-02 

ii stem cell population maintenance 1.50E-06 4.40E-03 
regulation of gene expression 8.60E-05 1.20E-01 
response to retinoic acid 4.00E-04 3.30E-01 
multicellular organism development 5.70E-04 3.50E-01 
cell differentiation 6.30E-04 3.20E-01 
meiotic cell cycle 6.60E-04 2.80E-01 
positive regulation of transcription from RNA polymerase II 
promoter 

1.30E-03 4.20E-01 

DNA methylation involved in gamete generation 1.30E-03 3.80E-01 
spermatogenesis 1.50E-03 4.00E-01 
neural tube closure 2.50E-03 5.40E-01 
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(C) Stage: d2 to d3. Assigned TFs (cutoff: X=4) and top 10 GO terms corresponding to 
the paths diverging at the time point d2. 

  

 

i 

ii 

iii 

iv 



 

 

126 

 

 

Path no. GO terms P-Value Benjamini 
i multicellular organism development 7.90E-09 1.90E-05 

heart morphogenesis 8.60E-07 1.00E-03 
positive regulation of cell migration 2.00E-06 1.60E-03 
signal transduction involved in regulation of gene expression 2.80E-06 1.70E-03 
positive regulation of cell proliferation 1.90E-05 9.20E-03 
odontogenesis 5.70E-05 2.30E-02 
outflow tract morphogenesis 5.90E-05 2.00E-02 
blood vessel remodeling 1.90E-04 5.60E-02 
collagen fibril organization 1.90E-04 5.60E-02 
positive regulation of angiogenesis 2.30E-04 6.00E-02 

ii positive regulation of gene expression, epigenetic 7.60E-05 1.80E-01 
DNA replication-dependent nucleosome assembly 7.60E-05 1.80E-01 
negative regulation of megakaryocyte differentiation 9.30E-05 1.10E-01 
DNA methylation on cytosine 1.50E-04 1.20E-01 
nucleosome assembly 3.70E-04 2.20E-01 
glutathione biosynthetic process 1.60E-03 5.80E-01 
DNA replication-independent nucleosome assembly 2.10E-03 6.00E-01 
protein heterotetramerization 2.60E-03 6.20E-01 
response to interleukin-1 3.50E-03 6.80E-01 
DNA-templated transcription, initiation 4.60E-03 7.40E-01 

iii ribosome biogenesis 1.80E-09 3.10E-06 
rRNA processing 1.90E-06 1.70E-03 
maturation of SSU-rRNA from tricistronic rRNA transcript 
(SSU-rRNA, 5.8S rRNA, LSU-rRNA) 

2.10E-05 1.20E-02 

DNA replication 2.90E-04 1.20E-01 
translation 5.60E-04 1.80E-01 
mRNA processing 8.70E-04 2.30E-01 
positive regulation of protein targeting to mitochondrion 1.20E-03 2.70E-01 
cellular response to DNA damage stimulus 1.30E-03 2.40E-01 
rRNA base methylation 1.60E-03 2.70E-01 
ribosomal large subunit assembly 1.80E-03 2.70E-01 

iv stem cell population maintenance 8.80E-06 8.80E-03 
multicellular organism development 3.80E-05 1.90E-02 
stem cell differentiation 1.50E-04 4.80E-02 
regulation of transcription, DNA-templated 1.30E-03 2.70E-01 
endodermal cell fate specification 5.30E-03 6.50E-01 
negative regulation of transposition 5.30E-03 6.50E-01 
regulation of MAPK cascade 5.40E-03 5.90E-01 
response to organic substance 7.20E-03 6.40E-01 
negative regulation of cell differentiation 7.20E-03 6.40E-01 
regulation of gene expression 9.20E-03 6.80E-01 
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(D) Stage: d3 to d4. Assigned TFs (cutoff: X=1.5) and top 10 GO terms corresponding to 
the paths diverging at the time point d3. 

 

 

i 

ii 

iii 

iv 
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viii 
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Path no. GO terms P-Value Benjamini 
i actin-mediated cell contraction 5.60E-04 3.50E-01 

angiogenesis 1.20E-03 3.70E-01 
bleb assembly 1.80E-03 3.70E-01 
muscle contraction 4.20E-03 5.50E-01 
cardiac muscle contraction 4.70E-03 5.10E-01 
ossification 4.90E-03 4.60E-01 
extracellular matrix organization 6.00E-03 4.80E-01 
hepatocyte apoptotic process 6.40E-03 4.60E-01 
skeletal muscle contraction 1.10E-02 6.20E-01 
regulation of muscle contraction 1.50E-02 6.90E-01 

ii positive regulation of MAPK cascade 7.20E-04 8.90E-01 
dephosphorylation 2.10E-03 9.60E-01 
positive regulation of epithelial to mesenchymal transition 3.40E-03 9.70E-01 
positive regulation of I-kappaB kinase/NF-kappaB signaling 3.50E-03 9.30E-01 
receptor-mediated endocytosis 3.50E-03 8.90E-01 
neuron projection development 4.10E-03 8.80E-01 
negative regulation of canonical Wnt signaling pathway 4.10E-03 8.80E-01 
unsaturated fatty acid biosynthetic process 4.20E-03 8.40E-01 
aorta development 7.20E-03 9.40E-01 
phagocytosis. recognition 7.70E-03 9.30E-01 

iii regulation of somitogenesis 4.20E-04 5.20E-01 
Notch signaling pathway 8.20E-04 5.10E-01 
signal transduction 3.10E-03 8.40E-01 
locomotory exploration behavior 3.30E-03 7.60E-01 
negative regulation of auditory receptor cell differentiation 6.60E-03 9.00E-01 
somite rostral/caudal axis specification 1.00E-02 9.50E-01 
neuronal stem cell population maintenance 1.10E-02 9.40E-01 
negative regulation of tumor necrosis factor-mediated signaling 
pathway 1.30E-02 9.40E-01 
positive regulation of neuron apoptotic process 1.70E-02 9.60E-01 
nervous system development 1.90E-02 9.60E-01 

iv extracellular matrix organization 2.00E-04 4.00E-01 
decidualization 3.30E-04 3.40E-01 
cell adhesion 3.10E-03 9.20E-01 
cardiac muscle hypertrophy in response to stress 3.60E-03 9.00E-01 
Angiogenesis 1.10E-02 1.00E+00 
negative regulation of peptidase activity 1.40E-02 1.00E+00 
canonical Wnt signaling pathway 1.60E-02 1.00E+00 
positive regulation of endothelial cell proliferation 2.30E-02 1.00E+00 
regulation of cell proliferation 2.70E-02 1.00E+00 
positive regulation of myoblast differentiation 3.00E-02 1.00E+00 

v nucleosome assembly 1.70E-08 2.00E-05 
DNA replication-dependent nucleosome assembly 4.40E-08 2.60E-05 
positive regulation of gene expression, epigenetic 4.40E-08 2.60E-05 
DNA methylation on cytosine 9.30E-08 3.60E-05 
negative regulation of megakaryocyte differentiation 1.50E-07 4.20E-05 
DNA replication-independent nucleosome assembly 4.50E-06 1.00E-03 
DNA-templated transcription, initiation 1.10E-05 2.20E-03 
protein heterotetramerization 1.30E-05 2.20E-03 
chromatin silencing at rDNA 4.10E-05 5.90E-03 
tRNA aminoacylation for protein translation 2.60E-03 2.80E-01 
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vi mitotic nuclear division 3.80E-08 5.00E-05 
cell division 5.30E-06 3.50E-03 
chromosome segregation 1.90E-05 8.20E-03 
DNA recombination 1.50E-03 3.80E-01 
cytoplasmic translation 1.90E-03 3.90E-01 
cell cycle 3.70E-03 5.50E-01 
DNA repair 5.10E-03 6.10E-01 
translation 6.20E-03 6.40E-01 
regulation of mitotic centrosome separation 1.30E-02 8.40E-01 
GDP-mannose biosynthetic process 1.30E-02 8.40E-01 

vii cell adhesion 5.90E-05 7.30E-02 
negative regulation of cell division 3.10E-04 1.80E-01 
positive regulation of epidermal cell differentiation 9.20E-03 9.80E-01 
neural tube closure 1.00E-02 9.60E-01 
wound healing 1.00E-02 9.60E-01 
response to peptide hormone 1.10E-02 9.40E-01 
negative regulation of cell proliferation 1.10E-02 9.10E-01 
regulation of mitotic cell cycle 1.20E-02 8.90E-01 
response to drug 1.30E-02 8.80E-01 
cellular response to estrogen stimulus 1.70E-02 9.10E-01 

viii stem cell population maintenance 1.90E-06 7.70E-04 
multicellular organism development 7.40E-05 1.50E-02 
endodermal cell fate specification 6.80E-04 9.00E-02 
stem cell differentiation 8.70E-04 8.60E-02 
regulation of genetic imprinting 1.70E-03 1.30E-01 
regulation of transcription, DNA-templated 2.30E-03 1.50E-01 
response to organic substance 2.60E-03 1.40E-01 
negative regulation of cell differentiation 2.60E-03 1.40E-01 
response to retinoic acid 5.20E-03 2.40E-01 
spermatogenesis 6.00E-03 2.40E-01 
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 (E) Stage: d4 to d5. Assigned TFs (cutoff: X=12 (upper figure), X=3 (lower figure)) and 
top 10 GO terms corresponding to the paths diverging at the time point d4. 

 

 

 

ii 
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Path no. GO terms P-Value Benjamini 
i signal transduction involved in regulation of gene expression 7.80E-07 5.60E-04 

gastrulation 3.80E-05 1.30E-02 
multicellular organism development 6.10E-05 1.40E-02 
anterior/posterior pattern specification 3.10E-04 5.30E-02 
heart morphogenesis 6.30E-04 8.60E-02 
somitogenesis 9.70E-04 1.10E-01 
Wnt signaling pathway 1.10E-03 1.00E-01 
immune system process 1.20E-03 1.00E-01 
neuron differentiation 3.40E-03 2.40E-01 
camera-type eye development 4.20E-03 2.60E-01 

ii decidualization 1.30E-03 7.10E-01 
angiogenesis 1.70E-03 5.60E-01 
cell-cell signaling 3.60E-03 6.90E-01 
positive regulation of endothelial cell proliferation 5.90E-03 7.60E-01 
cellular response to fibroblast growth factor stimulus 6.70E-03 7.30E-01 
positive regulation of leukocyte migration 6.90E-03 6.80E-01 
neutrophil chemotaxis 7.70E-03 6.60E-01 
positive regulation of smooth muscle cell proliferation 9.80E-03 7.00E-01 
chemokine-mediated signaling pathway 1.40E-02 7.90E-01 
positive regulation of ERK1 and ERK2 cascade 1.70E-02 8.10E-01 

 

Supplementary Figure 5 Distribution of the distances between peak summits 
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B. Supplementary Tables 

Supplementary Table 1. Percentages of aligned reads (10 samples of time-series 
RNA-seq transcriptome analysis) 
  

ES Hour 1 Hour 6 Hour 12 Day 1 

Replicate 1 19314823 

(54.8%) 

17189196 

(50.5%) 

20137110  

(55.8%) 

19304223 

 (52.6%) 

19402668 

 (54.0%) 

Replicate 2 24957462 

(58.1%) 

20167200 

(55.4%) 

21614314 

 (59.2%) 

23345278 

 (57.4%) 

20866930 

 (57.2%) 

  
Day 2 Day 3 Day 4 Day 5 Day 6 

Replicate 1 19450099 

 (55.8%) 

20817155 

(56.2%) 

20666929 

(55.8%) 

19915476 

(58.0%) 

24045613 

(61.3%) 

Replicate 2 21322284 

 (58.2%) 

23365189 

(56.2%) 

21291829 

(59.4%) 

20780005 

(57.5%) 

21951764 

(59.9%) 

 
 
 
Supplementary Table 2. Pearson’s correlation between 2 replicates 
Pearson’s correlation was calculated for two replicates of 10 samples. The results show that 
the replicates are signifiantly related. 
 

Two RNA-seq Replicates Pearson’s Correlation p-value 
ES 0.977 <2.2e-16 
1h 0.930 <2.2e-16 
6h 0.978 <2.2e-16 
12h 0.965 <2.2e-16 
d1 0.989 <2.2e-16 
d2 0.963 <2.2e-16 
d3 0.978 <2.2e-16 
d4 0.994 <2.2e-16 
d5 0.997 <2.2e-16 
d6 0.992 <2.2e-16 
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Supplementary Table 3. Marker genes differentially expressed in the time course 
FPKM values are shown. Different colors separate the marker genes for pluripotent cells, 
PS-like/nascent mesoderm, early cardiac mesoderm, EMT cells and committed cardiac cells 
(Figure 4.1). 
 

 ES 1h 6h 12h d1 d2 d3 d4 d5 d6 

Pou5f1 1689.9
2 

1651.68 1786.46 1545.65 1298.75 1264.17 804.87 192.23 32.71 23.24 

Sox2 261.37 231.7 203.31 170.47 105.97 22.12 21.31 13.31 7.8 5.39 

Dppa3 160.32 143.94 155.3 107.83 59.48 25 11.56 5.51 6.17 5.42 

Klf4 9.85 9.93 1.4 0.59 0.37 0.45 0.73 0.62 1.11 3.83 

Esrrb 76.08 81.3 35.25 18.24 6.01 2.39 1.57 1.08 0.67 1.07 

Nodal 14.64 24.29 10.4 7.56 10.51 33.95 32.88 2.37 1.3 0.64 

Nanog 106.08 103.29 65.64 23.59 11.31 86.41 86.02 17.89 5.1 3.99 

Eomes 1.08 1.27 1.09 1.77 2.7 11.45 21.57 10.1 0.22 0.19 

T 0.13 0.03 0.09 0.17 1.38 54.13 419.17 71.47 2.64 0.37 

Fgf5 0.97 1.47 2.36 5.35 9.14 12.41 28.69 4.66 0.26 0.61 

Wnt3 0.12 0.49 0.33 0.63 2.62 17.47 27.61 6.46 1.05 1.51 

Wnt3a 0.44 0.31 0.08 0 0.01 0.04 2.01 0.06 0 0.04 

Msgn1 0 0 0 0 0.03 0 23.75 14.85 0.44 0.15 

Mesp1 0 0 0.03 0 0.19 0 5.47 18.31 0.77 0.03 

Wnt5a 0.71 1.01 0.73 0.47 0.59 0.09 4.18 10.64 2.76 1.98 

Foxf1 0 0.1 0 0.08 0.15 0.1 0.82 3.33 2.98 1.13 

Kdr 0.21 0.2 0.14 0.01 0.06 0.09 0.5 3.67 4.09 1.68 

Cdh1 146.71 165.78 140.3 146.99 157.6 177.03 149.51 115.72 85.87 135.96 

Cdh2 1.37 2.15 1.36 1.2 1.8 1.19 6.2 12.38 4.78 8.93 

Cdh11 0.34 0.56 0.57 0.71 0.74 0.49 1.55 1.76 5.73 5.65 

Snai1 0.07 0.12 0 0 0.12 0.12 0.64 1.14 0.72 1.63 

Snai2 0.16 0.17 0.33 0.14 0.02 0.06 0.86 2.94 8.62 5.27 

Zeb1 3.13 3.2 2.95 1.85 0.95 0.79 2.32 8.63 7.97 6.47 

Zeb2 0.54 0.65 0.42 0.34 0.32 1.52 6.44 11.65 6.8 5.66 

Prrx1 0 0 0.01 0 0 0.05 0.27 0.35 1.89 2.22 

Tbx20 0.51 0.6 0.3 0.17 0.6 0.9 0.36 2.16 3.36 1.87 

Hand2 0 0 0.02 0 0.03 0 0 0.84 19.02 11.58 

Gata4 0.29 0.44 0.24 0.5 0.57 0.58 1.3 3.39 3.9 4.88 

Gata5 0 0 0 0 0 0.01 0 0.23 2.68 1.5 

Gata6 0 0.08 0.15 0.04 0.03 0.01 0.48 1.78 7.38 8.03 

Myh6 0.66 0.86 0.76 1.11 1.88 0.54 0.2 0.24 0.94 2.69 

Tnnt2 0.1 0.09 0.16 0.05 0 0.03 1.17 1.87 14.63 39.67 
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Supplementary Table 4. Percentages of aligned reads (ATAC-seq samples) 
  

ES Day 1 Day 2 Day 3 Day 4 Day 5 

Replicate 1 26603898 

(51.09%) 

36078686 

(55.57%) 

39762760 

(64.90%) 

29054098 

(52.61%) 

41666860 

(68.17%) 

20108105 

(27.55%) 

Replicate 2 31665953 

(63.77%) 

31796275 

(65.79%) 

33428551 

(64.80%) 

45090932 

(66.38%) 

41537823 

(68.75%) 

47344619 

(70.00%) 

 
 

Supplementary Table 5. TF groups 

TF groups Names of TFs from Homer 

AP AP-2alpha, AP-2gamma 

ATF Atf1, Atf2, Atf3, Atf4, Atf7 

Bach Bach1, Bach2 

E2F E2F1, E2F3, E2F4, E2F6, E2F7 

EBF EBF, EBF1, EBF2 

ELK ELK1, ELK3, ELK5, ETS, ETS1, ETV1, ETV4, Elf4, Elk1, Elk4, Ets1-distal, Etv2,  

TBOX Eomes, T, Tbr1, Tbx20, Tbx21, Tbx5, Tbx6 

FOX FOXA1, FOXK1, FOXK2, FOXM1, FOXP1, Fox:Ebox, FoxL2, Foxa2, Foxa3, Foxf1, 

Foxh1, Foxo1, Foxo3 

GATA GATA, GATA3, GATA:SCL, Gata1, Gata2, Gata4, Gata6, 

HOX HOXA1, HOXB13, Hoxa10, Hoxa9, Hoxb4, Hoxc9, Hoxd10 

IRF IRF1, IRF2, IRF3, IRF4, IRF8 

KLF KLF10, KLF14, KLF3, KLF5, KLF6, KLF4, KLF9 

WNT LEF1, TCF4, TCFL2, Txf12, Tcf21, Tcf3, Tcf7 

LHX Lhx1, Lhx2, Lhx3 

MEF2 Mef2a, Mef2b, Mef2c, Mef2d 

OCT OCT:OCT, OCT:OCT-short, Oct2, Oct4, Oct6, Oct4:Sox17 

RFX Rfx1, Rfx2, Rfx5, Rfx6 

STAT STAT1, STAT4, STAT5, STAT6 

SIX Six1, Six2, Six4 

SOX Sox2, Sox3, Sox4, Sox6, Sox9, Sox10, Sox15, Sox17 

SP Sp1, Sp2, Sp5 

TEAD TEAD, TEAD1, TEAD2, TEAD3, TEAD4 
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Supplementary Table 6. GO terms for each path of the gene regulatory tree 
constructed by using the time-series expression data (Figure 4.19) 
The GO terms were selected on the basis of “p-value < 0.05”. 
 
GO terms (selected) for each path p-value related genes (selected) 
1 

  

actin-mediated cell contraction 5.64E-4 ACTC1, EMP2, PARVA 
angiogenesis 1.21E-3 COL4A2, COL4A1, FLT1, HAND1, TGFBI 
cardiac muscle contraction 4.73E-3 ACTC1, MYL4, TNNC1, TNNI1 
extracellular matrix organization 5.99E-3 COL4A2, APP, COL4A1, TGFBI, CCDC80 
ventricular cardiac muscle tissue morphogenesis 2.25E-2 HAND1, TNNC1, TNNI1    

2 
  

positive regulation of cell migration 8.47E-7 EGFR, IRS2, PDGFB, PODXL, FURIN 
outflow tract morphogenesis 5.55E-5 DHRS3, JUN, VEGFA, TGFBR3, SEMA3C 
positive regulation of smooth muscle cell 
proliferation 

3.59E-4 EGFR, CYBA, PDGFB, ID2, JUN 

blood vessel development 5.68E-4 DLX3, PDGFB, VEGFA, PDGFRB, TGFBR3 
atrial septum morphogenesis 6.72E-4 SMO, ISL1, CFC1, TGFB2, CYR61    

3 
  

angiogenesis 1.69E-3 FGFR2, ARHGAP22, CCL2, NRP1, HAND2 
positive regulation of smooth muscle cell 
proliferation 

9.77E-3 FGFR2, AKT1, PTGS2, HBEGF, ITGB3 

positive regulation of ERK1 and ERK2 cascade 1.69E-2 FGFR2, CCL2, NRP1, C3, HAND2 
positive regulation of canonical Wnt signaling 
pathway 

2.95E-2 WNT2, FGFR2, COL1A1, BAMBI 

cardiac muscle tissue development 3.55E-2 SIN3B, GATA6, CSRP3    

4 
  

positive regulation of epithelial to mesenchymal 
transition 

7.30E-4 GLIPR2, DAB2, BMP2, TGFBR2, SMAD3, 
TGFB1I1, CRB2 

erythrocyte differentiation 4.62E-3 THRA, LYN, GATA3, JAK2, HEPH    

5 
  

extracellular matrix organization 1.21E-3 MPZL3, RECK, FBLN1, LAMA4, LAMB2 
cardiac muscle hypertrophy in response to stress 1.61E-2 MEF2C, GATA4, MYH7, PPP3CA    

6 
  

fatty acid metabolic process 1.99E-2 SCD1, PRKAR2B, CD36, CPT2, STAT5B 
establishment of epithelial cell apical/basal polarity 3.03E-2 WNT5A, FOXF1, CRB3 
inner ear morphogenesis 3.56E-2 WNT5A, FGFR1, MYO6, COL2A1, FRZB    

7 
  

inflammatory response 1.76E-3 NFKBIZ, S100A8, LY96, RELA, IL19 
positive regulation of chondrocyte differentiation 2.10E-3 RELA, SOX5, ZBTB16, SOX6, MUSTN1 
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blood coagulation 2.03E-2 PTPRJ, FGG, THBD, PROCR, PDGFA 
cartilage development 3.84E-2 SMAD9, EDN1, SOX5, PRRX1, ZBTB16 
skeletal system development 4.35E-2 HAPLN1, TBX3, HEXB, COL3A1, EDN1    

8 
  

protein transport 4.14E-5 COPA, AP1G2, RAB5B, SLC15A2, LMAN2L 
cholesterol biosynthetic process 9.42E-4 CYP51, MVD, DHCR7, INSIG1, HMGCS1 
protein phosphorylation 1.42E-3 RNASEL, CDK18, NUAK2, RORC, LATS1 
determination of left/right symmetry 3.43E-3 MEGF8, KIF3A, FOXJ1, DRC1, DYNC2LI1 
carbohydrate metabolic process 4.86E-3 PHKA2, LDHA, GNPDA2, PHKB, GALK1    

9 
  

gastrulation 3.77E-5 CER1, APLNR, EOMES, MESP1, MIXL1 
anterior/posterior pattern specification 3.05E-4 CER1, ALDH1A2, T, WNT3, FOXA2 
heart morphogenesis 6.31E-4 ALDH1A2, T, FGF8, FOXC1, MESP1 
somitogenesis 9.70E-4 T, DLL3, FOXC1, MSGN1, AXIN2 
Wnt signaling pathway 1.08E-3 WNT3, WNT5B, AXIN2, WNT8A, PITX2 
neuron differentiation 3.37E-3 ALDH1A2, WNT5B, WNT8A, DDIT4, PITX2 
neural crest cell development 9.85E-3 ALDH1A2, CYP26A1, FOXC1 
mesodermal cell migration 2.35E-2 FGF8, MESP1    

10 
  

cell adhesion 5.89E-5 ICAM1, PTPRK, NID1, ACKR3, CDH3 
neural tube closure 1.03E-2 DLC1, BMP4, SFRP1, PTCH1, GRHL3 
regulation of mitotic cell cycle 1.19E-2 PIM3, PTCH1, SIK1, MYC 
substrate adhesion-dependent cell spreading 2.01E-2 SFRP1, TEK, LAMC1, FN1 
extracellular matrix disassembly 2.09E-2 LAMA1, NID1, LAMC1    

11 
  

regulation of somitogenesis 4.20E-4 CDX1, NOTCH1, CDX2, DLL1 
Notch signaling pathway 8.23E-4 DTX4, NOTCH3, HES1, S1PR3, NOTCH1 
neuronal stem cell population maintenance 1.13E-2 HES1, NOTCH1, DLL1, FOXO3, PROX1 
nervous system development 1.91E-2 NES, MAGI2, TRNP1, BHLHE22, FGF13 
hypothalamus development 3.02E-2 SOX3, CRH, LEF1    

12 
  

mitotic nuclear division 3.83E-8 KIF11, TADA3, NEK2, BORA, PAPD5 
chromosome segregation 1.89E-5 KIF2C, CEP85, KIF11, NEK2, CDCA2 
cell cycle 3.66E-3 CKAP2, KIF11, NEK2, BORA, PAPD5    

13 
  

mRNA processing 1.23E-28 NCBP1, APOBEC1, PRPF4B, SCAF4, RNMT 
translation 4.20E-16 EIF6, TARS2, RPL13, EIF5, EIF5B 
mRNA export from nucleus 1.93E-9 NUP133, NCBP1, SMG5, SMG7, DDX39B 
ribosome biogenesis 1.66E-8 EIF6, FASTKD2, SURF6, GAR1, GTPBP10    
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14 
  

nucleosome assembly 1.74E-8 HIST1H4N, HIST2H3B, HIST1H2BM, 
HIST1H4K 

DNA methylation on cytosine 9.34E-8 HIST1H4N, HIST2H3B, HIST1H4K, 
HIST1H4B 

chemical synaptic transmission 9.37E-3 MYO5A, DOC2A, SNCA, CLSTN1, APBA2 
regulation of neuron apoptotic process 3.24E-2 GABRB3, SNCA, TRP73, SIGMAR1    

15 
  

ribosome biogenesis 1.75E-9 NAF1, KRR1, SDAD1, NOC4L, TSR1 
DNA replication 2.89E-4 RECQL4, TICRR, NASP, POLE, POLA1 
translation 5.56E-4 TUFM, SLC25A5, MRPS12, MRPS24, 

RPL27 
mRNA processing 8.69E-4 SRSF1, PDCD11, PPIL1, SYNCRIP, SRSF2 
regulation of transcription, DNA-templated 5.88E-3 XRCC5, E2F2, 5730507C01RIK, TAF1A, 

E2F4    

16 
  

circadian rhythm 2.79E-4 TRP53, DDC, DHX9, KLF9, MAT2A 
spermatogenesis 1.81E-3 DNMT3A, MAEL, MOV10L1, ARNTL, SIRT1 
positive regulation of neuron projection 
development 

3.82E-2 TWF2, RRN3, ENC1, NGFR, SIRT1 

neural tube closure 4.55E-2 ENAH, RARG, SALL4, SALL1, ZIC5    

17 
  

negative regulation of transcription from RNA 
polymerase II promoter 

3.55E-2 CTBP2, ZFP57, JARID2, ARID5B, NODAL 

embryonic placenta development 4.17E-2 NODAL, TTPA, FOXD3    

18 
  

stem cell population maintenance 1.86E-6 NANOG, POU5F1, ESRRB, SOX2, TET1 
endodermal cell fate specification 6.76E-4 NANOG, POU5F1, SOX2 
regulation of genetic imprinting 1.67E-3 ZFP42, DPPA3, TET1 
spermatogenesis 5.97E-3 RPL10L, DNMT3L, HORMAD1, HSF2BP 

C. Supplementary Notes 

Supplementary Note 1. Adapter sequences of ATAC-seq reads  
 
# adapter.fa 
>1 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
>2 
CTGTCTCTTATACACATCTGACGCTGCCGACGA 
>3 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 
>4 
CTGTCTCTTATACACATCTCCGAGCCCACGAGAC 
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Supplementary Note 2. Artefact regions 
 

chromosome Start End 

1 24611520 24616200 

1 56782052 56782440 

1 102628176 102628344 

1 122357123 122357318 

1 183299000 183299700 

1 195241453 195241934 

2 3050000 3055000 

2 5379000 5379400 

2 22587283 22590547 

2 69355530 69355677 

2 90395030 90395240 

2 98662100 98667600 

2 181917300 181919500 

2 181926500 181933000 

3 8245690 8246640 

3 3000000 3035000 

3 5860300 5860900 

4 3049000 3258000 

4 34935690 34935910 

4 70378040 70378320 

4 80002398 80005206 

5 146260900 146261400 

6 3200500 3202000 

6 9889890 9890178 

6 49236447 49236621 

6 79818087 79818352 

6 103649000 103649350 

7 20779500 20792000 

7 21256500 21269000 

8 15519790 15520030 

8 19784000 19785400 

8 20320500 20378500 

9 3000000 3038320 

9 24541940 24542200 

9 35305000 35305700 

9 110281220 110281400 

9 123461750 123462250 
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10 22142530 22143070 

10 96077520 96077900 

10 130594400 130594960 

11 3122500 3201000 

11 54139940 54140740 

11 109011640 109012110 

12 3109850 3110150 

12 78350850 78351180 

12 97061423 97061800 

13 44869540 44870050 

13 77438870 77439090 

13 85126554 85127518 

13 97190460 97190690 

13 119595000 119603400 

13 119609000 119617700 

14 19415700 19419750 

15 75085300 75087150 

16 11143909 11144324 

16 57391357 57391690 

17 36231250 36231650 

17 39842900 39848900 

17 70936660 70963897 

18 3005550 3006050 

18 12949190 12949400 

18 40307970 40308340 

18 68691990 68692230 

19 45650030 45650310 

19 61199640 61199880 

19 61266550 61267210 

X 143483000 143483150 
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Zusammenfassung 

Die Embryonalentwicklung ist ein komplexer mehrstufiger Vorgang, der auf der genetischen 
Ebene eine präzise Kontrolle durch Genregulationsnetzwerke (GRNs) erfordert. Während 
der Differenzierung von Vorläuferzellen in ihre Nachkommen aktivieren oder unterdrücken 
verschiedene Gruppen von Transkriptionsfaktoren (TFs) auf jeder Stufe der Musterbildung 
und der Organogenese ihre Zielgene um bestimmte Zellschicksale festzulegen. Eine 
Fehlregulation verschiedener Entwicklungsvorgänge kann zu schweren Krankheiten oder 
zum Tode führen, während deren ektopische Aktivierung im adulten Organismus die 
Ausbildung von Tumoren induzieren kann. Aus diesem Grund ist es von großer Bedeutung 
die entsprechenden Transkriptionsfaktoren zu entschlüsseln und herauszufinden, wie sie 
zum einen interagieren und zum anderen ein GRN bilden das die Entwicklungsprozesse 
kontrolliert. 
Die Entstehung des Mesoderms ist bei der Embryonalentwicklung von großer Bedeutung. 
Sie findet während der Gastrulation statt und ist abhängig von der epithelial-mesenchymalen 
Transition (EMT). In Wirbeltieren entstehen aus dem Mesoderm verschiedene Gewebe: das 
axiale Skelett, die Skelettmuskulatur, das Herz, die Nieren, die Blutgefäße und das Blut. In 
einer Fülle von Studien wurde erläutert, welche Gene die Entstehung des Mesoderms 
beeinflussen. So ist bekannt, dass die WNT-, BMP- und FGF-Signalwege, zusammen mit 
TFs, vor allem Smads, Eomes und T, eine grundlegende Rolle bei diesen Vorgängen spielen. 
Allerdings gibt es bis jetzt noch keine umfassende und mechanistische Beschreibung des 
mesodermalen GRN. 
Das Ziel dieser Arbeit ist es, ein globales Genregulationsnetzwerk zu erstellen, welches die 
transkriptionellen regulatorischen Ereignisse, die dynamisch während der Entstehung des 
Mesoderms in der Maus auftreten, zu beschreiben. Wir konnten nachweisen, dass die in-vitro 
Differenzierung von murinen embryonalen Stammzellen die Entstehung des Mesoderms in-
vivo nachahmen kann. Aus diesem Grund verwenden wir die in-vitro Differenzierung als 
Modellsystem. Durch die kombinierte Anwendung von ChIP-Seq- und RNA-Seq-Techniken 
habe ich zuerst GRNs rekonstruiert, welche durch die für die Mesodermentwicklung 
wichtigen TFs Smads, Eomes und T gesteuert werden. Um ein globales 
Genregulationsnetzwerk, das die EMT und die Mesodermentwicklung steuert, zu erstellen, 
haben wir des weiteren Genexpression-Zeitreihen und Datensätze von Zielgenen bekannter 
TFs miteinander integriert. Letztere wurden durch einen originären Ansatz erzielt mit dem 
die funktional aktiven TFs aus ATAC-Seq-Daten ermittelt und mit ihren mutmaßlichen 
Zielgenen assoziert wurden. Zusammen mit einem bioinformatischen Programm, das auf 
einem „hidden Markov-Modell“ basiert, konnte ich so Gruppen von koexprimierten Genen 
identifizieren und die TFs vorhersagen, welche deren Expression regulieren.  
Wir konnten die Vorhersagekraft unseres Ansatzes bestätigen und beweisen, dass er die TFs 
ihren Zielen korrekt zuordnet, indem wir die Ergebnisse mit unseren Datensätzen von 
Smads, Eomes und T verglichen haben. Mittels dieses de novo Ansatzes haben wir sowohl 
neue Kandidaten für mesodermale TFs identifiziert als auch die sich dynamisch ändernden 
Gruppen von Zielgenen von schon bekannten TFs charakterisiert. Diese Arbeit erweitert 
unser Verständnis der der EMT und der Entstehung des Mesoderms zugrundeliegenden 
genregulatorischen Prozesse in der Maus und stellt eine Liste an neuen potentiellen 
Regulatoren des Mesoderms für deren zukünftige detaillierte Beschreibungen zur Verfügung. 
Dieser bioinformatische Ansatz ist daher ein vielversprechender Ansatz für zukünftige 
Studien, deren Ziel die Charakterisierung molekularer Mechanismen anderer wichtiger 
Entwicklungsprozesse ist.  
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