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Abstract: Experimental studies of the electronic structure of excess electrons in liquids – 

archetypal quantum solutes – have been largely restricted to very dilute electron concentrations. 

Here, we overcome this limitation by applying soft x-ray photoelectron spectroscopy to 

characterize excess electrons originating from steadily increasing amounts of alkali metals 

dissolved in refrigerated liquid ammonia microjets. As concentration rises, a narrow peak at ~2 

eV, corresponding to vertical photodetachment of localized solvated electrons and dielectrons, 

transforms continuously into a band with a sharp Fermi edge accompanied by a plasmon peak, 

characteristic of delocalized metallic electrons.  In combination with ab initio calculations of 

localized electrons and dielectrons, we obtain a clear picture of the energetics and density of 

states of the ammoniated electrons over the gradual transition from dilute blue electrolytes to 

concentrated bronze metallic solutions.  

 

One Sentence Summary: Photoelectron spectroscopy maps electrons in alkali metal – liquid 

ammonia microjets capturing the blue electrolyte−to−bronze colored metal transition. 
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Since the discovery of spectacularly colored alkali metal − ammonia solutions in the 

early 19th century, excess ammoniated electrons have attracted considerable attention, as 

reviewed recently by Zurek et al. (1) (see Thompson’s classic monograph(2) for an overview of 

the older literature). Alkali metals are soluble in liquid ammonia up to concentrations reaching 

over 20 mol% metal (MPM), i.e. one metal atom per about four solvent molecules(1). A 

transition from a blue electrolyte into a bronze/gold colored metallic solution upon increasing 

alkali metal concentration is accompanied by a liquid-liquid phase separation at low enough 

temperatures(1-7).  The nature of the metallic transition both in liquid and crystalline alkali metal 

– ammonia systems, directly evidenced by orders of magnitude increase in electrical 

conductivity, has puzzled researchers for decades(1, 8-10) and is not yet understood in molecular 

detail. The chemical species involved include dilute solvated electrons and dielectrons as well as 

their various complexes with alkali metal cations(1) − all gradually coalescing into delocalized 

structures giving rise to a conduction band. A series of conferences, the so-called Colloques 

Weyl, was organized around this topic in the second half of the last century, resulting in a flurry 

of articles focusing primarily on the structure, thermodynamics, and electrical and magnetic 

properties of the alkali metal − ammonia solutions(11-16). Electrons in liquid ammonia have also 

been thoroughly studied with NMR and ESR techniques. The latter show a narrow structureless 

spin resonance line with g value characteristic of a free electron spin, which broadens upon 

increasing the alkali metal concentration(2, 17). Shifts in the 1H and 14N NMR positions (Knight 

shifts) give a measure of the unpaired electron spin density at all constituent nuclei within the 

orbit of the molecules solvating the unpaired electron(17, 18).  Shkrob has argued(19) that the 

Knight parameters from 14N NMR, electron spin echo relaxation, and ESR linewidth data, can 
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only be interpreted as a transfer of a significant fraction of the spin density to the nitrogen atoms 

in the first solvent sphere. 

The principal means to explore electronic structure and thus the binding energies and 

density of states of excess ammoniated electrons is photoelectron spectroscopy (PES). Liquid 

ammonia has a great advantage over water in that high concentrations of ammoniated electrons 

can be reached in solutions that are stable for extended periods of time without the danger of 

explosion(20). Nevertheless, compared to the number of such investigations of electrons solvated 

in water (i.e., hydrated electrons)(21-23), PES studies in liquid ammonia are scarce. Early 

photoelectron total emission yield experiments led to an estimate of the photoelectron threshold 

of about 1.4 eV(24, 25), in good agreements with electrochemical determination of the adiabatic 

binding energy of an ammoniated electron(26). This value is also roughly consistent with results 

from cluster extrapolations(27-31). However, clusters have only limited relevance to the liquid 

bulk systems, as they inevitably exhibit large surface effects and are typically solid rather than 

liquid(32, 33); as a result, e.g., metastable cluster structures exist, characterized by low electron 

binding energies, which have no liquid bulk analogue(33), and also electron scattering from 

clusters differs from condensed phase data(34). Additional insight into the ultrafast dynamics of 

ammoniated electrons emerged from femtosecond time-resolved experiments involving 

multiphoton photoionization in pure liquid ammonia or photoexcitation in dilute alkali metal-

ammonia solutions(35-38). These studies have typically probed ammoniated electrons in the low 

concentration regime, i.e., individual electrons well below the electrolyte−to−metal transition. In 

concentrated systems, plasmons in metallic lithium-ammonia solutions were explored by x-ray 

scattering two decades ago(10) and a PES study of  small to medium-sized cryogenic sodium-

ammonia clusters was performed recently(31).  

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Submitted Manuscript: Confidential 

5 
 

There is thus a clear need for a direct PES investigation of excess ammoniated electrons 

that would cover both the electrolyte and metallic regimes. Recently, we have overcome a 

critical obstacle in collecting photoelectrons from a volatile polar refrigerated liquid. Namely, we 

developed an experimental setup that produces a liquid ammonia microjet and performed PES 

measurements with this new-generation apparatus(39). In that study, we characterized the 

valence and core orbital structure of pure gaseous and liquid ammonia and quantified the effect 

of the condensed phase environment on the orbital energies, which was found to be even stronger 

than in water, despite weaker hydrogen bonding in liquid ammonia (40). This work has paved 

the way for PES investigations of liquid alkali metal – ammonia solutions of increasing 

concentrations mapping the electrolyte-to-metal transition, as reported here.  

Electronic structure calculations enable interpretation of PES measurements of 

ammoniated electrons in terms of a complex structural, dynamical, and molecular orbital picture. 

So far, only molecular pseudopotential calculations have been performed for electrons in liquid 

ammonia(41, 42), with density functional theory (DFT) applied to crystalline alkali metal − 

ammonia systems(8). Although the early liquid state calculations provided some insight into the 

transition from individual solvated electrons through dielectrons (which exist as spin-paired 

singlet species in liquid ammonia(43)) to the onset of delocalized states upon increasing alkali 

metal loading, they were inevitably of a qualitative nature only. This was due both to neglect of 

the explicit electronic structure of the solvent and to approximations made in the pseudopotential 

itself(33). We have shown previously that in aqueous solutions a quantitative picture of the 

electronic structure of hydrated electrons and surrounding water molecules can be obtained using 

DFT−based ab initio molecular dynamics (AIMD)(44). Here we employ an extension of this 
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approach combining it with quantum chemical embedded cluster evaluation of electron binding 

energies to characterize ammoniated electrons and dielectrons.    

Photoelectron spectroscopy: Electrolyte solutions  

Photoelectron (PE) experiments were carried out with the SOL³PES experimental 

setup(45) at the U49/2-PGM-1 beamline at the synchrotron radiation facility BESSY II(46) (for 

details see Experimental Methodology and Supplementary Material (SM)).PE spectra at low 

electron binding energies of microjets of lithium − liquid ammonia solutions at alkali metal 

concentrations ranging from 0.012 to 9.7 MPM are presented in Figure 1A. Analogous low-

energy spectra of potassium − liquid ammonia solutions (0.15 – 1.25 MPM) and sodium − liquid 

ammonia (0.15 – 0.75 MPM) are shown in Figures 1B and 1C. Visually, the increase of alkali 

metal concentration is connected with deepening of the characteristic blue color of the solutions, 

with the higher concentrations becoming practically black even in the thin microjet and the 

solution with the highest lithium concentration acquiring a discernible bronze colored metallic 

sheen.  

Similarly to previously studied aqueous microjets(47, 48), in experiments with liquid 

ammonia we also observe electrostatic effects leading to global PE spectral shifts. These shifts 

are larger for alkali metals in liquid ammonia than for solutions of alkali halide salts at 

equivalent concentrations(49). To correct for these instrumental spectral shifts, the low 

concentration spectra (0.08 MPM for Li and 0.15 MPM for Na and K) were aligned horizontally 

such that the lowest-energy liquid ammonia peak (3a1), fitted to a Gaussian, was always 

anchored at 9.09 eV, which is the value of the corresponding vertical detachment energy (VDE) 

as determined in our recent PE measurements of a pure liquid ammonia microjet(39). All the 

other spectra are aligned using the exact same shift. This procedure (see SM for more details) is 
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well justified as for low to moderate alkali metal concentrations the effect of ionic solutes on the 

position of the solvent PE peaks has been found to be negligible in water (see below and 

Refs.(47, 48)). Nevertheless, these factors add together to produce a small systematic uncertainty 

in determining absolute values of VDEs, which we estimate not to exceed ~0.4 eV.  

A substantial result of the present measurements is that from about 0.08 to ~1 MPM the 

PE spectra consistently show a small, but clearly visible peak at a VDE of about 2 eV (Figure 1).  

The integrated area of this peak is roughly linearly proportional to the number concentration of 

the alkali metal (Figure 1D). The observation that the position of this peak practically does not 

depend on the chemical nature of the alkali metal points directly to ammoniated electrons. More 

precisely, starting from ~10-3 MPM the solvated electrons engage in spin-pairing forming 

dielectrons(1, 2, 50). Electron spin resonance measurements provide an estimate of the 

concentration dependence of the dielectron/electron ratio(2), which increases with dissolved 

metal concentration and at around 0.1 MPM reaches a factor of ~10. The measured value of ~2 

eV thus corresponds primarily to the VDE of dielectrons. 

Electronic structure calculations 

Our experimental conclusions are further supported by electronic structure calculations. 

In order to faithfully model the structure of electrons, dielectrons, as well as electron – alkali 

cation pairs (see Figure S10 in the SM) in liquid ammonia we need to go beyond static ab initio 

calculations of small clusters on the one hand(51) and molecular pseudopotential bulk 

simulations on the other hand(41-43). Here, we combine state-of-the-art AIMD using the 

revPBE0-D3 hybrid density functional for sampling of relevant structures with subsequent 

second order Möller-Plesset perturbation theory (MP2) for VDE calculations. The latter 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Submitted Manuscript: Confidential 

8 
 

calculations are performed for clusters carved out of the AIMD trajectory and embedded in a 

polarizable continuum model (PCM). See SM for details. 

AIMD simulations of an excess electron in bulk liquid ammonia demonstrate that an 

ammoniated electron occupies a cavity coordinated by roughly 12 ammonia molecules and has a 

gyration radius of 3.9 Å on average (Figure 2A), consistent with the value of ~3.5 Å following 

from a moment analysis of the optical absorption spectra(52). The spin-paired ammoniated 

dielectron adopts a similar structure to the electron (Figure 2B) with about the same number of 

ammonia molecules in contact and a slightly larger average gyration radius of 4.4 Å. In both 

cases, the solvent shell is very diffuse and lacks clear separation from the rest of the solvent. Our 

test AIMD calculations show that adding a second electron of the same spin leads to the 

formation of two separate solvated electron cavities, rather than a dielectron in a single cavity.  

The electron solvation structure in ammonia is qualitatively similar but quantitatively 

different from that of a hydrated electron in water or aqueous solutions(33, 44). Namely, the first 

solvent shell of the hydrated electron is significantly more structured and less diffuse compared 

to those of the ammoniated electron or dielectron. Moreover, the hydrated electron is much 

smaller, with only 4 to 6 water molecules in its hydration shell and a gyration radius of ~2.5 

Å(44, 52). Concerning dielectrons, the situation in liquid ammonia is likely to be different from 

that in water, where hydrated dielectrons are predicted to be thermodynamically substantially 

less stable than hydrated electrons(53, 54). 

The AIMD simulations also serve as a basis for calculations of the VDE of the 

ammoniated electron and dielectron. First, we carved out the immediate electron solvation shells 

containing 12 NH3 molecules from more than hundred snapshots from the AIMD trajectories. 

These structures were then embedded in a polarizable continuum model with the dielectric 
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constant of liquid ammonia (see below and the SM for more details). The distributions of the 

resulting VDEs of the two species evaluated at the MP2 level (without any additional shifts or 

adjustments) are plotted in Figure 3, referenced against our experimental data. The calculated 

distributions have width of about 0.3 eV peaking at around 2.0 eV for the ammoniated electron 

and ~1.6 eV for the dielectron. Comparing to our low-concentration experimental spectra we see 

that the experimental peak at ~2 eV encompasses within its width both the calculated solvated 

electron and dielectron VDE distributions (Figure 3). These results are consistent with the 

previously calculated very small difference of ~0.1 eV between the lowest optical transitions of 

an ammoniated electron and spin-paired dielectron in a rather idealized six-coordinated cluster 

geometry(55). The value for the ammoniated electron, however, differs quantitatively from 

extrapolations from ammonia clusters with an excess electron(29) yielding 1.25 eV. This is due 

to the fact that the cryogenic clusters are finite and solid and, therefore, have different properties 

from those of the bulk liquid systems investigated here(56, 57).  

 

Photoelectron spectroscopy: From electrolytes to metallic solutions  

Upon increasing the alkali metal concentration, the PE spectra exhibit a gradual 

conversion of the Gaussian-type solvated electron peak into an asymmetric band with a sharp 

edge toward lower binding energies accompanied by one or two satellite peaks on the higher 

binding energy side (Figures 1 and 4 with details provided in the SM). At the lowest alkali metal 

concentrations, the solvated electron peak can be fitted to a Gaussian (Figure 4) with a full width 

at half maximum of about 0.45 to 0.6 eV (i.e., slightly narrower than the equivalent first 

ionization peak for halides in liquid ammonia(49)) and with a low energy onset (appearance 
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potential) at around 1.5 eV, which is close to the previous estimate of 1.4 eV from the 

photoelectron threshold measurements(24, 25).  

In contrast, at the highest lithium concentration of 9.7 MPM the PE spectrum is fitted to 

an inverse-parabola conduction band with a sharp Fermi edge and two plasmon peaks (Figure 4), 

as follows directly from the free electron gas model for metals(58), with an effective electron 

mass close to unity (Figure 4 and Table 1). Due to the relatively low electron density the 

plasmon frequency is in the visible range which gives the concentrated alkali metal – ammonia 

solutions their characteristic bronze/gold color(1, 59). A conduction band with a Fermi edge and 

a plasmon peak can also be observed for the 1.25 MPM potassium – ammonia solution, whereas 

for sodium – ammonia we could not prepare homogeneous solutions above ~1 MPM due to 

spontaneous phase separation at the experimental conditions(1, 2). 

An analogous fit to a free electron gas model is shown for a microjet PE spectrum of 

liquid 50:50 sodium – potassium metal alloy (Figure 4A and Table 1). Here, the conduction band 

is wider and the fundamental plasmon excitation seen at higher binding energies has a higher 

frequency (~4.5 eV) as expected for the higher electron density in the metal alloy compared to 

the metallic lithium – ammonia solutions. This higher frequency places the plasmon in the UV 

when considering the optical reflectance of the sodium – potassium alloy, which does not exhibit 

any color and has a metallic silver sheen. This is actually true for all alkali metals except for 

cesium, in which the lower free electron density shifts the plasmon frequency to the visible range 

conferring a golden color(59).  

The PE spectra of the ~1 – 4 MPM lithium – liquid ammonia solutions can be fitted by a 

combination of a localized Gaussian at 2 eV with a conduction band and plasmon following from 

a free electron gas model, albeit with a reduced effective electron mass (Figure 4D and Table 1). 
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As the lithium concentration increases, the relative weight of the Gaussian contribution to the 

spectrum decreases such that at 9.7 MPM it practically vanishes (Figure 4E). At the same time, 

the spectra exhibit changes in the shape and position of the liquid ammonia 3a1 peak upon build-

up of the metallic behavior of the solution (Figure 4C). Namely, in the electrolyte regime the 

position of the 3a1 peak almost does not change, but it does tend to broaden and move to lower 

binding energies upon appearance of the metallic state (for more details see the SM).  

 
Table 1: Key parameters for lithium-ammonia solutions and the sodium – potassium alloy: 

concentrations in MPM, electron densities n, effective electron masses me*, widths of the 

conduction band Ec, and the positions of the plasmon peak Ep with respect to the Fermi energy 

EF. The latter two were gained from fitting to a free electron gas model with the above effective 

electron masses. The effective electron masses me* were obtained by fitting described in SM.  

 

c (MPM) 

NaK 

100  

Li@NH3 

9.7 

Li@NH3 

3.4 

Li@NH3 

0.97 

Li@NH3 

0.35 

Li@NH3 

0.08 

Li@NH3 

0.012 

c (M) 29 4.3 1.4 0.39 0.14 0.03 0.005 

ne (1021 cm-3) 16.3 2.15 1.05 0.25 0.09 0.02 0.003 

me*/me 1.21 0.72 0.49 0.25 --- --- --- 

Ec (eV) 2.06 0.85 0.74 0.98 --- --- --- 

Ep (eV) 4.52 2.03 1.67 1.74 --- --- --- 

 
 
 

The above results suggest that, in accord with the previous view highlighted in Ref. (1),  

the electrolyte-to-metal transition upon increasing the metal concentration in alkali metal − 

ammonia solutions is not a sharp phase transition, but rather a gradual conversion resembling a 

percolation process, with an unresolved question concerning the sizes of potentially coexisting 
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microscopic regions supporting localized and delocalized electrons (2, 35, 60, 61).  This is a 

different picture than that of a sharp transition at ~8 MPM drawn from recent PE spectra of alkali 

metal – ammonia nanodroplets(31). Although such experiments are pioneering in their own right, 

it is reasonable to question whether finite size clusters are representative of bulk metallic 

solutions in their electronic structure. There are actually significant differences observed for the 

cluster PE spectra, for example the lack of a sharp Fermi edge, the absence of plasmon peaks, 

and the Fermi edge onset appearing at higher rather than lower binding energies from the onset 

of the localized (di)electron peak(31). All of these factors suggest a qualitatively different 

transition in the nanodroplets, taking place at significantly higher concentrations, than 

determined for the bulk liquid systems previously(1, 31). Our present bulk liquid PES results 

show a build-up of a conduction band with a Fermi edge with increasing alkali metal 

concentration even before the solution becomes visibly metallic (Figure 4). This picture is also in 

accord with the semi-quantitative Mott’s criterion postulating that a metallic state starts 

appearing when the mean distance between the electrons drops below approximately four times 

their size(62). With the radius of gyration of the ammoniated electrons and dielectrons of ~4 Å 

(Figure 2) metallic behavior should thus start evolving at around 1 MPM, which is consistent 

with the onset of conduction band formation in the present PES measurements. Note, however, 

that the transition observed here is more gradual than what would strictly follow from a pure 

Mott’s transition(62).  

We can thus conclude that the occurrence in the PE spectrum of a conduction band with a 

distinct Fermi edge, together with plasmon peaks, is a signature of the electrolyte−to−metal 

transition. This gradual transition is observed both in the lithium − ammonia and potassium − 

ammonia solutions, see Figures 1 and 4 and SM. (As mentioned above, sodium − ammonia 
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solutions phase-separate at concentrations above ~1.5 MPM into immiscible electrolyte and 

metallic phases(2), which compromises the microjet PE measurements.) One can also view the 

process from the other side, i.e., as a metal-to-electrolyte transition upon decreasing the alkali 

metal concentration. We see from Figure 4 that at the highest studied concentration of 9.7 MPM 

the metallic lithium − ammonia system behaves very close to an ideal free electron gas, just as 

the liquid sodium − potassium alloy (similarly to pure alkali metals(63, 64)). However, upon 

decreasing the concentration of the alkali metal − ammonia solutions below ~4 MPM we observe 

departure from the ideal electron gas model, as exemplified by a rapid decrease of the effective 

electron mass well below the value of 1 me (Figure 4D). A schematized picture is presented in 

Figure 5 capturing the gist of the transition. It graphically depicts the gradual interconversion 

between localized “chemical” species – solvated electrons and dielectrons – into delocalized 

“physical” moieties, i.e., metallic conduction band electrons, upon changing the electron 

concentration.   

 

Outlook 

The present study shows that the electrolyte−to−metal transition in increasingly 

concentrated alkali metal – liquid ammonia solutions is a gradual process rather than an abrupt 

first order transition, which is in line with previous suggestions(1). From the molecular point of 

view, this transition may be understood in a simplified way as gradual coalescence of individual 

solvated electrons and dielectrons upon increasing alkali metal doping, with the metallic 

behavior appearing at around the percolation threshold.  
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After overcoming methodological difficulties connected with modeling of the onset of 

the metallic state, future AIMD simulations of concentrated alkali metal – liquid ammonia 

solutions will shed more light on the electrolyte−to−metal transition in terms of the details of the 

underlying electronic structure and molecular geometries. On the experimental side, the 

experience already gained from liquid ammonia microjets is proving essential in our current 

attempts to realize the metallic state in the much more reactive (even explosive) alkali metal – 

water systems. 
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Fig. 1. Experimental PE spectra of alkali metal − liquid ammonia solutions at varying 

concentrations as obtained by synchrotron X-ray photoelectron spectroscopy in a refrigerated 

liquid microjet setup. (A) Li in NH3, (B) Na in NH3, and (C) K in NH3. The individual data 

points are color-coded to reflect the actual color of the solutions. The energy scales are with 

respect to the vacuum level. (D) Integrated peak areas from 0 to 6 eV in (A) − red, (B) - purple, 

and (C) − yellow, as a function of the alkali metal concentration.  
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Fig. 2. Ammoniated electron and dielectron simulated by ab initio molecular dynamics. We 

present radial electron density profiles calculated from the squares of the corresponding Wannier 

orbitals (green filled curves) and the center of excess charge – ammonia nitrogens radial 

distribution functions (blue curves). Normalization is such that the integrated excess electron 

density of the dielectron is twice that of the electron (the latter being arbitrarily set to peak at the 

value of 1). The dashed vertical lines denote the electron or dielectron radii of gyration. Insets: 

Snapshots of the squared Wannier orbitals with surrounding ammonia molecules in the AIMD 

simulation box. A. AIMD results for the ammoniated electron. B. AIMD results for the 

ammoniated dielectron.  
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Fig. 3. Simulated vertical detachment energies. Ammoniated electron (red) and dielectron 

(purple) were modeled using solvation shells with 12 ammonia molecules carved out from 

AIMD simulations and embedded in PCM. For comparison we depict the corresponding section 

of experimental PE spectra of the low-concentration lithium – ammonia solutions (from Figure 

1A).  
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Fig. 4. Analysis and fits of the photoelectron spectra in the electrolyte and metallic regimes. Note 

that the partial fits to the conduction band, plasmons, and localized (di)electrons are vertically 

offset for better visual clarity. A. Fit (relative root mean square error of 5.3 %) of the liquid Na – 

K alloy to a free electron gas model, comprised of, from low to high binding energy, a Fermi-

edge leading feature with characteristic parabolic shape of the conduction band with plasmon 

excitations as higher binding energy features and B. Fits (relative root mean square errors of 6.3, 

6.8, 7.1, 8.9, and 32.2 % for 9.7, 3.4, 0.97, 0.35, and 0.08 MPM, respectively) of Li – NH3 data 

with a combination, in varying ratios, of a free electron gas model with plasmon bands for the 

fraction where the electron is delocalized and a single Gaussian to represent the localized 

(di)electron. C. Evolution of the liquid ammonia 3a1 peak upon increasing Li concentration. D. 

Concentration dependence of the effective electron mass from fits in A and B. E. Relative peak 

areas corresponding to the localized Gaussian, the conduction band, and the plasmon peaks in B. 
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Fig. 5. Picture emerging from band formation during the transformation from electrolyte (blue) 

to metallic solution (bronze/gold) upon increasing alkali metal concentration. The limiting 

photoelectron spectra are schematically represented at the top and bottom of the figure with axes 

showing binding energies with respect to the Fermi and vacuum level respectively. For a free 

electron gas (upper concentration limit), the width of the leading conduction band is expected to 

scale with electron number density with the plasmon bands, EP, simultaneously moving out in 

spacing from the leading edge.  
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