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Abstract: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders
worldwide. Its incidence is gradually increasing because of an aging demographic. Therefore,
AD prevention and modification is important to improve the health status of older adults. Oxidative
stress is a component of the pathological mechanisms underlying AD. It is caused by a disruption
of the balance between reactive oxygen species and antioxidant molecules. This imbalance also
causes neuroinflammation. Catechins, which are bioactive components of tea, have antioxidative
and anti-inflammatory effects. Moreover, other potential properties related to AD prevention and
modification have been reported in in vitro and in vivo studies. Several clinical studies have also
been conducted to date. The current review summarizes recent updates and perspectives of the
effects of catechins on AD based on the molecular mechanisms and related clinical studies.

Keywords: Alzheimer’s disease; catechin; molecular mechanisms; clinical study

1. Introduction

Over 100 years ago, the first case of Alzheimer’s disease (AD) was reported by Dr. Alois Alzheimer,
in a German woman, Auguste Deter. It was subsequently named “Alzheimer’s disease” by Dr. Emil
Kraepelin and colleagues [1–4]. The number of individuals with AD is gradually increasing due to
worldwide aging. The Alzheimer’s Association estimated the prevalence of AD in the U.S. in 2016 to
be 5.3 million cases, and another study indicated that there were over 45 million individuals living
with AD worldwide [5,6]. Two types of medications have been developed to treat AD symptoms:
(1) acetylcholinesterase (AChE) inhibitors (donepezil, rivastigmine, and galantamine), and (2) an
N-methyl-D-aspartate (NMDA) receptor antagonist (memantine). However, there is currently no
cure [7]. In addition, the strategy for AD drug development has recently shifted toward disease
prevention rather than treatment [7]. As such, a combination of pharmaceutical and nonpharmaceutical
approaches is important.

Catechins, which are bioactive components of tea, have antioxidative and anti-inflammatory
effects. Moreover, other potential properties related to AD prevention and modification have been
reported in preclinical in vitro and in vivo studies of catechins [8,9]. Several clinical studies have

Molecules 2018, 23, 2357; doi:10.3390/molecules23092357 www.mdpi.com/journal/molecules

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-6377-1361
https://orcid.org/0000-0002-7477-4071
http://www.mdpi.com/1420-3049/23/9/2357?type=check_update&version=1
http://dx.doi.org/10.3390/molecules23092357
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 2357 2 of 13

also been conducted, and an intervention study is currently ongoing [10,11]. Hence, catechins and
their derivatives have the potential be useful in pharmaceutical and nonpharmaceutical treatment
approaches [11,12].

The current review introduces the pathophysiology of AD and summarizes recent updates and
perspectives on the effects of catechins in AD based on what is known of the molecular mechanisms
involved and research completed to date.

2. Pathophysiology of AD

AD is a progressive neurodegenerative disease and the most common cause of dementia
(estimated to be responsible for approximately 60 to 80% of cases) [5]. Currently, amyloid
and tau protein-related neurotoxicity, changes in cholinergic neurotransmission, oxidative stress,
and alterations in calcium homeostasis are considered to be key elements of AD [13,14]. Amyloid
proteins are processed from amyloid precursor protein (APP) by enzymes. When processed by β-site
APP cleaving enzyme (BACE), amyloid β protein is produced, which triggers the development of
AD [15]. Among various isoforms, 1-40 and 1-42 are most common, the latter of which is considered to
exhibit the highest toxicity. The oligomerization and accumulation of amyloid β protein is associated
with brain atrophy and cognitive decline [16,17]. Additionally, soluble amyloid β oligomers produce
neurotoxic effects [18]. Therefore, balancing the generation and clearance of amyloid β is important
during the development of AD pathology. Clearance is mediated by several receptors, including
soluble and cell-surface lipoprotein receptor-related protein 1 (LRP-1) receptors [19]. A decrease
in LRP-1 receptor expression and a corresponding increase in amyloid β production are observed
in humans with age [20–22], and may underlie the age-associated accumulation of amyloid β in
brain. Increased tau, a highly soluble protein related to microtubule structure and function, is also
associated with AD pathology [23]. Microtubules are involved in neuronal growth and axonal transport.
In AD, hyperphosphorylated tau protein is observed, leading to aberrant aggregation. This results in
malfunctioning of axonal transport [24].

Increases in oxidative stress and neuronal inflammation are also related to neuronal dysfunction
and neurodegeneration [25,26]. Oxidative stress is induced by an imbalance of reactive oxygen species
(ROS) and antioxidants, which are increased in the brain with aging [27]. Mitochondria play an
important role in maintaining the balance of ROS and antioxidants [28,29]. Neuronal inflammation can
also be related to the pathogenesis of AD, and could be induced by the inflammatory reaction resulting
from amyloid β protein accumulation [30]. In addition, systemic inflammation, obesity, and traumatic
brain injury affect neuroinflammatory status [31]. Holmes and other researchers reported that systemic
inflammation occurs prior to amyloid β deposition. Exacerbation of cognitive decline and behavioral
changes after systemic inflammation have also been reported in humans [32,33]. Obesity itself increases
bacterial and viral infections that cause systemic inflammation; furthermore, white adipose tissue
secretes proinflammatory cytokines [34]. Traumatic brain injury not only directly affects learning and
memory, but also decreases the degradation of amyloid β [35,36].

The main types of neurotransmitters involved in AD are cholinergic and glutamatergic
transmitters [37–39]. The cerebral cholinergic system is thought to play an essential role in memory
in humans [40]. Gil-Bea et al. reported that acetylcholine (ACh), cholinacetyltransferase (ChAT),
and acetylcholinesterase (AChE) are all reduced in the frontal cortex of postmortem brains of
individuals with AD [41]. Alterations in high-affinity choline uptake, impairment in ACh release,
and other pathological changes in postmortem brains have also been reported and summarized
elsewhere [42,43]. With respect to excitatory neurotransmission, glutamate in the synaptic cleft can
be increased by the presence of soluble amyloid β oligomers [39], representing another target for AD
drug development. Indeed, a glutamate receptor antagonist, memantine, is currently used to treat
moderate to severe AD.
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3. Molecular Mechanisms Underlying the Effects of Catechins in AD

A major bioactive compound constituting catechins is (−)-epigallocatechin gallate (EGCG) [8,44].
In addition, as reported by Lin et al., Japanese and Chinese green tea also contains (−)-epigallocatechin
(EGC), (−)-epicatechin gallate (ECG), (−)-epicatechin (EC), and (+)-catechin (C) (Figure 1) [45].
These compounds are abundantly found in nonfermented teas, such as green tea.
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Many studies on the molecular mechanisms of the effects of catechins on AD have been conducted
in vivo and in vitro [46–48], as well as in silico [49]. Catechins’ known antioxidative effects may
contribute to protection from neurodegeneration. As mentioned above, increased oxidative stress
is involved in late-onset neurodegenerative disorders [50,51]. Indeed, peroxidized lipids, proteins,
and oxidized DNA are known to be increased in individuals with AD [52]. Haque et al. reported
that long-term (26 weeks) administration of green tea catechins (0.5% green tea catechins in water)
prevented amyloid β-induced cognitive impairment in rats [53]. Along with preventing cognitive
impairments, both hippocampal and plasma lipid peroxide and ROS levels were over 20% lower
than controls, representing a significant reduction [53]. Biasibetti et al. also demonstrated a related
effect of EGCG [54]. The authors evaluated the effects of EGCG using a streptozotocin-induced
dementia model in the rat. After oral administration of 10 mg/kg/day of EGCG for a month, cognitive
deficits assessed by the Morris water maze were reversed and ROS levels and NO production (based
on nitrate in the hippocampus) were significantly reduced [54]. The radical scavenging activity of
catechins [55] and metal iron chelating properties may contribute to these antioxidative effects [56,57].
Metal ions such as copper (II) and iron (III) can be chelated by catechins, and iron chelation reduces the
production of ROS by inhibiting the Fenton reaction [58]. Copper (II) and iron (III) ions are also known
to accumulate in the brains of individuals with AD [59]. These studies suggest that tea catechins can
reduce oxidative stress in peripheral and brain tissue and that they may suppress behavioral changes
related to cognitive deficits.

Catechins also possess anti-inflammatory properties, which may also underlie the mechanism
of their effects on AD. Neuronal damage or injury leads to the secretion of proinflammatory
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elements (e.g., cytokines, cytotoxic elements), which trigger neuronal death [60]. In a study
using lipopolysaccharide-injected mice (250 µg/kg/day for 1 week), Lee et al. demonstrated that
preadministration of EGCG (1.5 and 3 mg/kg for 3 weeks) prevented lipopolysaccharide-induced
memory impairment and suppressed the increase of cytokines and inflammatory proteins seen in
nontreated controls [61]. Another in vitro study of BV-2 microglia showed that reactions related
to lipopolysaccharide-induced inflammation (including nitric oxide production, cyclooxygenase-2
expression, and inducible nitric oxide synthase expression) were inhibited by EGCG [62].

Protein kinase C (PKC)-related mechanisms may also contribute to the effects of catechins on
AD. PKC has a role in cell survival and soluble nontoxic amyloid β (sAPP) generation [63,64]. Several
isozymes including α and ε activate α secretase, which leads directly to the cleavage of amyloid APP
into nontoxic amyloid β. In vitro and in vivo studies published by Levites et al. revealed that a low
concentration of EGCG (1–5 µM) stimulates sAPP production from human neuroblastoma and PC12
cells, and that 2 weeks of oral administration of EGCG (2 mg/kg/day) increases PKC α and ε in the
hippocampus of mice compared to control-treated animals [65].

Other possible mechanisms of catechins have also been reported. Kaur et al. and Kim et al.
conducted studies related to AChE inhibition using tea polyphenols [66,67]. In Kaur and colleagues′

study, aged Wister rats treated with green tea extract (0.5%) for 8 weeks showed significantly improved
learning and memory performance, assessed using the passive avoidance test. AChE activity in the
cerebrum was decreased in treated aged rats compared with young rats [66]. Kim et al. also reported
similar results: amnesia induced by scopolamine was reversed by treatment with 0.2% (w/w) tea
polyphenol administered to mice through the diet. Along with behavioral changes, AChE activity was
strikingly inhibited by tea polyphenols [67]. In addition to these in vitro and in vivo studies, an in silico
docking study with tea polyphenols and choline esterase enzymes has also been performed [49,68].

4. Clinical Studies on Catechins and AD

In 2018, over 10 clinical studies, including dose–response meta-analyses of observational
studies on the effects of catechins on AD, were conducted in the United States, Europe, and Asia.
Below, we briefly introduce examples of various study designs.

4.1. Cross-Sectional Studies

Since 2006, six cross-sectional studies have been conducted, the key information from which is
summarized in Table 1. The first study was conducted in Japan by Kuriyama et al. [69]. The authors
conducted a cohort study named the Tsurugaya Project in aged individuals, and epidemiologically
analyzed the association between frequency of drinking green tea and cognitive function assessed
by the Mini-Mental State Examination (MMSE). Among 1003 Japanese individuals aged >70 years,
the prevalence of cognitive dysfunction (defined as the cutoff MMSE of 26) was lower in those who
consumed more green tea (adjusted odds ratio (OR)) (95% confidence interval (95% CI));≤3 cups/week,
1.0 (references); 4 to 6 cups/week or 1 cup/day, 0.62 (0.33, 1.19); ≥2 cups/day, 0.46 (0.30, 0.72); p for
trend <0.001) [69]. The results were consistent when the cutoff score of the MMSE was changed to
24 or 28. A study conducted on community-living Chinese aged ≥55 years also showed a negative
association between green tea consumption and the prevalence of cognitive impairment (OR (95% CI)
(reference: no consumption), 0.42 (0.25, 0.69)) [70]. Other studies reported by Nurk et al. in Norway
and Feng et al. in Singapore also demonstrated similar associations [71,72]. Recently, Gu et al. reported
the same trend in a Chinese population aged ≥60 years [73]. However, one study resulted in no
significant association between green tea consumption and cognitive impairment [74], and another
study showed sex differences within the effects [75]. In the latter study, the significant association
was only observed in former and current green tea-consuming men, but not women, compared to
controls [75].
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Table 1. Characteristics of cross-sectional and longitudinal studies.

Author, Year Participants and Exposure Results
Cross-sectional studies

Kuriyama et al., 2006 [69] Japanese residents ≥70 yo (N = 1,003); green tea Prevalence of cognitive impairment was lower in the frequently tea-drinking group
(aOR (95% CI) 1; ≥2 cups/day, 0.46 (0.30, 0.72); p for trend <0.001)

Ng et al., 2008 [70] Community-living Chinese ≥55 yo (N = 2501); green,
black, and oolong tea

Prevalence of cognitive impairment was lower in the frequently tea-drinking group
(OR (95% CI) 1; medium-level intake, 0.45 (0.27, 0.720); high-level intake, 0.37

(0.14, 0.94))

Nurk et al., 2009 [71] Norwegian residents 70–74 yo (N = 2031); any type of
tea (black tea is most common) Dose dependency for the cognitive performance was observed ~200 mL/day

Feng et al., 2010 [72] Chinese residents ≥55 yo (N = 716); green, black, and
oolong tea

Tea consumption was associated with improvement in cognition, executive function,
and information processing speed (p < 0.01)

Gu et al., 2017 [73] Participants of Weitang Geriatric Diseases Study ≥60
yo (N = 4579); any type of tea

Tea consumption was inversely associated with prevalence of cognitive impairment
(OR (95% CI), 0.74 (0.57, 0.98), p = 0.032)

Shen et al., 2015 [74] Chinese residents ≥55 yo (N = 9375); several types
of tea 2

Compared with nonconsumption, tea consumption was significantly associated with
lower prevalence of cognitive impairment (≥4 cups/day, OR (95% CI), 0.74

(0.57, 0.98), p = 0.032)

Huang et al., 2009 [75] Chinese residents ≥90 yo (N = 681); any type of tea In men, but not in women, lower prevalence of cognitive impairment among tea
drinkers was observed (p = 0.044 for current drinkers)

Longitudinal studies

Feng et al., 2012 [76] Chinese residents 80–115 yo (N = 7139); any type of tea,
7-y follow-up

Cognitive function measured by verbal fluency tests was higher in all time-points for
tea drinkers compared to nondrinkers. A positive correlation was observed after

adjusting (regression coefficient, p-values; 0.72, p < 0.001 for daily drinking) 3

Noguchi-Shinohara et al.,
2014 [77]

Japanese residents ≥60 yo (N = 723); green tea, 4.9-y
follow-up

Compared with non-tea-drinkers, aOR (95% CI) for cognitive decline in those who
consumed green tea every day was 0.32 (0.16, 0.64) (p < 0.05), and those who

consumed green tea 1 to 6 days/week also showed a significant decline

Ng et al., 2008 [70] Chinese residents ≥55 yo (N = 1438); green, black, and
oolong tea; 1–2-y follow-up

High level of tea consumption associated with less decline in cognitive function
(p = 0.042)

Arab et al., 2011 [78] U.S. residents ≥65 yo (N = 4809); any type of tea; 7.9-y
follow-up

An attenuated rate of cognitive decline, measured by the MMSE, was only observed
in women (IRT-MMSE, p = 0.04)

Eskelinen et al., 2009 [79] Eastern Finland residents 65–79 yo (N = 1409); 21-y
follow-up No association was observed between tea consumption and AD/dementia

1 Reference is the population of ≤3 cups/week; 2 green, black, oolong, pu-erh, scented, and fruit tea; 3 adjusting for age, gender, years of education, and other background characteristics.
aOR, adjusted odds ratio; CI, confidence interval; IRT-MMSE, item response theory MMSE; OS, observational study; y, year; yo, years old.
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4.2. Longitudinal Studies

Five longitudinal studies have been reported since 2008 (Table 1). The largest longitudinal study
was conducted by Feng et al. in 2012 [76]. The study included over 7000 Chinese aged ≥80 years,
and included a 7-year follow-up. Cognitive function, measured by verbal fluency tests, was higher at
all time points in tea drinkers compared with nondrinkers. The positive correlation was also observed
after adjusting for age, gender, years of education, and other background characteristics (regression
coefficient, p-values; 0.72, p < 0.001 for daily drinking; 0.41, p = 0.01 for occasional drinking).

In contrast to Feng′s study, which focused on an older population, Noguchi-Shinohara conducted
a study named the Nakajima Project investigating individuals aged ~70 years at baseline [77]. The mean
follow-up period (standard deviation) of the study was 4.9 (0.9) years. Among 723 individuals who
participated in the study, 490 individuals completed the follow-up survey. Approximately 5% of
individuals had an onset of dementia, and 13.1% of individuals were diagnosed with mild cognitive
impairment (MCI) during the study period. When compared with non-tea-drinkers, the adjusted
OR [95% CI] for cognitive decline in those who consumed green tea every day was 0.32 (0.16, 0.64).
The association was also significant for those who consumed green tea 1 to 6 days/week. Interestingly,
the associations were only observed using green tea, which contained a high content of EGCG, and was
not observed using coffee or black tea as the variables of interest.

Three other longitudinal studies assessed the association between tea consumption and cognitive
function. Ng et al. reported the study of community-living Chinese adults aged 65 years at the
baseline [70]. In the study, 1438 participants reassessed the cognitive function by the MMSE at
1–2 years (median, 16 months) after the baseline assessment. A higher level of tea consumption
was significantly associated with a lower prevalence of cognitive decline, even after adjusting for
confounding variables. Arab et al. conducted a study in the United States, and the results suggested
the existence of sex differences [78]. The authors followed up with participants of the Cardiovascular
Health Study (CHS) for over 7 years, and an attenuated rate of cognitive decline measured by the
MMSE was observed only in women. In addition, Eskelinen et al. reported no association between
tea consumption and dementia/AD in an eastern Finland population [79]. However, as the authors
discussed, the study only included a few individuals who drank tea.

While observational results remain somewhat inconclusive, Liu et al. recently published the
results of a pooled meta-analysis [80]. In total, data from 48,435 individuals were included, and tea
consumption was found to be significantly negatively associated with the risk of cognitive dysfunction
(OR (95% CI); 0.73 (0.65, 0.82) for any types of tea). When stratified by the type of tea, it was found that
only green tea was responsible for this association (0.64 (0.53, 0.77)). The authors also evaluated the
dose-dependent effects of green tea consumption, and a linear relationship was observed from 100 to
500 mL/day. Additional studies are needed to confirm this result; however, it is noteworthy that a
meta-analysis showed a dose-dependent effect of tea consumption.

4.3. Interventional Studies

Several before–after and randomized-controlled studies also have been conducted to date (Table 2).
One study used a green tea-based dietary supplement, and three studies used green tea itself.

Park et al. reported on the effects of the supplement (LGNC-07), which included 1440 mg/day
green tea extract [81]. Ninety-one individuals with mild cognitive impairment (MCI) participated in
the study and took the supplement for 16 weeks. This study found no differences between supplement-
and placebo control-treated participants with respect to memory and selective attention, although both
were significantly improved among individuals who scored 21–23 on the Korean version of MMSE,
regardless of treatment administered.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Molecules 2018, 23, 2357 7 of 13

Table 2. Characteristics of interventional studies.

Author, Year Design, Participants, and Intervention Results

Park et al., 2011 [81] RCT, 40-75 yo with MCI, 16 weeks of
LGNC-07 1

Cognitive function and attention were
significantly improved compared to controls

(p < 0.05)

Kataoka et al., 2009 [82] RCT, ≥85 yo with cognitive dysfunction,
12 months of theanine-rich green tea

Cognitive function measured by HDS-R was
improved compared to control (p = 0.0306)

Ide et al., 2014 [83] Before–after, ≥65 yo with cognitive
dysfunction, green tea powder

Cognitive function measured by MMSE-J
improved after the intervention (p < 0.05)

Ide et al., 2016 [84] RCT, ≥50 yo with cognitive dysfunction,
green tea/placebo powder

MMSE-J score was not significantly improved
(LSM (95% CI); −0.61 (−2.97,1.74); p = 0.59);
however, MDA-LDL level was lower in the

green tea group (p = 0.04)
1 Tea-based dietary supplement; 2 Cognitive function measured by Rey–Kim memory test (p = 0.0478) and attention
measured by Stroop test (p = 0.0306). HDS-R, revised Hasegawa’s Dementia Scale; MCI, mild cognitive impairment;
LSM, least squares mean; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MMSE-J, Japanese
version of Mini-Mental State Examination; RCT, randomized controlled trial; yo, years old.

All other studies using green tea were performed in Japan. In 2009, Kataoka et al. conducted
a randomized study [82]. The authors used a capsule of tea powder and measured cognitive function
using the Revised Hasegawa′s Dementia Scale (HDS-R). A 12-month intervention was performed,
which demonstrated positive effects of theanine-rich green tea. However, the article fails to describe
eligibility criteria, and the HDS-R was performed monthly and analyzed using multiple t-tests,
a less robust method of analyzing repeated measures data. Therefore, the quality of the study
is somewhat questionable. Following that, in 2014, our research group conducted a before–after
exploratory intervention study [83]. Twelve individuals with cognitive dysfunction (defined as
a score on the Japanese version of the MMSE (MMSD-J) of <28) aged ≥65 years (mean age 88 years)
participated in the study and consumed green tea powder (2,000 mg/day; including 227 mg/day
catechins). MMSE-J scores were significantly improved after 3 months of treatment (before: 15.3 ± 7.7;
after: 17.0± 8.2; p = 0.03). Considering the results of this pilot study, we then conducted a double-blind,
randomized-controlled study [84]. Thirty-three individuals participated, and 27 completed the study.
Participants took 2000 mg/day of green tea powder or placebo powder for 12 months. Changes
in the MMSE-J score during the study period were not significant between groups (least squares
mean (95% CI); −0.61 (−2.97, 1.74); p = 0.59); however, levels of an oxidative stress marker (i.e.,
malondialdehyde-modified low-density lipoprotein (MDA-LDL) level) were significantly lower in
the green tea group. The antibody for MDA-LDL is known to increase among individuals with
AD [85]; therefore, the MDA-LDL-lowering effect of catechins may contribute to the suppression
of AD progression. These results suggest potential effects of green tea on AD; additional large
randomized-controlled studies are needed to confirm the effects.

5. Conclusions and Future Perspectives

The effects of catechins on AD have been investigated preclinically using various approaches
(in vitro, in vivo, and in silico), and several clinical studies have also now been conducted.

As summarized in this article, as well as the functional effects of catechin treatment on cognition,
experimental studies have revealed several putative mechanisms underlying the effects. Mechanisms
related to antioxidative, anti-inflammatory, PKC-related, and neurotransmission-related properties
of catechins may play a role. The structure–activity relationships between catechins and key
enzymes involved in AD, revealed by an in silico docking study, also suggest potential mechanisms.
A meta-analysis of clinical observational studies revealed a dose-dependent association after pooling
the results of >45,000 individuals [80]. This dose-dependent association might support a robustness of
effects in humans. However, the results of interventional studies are inconclusive. Three out of four
studies demonstrated positive effects of tea and tea-based dietary supplement treatments; however,
the sample size of these studies was relatively small (<100 individuals) and results of randomized
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studies were not consistent. This inconsistency might result from differences in study design and
settings; additional research is needed to confirm the effects. Nonetheless, a study which demonstrated
no improvement in cognitive function did reveal changes in a marker of oxidative stress, indicating
that tea intake has some health benefit among individuals with cognitive dysfunction. Therefore,
conducting additional studies is warranted.

Future studies should consider pharmacokinetic and pharmacodynamic aspects of catechins.
Studies in rodents suggest that EGCG and other catechin compounds are blood brain barrier
(BBB)-permeable, and a study using rat and human cell lines suggested a time-dependent course
for catechins crossing the BBB [86–89]. For example, Nakagawa et al. reported that a single oral
administration of 500 mg/kg EGCG reaches the brain at 0.5 nmol/g after 60 min [86], and another
study demonstrated that 20 mg/kg of C and EC can permeate the blood brain barrier in rodents [88].
However, the bioavailability and distribution of catechins in the human brain remain to be elucidated.
In addition to studies focused on the cognitive effects of treatments, clinical studies should also obtain
basic physiological information. In this review article, we only focused on tea catechins, but grape
(Vitis vinifera) seeds also include bioactive catechins such as EGCG. Therefore, additional studies that
explore a wider variety of catechin sources are also important [90].

A combination of pharmacological and nutritional usage of catechins is also a possibility for
future investigations. Chen et al. evaluated a combination therapy consisting of memantine and
tea polyphenols [91]. In their study, the combination therapy more effectively protected from
excitotoxic injury and impairment in locomotor activity than either component alone. Additionally,
Zhang et al. [92] reported using a combination of catechins with acetylcholinesterase inhibitors. It is
increasingly recognized that it may be important to focus on potential combinations of medical and
nutritional approaches to establish the most effective future treatment options.

In summary, various studies have been conducted to date, and will continue to be performed,
to examine the effects of catechins on AD. Several results suggest that catechins have promising
therapeutic potential, which may contribute to improving the quality of life of aging populations.
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