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Abstract—Ethereum’s Gas mechanism attempts to set transac-
tion fees in accordance with the computational cost of transaction
execution: a cost borne by default by every node on the network
to ensure correct smart contract execution. Gas encourages users
to author transactions that are efficient to execute and in so doing
encourages node diversity, allowing modestly resourced nodes to
join and contribute to the security of the network.

However, the effectiveness of this scheme relies on Gas
costs being correctly aligned with observed computational costs
in reality. In this work, we performed the first large scale
empirical study to understand to what degree this alignment
exists in practice, by collecting and analyzing Tera-bytes worth
of nanosecond-precision transaction execution traces. Besides
confirming potential denial-of-service vectors, our results also
shed light on the role of I/O in transaction costs which remains
poorly captured by the current Gas cost model. Finally, our
results suggest that under the current Gas cost model, nodes with
modest computational resources are disadvantaged compared to
their better resourced peers, which we identify as an ongoing
threat to node diversity and network decentralization.

I. INTRODUCTION

Cryptocurrency networks have seen massive growth and
innovation, due to their decentralised nature and extensibility.
The Ethereum network is a prime example, whose design
aims to maximise extensibility while preserving decentrali-
sation. Ethereum adopts Bitcoin’s proof-of-work distributed
consensus mechanism and supports the execution of complex
transactions through smart-contracts written in the Ethereum
Virtual Machine (EVM) instruction set.

Given the gravity of decentralisation, node diversity—the
ability for heterogeneous machines of varying capabilities to
participate in the network—is a key consideration in the design
of the EVM and setup of consensus parameters. In particular,
Ethereum encourages anyone to freely join the network and
participate even with modest computational resources with-
out unduly hindering the network’s transaction throughput.
Achieving decentralisation while maintaining diversity and
throughput in an ecosystem of heterogeneous machines with
differing computing capabilities is non-trivial because, by
default, all network nodes are required to execute and check
the results of each new transaction, to derive the current state
of the network. Indeed, we argue that having a diversity of
nodes able to check correct transaction execution is crucial
for the network’s security, especially against the possibility of
colluding miners.

To manage the cost of having nodes execute each new
transaction, when a user creates a new transaction in Ethereum,
the user must pay a fee for the network to execute the
transaction. Part of this fee represents an approximation of the
computational and storage cost of running the transaction. This
fee is paid in virtual units, called Gas. The Gas mechanism
therefore incentivises nodes to create transactions that are
quick to execute as users optimise towards paying as little gas
as possible. In addition, a block gas limit bounds the amount
of gas that can be consumed by the transactions in any single
block of Ethereum’s blockchain, approximating a per-block
upper bound on the computational complexity of transaction
execution and verification. In this way, Ethereum balances the
freedom to create complex transactions against the need to
ensure that transactions can be efficiently verified.

If gas is to maximally incentivise nodes to minimise variable
computational costs, it is critical that it accurately reflects the
real costs of transaction execution. To this end, the Ethereum
Foundation has defined precise formulae for calculating gas
costs for transactions, as a function of the transaction bytecode
instructions [1]. Specifically, the current costs were defined by
setting an ideal ratio R between execution time and units of
gas on a single unidentified benchmark machine1. By doing so
each EVM instruction opcode was assigned a fixed gas cost
that approximated its computational cost on the benchmark
machine, calibrated relative to the other instructions.

The accuracy of this calibration directly influences the
utility of Gas for incentivising transaction efficiency, and
ensuring Ethereum can continue to maintain decentralization
in the absence of trust in the face of increasing smart contract
complexity. To evaluate the gas mechanism in its mission
to price transactions effectively with respect to transaction
execution time, we perform an in-depth empirical analysis
of the Ethereum gas mechanics in an attempt to determine
how they operate under real world usage scenarios. Our study
was carried out by measuring transaction execution times
across an interval of 2+ million blocks (post-EIP150) in the
Ethereum blockchain, replaying all state transitions that have
occurred since the genesis block. This allowed us to compute
the observed Time-to-Gas ratio for each opcode, and their
distributions, shedding light on the calibration precision of the

1https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem
mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0
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Gas mechanics. Our measurements were collected and con-
trasted between two machines: one highly efficient machine
representing an upper bound on computational resources of
individual Ethereum nodes and the other a typical desktop
machine. Our contributions are as follows:
• A detailed collection of EVM traces for each transaction,

with opcode execution times, measured on two disparate
machines with defined specifications.

• We identify that some EVM opcodes are mispriced,
particularly those involving disk I/O, presenting potential
denial-of-service vectors.

• We analyse the effects of I/O and the impact of in-
memory caching strategies employed by the reference
client to mitigate I/O costs.

• We show that the current gas cost model favours more
performant machines, which we identify as an ongoing
threat to node diversity and decentralization.

• We briefly discuss possible solutions to these issues.

II. BACKGROUND

In this section, we will provide the building blocks for
understanding how the Gas Mechanism operates in Ethereum.

A. Ethereum

The accounting unit for usage within the Ethereum network
is known as Ether. Transactions in Ethereum utilise the ac-
count model of computation where each account is a reference
to either a smart contract or a payment account. Both payment
and smart contract accounts may send and receive Ethers.

The Ethereum Virtual Machine (EVM) is an interpreter
which executes transactions that invoke smart contracts on
the blockchain. Every participant in the Ethereum network
operates an instance of the EVM and executes each new
transaction. Doing so ensures that no node can lie about the
results of a transaction undetected. The EVM implements the
consensus rules that govern the validity of transactions, which
includes the gas cost for each operator and other details (e.g.,
the block gas limit) that define valid state transitions.

The ordering of transactions is defined by their position in
the blockchain and they are executed serially. Parallel verifi-
cation of transactions [2] is non-trivial due to the possibility
of side-effects via state mutation. As per other decentralised
consensus network, Ethereum uses Nakamoto Consensus to or-
der state transitions for its network state. Miners continuously
solve proof-of-work puzzles to include valid transactions into
blocks. All participants, miners and ordinary users alike verify
every new transaction to independently derive the state of the
network.

B. Transaction and State

Transactions describe state transitions in Ethereum. There
are three types of transactions in Ethereum: transfer, message-
call, and contract creation transactions. Transfer transactions
transfer Ether balances from one account to another without
the usage of the interpreter. Message-call transactions con-
tain data payload which is used an input to execute smart

contracts published on the Ethereum blockchain. Contract
creation transactions publish new smart contracts onto the
Ethereum blockchain. Accepting a transaction in Ethereum
requires each participating node on the network to first verify
the cryptographic seals and replaying the transaction. During
the execution runtime for message-call transactions, gas is
consumed for each executed EVM instruction.

Ethereum nodes across the network update their node state
each time a new block is received. During the update process,
nodes update various data structures stored locally which are
used to verify future transactions, such as the state trie, account
trie, transaction trie, and transaction receipts trie, which are all
necessary to derive future block headers. The state trie is an
record of the current state of all accounts and implemented as
an authenticated data structured. Where possible, to mitigate
I/O disk access, some elements of the state trie may be stored
in memory for faster storage and retrieval to verify future
transactions (see Section IV-B).

When joining the network, participating users have two
ways to obtain the current state of the network. Firstly,
they can bootstrap their nodes by performing Initial Blocks
Download (IBD), aka a “full-sync”, to independently derive
the current state of the network. During this process, the
node must verify the cryptographic elements and replay all
transactions for each block. Replaying transactions at the time
of writing takes many weeks of serial computational time.
Secondly, users can instead elect to obtain state snapshots
from other peers (e.g., fast-sync [3] in geth and warp-sync
in parity). Doing so allows the node to avoid having to
replay all prior transactions. However, this comes at the price
of having to trust in the honesty of a majority of its peers—a
non-trivial trust assumption in the face of Sybil attacks [4].

C. Gas: Computation Virtual Unit

Gas [5], [1] is a virtual unit that is consumed when
computation is performed by the EVM and exist to align
computational cost to payable transaction fees. In effect, it
discorages authored transactions which are computationally
expensive to execute. When transactions are submitted to
miners to be included in the blockchain, the author pays
upfront a fixed amount of Gas. As part of the payment process,
the author also bids for a gas price denominated in Ethers. The
transaction fee for an authored transaction is a product of the
amount of gas and the bidded gas price.

For each computational step performed by the miner during
verification, Gas is subtracted from the paid Gas. An Out-of-
Gas exception is thrown by the EVM when Gas runs out. Such
transactions are still included in the blockchain as proof that
execution was attempted, and the gas paid is forfeited by the
miner. On the other hand, valid transactions that have leftover
gas will be refunded to transaction author.

D. Attacks

Attacks against decentralized cryptocurrency networks have
been increasing over the past years due to its infancy and
increased usage. On the networking layer, these networks are



susceptible to eclipse attacks, first explained by [6] prevents
participants from consensus participation [7], [4]. On the
EVM layer, numerous attacks [8] of varying severity exist.
Notably, denial-of-service attacks mounted in the form of a
resource exhaustion attack. Resource exhaustion attacks were
first identified in [9] exploiting the fact that arbitrary inclusion
of long-running transactions may be included by problem
givers imposing an asymmetric amount of effort required to
verify and execute these transaction to determine if the output
is correct. Its impact when exploited with our observations in
the EVM Gas Mechanism causes a significant reduction in
transaction throughput and degradation in user experience as
transactions take significantly longer to execute. Previously,
between block 2.3M and 2.46M, a severe mispricing of gas
cost for the EXTCODESIZE opcode [10] resulted in signif-
icantly longer transaction execution times across numerous
blocks which resulted in the EIP150 hard-fork to introduce
re-aligned gas cost for a number of EVM opcodes.

III. METHODOLOGY

As an attempt to evaluate the Gas Mechanism,we take time
measurements on a per-opcode basis while transactions are
executed by the EVM on two disparate machines. In this
section, we describe the hardware, software, procedures and
workloads undertaken to collect the measurements.

A. Hardware Specification

The first machine (A) used for experiment is a Dell R740xd
and its setup is a dedicated server instance without any
hypervisors nor guest VM instances. Table I lists the hard-
ware specifications. While second machine (B), Dell Optiplex
machine, representing a typical desktop node.

TABLE I
EXPERIMENTAL PLATFORMS

Machine A B

Storage Type PCIe NVMe SSD SATA3 SSD

CPU Intel R© Xeon R© Intel R© CoreTM

Platinum i7-4770@3.40GHz
8180M@2.50GHz

Threads (Core) 2 (112) 1 (4)

Cores (Socket) 28 (56) 4 (4)

Sockets 2 1

Memory 1.5TB DDR4 16GB DDR3
2300MHz 1600MHz

OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS

Kernel Linux 4.15.0-33 Linux 4.15.0-33

These two different machines were chosen with the intent
of allowing our results to extrapolated across the spectrum
on typical Ethereum nodes at the time of writing. The key
difference between our hardware choice and community-run
Ethereum nodes is that most nodes are deployed in Virtual
Private Server settings within data centres [11].

B. Software
The software implementation used is the C++ Ethereum

reference implementation, also known as aleth2 or
cpp-ethereum previously. For compilation options, we
compiled with default settings which uses LevelDB3 as the
overlay DB back-end to manage the blockchain data and the
state trie. We elected to use the C++ implementation as it
is one of the reference implementations maintained by the
Ethereum Foundation and it features relatively less runtime
overhead compared to other implementations (i.e., geth,
ethereumj). Our methodology could be readily adapted to
alternate software implementations, and doing so we leave as
future work.

C. Setup
Our setup involve collecting nanosecond-precision transac-

tion execution traces. Each transaction execution trace records
the sequence of EVM opcodes (instructions) executed by the
transaction and, for each element of the sequence, the length
of time consumed by its execution in nanoseconds. Execution
traces were output to a file through buffered I/O and then
following the data collection were loaded into a database for
further analysis. All data processing was performed outside
of transaction execution to ensure that it did not directly
interfere with our timing measurements. The logging of timing
results was done using line buffered output stream. Intermittent
buffer flushes occur outside of the runtime of EVM opcode
instances guaranteeing the buffer flushes did not distort our
time measurements. Our measurements exclude all time spent
on other work such as the SHA3 computation for crypto-
graphic transaction validation as we are only concerned with
the performance of the EVM while executing transactions. We
also omitted measurements for balance transfer transactions.

To collect our data, we forked the reference client4 to
include the necessary code to perform timing measurements,
making use of the standard chrono C++ library and user
static tracing (UST) probing tool, lttng.

The reference C++ client that we forked makes use of
various in-memory software caches to avoid disk I/O. To
understand their impact on transaction execution, we also
added code to measure, for each transaction, the number of
cache hits and misses. We logged cache hits and misses for
in-memory caches
• Code Size Cache — caches code size of most recently

used smart contract.
• Empty Account Cache — caches recently looked-up

empty accounts.
• Account Cache — caches recently read account balances.
• Code Cache — caches recently used contract codes.
After the transaction traces were collected, we computed

the the Time-to-Gas ratio for each opcode and performed
statistical analysis for each opcode to visualise variability of
the distribution which is shown in Table II and Table III.

2https://github.com/ethereum/aleth
3http://leveldb.org/
4at commit: develop/aa73807c9a6f79114d36ce738658dcba0bc7fbb3

https://github.com/ethereum/aleth
http://leveldb.org/


1) Noise: Any software measurement experiment is often
subjected to noise due to the internal and competing processes
in a system. We note that our experimental measurements
cover a continuous data collection period that spans multiple
weeks of real time. Our measurements cover transaction exe-
cutions across 2 million blocks where the same set of EVM
opcodes are repeatedly executed millions, if not billions of
times. Therefore, we anticipate that measurement noise due to
system resource contention will present as outliers in the data
sets.

2) System under test (SUT): Machine A is a dedi-
cated server instance. During the data collection period, the
Ethereum client was the only heavy workload process with
metrics collected in a file for each transaction. Writes to the
files were performed using buffered I/O with pre-allocated
memory in the heap. The dedicated server instance is a multi-
tenanted instance, therefore there are other processes that may
have contended for IO access. However, we contend that
the noise as a result of contention will be smoothed out
with the high amount of collected traces. Machine B is a
personal desktop machine. During the data collection period,
the Ethereum client was run within a Linux control group with
a RAM hard-cap limit of 8GB. Numerous other processes that
contend with hardware resources were also running at the same
time such as a web-browser, productivity tools, etc. We elected
to use a noisy setup for Machine B as it is representative of
the hardware choice used by a consumer user.

D. Workloads

We ran two types of workloads for the purpose of collecting
EVM traces. From Section II, we noted that Ethereum opcodes
require access to state which is stored on disk, therefore we
also measured the time spent for low-level function calls to
the client database interfaces.

First, the initial block download workload is used to gather
measurements on all transactions since the genesis block up
to block 4.7M. Between block 2.3M and 2.46M, a severe
mispricing of gas cost for EVM opcodes that requires Disk
I/O resulted in a denial of service attack. Discussed earlier in
Section II-D, EIP150 [12] was implemented to permanently
increase the cost of I/O-intensive opcodes to better align the
verification time against gas cost. All transaction measurement
data prior to EIP150 has been excluded from the results. This
workload mimics a typical use scenario where transactions are
continuously executed.

Second, we used lttng [13] to collect more detailed traces
of function calls in the database interface implemented by the
client in an interval between two arbitrary block height. This
technique enabled us to analyse internal function calls to the
database interface and the time spent for each call to associated
database interface functions. In contrast to other tracing tools,
such as Systemtap and uprobes with perf, we found that
instrumenting the client with lttng traces enabled timing
measurements with more precision.

IV. RESULTS

In this section we present our measurements from the
collected transaction traces of time and gas used during
transaction execution.

A. Baseline

As mentioned in Section I the gas cost for each opcode
was set in the consensus rule based on baseline measurements
undertaken by the Ethereum foundation. The Ethereum foun-
dation performed benchmarks to measure the approximate ex-
ecution time of each opcode on an unidentified host machine.
Then they set the gas cost for each opcode so that one unit of
gas would represent approximately 1µs (1,000 nanoseconds)
worth of computation, on that machine. Under this calibration,
the baseline Time-to-Gas (aka Time/Gas) ratio of execution
time in nanoseconds to gas used for each opcode is 1,000.
Smaller values of this ratio represent better gas economy.

B. Observations

For each opcode we calculate its observed Time-to-Gas ratio
for each of its executions in our recorded traces, by dividing its
observed execution time by the amount of gas it is defined to
consume under the current Gas cost model, mentioned above.

A total of 1TB worth of traces were collected on both SUTs
and the ratios for each individual execution of each opcode
was collected, and then grouped according to opcodes. Doing
so allowed us to produce a full distribution of observed Time-
to-Gas ratios for each opcode. Table II and Table III present
a range of summary statistics that capture each distribution5.

The mean, µ is calculated by taking the average of the
summation of all measured time-to-gas ratios. Q1 and Q3

respectively refer to the 25th and 75th percentile in data.
The inter-quartile range (IQR) is calculated by taking the
difference of Q3−Q1. The Mean Absolute Deviation (MAD),
a robust statistical method to compute variability in data [14],

σ was computed using the method, (
n∑

i=1

|xi −Q2|) ÷ n. The

Coefficient of Variability (CoV) [15], σ÷µ is used to measure
the relative spread between different opcodes with respect
to their individual distribution of observed ratios. Values in
parentheses are computed by subtracting the mean/median
against the baseline ratio of 1,000ns/gas and dividing by the
original value, to measure how far the computed mean/median
has deviated from the baseline. The number of observations
for each opcode has also been included as a sanity check
confirming that both machines executed the same exact trans-
actions for our workload. † denotes opcodes that have high
execution overhead due to the need to access the state trie.
For the semantics of each EVM opcode, we refer the reader
to the Ethereum yellowpaper [1].

Figure 1 is a diagram illustrating the measured execu-
tion time of the Trie DB lookup function used by state
accessing EVM opcodes like EXTCODESIZE and BALANCE.
The sampled interval is between 3,917,699 and 4,156,785

5More comprehensive results in a companion website is available at https:
//github.com/renlord/bookish-octo-barnacle/blob/master/SNB2019.md
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TABLE II
SUMMARY STATISTICS FOR 10 SELECTED OPCODES BY THE HIGHEST MEAN RATIO ON MACHINE A AS DESCRIBED IN TABLE I.

Machine A

Opcode µ Q2 (Median) Q1 Q3 IQR #Observations MAD σ CoV σ ÷ µ

BLOCKHASH† 34,343 (3,334%) 110 (-89%) 56.0 87,027.0 86,971 169,537 34,284.32 1.00
SLOAD 921 (-7%) 32 (-96%) 1.0 148.0 147 138,736,099 917.96 1.00
BALANCE† 867 (-13%) 596 (-40%) 509.0 692.0 183 8,644,400 400.32 0.46
ORIGIN 300 (-69%) 289 (-71%) 269.0 313.0 44 78,807 34.22 0.11
ADDRESS 297 (-70%) 297 (-70%) 262.0 318.0 56 5,123,311 38.67 0.13
COINBASE 286 (-71%) 271 (-72%) 250.0 312.0 62 58,315 38.73 0.13
CALLER 267 (-73%) 261 (-73%) 223.0 299.0 76 47,434,902 46.54 0.17
MSTORE 144 (-85%) 134 (-86%) 117.0 162.0 45 364,731,080 31.53 0.22
CALLDATALOAD 142 (-85%) 134 (-86%) 89.0 192.0 103 68,615,078 49.18 0.34
EXTCODESIZE† 142 (-85%) 4 (-99%) 2.0 27.0 25 12,386,619 141.00 0.99
CODESIZE 95 (-90%) 53 (-94%) 45.0 58.0 13 36,583 54.69 0.57
SGT 94 (-90%) 58 (-94%) 37.0 117.0 80 308,277 56.52 0.60
MLOAD 94 (-90%) 76 (-92%) 69.0 95.0 26 248,684,463 25.54 0.27
DIV 94 (-90%) 89 (-91%) 42.0 135.0 93 84,993,868 47.39 0.50
SDIV 85 (-91%) 64 (-93%) 38.0 106.0 68 162,142 48.00 0.56
GASPRICE 61 (-93%) 48 (-95%) 44.0 54.0 10 492,471 19.71 0.32
PUSH5 56 (-94%) 58 (-94%) 41.0 65.0 24 355,623 13.91 0.24
CALLDATASIZE 50 (-94%) 50 (-95%) 42.0 55.0 13 26,912,010 10.12 0.20
MULMOD 48 (-95%) 17 (-98%) 12.0 80.0 68 3,279 36.29 0.75
SLT 46 (-95%) 42 (-95%) 37.0 49.0 12 4,399,360 10.36 0.22

TABLE III
SUMMARY STATISTICS FOR 10 SELECTED OPCODES BY THE HIGHEST MEAN RATIO ON MACHINE B AS DESCRIBED IN TABLE I.

Machine B

Opcode µ Q2 (Median) Q1 Q3 IQR #Observations MAD σ CoV σ ÷ µ

BLOCKHASH† 35,156 (3,415%) 117 (-88%) 54.0 81,575.0 81,521 169,537 35,097.84 1.00
SDIV 26,854 (2,585%) 85 (-91%) 48.0 126.0 78 162,142 26,805.20 1.00
SLOAD 16,808 (1,580%) 31 (-96%) 0.0 201.0 201 138,736,099 16,805.73 1.00
BALANCE† 12,883 (1,188%) 7,070 (607%) 5,592.0 8,823.0 3,231 8,644,400 7,808.86 0.61
SGT 12,499 (1,149%) 61 (-93%) 45.0 136.0 91 308,277 12,454.36 1.00
EXTCODESIZE† 2,369 (136%) 4 (-99%) 2.0 26.0 24 12,386,619 2,367.62 1.00
SLT 1,459 (45%) 85 (-91%) 53.0 173.0 120 4,399,360 1,404.95 0.96
DIV 663 (-33%) 120 (-88%) 43.0 175.0 132 84,993,868 613.12 0.92
ADDRESS 351 (-64%) 332 (-66%) 304.0 381.0 77 5,123,311 53.26 0.15
ORIGIN 331 (-66%) 316 (-68%) 302.0 341.0 39 78,807 32.75 0.10
CALLER 328 (-67%) 310 (-69%) 263.0 355.0 92 47,434,902 60.05 0.18
COINBASE 326 (-67%) 311 (-68%) 300.0 331.0 31 58,315 28.33 0.09
CALLDATALOAD 237 (-76%) 214 (-78%) 172.0 269.0 97 68,615,078 60.82 0.26
MLOAD 179 (-82%) 161 (-83%) 157.0 184.0 27 248,684,463 22.57 0.13
MULMOD 176 (-82%) 9 (-99%) 9.0 55.5 46 3,279 167.45 0.95
SSTORE 144 (-85%) 0 (-100%) 0.0 0.0 0 42,213,319 144.87 1.00
MSTORE 143 (-85%) 126 (-87%) 113.0 159.0 46 364,731,080 38.45 0.27
SUICIDE 105 (-89%) 0 (-100%) 0.0 0.0 0 1,123 105.40 1.00
AND 102 (-89%) 26 (-97%) 19.0 40.0 21 285,047,447 83.26 0.81
CALLDATASIZE 100 (-89%) 48 (-95%) 41.0 102.0 61 26,912,010 61.58 0.61
† represents opcodes that belong in the external category which require read/write access to the state trie.

on Machine B (total 13,745,782 transactions). These time
measurements were derived from traces were collected using
code instrumented with the lttng tracing framework. Due to
limited privileges on Machine A and disk capacity limitations
on Machine B, we could record these dtailed traces only
on Machine B and only for a limited workload. We discov-
ered that the majority of time spent is focused on database
operations associated with LevelDB instead of transaction
execution. Duplication of EVM tracing show that the lttng
traces include approximately 100ns worth of overhead time.

V. DISCUSSION

From the results we infer three things. Firstly, certain op-
code execution times have exceeded well beyond the baseline,
which poses an attack vector for denial of service. Secondly,
some opcodes have high variance in their ratio distributions
further weakening the linear correlation between execution
time and assigned gas cost. This poses an issue as an adversary
can exploit this by authoring transactions that mimic the
execution profile of high time-to-gas ratio transactions. Finally,
our results also show that machines with different hardware
capability yield different EVM execution profiles. We will
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attempt to explain the cause of these observations in this
section.
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execution instances performing worse than the baseline (denoted in dotted
line along the vertical axis) posing a denial-of-service vulnerability on both
machines. Overlapping regions indicate that the ratio distribution is identical
across both machines.

a) Denial-of-Service: Underpriced gas cost for EVM
opcodes pose a denial-of-service attack vector within the
Ethereum ecosystem. While under the workload, both ma-
chines consistently shown that the BLOCKHASH opcode has
the highest mean time-to-gas ratio well beyond the baseline
which indicate that the opcode is severely underpriced and
exploits can cause severe disruptions to all users.

The measured IQR further affirm that the opcode has been
assigned with an incorrect gas cost as the ratio distribution is
extremely sparse.

This opcode is one of the three opcode that falls under the
external category as defined in the Ethereum yellowpaper
as it requires access to the state trie during its execution. The
main use of the opcode is to get the hash of one of the 256
most recent complete blocks. The main bottleneck for this
particular opcode is caused by the fact that the BLOCKHASH
EVM operation is implemented as a smart contract instead

of a built-in routine within the EVM. Therefore its execution
requires traversing the state trie to load the contract code
into RAM for execution. On top of that, in the reference
implementation, there is also the overhead of creating an
embedded EVM instance within the runtime of the base EVM
executing the contract, incurring more overhead.

We note that this analysis applies only to the C++ reference
implementation. Other users might, for instance, run custom,
private implementations in which the BLOCKHASH opcode is
implemented more efficiently, thereby avoiding this potential
denial-of-service vector.

We note further that an impending change [16] to the
gas cost for BLOCKHASH is scheduled to take place in the
Constantinople hard-fork where the gas cost is raised from 20
to 800. Based on our results, this change would put its mean
ratio below the baseline (1,000), which would fall from 35,000
to just 875.

b) Gas Cost Misalignment: Risk of denial of service
aside, our measurements also show that on both experimental
platforms, there are other EVM external-class opcodes
(i.e., BALANCE, SLOAD and etc) that have relatively higher
variability in their time-to-gas ratio in comparison to other
standard opcodes. While not directly a vulnerability, higher
variability in ratio distribution make performance profiles un-
predictable and opens up the possibility of transactions being
executed at the expense of an unfairly high computational
cost. This variability is generally caused by the fact that the
client software must either load state trie objects from disk
or a memory-resident cache. Due to the varying latencies
posed by memory hierarchy in computing hardware, reading
from a SSD disk can incur a 10 to 16 time penalty; on
a HDD disk, this penalty could be 1,000 times larger. The
nondeterminism of objects being resident in memory is the
cause of the variability, which was further supported by our
lttng traces. The traces show that accessing a cached DB
lookup is on average 100 times faster than it takes to process a
DB lookup that requires disk access. From our measurements,
we observed that on average, executing the BALANCE opcode
requires 7 DB lookups, of which 1 or 2 will require disk
access.

Most if not all Ethereum implementations use LevelDB as
backend storage by default. LevelDB is a minimal key-value
store database that provides an ordered mapping from string
keys to string values. The associated overhead of looking up
state during transaction execution is a consequence of how
the state trie is stored internally within LevelDB. Recall that
the state trie is an implementation of a Merkle Patricia Trie
composed of three types of value nodes (i.e., extension node,
value node and index node). The traversal of the trie for
any particular given value node has a theoretical constant
lookup time which is the size of the query key. In the case of
looking up an account balance, since Ethereum accounts are
identified by keys of 20 bytes (40 hex characters) in length,
the maximum number of traversal steps required will be 10. If
there exist multiple value nodes that share common prefixes in
their keys then this number of lookup steps can be reduced, by



utilising extension nodes (explained below). During a lookup
the state root index is first retrieved, which resolves to an
index node. The first element in the key is then used to
retrieve subsequent index nodes or extension nodes. Extension
nodes allow fast-track traversal along the state-trie reducing
the need to traverse the full key length and can only be created
when multiple node values share common substrings in their
keys. Given the design of how state objects are retrieved, it is
unsurprising to find that EVM opcodes that require state trie
access exhibit high variability in their Time-to-Gas ratios.
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Fig. 3. Hexbin plot illustrating time to gas ratio versus account cache
hit rate. This plot measures the effectiveness of maintaining an in-
memory account cache. Lighter colored hexes indicate higher density
of observation. The account cache is used by BALANCE and other
opcodes that require loading an account into resident memory. Notice
that with a 1.0 cache hit rate, the time/gas ratio demonstrates greater
variance than with 0 cache hits highlighting cache inefficacy.

As a measure to smooth out this nondeterminism,
cpp-ethereum implements a memory-resident cache which
provides temporary caching of recently accessed state ob-
jects (e.g., accounts, code sizes, etc) as discussed earlier in
Section II. Not to be confused with the LRU Cache used
by LevelDB, the caching policy for these memory-resident
caches is determined by the Ethereum client; whereas what
gets stored in the LevelDB cache is not controlled by the
client. Due to frequent state changes following each block,
the custom implemented account cache is invalidated when
state is finalised. To study the effectiveness of the memory-
resident cache implementation, we measured the account cache
hit rate which tracks the percentage of cache hits when the

EVM runtime attempts to lookup an account in the state trie.
It is used for all opcodes that require an account lookup such
as BALANCE. Our measurements in Figure 3 show that the
account cache is mildly effective at improving the Time-to-
Gas ratio. On machine B, the advantages of having the account
cache appears marginal.

Cache efficiency is typically realised when programs have
strong locality of reference. We observed that during the
runtime of smart contracts in our workload, usage of the
BALANCE opcode often referenced different account balances
which resulted in poor spatial locality. On the other hand, we
observe that the use of caching for EXTCODESIZE to be more
effective: the majority of the ratio distribution is below the
baseline (1,000 ns/gas), with a mean that is below 100 ns/gas.
We attribute this improvement to two usage traits. Firstly, the
EXTCODESIZE opcode is often used to check code sizes of
well-known address locations. Secondly, the code size for an
address is unlikely to change once code has been authored for
that address: Ethereum smart contracts are immutable until the
SUICIDE opcode is called (which deletes them). In contrast,
account balances change often, which causes cached values in
the account cache to be frequently invalidated reducing cache
effectiveness. Therefore, we emphasize that memory-resident
caching appears to be sub-optimally effective to improve
EVM execution performance for opcodes that require account
lookups.

c) Hardware Choices: Choice of hardware when running
an Ethereum node plays a significant factor for performance
and the efficacy of keeping up with consensus. We observed
that despite running with competent consumer hardware ma-
chines (i.e., Machine B), it is still possible for the node to
lag behind consensus as more capable machines (likely to
be used by miners) can outperform less capable machines.
Significant mean and σ (mean absolute deviation) differences
for identical opcodes on the two machines were observed.
Generally, both mean and mean absolute deviation observed
on Machine B are higher than observed on Machine A.
This deviation highlights that machines with better hardware
specifications are likely to outperform lesser capable machines.
This is especially problematic as miners are usually well-
resourced, running nodes on powerful machines. Such miners
will have relatively better gas economy while executing EVM
transaction in contrast to e.g., machines used in domestic
households.

We argue that this competitive advantage in gas economy
for the well-resourced poses a threat to node diversity and
decentralisation. Specifically, it indicates that mining nodes
with better hardware will gain a competitive edge while
extending the canonical chain, while nodes running on lesser
hardware will instead contribute to higher fork occurrences.
Nodes with similar specifications to Machine B are less likely
to keep up with consensus, especially if (as indicated in
Figure 5) gas economy deteriorates over time due to increased
read amplification. In light of this, we suggest that consensus
networks consider recommending minimal hardware require-
ments for effective participation in consensus.
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Fig. 4. Distribution of BALANCE, EXTCODESIZE and SLOAD time-to-gas ratios showing that Machine B contains execution instances of the BALANCE
opcode running longer than execution instances on Machine A by a factor of 10 to 100. Increasing time-to-gas ratio represents increasing unit time spent per
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Fig. 5. Plot showing deterioration of BALANCE opcode as block number
increases. As the state size grows, external opcodes efficiency deteriorate
due to increased read amplification when accessing data values from disk.

Significant deviation in performance due to hardware is
particularly observable for the BALANCE opcode, whose distri-
bution of observed Time-to-Gas ratios varies greatly between
Machine A and Machine B (see Figure 4). The difference is
so large that in the event that both machines were operated
by miners, we contend that Machine B is almost guaranteed
to lose out in the race for consensus. The difference between
the two machines in terms of their ratio distribution further
confirms that hardware capability is a key factor in the gas
economy of a node. Furthermore, we also observed that
Machine A and B have distinct runtime profiles. Nearly all
BALANCE opcode executions run below the baseline ratio
for Machine A, while only 10% of BALANCE executions run
below the baseline for Machine B.

As a general observation, we observed that time-to-gas
ratios on Machine B are generally higher than Machine A
and this difference is more profound for external class

opcodes. Other opcodes show negligible difference and still
run below the baseline. This difference further confirms that
hardware choice does play a significant role in an operator’s
efficiency and tendency to keep up to consensus.

Aside from the mean ratio differences between the two
machine, we also observe that on average the assigned gas
cost for non-external opcodes are higher than external
opcodes. Therefore, it appears as if users have been paying
relatively more in Gas for computational opcodes compared
to external opcodes.

The observed variation in ratio distributions between the
two machines indicates that the Gas cost model is ineffec-
tive for maintaining fairness between nodes running different
hardware. We argue that, due to this variation, the Ethereum
ecosystem will tend to centralization as lesser hardware has
relatively fewer incentives to race for consensus. The reduced
incentives for lesser nodes to participate increases the barriers
to entry for consensus participation and, we argue, so threat-
ens node diversity. It also reduces the potential for network
decentralization, since lesser capable nodes must either give
up on verifying future transaction executions or fall out of
consensus.

VI. POSSIBLE SOLUTIONS

In the previous section, we identified key problems that led
to highly volatile time-to-gas ratio distributions for various
EVM opcodes. These key problems are mainly exacerbated
by the dependency of transaction execution on state. As a
direct measure to reduce this variance in ratio distribution,
we can either reduce state access during transaction runtime
or improve I/O performance and predictability when state is
being accessed. In this section, we outline existing research
and potential implementation avenues that can be applied to
address this problem.

One way improve I/O performance when reading state
data is to optimize the database backend used to store



and read state data. Volatile database lookup times suffer
from read-amplification introduced by LevelDB storage. Read-
amplification occurs when the number of read operations
executed by the database driver exceeds a single query against
the disk. [?] proposes a novel database implementation to store
the Ethereum state objects which improves read and write
performance by reducing read and write amplification.

Longer term solutions that aim to curb the state growth on
a single node include blockchain sharding and state channels.
State channels enable the aggregation of transaction executions
that persist all interim state changes in a single transaction on
the blockchain. Proposed state channel solutions are similar to
micro-payment channel schemes proposed in Bitcoin such as
[17], [18] but envisioned to be more generic to allow for more
general purpose computation to take place between two private
parties. Blockchain sharding solutions such as [19], [20], [21],
[22] aim to to split the network into shards (i.e., subset
of nodes) that are responsible for a subset of the full state.
While not directly addressing the key problems discussed in
the previous section, proposed sharding scheme can alleviate
the problem by curbing node state growth. Sharding schemes
introduce additional security assumptions that enable nodes to
process state changes that they cannot independently verify.

Finally, verifiable computing methods [23], [?] have also
been proposed as a potential solution to avoid the need for
transaction execution. Such schemes allow a node to verify
that a transaction has been correctly executed without having
to re-execute the transaction to independently derive its result,
using embedded zero-knowledge proofs. These proofs can be
checked in time independent of the size of the transaction. Yet
at the time of writing have yet to be deployed.

VII. RELATED WORKS

Our work is closely related to [?], which briefly measured
the performance of a handful of Ethereum opcodes, and
compared the results between two similar machines running
different operating systems. None of the opcodes considered in
their analysis access the state trie (i.e., perform I/O), and their
measurements cover synthetic benchmarks only for a relatively
small number of executions. Thus, unlike our results, theirs do
not easily generalise to real-world usage nor shed light on the
impact of I/O on the current Gas cost model, which we found
to be a major source of misalignment. Finally, their results
shed little light on the plight of modest nodes vs their more
computationally resourced peers, which we identify as a threat
to node diversity.

Empirical measurements have provided us with a better
understanding of decentralized cryptocurrency networks. [24]
measured block and transaction propagation delays in Bitcoin
and produced a model which led to future security studies
and the discovery of numerous attacks such as [25], [26],
[27]. [?] measured decentralized metrics in both Bitcoin and
Ethereum networks such as the distribution of hash power held
by miners and the distribution of network peers by geography,
to quantitatively understand the degree of decentralization.
[28], [11] extend our understanding of the Ethereum network

by adding measurements of client heterogeneity, connectivity
between peers and geographical distribution of peers. Other
measurement and tracing work such as [29], [30], [31] involve
the analysis of the security of the underlying network which
led to a better understanding of the decentralized network
security model. [32] is a community-run Ethereum block
explorer which also collects EVM traces for each transaction.
Our work extends these traces by also including measured
time for each EVM operation, and carefully analysing the
effectiveness of the current Gas cost model.

Other works have focused on smart contract use, [33] quan-
tified the number of smart contracts in application domains for
usage pattern analysis in Bitcoin and Ethereum. [34] extend
this by analyzing behavioral usage patterns by network users
and clustering contracts based on code similarity.

Efforts to improve verification throughput have prompted a
flurry of studies in speculative concurrent execution of EVM
transactions. [35], [2] proposed adding concurrency in smart
contracts and showed that it was possible to execute smart
contracts concurrently by analysing transaction dependencies
to run non-conflicting transactions in parallel. Subsequently,
[36] introduced the first framework for optimistic concurrent
execution of smart contracts which leverages basic/multi-
version timestamp ordering. Finally, [37] carried out a mea-
surement study on simulated greedy concurrent transaction
execution. Our measurements and analysis assume serial
transaction execution, as implemented in the main Ethereum
clients; however extending them to concurrent execution could
be an interesting avenue for future research.

VIII. CONCLUSION

To the best of our knowledge, we performed the first large
scale empirical analysis of the EVM Gas mechanism and
the current Gas cost model. We confirmed potential denial-
of-service vectors resulting from mis-priced EVM opcodes
involving disk I/O. We also measured the effects of I/O in
transaction costs, finding that it remains poorly captured by
the current Gas cost model and that its effects are getting
worse over time. We also found that under the current Gas
cost model, nodes with modest computational resources are
disadvantaged compared to their better resourced peers, which
we identified as an ongoing threat to node diversity and
network decentralization. Our results indicate that, absent
deployment of techniques such as verifiable computation that
allow transactions to be verified without re-executing them,
further work is required to improve Ethereum’s Gas cost model
to better align Gas costs with transaction execution costs.
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